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ABSTRACT: The recently developed iterated stockholder atoms (ISA)
approach of Lillestolen and Wheatley (Chem. Commun. 2008, 5909) offers a
powerful method for defining atoms in a molecule. However, the real-space
algorithm is known to converge very slowly, if at all. Here, we present a
robust, basis-space algorithm of the ISA method and demonstrate its
applicability on a variety of systems. We show that this algorithm exhibits
rapid convergence (taking around 10−80 iterations) with the number of
iterations needed being unrelated to the system size or basis set used. Further,
we show that the multipole moments calculated using this basis-space ISA
method are as good as, or better than, those obtained from Stone’s distributed
multipole analysis (J. Chem. Theory Comput. 2005, 1, 1128), exhibiting better
convergence properties and resulting in better behaved penetration energies.
This can have significant consequences in the development of intermolecular
interaction models.

1. INTRODUCTION

The concept of atoms in a molecule (AIM) underlies much of
our scientific understanding and almost all classical models of
atomic and molecular interactions. Almost all force fields are
built up from pairwise atom−atom interactions. Many-body
nonadditive effects, when they are included, are generally added
as a correction to this atom−atom picture. This viewpoint has its
limitations: it is inappropriate for metals and gets progressively
more inadequate as the electron delocalization length increases.1

Nevertheless, it is likely that, even for these systems, atom−atom
models may be useful when augmented with continuum models
that account for the metallic component.
The problem with the AIM model is that there is no unique

way to define an atom in a molecule. While some atomic pro-
perties (e.g., spectral transitions) may be preserved upon
chemical bonding, others (e.g., atomic size and charge) are lost
or alter dramatically. Some of these are not physical observ-
ables, and methods of defining and calculating them remain
controversial.
Many techniques for identifying atoms within molecules are

concerned only with determining point charges that reproduce
the electrostatic potential of the molecule reasonably
accurately.2−4 We are concerned here with obtaining a well-
defined specification of an atom within a molecule that provides
an accurate and rapidly converging multipole expansion of the
electrostatic field around the atom. For this, we need a descrip-
tion of each atom that is as nearly as possible spherical. This
condition rules out AIM approaches such as that of Bader,5

which is very well-defined and has some useful properties, but
which leads to highly nonspherical atomic shapes that result in

multipole expansions with poor convergence properties.6−8 Of
the AIM methods that result in nearly spherical atoms, the
Hirshfeld stockholder method is one of the most popular. In
this method, given functions wa(r) describing the spherically
averaged electron density of the free atoms, we define the atom
in the molecule ρa(r) using
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where ρ is the total molecular density and the indices a and b
label the atoms. However, this method has two disadvantages:
(1) it requires precomputed shape functions obtained from free
atom calculations, and (2) as a result, it is unable to respond to
changes in the atomic densities due to chemical bonding. The
last point is subtle and requires an explanation. A free carbon
atom is more diffuse than a free oxygen atom, and this
difference is reflected in the Hirshfeld shape functions of these
atoms. However, on formation of the C−O bond, say in carbon
dioxide, the carbon atom must be more compact and the
oxygen atoms more diffuse, as the more electronegative oxygen
atoms draw some of the electronic density away from the
carbon atom. The Hirshfeld procedure does not take account of
this phenomenon.
The major problem of the Hirshfeld partitioning method

the issue of using the free atom as a referenceis taken care of
by the iterated Hirshfeld, or Hirshfeld-I, method of Bultinck
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et al.9 Here, the isolated atomic densitiesthe waare created
as a weighted average of the neutral atom and ionic densities.
The weights, which can be thought of as fractional occupation
numbers, are optimized iteratively. This method does work
quite well4 but requires a knowledge of not only the neutral
atomic densities but also of an unspecified number of ionic
densities. This can be a potential problem as ionic densities are
not easy to come by, and a priori one does not know how many
ionic states are sufficient. Nevertheless, the Hirshfeld-I method
is appealing technique.
Recently, Lillestolen and Wheatley10 proposed a novel and

rather appealing alternative to the conventional Hirshfeld
procedure. In their iterated stockholder atoms (ISA) method
no free-atom shape functions wa(r) are needed (thus doing
away with the remaining shortcoming of the Hirshfeld-I
method). Instead, all we do is assume the existence of these
spherically symmetric shapes that are, by definition, required to
be spherical averages of the atomic densities defined in eq 1,
that is,

ρ= ⟨ ⟩w r r( ) ( )a a
sph (2)

where the angle bracket indicates the spherical average. The
idea here is to make an initial guess for the shape functions wa,
with the only restrictions on them being that they are integrable
and positive over all space, and then to iterate eqs 1 and 2 until
the shape functions attain a desired convergence.
Using a real-space implementation of the ISA algorithm,

Lillestolen and Wheatley and, independently, Bultinck et al.
showed that this scheme always converges to a unique
solution,4,11 and that the atomic charges obtained from the
ISA method appear to reproduce the molecular dipole moments
better than other distribution schemes.10 This is promising; if it is
generally true, the nearly spherical ISA atoms could be useful for
the construction of compact distributed multipole schemes for
molecular systems. If this were the only feature of the ISA atoms,
this method would be no different from the standard Hirshfeld
technique. However, as we shall see, the ISA atoms additionally
capture changes that we commonly associate with chemical
bonding. This effect is totally absent in the usual Hirshfeld
approach.
The ISA partitioning method is not limited to the density only

but, in a straightforward generalization, can be used to obtain
distributed second-order quantities such as the frequency-
dependent polarizabilities. However, to achieve this, we cannot
use a real-space, grid-based ISA algorithm due to the relatively
large computational cost of grid-based methods and the
prohibitively large number of transition densities we would
have to partition. Consequently, we need a basis-space imple-
mentation. A further motivation for this is that, although the
Lillestolen−Wheatley method is guaranteed to converge, it is
found to converge very slowly in practice.12

2. THEORY AND NUMERICAL DETAILS

The basic idea in the basis-space approach is to use expansions
for all the quantities that appear in eqs 1 and 2. Our goal is to
construct an appropriate functional that allows us to obtain the
expansion coefficients. The density will normally be expanded in
an auxiliary basis set using standard density-fitting techniques:

∑ρ χ̃ = dr r( ) ( )
k

k k
(3)

Here, dk are the expansion coefficients and χk the auxiliary basis
set. The density fitting is performed by minimizing the functional

∬ ρ ρ ρ ρΔ = − ̃
| − ′|

′ − ̃ ′ ′d dr r
r r

r r r r( ( ) ( ))
1

( ( ) ( ))DF

(4)

where ρ is the nonexpanded density, which, for closed-shell
systems, can be written in terms of the occupied molecular
orbitals ϕi as ρ = 2Σi|ϕi|

2. As we have done previously,13 we can
enforce charge conservation by including the following
constraint:

∫λ ρΔ = ̃ −d Nr r( ( ) )Q 2
(5)

where N is the total number of electrons in the molecule and λ is
the weight given to the charge-conservation functional. We
typically set λ = 1000.
The expansion for the atomic density ρa is given by

