
Potentials

Alston J. Misquitta
TCM, Cavendish Laboratories

(Dated: April 23, 2009)

I. INTRODUCTION

This is a short description of potential forms used by the O program. The description presented here is a summary of the
more detailed and complete explanation in ‘The Theory of Intermolecular Forces’ by A. J. Stone [1].

II. THE POTENTIAL FUNCTIONAL FORM

The site–site potentials we use are of the form

U =
∑

a

∑
b

Uab, (1)

where a and b label sites in molecules A and B, and Uab is therefore the interaction potential between this pair of sites. In the
following discussion we will look at only the repulsion and dispersion terms in Uab. The electrostatic and polarization terms will
be considered later.

The form of Uab that we will use is

Uab = Keαab(rab−ρab(Ωab)) −
Cab

6

r6
ab

. (2)

Here K is a convenient energy unit (taken to be 10−3 Hartree), rab is the distance between the sites, ρab is the shape-function for
the pair of sites and Cab

6 is the dispersion coefficient for this pair of sites.
Higher-order dispersion terms can be added without a problem. But, for now, let us ignore any angular part to the dispersion

contribution. All the angular dependence — the anisotropy — is in the short-range repulsion term. This term is very likely the
dominant source of anisotropy, but there is good reason to believe that the dispersion term is also quite anisotropic in systems
with large anisotropies such as the benzene dimer[2]. Further, we have ignored any anisotropy in the hardness parameter αab.
This is a deliberate simplification and I am not aware of any systematic tests to see if it is a good one.

The shape function ρab(Ωab) is best described in local axis systems that reflect the local symmetries of the sites a and b. These
symmetries could be approximate. For example, a convenient choice for the local z-axis at a carbon atom in a benzene molecule
might be to have it point from the carbon to the bonded hydrogen atom. With this choice of z-axis, an approximate cylindrical
symmetry may be imposed. In which case, the potential parameters would be quite simple. But we now need to transform from
these local axis systems to the global axis as the molecular configurations are defined in the global, or laboratory frame. This
transformation is done using the S -functions defined by eqs. 3.3.7 in ref. [1] and is given by (eq. 11.3.6 in ref. [1])

ρab(Ωab) =
∑

lalb jkakb

ρkakb
lalb jS̄

kakb
lalb j. (3)

I am not going to go into details about these S -functions as I do not fully understand them. But here is the information needed
to define the potentials we will be using.

We do not use the most general S -function in our potentials, but only the special cases: S̄ k0
l0l and S̄ 0k

0ll. Since we do not use
mixed terms in the sum, this leads to a very intuitive result that the shape function of a pair of sites is the sum of the shape
functions of the individual sites. This is so because these special S -functions can be written quite simply as

S̄ k0
l0l = Cl,k(θ, φ)∗, (4)

where the renormalized spherical harmonics (in the Racah definition) are defined as

Cl,k(θ, φ) =

√
4π

2l + 1
Ylm(θ, φ). (5)

We can use the real components of the renormalized spherical harmonics (defined below) to get

S̄ κ0
l0l = Cl,κ(θa, φa), (6)
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where the Greek letter κ has been used in place of k to indicate this is the real component and the angles now have subscripts a
to indicate they are the polar coordinates describing the site–site vector from a to b in the local axis system of site a. Likewise,
we define

S̄ 0κ
0ll = Cl,κ(θb, φb). (7)

Now we can write the (approximate) shape function as

ρab(Ωab) = ρa(θa, φa) + ρb(θb, φb), (8)

where

ρa(θa, φa) =
∑

lκ

ρa
lκCl,κ(θa, φa), (9)

with a similar expression for ρb(θb, φb).
We can interpret ρa as the shape function of site a. This is a very useful concept when developing atom–atom potentials with

the aim of transferability, where it is important to define the parameters in the potential in terms of the properties of the atomic
sites.

A. Cl,κ(θ, φ)

The real component of the renormalized spherical harmonics is can be defined using the procedure given in Appendix B of
Stone’s book. By choosing linear combinations of the complex functions, we can define the real and imaginary components as

Cl,mc =

√
1
2

(
(−1)mCl,m + Cl,−m

)
iCl,ms =

√
1
2

(
(−1)mCl,m −Cl,−m

)
 m > 0. (10)

Using κ = 0, 1c, 1s, .., lc, ls we can define Cl,κ through the above real and imaginary components.
The real components of the renormalized spherical harmonics are related to the regular spherical harmonics by

Rl,κ(r) = rlCl,κ(θ, φ), (11)

which are listed (in terms of the Cartesian components) in Appendix E of Stone’s book. Here are the first few in angular form

C00 = 1
C10 = cos θ
C11c = sin θ ∗ cos θ
C11s = sin θ ∗ sin φ

C20 =
1
2

(3 cos2 θ − 1)

C21c =
√

3 sin θ cos θ cos φ

C21s =
√

3 sin θ cos θ sin φ

C22c =

√
3

2
sin2 θ cos2 φ

C22s =

√
3

2
sin2 θ sin2 φ

B. Units

By default, the O program uses atomic units for all parameters. For example,

• K = 10−3 Hartree

• [Cab
6 ] : Hartree Bohr6

• [ρab] : Bohr
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III. POTENTIAL FORMAT

The potential for the pair of sites C1 and C2 is defined in the format

C1 C2 rho alpha C6
00 00 0 6.439025 1.877932 92.969289
00 10 1 0.181678
10 00 1 0.181678
00 20 2 0.000000
20 00 2 0.000000

END

The first line begins with the site labels and the column headers. The subsequent lines are in the form

laκa lbκb j value · · · (12)
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