
14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 1/11

Home Posts About

A successful Git branching model
👉 Latest post:

"Git power tools for daily use"

Note of reflection (March 5, 2020)

This model was conceived in 2010, now more than 10 years ago, and not very long after Git itself
came into being. In those 10 years, git-flow (the branching model laid out in this article) has
become hugely popular in many a software team to the point where people have started treating
it like a standard of sorts — but unfortunately also as a dogma or panacea.

During those 10 years, Git itself has taken the world by a storm, and the most popular type of
software that is being developed with Git is shifting more towards web apps — at least in my filter
bubble. Web apps are typically continuously delivered, not rolled back, and you don't have to
support multiple versions of the software running in the wild.

This is not the class of software that I had in mind when I wrote the blog post 10 years ago. If your
team is doing continuous delivery of software, I would suggest to adopt a much simpler workflow
(like GitHub flow) instead of trying to shoehorn git-flow into your team.

If, however, you are building software that is explicitly versioned, or if you need to support multiple
versions of your software in the wild, then git-flow may still be as good of a fit to your team as it
has been to people in the last 10 years. In that case, please read on.

To conclude, always remember that panaceas don't exist. Consider your own context. Don't be
hating. Decide for yourself.

In this post I present the development model that I’ve introduced for some of my projects (both at
work and private) about a year ago, and which has turned out to be very successful. I’ve been meaning
to write about it for a while now, but I’ve never really found the time to do so thoroughly, until now. I
won’t talk about any of the projects’ details, merely about the branching strategy and release
management.

https://nvie.com/
https://nvie.com/posts/
https://nvie.com/about/
https://nvie.com/posts/git-power-tools/
https://guides.github.com/introduction/flow/

14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 2/11

For a thorough discussion on the pros and cons of Git compared to centralized source code control
systems, see the web. There are plenty of flame wars going on there. As a developer, I prefer Git
above all other tools around today. Git really changed the way developers think of merging and
branching. From the classic CVS/Subversion world I came from, merging/branching has always been
considered a bit scary (“beware of merge conflicts, they bite you!”) and something you only do every
once in a while.

Why git?

http://git.or.cz/gitwiki/GitSvnComparsion

14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 3/11

But with Git, these actions are extremely cheap and simple, and they are considered one of the core
parts of your daily workflow, really. For example, in CVS/Subversion books, branching and merging is
first discussed in the later chapters (for advanced users), while in every Git book, it’s already covered
in chapter 3 (basics).

As a consequence of its simplicity and repetitive nature, branching and merging are no longer
something to be afraid of. Version control tools are supposed to assist in branching/merging more
than anything else.

Enough about the tools, let’s head onto the development model. The model that I’m going to present
here is essentially no more than a set of procedures that every team member has to follow in order to
come to a managed software development process.

The repository setup that we use and that works well with this branching model, is that with a central
“truth” repo. Note that this repo is only considered to be the central one (since Git is a DVCS, there is
no such thing as a central repo at a technical level). We will refer to this repo as origin , since this
name is familiar to all Git users.

Each developer pulls and pushes to origin. But besides the centralized push-pull relationships, each
developer may also pull changes from other peers to form sub teams. For example, this might be
useful to work together with two or more developers on a big new feature, before pushing the work in
progress to origin prematurely. In the figure above, there are subteams of Alice and Bob, Alice and
David, and Clair and David.

Decentralized but centralized

http://svnbook.red-bean.com/
http://book.git-scm.com/
http://pragprog.com/titles/tsgit/pragmatic-version-control-using-git
http://github.com/progit/progit

14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 4/11

Technically, this means nothing more than that Alice has defined a Git remote, named bob , pointing to
Bob’s repository, and vice versa.

At the core, the development model is greatly inspired by
existing models out there. The central repo holds two main
branches with an infinite lifetime:

master

develop

The master branch at origin should be familiar to every
Git user. Parallel to the master branch, another branch
exists called develop .

We consider origin/master to be the main branch where
the source code of HEAD always reflects a production-
ready state.

We consider origin/develop to be the main branch
where the source code of HEAD always reflects a state
with the latest delivered development changes for the
next release. Some would call this the “integration branch”. This is where any automatic nightly builds
are built from.

When the source code in the develop branch reaches a stable point and is ready to be released, all of
the changes should be merged back into master somehow and then tagged with a release number.
How this is done in detail will be discussed further on.

Therefore, each time when changes are merged back into master , this is a new production release by
definition. We tend to be very strict at this, so that theoretically, we could use a Git hook script to
automatically build and roll-out our software to our production servers everytime there was a commit
on master .

Next to the main branches master and develop , our development model uses a variety of supporting
branches to aid parallel development between team members, ease tracking of features, prepare for

The main branches

•
•

Supporting branches

14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 5/11

production releases and to assist in quickly fixing live production problems. Unlike the main branches,
these branches always have a limited life time, since they will be removed eventually.