∑ρ ξ= cr r( ) ( )a

k
k
a

k
a

(6)

where the ξk
a are basis functions associated with site a (these

will normally be Gaussian-type orbitals (GTOs) centered at a)
and the coefficients ck

a are to be determined by minimizing an
appropriate ISA functional. The basis set used for the atomic
expansion of site a will normally be a subset of the auxiliary
basis used in the density fitting, limited to only include
functions centered on site a. However, due to the differences in
the density-fitting and ISA functionals, we should expect to use
different basis sets for each. The main reason for this is that the
density fitting is performed using the entire monomer auxiliary
basis set: basis deficiencies at a site can be somewhat made up
for using auxiliary functions from neighboring sites. This
flexibility is not present in the ISA functional. Additionally, as
we shall see, the ISA functionals require considerable flexibility
in the AIM density tails.
Given an atomic density ρa expanded in a basis of spherical

GTOs, the atomic shape function wa is trivially defined as just
the s-function (l = 0) part of ρa. That is, with the above
expansion for ρa we get

∑ ξ=
∈ ‐

w cr r( ) ( )a

k s
k
a

k s
a

func
,

(7)

where we have emphasized the s-character of the expansion
functions with the additional ‘s’ in the subscript. In this manner,
the ISA spherical average step, eq 2, is trivial when using basis
expansions for the atomic functions. In contrast, it is
cumbersome to implement on a grid.
Recently, Verstraelen et al.12 have described a similar

approach that they call the Gaussian-ISA, or GISA, method.
The GISA method is formally exactly the same as the
Lillestolen−Wheatley ISA except that the shape functions are
described using an expansion in a series of s-functions as is
proposed here. However, our proposal differs from the GISA
method in important ways, which we will detail below.
The basis-space implementation of the stockholder partition-

ing step in eq 1 is not unique and can be achieved using a
variety of functionals. The obvious choice is to minimize

∑ ρ ρΔ = −
∑

⎛
⎝
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⎠
⎟⎟w
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b
bstock(A)

2

(8)
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where ∥···∥ indicates an appropriate norm, which in this case
must be the overlap norm, as the integrand must be evaluated
numerically on a grid. The following alternative allows us to use
either the coulomb or overlap norm:

∑ ∑ρ ρΔ = −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟w w

a

a

b

b a
stock(B)

2

(9)

Notice that both functionals allow us to determine the atomic
densities ρa one at a time. This possibility can be used to make
the algorithm scale linearly with the number of atoms.
2.1. Naiv̈e ISA Algorithm. It might seem that a

straightforward ISA algorithm would be

1. Initialize the shape functions wa. While the starting point
does not matter, a good starting point will ensure faster
convergence. Reasonable choices are

a. Set the coefficients of one GTO to be 1.0 and the
rest zero.

b. Use the density-fitting solution to determine the start-
ing coefficients.

2. Determine all the atomic densities ρa using either
Δstock(A) or Δstock(B). This can be done one atom at a time.

3. Update the shape functions wa.
4. Check for convergence (see below). If not converged,

iterate.

This algorithm can lead to converged shape functions, but
when we use the standard density-fitting basis sets to describe
the ISA atomic densities, the converged Δstock(A/B) is nonzero,
and the total charge is incorrect by around 0.001 to 0.01
electrons. The primary cause for this discrepancy is that there is
not enough flexibility in the typical density fitting auxiliary basis
sets to fit the total density and the ISA atomic tails
simultaneously. As explained above, in a standard fit to the
density using eq 4, this lack of flexibility is not an issue as we
minimize the functional ΔDF in the variational space spanned
by the molecular auxiliary basis set. By contrast, in the ISA
procedure described above, the fit to the density of site a is
performed using only basis functions at that site. This
significantly reduces the variational flexibility of the basis, and
hence results in a poor fit to the total density.
This problem is resolved by an increase in the auxiliary basis

flexibility, but this, in turn, leads to numerical instabilities.
These are first manifested in small negative terms in the tail
regions of the AIM densities ρa, which, as the naïve ISA
iterations progress, tend to grow uncontrollably and lead to a
meaningless solution. (The proof of convergence of the ISA
method4,10 requires the weight function to be positive
everywhere.) In the following, we will describe how the basis
sets are extended, and instabilities controlled, while simulta-
neously retaining the linearity of the ISA functionals.
2.2. ISA Basis Sets. The main problem with the auxiliary

basis sets designed for density-fitting is that their s-function
block is not flexible enough to describe the ISA atomic density
tails well enough. They need to be described very well for the
ISA solution to stabilize and converge reliably. The importance
of the tail region should not be be unexpected as changes to the
ionic state of the atomic species on bonding (chemical or
otherwise) have the largest effect on the valence electrons,
which, in turn, describe the atomic density tail. The core region
is comparatively unchanged and tends to stabilize within a few
ISA iterations only. The bulk of the effort involved in
minimizing the ISA functional is spent determining the atomic

tails, that is, the atomic ionic states. There may also be
inadequacies in the higher angular functions, and we have some
evidence that this may be the case, but it is the s-functions that
are the most important, due to their role in determining the
AIM shape functions. We have therefore created hybrid “DF-
ISA” auxiliary basis sets that comprise a very flexible s-function
set designed to allow good modeling of the ISA shape-function
tails, together with the higher symmetry functions from the
standard RI-MP2 density fitting basis sets.14,15

There are a few requirements for a good ISA basis: it should
be flexible enough to be able to describe the ISA atomic shapes
(particularly in the region of the tail), but it should lead to well-
behaved linear equations. If the basis is too flexible, we encounter
instabilities in the ISA functionals, and if the basis is too small, we
find that total charge is not conserved by 0.01 electrons or more
in the minimization of the ISA functionals (eqs 8 and 9). Indeed,
for a good basis, we not only see faster convergence and
charge conservation to 10−3 electrons or better but also find that
the shape functions are positive everywhere with well-defined
exponential tails. These criteria can be used as a means of
assessing the quality of the ISA basis sets.
We have found that a reasonable choice for the ISA s-

function basis set is to use an even-tempered set exp(−αr2)
with exponents of the form α = 2n au, n = nmin...nmax, where nmax
is 5 for hydrogen atoms (αmax = 32.0) and 8 for the heavier
atoms (αmax = 256.0). For numerical stability, we usually choose
nmin = −3 (αmin = 0.125). This choice results in well-behaved
ISA shape functions for most systems, but there are cases where
the 0.125 exponent for hydrogen atoms needs to be omitted
(for example when this most diffuse function acquires a
negative coefficient), while an exponent of 0.0625 was needed
for silicon, because of its more diffuse character. In CamCASP
this set of basis functions is termed ISA/set2. Not all atoms are
included as yet, but basis sets for atoms not already present are
easily created using the algorithm described here. With this ISA
basis set, the Δstock(A) functional conserves charge to 10−3

electrons or better.
While the above procedure works well for the ISA shape

functions wa, as mentioned above, it may be that the higher
angular momentum functions in the density-fitting sets also
need to be augmented to better model the ISA atomic densities
ρa. We are investigating this possibility.

2.3. Fixing the Shape-Function Tail. The ISA shape
functions are generally well-behaved in the core density region
but often exhibit problems in the tail. As mentioned above,
negative terms in the expansion can lead to catastrophic
instabilities and need to be controlled. Furthermore, as there is
very little weight given to the small densities of the tail region,
solutions can easily emerge that have odd features for low
densities (less than about 10−5 au). Effects of this order are
small and may have no apparent adverse effect on the overall
ISA solution, but such behavior is unsatisfactory.
The first ingredient needed to improve the tail is suggested

by the empirical observation, from calculations on a variety of
systems, that well-converged shape functions tend to exhibit an
atom-like exponential decay. We therefore require all ISA shape
functions to decay in this manner; that is, wa, and hence the ISA
atomic density ρa, should decay exponentially as

α= − | − |w Ar r R( ) exp( )a
a a aL (10)

where Ra is the center of atom a, and Aa and αa are constants
yet to be determined. We note here that although the more
accurate decay of an atomic density is Arβ exp(−αr), we have
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found that the rβ factor does not appear to be important, and in
the interest of simplicity, it is omitted.
We now define the corrected shape function w̃a as

̃ =
| | ≤

⎪

⎪⎧⎨
⎩

w
w r

w
r

r r

r
( )

( ) if

( ) otherwise
a

a a

L
a

0

(11)

Here, r0
a is a distance up to which we may expect the

uncorrected shape function wa(r) to be reliable. We typically
take this to be a fixed multiple (usually 1.5) of the Slater
radius16 of the atom a, though in principle this radius could be
determined self-consistently by examining the manner in which
wa decays. The constants Aa and αa in wL

a are determined by
requiring continuity at r0 and by ensuring that the charge
contained in w̃a is identical with the charge in wa. Both
conditions can be enforced analytically. The charge con-
servation condition is necessary; without it the corrected shape
functions w̃a alter the site charges by a small amount at each
step, causing a slow divergence of the ISA iterations.
We now use the corrected shape functions in the ISA

functionals given in eqs 8 and 9. Notice that w̃a is not an
expansion in GTOs but, due to its piece-wise continuous form,
must instead be defined numerically on a grid. Consequently, if
used in the functional Δstock(A), this functional must use the
overlap norm, as it is not practical to evaluate a six dimensional
coulomb integral using grids.
To further stabilize the ISA atomic tails we increase the

weights given to the tail by using, instead of the overlap norm,
the following tail-weighted norm:

∫|| || = +ϵ| − |f f dr r R r( )exp( )atail
2

(12)

where ε is a positive number that must be less than twice the
smallest exponent in the basis set so as to ensure integrability.
We apply this weight to the s-function block only.
There is a degree of self-consistency in this process as all the

parameters in the tail correction are updated at each iteration.
Additionally, the shape function tail-weighting is only applied
when the shape function tails have been determined to be
sufficiently stabilized. Finally, both the tail correction and the
additional weighting can be removed in the final iterations if a
fully self-consistent ISA solution is required.
2.4. Robust ISA Algorithm. The improvements described

above significantly improve the stability and accuracy of the
basis-space ISA (BS-ISA) procedure, but we still see small
charge violations (of the order of 10−3 electrons) when mini-
mizing the functionals Δstock(A/B). These are very likely linked to
the still insufficiently flexible ISA basis sets and possibly also to
the nature of the fix applied to the shape-function tails. While
these charge violations are typically small, we need a method
which will guarantee a good fit to the density while obtaining
the best ISA solution possible within the basis set constraints.
This is possible by simultaneously minimizing the ΔDF and ΔQ

functionals together with either Δstock(A) or Δstock(B). We will
define the BS-ISA functional using a single parameter ζ ∈ [0,1]
to control the relative weights of the density-fitting and ISA
functionals as follows:

ζ ζ ζΔ = − Δ + Δ + Δ− ( ) (1 )( )DF ISA
DF Q

stock(A/B) (13)

Notice that we have included the charge conservation
functional ΔQ with the density-fitting functional. This was
done primarily for convenience of implementation; ideally it
might be desirable to include ΔQ without a ζ-dependence. In

the discussion that follows, ΔDF‑ISA(ζ) will mean the variant
using Δstock(A) as most of our results have been obtained with
this choice.
Ideally, we would want our results to be independent of the

choice of ζ, and, indeed, for well-converged systems, we will
show that the dependence on ζ is small. This parameter con-
trols the off-diagonal blocks that allow basis functions on
neighboring sites to be used to model the density at a given site.
For ζ near 1, the diagonal blocks are dominant and we obtain a
solution close to the pure ISA solution, while for ζ near 0, the
off-diagonal blocks are large and we achieve a more accurate fit
to the total density, though with a relaxation of the ISA atomic
densities. In practice, for a good BS-ISA basis set, values of
ζ between 0.1 and 0.9 appear to be satisfactory, with very little
variation in the final results.
We now describe a robust version of the basis-space ISA

method:

1. Initialize the shape functions wn=0
a as described in the

naiv̈e ISA algorithm presented in Section 2.1.
2. Attempt to determine the corrected form of the shape-

function tails given in eq 11. This is not always possible,
and if the parameters of the function wL

a are deemed to
be unphysical, the fix is not attempted.

3. Minimize the ΔDF‑ISA(ζ) functional to obtain the ISA
atomic densities ρa.

4. Update the shape functions wn+1
a using the ISA atomic

densities ρa (eq 7).
5. Check convergence by evaluating:

=
⟨ | ⟩

⟨ | ⟩ ⟨ | ⟩
+

+ +
d

w w

w w w w
a n

a
n
a

n
a

n
a

n
a

n
a

1

1 1 (14)

With a convergence parameter ε (typically 10−9), we have
achieved convergence if |1 − da| ≤ ϵ ∀ a.

1. If converged, exit.
2. If the shape functions are deemed to be sufficiently

stabilized, turn on the additional tail weighting (eq 12).
This is usually done if convergence is attained to ϵ̃ = 10−5.

3. Iterate from step 2.

Because this algorithm combines density-fitting and the BS-
ISA methods, we will refer to this as the BS-ISA+DF algorithm.
We mention here that there are many variants of the BS-ISA

+DF algorithm: We could, for example, use the ΔDF‑ISA(ζ)
functional with a fixed value of ζ until convergence is attained.
Alternatively, we could minimize ΔDF‑ISA(ζ = 1.0) so as to
converge the shape functionals, and only then reduce ζ to fit
the total density better. This variant has the advantage that ζ =
1.0 corresponds to minimizing the Δstock(A) functional only, and
this can be made to scale linearly with the number of atoms.
Consequently, this approach may be better suited to large
systems. Once convergence has been attained, with ζ < 1.0, the
off-diagonal blocks in the DF-ISA matrices are nonzero and
allow the solution to relax to fit the total density better, though
with a slight degradation of the ISA solution.