The different types of branches we may use are:

Feature branches

Release branches

Hotfix branches

Each of these branches have a specific purpose and are bound to strict rules as to which branches
may be their originating branch and which branches must be their merge targets. We will walk
through them in a minute.

By no means are these branches “special” from a technical perspective. The branch types are
categorized by how we use them. They are of course plain old Git branches.

Feature branches

May branch off from:
develop

Must merge back into:
develop

Branch naming convention:
anything except master , develop , release-* , or hotfix-*

Feature branches (or sometimes called topic branches) are used to develop
new features for the upcoming or a distant future release. When starting
development of a feature, the target release in which this feature will be
incorporated may well be unknown at that point. The essence of a feature
branch is that it exists as long as the feature is in development, but will
eventually be merged back into develop (to definitely add the new feature to
the upcoming release) or discarded (in case of a disappointing experiment).

Feature branches typically exist in developer repos only, not in origin .

Creating a feature branch

When starting work on a new feature, branch off from the develop branch.

$ git checkout -b myfeature develop

Switched to a new branch "myfeature"

•
•
•

14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 6/11

Incorporating a finished feature on develop

Finished features may be merged into the develop branch to definitely add them to the upcoming
release:

$ git checkout develop

Switched to branch 'develop'

$ git merge --no-ff myfeature

Updating ea1b82a..05e9557

(Summary of changes)

$ git branch -d myfeature

Deleted branch myfeature (was 05e9557).

$ git push origin develop

The --no-ff flag causes the merge to always create a new commit object, even if the merge could be
performed with a fast-forward. This avoids losing information about the historical existence of a
feature branch and groups together all commits that together added the feature. Compare:

In the latter case, it is impossible to see from the Git history which of the commit objects together
have implemented a feature—you would have to manually read all the log messages. Reverting a
whole feature (i.e. a group of commits), is a true headache in the latter situation, whereas it is easily
done if the --no-ff flag was used.

Yes, it will create a few more (empty) commit objects, but the gain is much bigger than the cost.

14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 7/11

Release branches

May branch off from:
develop

Must merge back into:
develop and master

Branch naming convention:
release-*

Release branches support preparation of a new production release. They allow for last-minute dotting
of i’s and crossing t’s. Furthermore, they allow for minor bug fixes and preparing meta-data for a
release (version number, build dates, etc.). By doing all of this work on a release branch, the develop
branch is cleared to receive features for the next big release.

The key moment to branch off a new release branch from develop is when develop (almost) reflects
the desired state of the new release. At least all features that are targeted for the release-to-be-built
must be merged in to develop at this point in time. All features targeted at future releases may not
—they must wait until after the release branch is branched off.

It is exactly at the start of a release branch that the upcoming release gets assigned a version number
—not any earlier. Up until that moment, the develop branch reflected changes for the “next release”,
but it is unclear whether that “next release” will eventually become 0.3 or 1.0, until the release branch
is started. That decision is made on the start of the release branch and is carried out by the project’s
rules on version number bumping.

Creating a release branch

Release branches are created from the develop branch. For example, say version 1.1.5 is the current
production release and we have a big release coming up. The state of develop is ready for the “next
release” and we have decided that this will become version 1.2 (rather than 1.1.6 or 2.0). So we
branch off and give the release branch a name reflecting the new version number:

$ git checkout -b release-1.2 develop

Switched to a new branch "release-1.2"

$./bump-version.sh 1.2

Files modified successfully, version bumped to 1.2.

$ git commit -a -m "Bumped version number to 1.2"

[release-1.2 74d9424] Bumped version number to 1.2

1 files changed, 1 insertions(+), 1 deletions(-)

After creating a new branch and switching to it, we bump the version number. Here, bump-
version.sh is a fictional shell script that changes some files in the working copy to reflect the new

14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 8/11

version. (This can of course be a manual change—the point being that some files change.) Then, the
bumped version number is committed.

This new branch may exist there for a while, until the release may be rolled out definitely. During that
time, bug fixes may be applied in this branch (rather than on the develop branch). Adding large new
features here is strictly prohibited. They must be merged into develop , and therefore, wait for the
next big release.

Finishing a release branch

When the state of the release branch is ready to become a real release, some actions need to be
carried out. First, the release branch is merged into master (since every commit on master is a new
release by definition, remember). Next, that commit on master must be tagged for easy future
reference to this historical version. Finally, the changes made on the release branch need to be
merged back into develop , so that future releases also contain these bug fixes.

The first two steps in Git:

$ git checkout master

Switched to branch 'master'

$ git merge --no-ff release-1.2

Merge made by recursive.