2.5. Relation to the GISA Variant. As noted above,
Verstraelen et al.12 have recently described an analogous
approach that they call the Gaussian-ISA, or GISA, method. It
is formally exactly the same as the Lillestolen−Wheatley ISA
except that the shape functions are described using an
expansion in a series of s-functions as proposed here. Our
proposal differs from the GISA method in important ways: first,
we use a far more complete set of s-functions, essential for
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adequate convergence of the shape-function tails. We find that
this flexibility is needed to ensure that functional Δstock(A)
conserves charge to 10−3 electrons or better (without
application of the global charge conservation constraint).
As we have noted above, the better the basis set, the better
charge is conserved, as the functional is able to satisfy the ISA
conditions and reproduce the total density simultaneously.
With the GISA basis sets, we see charge violations of between
0.01 (formamide) and 0.2 (benzene) while the ISA/set2 results
in significantly smaller charge violations of just 0.001 to 0.003
electrons, clearly indicating that the ISA/set2 basis possesses
the variational flexibility needed to describe the ISA shape
functions accurately.
Of course, charge conservation is not an issue if the

stockholder partitioning (eq 1) is performed in real space, as is
done by Verstraelen et al. and in the original formulation by
Lillestolen and Wheatley. In that case, as long as the shape
functions are positive everywhere and finite in extent, no matter
how unphysical they might otherwise be, charge will always be
conserved. From our experience, and the results of Verstraelen
et al., the shape functions obtained using the GISA basis sets
can be reasonable, but we find that they often exhibit an
unphysical decay of the tail. One such example is illustrated in
Figure 1 for the benzene molecule (aug-cc-pVTZ basis). The

shape functions have been obtained by minimizing Δstock(A)
using the GISA and ISA/set2 basis sets with all other
parameters the same. The ISA/set2 atomic shapes exhibit a
clear exponential decay (in the range shown in the figure),
which contrasts with the somewhat erratic and nonexponential
decay of the shape functions obtained using the GISA basis sets.
Finally, we point out that our approach results in linear

equations that are readily suited for applications to large
molecular systems and that, because our ISA s-function basis
sets are created using a simple algorithm, the basis sets can be
extended to other atomic systems with relatively little effort.
2.6. BS-ISA+DF Numerical Details and Implementa-

tion. Minimizing the density-fitting and charge-conservation
functionals, eqs 4 and 5, leads to the following linear equations:

=′ ′S d Tk k k k,
DF DF

(15)

where d is the coefficient vector for the density expansion given
in eq 3, and the left hand side matrix SDF and right hand side
vector TDF are defined as

λ= ⟨ || ′⟩ +′ ′S k k I Ik k k k,
DF

(16)

ρ λ= ⟨ || ⟩ +T k NIk k
DF

(17)

where ⟨k||k′⟩ signifies the coulomb integral of the basis
functions χk and χk′, and Ik = ∫ χk(r) ∀ dr. The S matrix is
order N × N, where N is the number of auxiliary basis functions
in the system. Therefore, the computational cost of solving eq
15 scales as N( )3 . On the other hand, the functionals Δstock(A)

and Δstock(B) are both expressed as the sum over sites of
functionals that depend on the auxiliary basis functions located
on the site only. This allows us to perform the minimization of
these functionals piece-wise, with N( ) computational cost, by
minimizing one block at a time. For example, Δstock(A) can be
written as

∑ ∑ρ ρΔ = −
∑

= Δ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟w

wa

a
a

b
b

a

a
stock(A)

2

stock(A)

(18)

The minimization of Δstock(A)
a leads to the equations

̃ = ̃′ ′S d Tk k
a

k
a

k
a

, (19)

where the superscript a indicates that the quantities defined
here depend only on functions centered at site a, and

̃ = ⟨ || ′⟩′S k kk k
a
, (20)

∫ χ ρ̃ =
∑

T
w

w
dr r

r
r

r( ) ( )
( )

( )k
a

k
a

a

b
b

(21)

Notice that when considered as a matrix over all sites a, the S̃
matrix is block-diagonal.
For each site a, the solution of eq 19 involves a com-

putational cost of order N( )0 . As there are N( ) sites, the
total computational cost of minimizing Δstock(A) scales as

N( ). However, to achieve this linear scaling the T̃k
a integrals

must be calculated using locality. In CamCASP, we did this as
follows:

• Neighbors are defined for every site. A site b is
considered a neighbor of site a if the overlap integral
of the most diffuse auxiliary basis function (all functions
are treated as s-functions for this purpose) of sites a and
b exceeds a specified threshold. This is a reasonable
definition as density-fitting is used for all quantities in the
CamCASP program.

• The integration grid used in eq 21 is constructed from
the atom grids of site a and neighboring sites only.

• Likewise, the density-fitted molecular density ρ and pro-
molecular density Σbw

b(r) are evaluated using auxiliary
basis functions located on the site a and its neighbors only.

With these considerations, T̃k
a can be evaluated with

computational cost of order N( )0 .
The linear equations for the BS-ISA+DF functional in eq 13

can be obtained by constructing the ISA equations for the full
molecular system from the atomic site equations in eq 19, and
combining this set of equations with the density-fitting
equations in eq 15 to give

=′ ′dk k k k, (22)

where if k ∈ a and k′ ∈ a′ then

Figure 1. Shape functions for the carbon and hydrogen atoms in
benzene (aug-cc-pVTZ basis) calculated using the GISA basis sets and
the ISA/set2 basis set described in this paper. In both cases, functional
Δstock(A) was minimized.
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These equations can be solved exactly like the standard density-
fitting equations.

3. BS-ISA+DF SHAPE FUNCTIONS AND
CONVERGENCE

The BS-ISA+DF calculations reported in this paper have been
performed using atomic densities calculated using the PBE017

functional, asymptotically corrected using the Fermi-Amaldi18

correction and the Tozer and Handy19 splicing scheme. Density
functional calculations have been performed using the
DALTON 2.0 program20 using a patch included with the
Sapt200821 program. Unless otherwise specified, we have used
the Dunning aug-cc-pVQZ basis22,23 for density functional
calculations. Vertical ionization potentials needed for the
asymptotic correction have either been calculated using the
Δ-DFT algorithm or have been taken from the NIST
Chemistry Web-book.24

The BS-ISA+DF algorithm described here has been
implemented in a prerelease version of the CamCASP
program25 and is available from the authors upon request.
Iso-density maps reported in this paper have also been
calculated with CamCASP and are displayed using the Orient
program.26 All multipole models have been calculated using the
CamCASP program.
We have investigated a number of systems including H2,

H2O, CH4, CCl4, NH3, LiF, H2CO, CO, CO2, pyridine (d-aug-

cc-pVTZ basis), benzene (aug-cc-pVTZ basis), formamide, HF,
and C10N2H13

+ (N-benzyl-N′-methyl-imidazolium cation)
(aug-cc-pVDZ basis), but we will report only a subset of the
data in this paper.

3.1. Convergence. The biggest problem associated with
the ISA algorithm has been its poor convergence properties.
Real-space algorithms can take more than a thousand iterations
to converge or may not converge at all.12 The GISA algorithm
of Verstraelen et al. fares far better, with algorithmic conver-
gence in 140 iterations or so. However, due to the restricted
variational flexibility of the GISA basis sets, this is not true
convergence, as we have pointed out above.
There are no such issues with the BS-ISA+DF algorithm,

which we have found to converge in at most 80 iterations and
sometimes as few as 10, without any convergence acceleration
techniques that might be applicable to the algorithm. There is
no apparent effect of system size on the number of iterations
required for convergence, though we have noticed that basis
set improvements can lead to even faster convergence, and
conversely, a small or unbalanced basis can lead to poor conver-
gence. In Figure 2, we display convergence patterns for the
BS-ISA+DF algorithm for a representative sample of the
systems we have investigated. Our normal convergence
criterion is that all shape functions converge to 10−9 or better
using eq 14, but for illustrative purposes, we have chosen a
threshold of 10−12 for the pyridine molecule (density obtained
with the d-aug-cc-pVTZ basis). Plotted together with max|1 −
da| are the ISA charges of the heavier atoms of pyridine. The
hydrogen atoms are omitted for clarity. The charges can be
seen to converge very smoothly, but max|1 − da| exhibits
oscillations that die off just before the 40th iteration, only to
reappear and subsequently die off again. This is quite a
common occurrence; it can be seen for the NH3 system too,
and we have no explanation for this behavior.

Figure 2. BS-ISA convergence patterns for pyridine, LiF, NH3, and CCl4. We have plotted the AIM charges (left y-axis) and convergence parameter
max|1 − da| (right y-axis; see eq 14) against iteration number. Most calculations use a convergence threshold of 10−9, but for pyridine, we have
reduced the threshold to 10−12 to better illustrate the convergence properties of the BS-ISA algorithm. The pyridine density was calculated using the
d-aug-cc-pVTZ basis while for the other molecules the aug-cc-pVQZ basis was used.
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The LiF molecule shows the fastest convergence of any we
have studied, with smooth and rapid convergence in 12 iterations.
While the same is true for CCl4, here, we observed oscillations in
the ISA site charges. These die off by iteration 25. The con-
vergence patterns for the other systems we have studied fall into
one of these four categories and are not presented here.
Notice that in all cases, past a threshold, convergence is

exponentially fast with iteration number. This seems to be true
in general. Additionally, there is no apparent relation between
rate of convergence and system size: the relatively small
ammonia molecule took 80 iterations to converge, but the
largest system we have investigated (25 atoms) took 53
iterations. This is particularly promising as this is a desirable
property for large applications.
3.2. Shape Functions. In Figure 3, we report shape

functions for the atoms in the pyridine, formamide, LiF, and
CCl4 systems. Rather than plot w(r) directly, we have plotted
4πr2w(r) to better illustrate the shell structure of the atoms in
these systems. All shape functions have been calculated with the
BS-ISA+DF algorithm with ζ = 0.9. This value of ζ was chosen
as shape functions are generally better behaved for ζ closer to 1,
when the Δstock(B) is dominant.
The pyridine molecule illustrates the success of the BS-ISA

+DF method. All atomic shape functions are well-behaved, with
clear exponential tails. This is not always the case. For the
formamide molecule, we were able to obtain shape functions
that were positive everywhere only after eliminating the most
diffuse (α = 0.125) s-function from the ISA basis set for the
hydrogen atoms. This explains why the H1 and H2 hydrogen
shape functions of formamide decay quickly past 6 Bohr.

Despite these changes, the shape function for the oxygen AIM
appears to be somewhat spurious past 6 Bohr. Very small
changes to the shape function expansions are responsible for
this kind of nonexponential decay, and they occur in regions
where the density is so small that, even with the schemes
described in Section 2.3, it can sometimes be difficult to control
the behavior of the shape functions.
The shape functions for the LiF molecule clearly pick out the

substantial differences between the Li and F atoms in LiF. In
principle, the lithium AIM should determine the density decay
of the system, and indeed, it seems to have the slower decay
until about 6 Bohr when the decay of both atoms become
similar. This is a consequence of the basis set used. Both atoms
use the same ISA s-function basis set, so at sufficiently long-
range their shape functions must decay in a similar manner.
Also shown in Figure 3 are shape functions for carbon atoms

in different molecules. The ISA charges on these carbon atoms
are −0.11 (benzene), −0.42 (methane), and +0.51 (CCl4).
This is qualitatively what would be expected from the electro-
negativity differences of the bonding atoms. The BS-ISA+DF
algorithm correctly shows that the carbon AIM density in
methane is more diffuse than the carbon in carbon tetrachloride.
The carbon atom in benzene is more diffuse than the methane and
CCl4 carbons due to the planar nature of the benzene molecule.

4. MULTIPOLES
The BS-ISA+DF method offers us a computationally efficient
and numerically robust implementation of the ISA method.
There are some aspects of this algorithm that are particularly
important for the calculation of distributed multipoles and are

Figure 3. BS-ISA+DF shape functions for atoms in pyridine, LiF and formamide. We have plotted 4πr2w(r) to better illustrate the shell structure.
The aug-cc-pVQZ basis was used to calculate the density, except for pyridine, where d-aug-cc-pVTZ was used. The BS-ISA+DF calculation was
performed using the aQZ/set2 basis, but for formamide we had to limit the s-functions on the hydrogen atoms to a smallest exponent of 0.25 au The
amide hydrogen atoms in formamide are very similar, and for clarity, only one is shown. In the last panel, carbon shape functions are compared for
carbon atoms in benzene, methane, and carbon tetrachloride. All shape functions were obtained using the BS-ISA+DF algorithm with ζ = 0.9.
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worth emphasizing. The most obvious is the issue of charge
conservation, which is an important property of any good
distribution scheme and an essential one if the resulting
multipoles are to be useful in simulations of the condensed
phase. The BS-ISA+DF algorithm enforces charge conservation
using the constraint shown in eq 5. However, if the pure ISA
functional Δstock(A) is minimized (as might be done for large
systems), then, as pointed out above, due to limits in the
variational flexibility of the basis sets used, total charge may be
not be conserved by 10−4 to 10−3 electrons. Though small,
these effects are bothersome but can usually be corrected by
allocating the residual charge to all atoms equally.27

Another aspect of the BS-ISA+DF algorithm that is relevant
to multipoles is the attention we have paid to the atomic
charge-density tails. Since a rank l multipole involves integrals
with an integrand that contains the term rlρ(r), we see that the
higher the rank l, the larger the contribution from the regions
of small density where rl is large. It is for this reason that
large, diffuse basis sets are recommended for accurate, high-
ranking multipole moments, as such basis sets are essential to
converge the valence states and to result in well-defined
density tails. This is also one of the reasons why we have
ensured that the ISA atomic shape-functions are well-
described in the tail region.
In the first paper on the ISA method, Lillestolen and

Wheatley noted that the ISA charges were remarkably good at
describing the molecular dipole moments, often better than the
DMA method. Of course, the charges alone are not the whole
story, and one needs to take into account the higher ranking
multipole moments, too. This was recognized by Stone,28−30

and it is the presence of these higher ranking terms that are the
main reason for the success of both the 1985 and 2005 DMA
algorithms.31,32 Consequently, a meaningful assessment of
multipole moment models must include a comparison of the
higher ranking terms. However, these are not unique, and this
poses a problem: how are we to assess one model against
another?
At distances well outside the van der Waals surface of the

molecule, we can compare the electrostatic potential calculated
from the multipole expansions−we will denote these as
EeIst
(1)[DM], the “DM” to indicate the distributed multipole

description−with the reference nonexpanded potential, ob-
tained from SAPT(DFT) as the energy EeIst