(Summary of changes)

$ git tag -a 1.2

The release is now done, and tagged for future reference.

Edit: You might as well want to use the -s or -u <key> flags to sign your tag cryptographically.

To keep the changes made in the release branch, we need to merge those back into develop , though.
In Git:

$ git checkout develop

Switched to branch 'develop'

$ git merge --no-ff release-1.2

Merge made by recursive.

(Summary of changes)

This step may well lead to a merge conflict (probably even, since we have changed the version
number). If so, fix it and commit.

14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 9/11

Now we are really done and the release branch may be removed, since we don’t need it anymore:

$ git branch -d release-1.2

Deleted branch release-1.2 (was ff452fe).

Hotfix branches

May branch off from:
master

Must merge back into:
develop and master

Branch naming convention:
hotfix-*

Hotfix branches are very much like release
branches in that they are also meant to prepare for
a new production release, albeit unplanned. They
arise from the necessity to act immediately upon
an undesired state of a live production version.
When a critical bug in a production version must be
resolved immediately, a hotfix branch may be
branched off from the corresponding tag on the
master branch that marks the production version.

The essence is that work of team members (on the
develop branch) can continue, while another
person is preparing a quick production fix.

Creating the hotfix branch

Hotfix branches are created from the master branch. For example, say version 1.2 is the current
production release running live and causing troubles due to a severe bug. But changes on develop are
yet unstable. We may then branch off a hotfix branch and start fixing the problem:

$ git checkout -b hotfix-1.2.1 master

Switched to a new branch "hotfix-1.2.1"

$./bump-version.sh 1.2.1

Files modified successfully, version bumped to 1.2.1.

$ git commit -a -m "Bumped version number to 1.2.1"

[hotfix-1.2.1 41e61bb] Bumped version number to 1.2.1

1 files changed, 1 insertions(+), 1 deletions(-)

14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 10/11

Don’t forget to bump the version number after branching off!

Then, fix the bug and commit the fix in one or more separate commits.

$ git commit -m "Fixed severe production problem"

[hotfix-1.2.1 abbe5d6] Fixed severe production problem

5 files changed, 32 insertions(+), 17 deletions(-)

Finishing a hotfix branch

When finished, the bugfix needs to be merged back into master , but also needs to be merged back
into develop , in order to safeguard that the bugfix is included in the next release as well. This is
completely similar to how release branches are finished.

First, update master and tag the release.

$ git checkout master

Switched to branch 'master'

$ git merge --no-ff hotfix-1.2.1

Merge made by recursive.

(Summary of changes)

$ git tag -a 1.2.1

Edit: You might as well want to use the -s or -u <key> flags to sign your tag cryptographically.

Next, include the bugfix in develop , too:

$ git checkout develop

Switched to branch 'develop'

$ git merge --no-ff hotfix-1.2.1

Merge made by recursive.

(Summary of changes)

The one exception to the rule here is that, when a release branch currently exists, the hotfix changes
need to be merged into that release branch, instead of develop . Back-merging the bugfix into the
release branch will eventually result in the bugfix being merged into develop too, when the release
branch is finished. (If work in develop immediately requires this bugfix and cannot wait for the
release branch to be finished, you may safely merge the bugfix into develop now already as well.)

14/07/2020 A successful Git branching model » nvie.com

https://nvie.com/posts/a-successful-git-branching-model/ 11/11

If you want to get in touch, I'm @nvie on Twitter.

Vincent Driessen is an independent software engineer and consultant from the Netherlands.

Finally, remove the temporary branch:

$ git branch -d hotfix-1.2.1

Deleted branch hotfix-1.2.1 (was abbe5d6).

While there is nothing really shocking new to this branching model, the “big picture” figure that this
post began with has turned out to be tremendously useful in our projects. It forms an elegant mental
model that is easy to comprehend and allows team members to develop a shared understanding of
the branching and releasing processes.

A high-quality PDF version of the figure is provided here. Go ahead and hang it on the wall for quick
reference at any time.

Update: And for anyone who requested it: here’s the gitflow-model.src.key of the main diagram image
(Apple Keynote).

Git-branching-model.pdf

Git power tools for daily use

An intro to decoders

Technical debt is real debt

Beautiful code

Beautiful map

Summary

Other posts on this blog

•
•
•
•
•

http://twitter.com/nvie
http://github.com/downloads/nvie/gitflow/Git-branching-model-src.key.zip
https://nvie.com/files/Git-branching-model.pdf
https://nvie.com/files/Git-branching-model.pdf
https://nvie.com/posts/git-power-tools/
https://nvie.com/posts/introducing-decoders/
https://nvie.com/posts/why-you-should-consider-technical-debt-to-be-real-debt/
https://nvie.com/posts/beautiful-code/
https://nvie.com/posts/beautiful-map/