(1) of a unit charge.
The latter includes the penetration energy, which is absent in
EeIst
(1)[DM], but at large distances it will be small.
Table 1 shows the mean difference, ⟨Δ⟩ = ⟨EeIst

(1)[DM]⟩,
between reference and model electrostatic potentials at points
on the surface of formamide at twice the van der Waals radii,
for various multipole models, and the standard deviation, σΔ, of
these differences. The columns show results for models truncated
at different ranks; that is, “rank n” means that multipoles up to
rank n are included and higher multipoles discarded. For a good
model, the mean should be small but nonzero, representing the
mean penetration energy, and the standard deviation σΔ which
represents the fluctuation in penetration energy over the surface,
should also be small. The values are in millivolt; the energy of a
unit charge is numerically the same value in meV. The
penetration energy here should be positive, as the positive test
charge is less screened from the nuclei as it penetrates into the
electron density.
The table shows two variants of distributed multipole

analysis. DMA0 is the original version,28 and DMA4 is the
modified version30 that uses numerical integration over a grid

for terms in the Gaussian expansion of the density with
exponents ζ less than 4. Finally, the ISA results were obtained
using the BS-ISA+DF method described above.
Distributed multipole analysis is not recommended for use at

low rank, as local dipoles enter at rank 1, and quadrupoles,
describing π-orbital features, at rank 2, and the results at rank
0 and 1 are poor, as expected. At rank 2 and above, however, it
performs well, and the DMA0 and DMA4 variants are
comparable. It is clear, however, that the BS-ISA+DF results
are substantially better at low rank and comparable with the
DMA results at rank 2 and above.

Table 2 shows similar results for a surface at 1.5 times the
van der Waals radii. The variation about the mean is much
greater here, but the general picture is the same. The mean
energy difference is now greater but seems to be quite well
described by the ISA model at quite low rank.
Table 3 shows results on an isodensity surface around

formamide at an electron density of 0.001 au. Results at rank
3 are similar to rank 4 and are not shown. The mean differences
are larger here, as expected, and they vary with rank for DMA0
and DMA4 but are remarkably consistent for BS-ISA+DF.
Moreover, the standard deviation of the differences is
noticeably smaller for the ISA method, which suggests that it

Table 1. Table of Differences between the Electrostatic
Potential Calculated Using CamCASP (SAPT-DFT) and
Various Multipole Models over a Surface at Twice the van
der Waals Radii of the Atoms in the Formamide Moleculea

rank

0 1 2 3 4 5

DMA0
⟨Δ⟩ −1.63 0.44 0.95 0.46 0.39 0.36
σΔ 205.45 40.36 14.93 3.73 1.03 0.79

DMA4
⟨Δ⟩ −1.15 −4.29 −0.55 0.02 0.07 0.08
σΔ 53.32 98.98 11.37 2.48 1.20 0.82

BS-ISA+DF, ξ = 0.1
⟨Δ⟩ −0.89 −0.49 −0.41 0.21 0.20
σΔ 33.91 18.62 14.52 3.62 3.14

aValues are in millivolt (mV). ⟨Δ⟩ = ⟨EeIst
(1)[DM]⟩ is the mean

difference and σΔ is the standard deviation. See the text for details.

Table 2. Table of Differences between the Electrostatic
Potential Calculated Using CamCASP (SAPT-DFT) and
Various Multipole Models over a Surface at 1.5 Times the
van der Waals Radii of the Atoms in the Formamide
Moleculea

rank

0 1 2 3 4 5

DMA0
⟨Δ⟩ 4.0 10.5 12.3 9.8 9.6 9.5
σΔ 322.9 88.5 42.5 11.5 4.9 4.6

DMA4
⟨Δ⟩ 5.8 4.9 6.2 8.7 8.9 9.0
σΔ 108.2 199.3 32.2 10.5 6.9 5.3

BS-ISA+DF, ξ = 0.1
⟨Δ⟩ 6.0 7.2 7.3 8.9 8.9
σΔ 64.2 38.9 34.2 10.0 8.3

aValues are in millivolt (mV). See caption to Table 1 for details.
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may provide a promising approach for modeling the
penetration energy, and we discuss this further in the following.
The data are more clearly displayed in Figure 4, where ⟨Δ⟩

and σΔ are plotted versus model. For a multipole model with
good convergence properties the average energy difference ⟨Δ⟩
from the SAPT(DFT) reference will converge quickly with
rank, and the standard deviation σΔ of the differences will be
small. From Figure 4 it can be seen that the two DMA models
appear to have converged only when terms up to rank 3 are
included. By contrast, with the BS-ISA+DF multipole models
the average energy difference has converged by rank 1 (charge
and dipole) though σΔ reduces to an acceptable value only by
rank 3, as with the DMA models. The BS-ISA+DF L0 model
has a standard deviation σΔ of only 133 mV, about 10−15%
more than the DMA0 and DMA4 L2 models. It would seem
that, for this system, the L0 BS-ISA+DF multipole models are

competitive with the more elaborate, higher rank models. This
is also evident in Figure 4 where we see that both the BS-ISA
+DF models (with ζ = 0.1 and 0.9) result in energy differences
that show very little variation with rank, though for higher
accuracies we need to include terms of rank 3 on to reduce the
variation over the surface.
These formamide data are also shown in the Supporting

Information as color maps of Δ plotted on the 0.001 au
isosurface of formamide. The superior convergence pattern of
the multipoles from the BS-ISA+DF method is clearly visible.
In considering these results, it should be borne in mind that

these figures give penetration energies for a unit charge
penetrating to the 0.001 au isodensity surface, which is
approximately the van der Waals surface. The corresponding
energy, on these figures, is of the order of 80 meV, or about
8 kJ/mol. In a real system, it is the electrons of each molecule
that penetrate into the other, and the charge involved is much
smaller, by a factor of at least 10, for each atom−atom interac-
tion, so the penetration energies will also be much smaller.
In Figure 4, we display similar data for three other systems:

water, pyridine, and methane. The DMA0 models are not
included for pyridine as the energy differences obtained with
this model are too large to be meaningfully displayed along
with energies from the other models. The broad conclusions
reached with the formamide system are seen to hold for all
molecules: the BS-ISA+DF models (with ζ = 0.1 and 0.9) result
in energy differences which exhibit the fastest convergence with
rank and the smallest variation over the surface. On the other
hand, the DMA0 and DMA4 models show considerably more
erratic average energy differences and significantly larger values
of σΔ. However, the L3 and L4 models from all four methods
tend to be reasonably close, with similar values of ⟨Δ⟩ and σΔ.

4.1. Assessing the Models Using Molecular Dimers.
From the discussion above it should be clear that the BS-ISA

Table 3. Table of Differences between the Electrostatic
Potential Calculated Using CamCASP (SAPT-DFT) and
Various Multipole Models for the Formamide Molecule over
an Isodensity Surface at an Electron Density of 0.001 aua

rank

0 1 2 4

DMA0
⟨Δ⟩ +78.8 +92.2 +95.4 +86.0
σΔ 496.5 200.0 121.3 30.0

DMA4
⟨Δ⟩ +82.9 +44.6 +74.6 +84.0
σΔ 243.6 408.4 114.0 47.7

BS-ISA+DF, ξ = 0.1
⟨Δ⟩ +79.8 +82.9 +82.9 +85.0
σΔ 132.7 84.0 87.1 40.4

aValues are in millivolt (mV). See caption to Table 1 for details.

Figure 4. Average signed potential differences and their standard deviation calculated using a point charge probe placed on the 10−3 iso-surfaces of
the pyridine, water, formamide, and methane molecules. The DMA0, DMA4, and BS-ISA ζ = 0.1, 0.9 models at various ranks are used to calculate
the multipole energies. Ranks are indicated by either Ln or Ln:m. In the former case, all atoms have multipoles limited to rank n and in the latter,
hydrogen atoms are limited to rank n, and heavier atoms to rank m.
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+DF multipole models show better convergence behavior than
the DMA models. It is also evident from the data presented in
Figure 4 that the BS-ISA+DF point charge (L0) models are
better than those from both DMA algorithms. This is not

unexpected, as the ISA algorithm guarantees the most spherical
atomic domains (within precision and algorithmic implementation),
and the DMA method does not claim to produce useful charge
models. However, a pertinent question is whether these L0

Figure 5. Multipole errors for the water dimer in 400 pseudorandom dimer geometries. The multipole error is plotted against the first-order
exchange-repulsion Eexch

(1) . The multipole models have been calculated using the aug-cc-pVQZ main basis and the SAPT(DFT) EeIst
(1) and Eexch

(1) energies
have been calculated using the aug-cc-pVTZ basis in the MC+ type. See the text for details. In the rank 4 panel, we have additionally included data
(large black points) for the water dimer in its minimum energy dimer orientation.

Figure 6. Multipole errors for the methane dimer in 2600 pseudorandom dimer geometries. The multipole error is plotted against the first-order
exchange-repulsion Eexch

(1) . The multipole models have been calculated using the aug-cc-pVQZ main basis and the SAPT(DFT) EeIst
(1) and Eexch

(1) energies
have been calculated using the aug-cc-pVTZ basis in the MC+ type. See the text for details.
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models with charges on atomic sites only can be used for
modeling the electrostatic interaction, and what kinds of error
should we expect if this is done. This issue is particularly
pertinent as many simulation programs are not able to use
anything other than point charges, and in any case, for large
simulations involving biologically interesting molecules, it is
often not feasible to use higher ranking multipoles due to the
computational cost incurred. To fully address the questions
associated with point charge models would take us too far from
the central aim of this paper, so we just outline the issues.
Further, from Figure 4 it may seem that the DMA0, DMA4,
and two BS-ISA+DF models are nearly equivalent when high
ranking multipoles are included: the L3 and L4 models from
these methods appear very similar. However, these results were
obtained using a point-charge probe interacting with the
molecule and some differences between the models are not
picked up in this way.
We now address these issues using energies calculated for the

water, pyridine, and methane dimers at a variety of orientations.
In Figures 5, 6, and 7, we display, for the DMA0, DMA4, and
BS-ISA+DF (ζ = 0.1) multipole models at various ranks, the
difference between the SAPT(DFT) electrostatic energy and
energies calculated using the models. For brevity, we refer to
this difference as the “multipole error”. It includes deficiencies
in the multipole model as well as the penetration energy. Since
it is usually assumed that the penetration energy is proportional
to the first-order exchange energy, the energy differences are
plotted against the first-order exchange energy Eexch

(1) , and we
expect a straight line if the assumption is correct and if the
multipole model is good enough. Plotting the results in this way
also illustrates the smaller energies and the differences between
the models more clearly. Note that for convenience we plot
−Δ = −(EeIst

(1)−EeIst
(1)[DM]) against Eexch

(1) in these figures.

First of all, consider the data for the water dimer. In Figure 5,
we plot Δ against Eexch

(1) for 400 pseudorandom water dimer
configurations generated using the CamCASP program.25,33

From Figure 5, we see that all three L0 (point charge) models
show a very poor correlation between Δ and Eexch

(1) . This should not
be a surprise as a considerable body of work has shown that to
model the electrostatic energy accurately in small molecules such
as water, additional charges are needed on off-atomic sites. For
example, most accurate models of water use five sites for the
electrostatic model (see for example the SAPT-5s potential34). The
correlation between Δ and Eexch

(1) improves only when we include
terms to rank 2 on all sites. At all ranks, the BS-ISA+DF multipoles
result in the best correlation of Δ and Eexch

(1) with the correlation
growing as rank increases. At rank 4, the DMA0 and BS-ISA+DF
models result in similar energies, but the DMA4 model exhibits
somewhat more scatter. SinceΔ approaches the penetration energy
as the rank of the model increases, we may state that there is an
approximate correlation between the penetration energy and the
first-order exchange energy. This has been observed before, but
there does not appear to be a proof of this correlation.
The relationship between the penetration energy (here taken

to be the L4 Δ energies) and Eexch
(1) appears to be linear for a

f ixed dimer orientation, but the constant of proportionality is
dependent on the dimer geometry. The orientational depend-
ence of this proportionality is illustrated in the last panel
(at rank 4) in Figure 5 where we include data for dimers in the
hydrogen-bonded configuration of water. The BS-ISA+DF and
DMA0 models both result in similar Δ energies that show a
linear correlation with Eexch

(1) , but with a different constant of
proportionality compared with the high-energy configurations
from the pseudorandom data set. The DMA4 model once again
yields the worst correlation and may not be suitable for the
water molecule.

Figure 7.Multipole errors for the pyridine dimer in pseudorandom dimer geometries. The multipole error is plotted against the first-order exchange-
repulsion Eexch

(1) . The multipole models have been calculated using the aug-cc-pVQZ main basis and the SAPT(DFT) EeIst
(1) and Eexch

(1) energies have been
calculated using the Sadlej pVTZ basis in the MC type. The scatter in the DMA0 penetration energies does not change with rank; consequently,
these results are not shown in the rank 4 panel so as to better highlight the DMA4 penetration energies.
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A consequence of the above observations is that we should
expect the best correlation between the penetration energy and
Eexch
(1) for systems that are close to spherical, such as the methane

molecule. In Figure 6, we plot Δ against Eexch
(1) for the methane

dimer in 2600 pseudorandom configurations. Two features
stand out: the BS-ISA+DF multipole model results in a strong
correlation between Δ and Eexch

(1) at all ranks, but by rank 4 (rank
3 results are similar), the correlation is nearly perfect. On the
other hand, while the DMA0 and DMA4 models are
comparable to the BS-ISA+DF model at rank 0, there is no
systematic behavior of these models at higher ranks: the L1
DMA4 and BS-ISA+DF models are nearly identical but when
terms beyond rank 2 are included, Δ from both DMA models is
poorly correlated with Eexch

(1) . We note here that it is possible to
improve the quality of the DMA4 multipoles by reducing the
value of the Becke smoothening parameter30 used to perform
the real-space partitioning of the most diffuse functions, but it is
not clear if this strategy can be expected to work more generally
for other systems.
Finally, in Figure 7, we plot similar data for the pyridine

dimer in around 3000 orientations. Pyridine is a highly
anisotropic system so we should expect a strong orientational
dependence in the proportionality between Δ and Eexch

(1) . This
does seem to be the case. The correlation between these two
energies is not as good as either the water dimer or the
methane dimer; nevertheless, here too, it is the BS-ISA+DF
model that yields the best correlation between Δ and Eexch

(1) at all
ranks. The DMA0 multipoles are poor at all ranks and the
DMA4 model is a considerable improvement, though even this
model cannot compete with the BS-ISA+DF, even when terms
to rank 4 are included. Notice that once again the BS-ISA+DF
model exhibits the fastest convergence with rank: the charge
only model may be adequate for many purposes and we see
nearly converged results when terms of rank 1 (dipoles) are
included. The BS-ISA+DF model is essentially fully converged
by rank 2. These observations are in-line with those made from
the data plotted in Figure 4.

5. ANALYSIS
We have described and presented results from a numerically
stable and robust implementation of the iterated stockholder
atoms (ISA) approach of Lillestolen and Wheatley.10 This
approach, termed the BS-ISA+DF method, works mainly in
basis-space (one of the integrals needed for the method must
be computed in real-space) and can be combined with standard
density-fitting functionals using a single parameter ζ that
controls the relative weights of the BS-ISA and density-fitting
functionals.
The BS-ISA+DF method uses auxiliary basis sets that are

substantially more flexible and often larger than those normally
used for density-fitting. In particular, the s-functions sets, which
are needed to define the ISA shape functions, are unusually
overcomplete and flexible. This is needed as a considerable
degree of variational flexibility is required to minimize the
ISA part of the BS-ISA+DF functional. We have demonstrated
that with smaller, more inflexible basis sets, the functional
minimum does not correspond to the true minimum of the ISA
functional. In particular, the shape functions are not well-
defined in the tail region.
The BS-ISA+DF functional is shown to converge in less than

80 iterations and sometimes as few as 10. Convergence is
exponential with iteration number and seems to be
independent of the molecular size or type of basis used. In

contrast, conventional methods for solving the ISA equations
either work in real-space and converge (if at all) in 1000
iterations or so, or partially work in an excessively restricted
basis-space and converge to a false minimum in 140 iterations
or so.
The numerical implementation of the BS-ISA+DF functional

is identical with that of conventional density-fitting functionals,
so it can easily be applied to fairly large systems. Additionally,
the pure ISA part of the BS-ISA+DF functional has been made
to scale linearly with the number of atoms. This feature, and the
overall high accuracy and good convergence properties of the
BS-ISA+DF functional makes it ideally suited for applications
to large molecules. We routinely use the BS-ISA+DF algorithm,
as implemented in the CamCASP program, on systems of
around 30 atoms, and the pure ISA algorithm on larger systems.
For molecules with more than 50 atoms or so, the algorithm, in
particular, the density-fitting step that preceeds the BS-ISA+DF
algorithm, would need to be parallelized to make better use of
the memory available on distributed memory machines. A
further restriction of the algorithm as described is that since we
rely on Gaussian (finite-extent) basis sets, this functional
cannot as yet be used with infinite systems.
The main goal of this paper has been to investigate the

applicability of the ISA method as an alternative for distributed
multipoles. Having a stable ISA implementation was essential for
this, as both the low and high ranking distributed multipoles are
sensitive to the partitioning method, particularly to the way in
which the atom-like density tails are modeled. This motivation
was central to the attention we have paid to converging the
atomic density tails in the BS-ISA+DF functional.
We have used the BS-ISA+DF method to calculate

distributed multipoles and have compared electrostatic energies
and multipole errors computed with these multipoles and those
from distributed multipole analysis; both the 1985 version that
works entirely in basis-space28 giving the DMA0 multipoles,
and the 2005 version that works partially in real-space and has
better stability with basis sets30 giving the DMA4 multipoles.
For the dozen systems we have studied, the BS-ISA+DF
multipoles are found to give uniformly better results at low rank
than both the DMA0 and DMA4 models. That is, if multipoles
are limited to low rank (below 3), the BS-ISA+DF models are
found to result in better-converged electrostatic/penetration
energies than either the DMA0 or DMA4 models. Further,
while the best BS-ISA+DF results are obtained with ζ = 0.1,
that is, 10% ISA and 90% density-fitting functionals, the
variation with ζ is usually insignificant and decreases with an
increase in the variational flexibility of the auxiliary basis sets
used in the minimization of the BS-ISA+DF functional.
At rank 0 (charges only), the BS-ISA+DF models are the

most accurate we have obtained. They are often substantially
more accurate than the DMA models at rank 0, but it must be
emphasized that the DMA method is explicitly not intended for
developing point charge models. The BS-ISA+DF models have
been shown to exhibit the fastest convergence with rank of the
multipole expansion. Further, in contrast to the DMA0 and
DMA4 models, the BS-ISA+DF multipoles converge system-
atically with increasing rank. Therefore, these models can be
truncated to lower ranks without erratic increases in the errors
incurred. Additionally, the penetration energydefined as the
difference in the nonexpanded electrostatic energy EeIst

(1) and the
multipole energy calculated using converged BS-ISA+DF
modelexhibits a uniformly excellent correlation with the
first-order exchange energy Eexch

(1) . This property makes the
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BS-ISA+DF multipole models an excellent choice for building
intermolecular potentials, as the penetration energy is often
fitted together with the first-order exchange.33,35

The numerical superiority of the BS-ISA+DF distributed
multipoles makes them potential replacements for the DMA0
and DMA4 multipoles, which have set the benchmark for
accuracy for the last 30 years. This has been a high benchmark
to surpass but there were already indications from Lillestolen
and Wheatley’s original paper that the ISA might surpass the
DMA, and we find that this appears to be the case. However,
the original DMA method (DMA0) has some advantages over
both its successor, DMA4, and the BS-ISA+DF method: it is
numerically exact, computationally simple, and it is fast, even
for large molecules. The DMA4 method is substantially slower,
and the BS-ISA+DF method is, at present, around 5 to 10 times
more expensive computationally than the DMA4 method.
Furthermore, both DMA methods easily allow the addition of
off-atomic expansion centers. These are possible, and indeed,
can be used in the BS-ISA+DF method, but in the current
implementation in CamCASP, this must be used with caution
for reasons of numerical stability. These may be reasons enough
to use the DMA methods for certain applications, but from the
evidence provided here, we suggest that the ISA, particularly in
the BS-ISA+DF implementation shown here, is better suited for
highly accurate, rapidly convergent, and perhaps, even more
physically appealing, distributed multipole expansions.
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■ NOTE ADDED IN PROOF
Since the paper was accepted for publication, it has come to our
notice that Manz and Scholl36 have also used the method of
forcing exponential decay of the ISA atomic density tails.
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