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Accurate atom–atom dispersion coefficients are needed if we are to be able to successfully model the
intermolecular interactions between organic molecules. To go beyond the usual C6 description we have to resort
to accurate ab initio methods, and we use the Williams–Stone–Misquitta methodology to obtain anisotropic
distributed dispersion coefficients to C12 on each atomic site. Comparisons with SAPT(DFT) energies show that
the resulting descriptions are very accurate, even for molecular contacts, where the asymptotic series is thought to
be invalid. The complexity of our most accurate models limits their applicability, so we explore simplifications
that are more suitable for use in calculations of the condensed phase, in particular, we describe a means of
calculating optimized isotropic C6 models that can be readily used in conventional programs.

Keywords: dispersion; distributed dispersion; WSM; SAPT(DFT); polarisabilities

1. Introduction

The dispersion energy plays a fundamental role in
the bonding of gases, liquids and many solids.
Of particular importance is the role of the dispersion

in biological systems and organic crystals, where it is
perhaps second in importance only to the electrostatic
and polarisation interactions found in hydrogen-
bonding systems, but of primary importance where
�-stacking is important. But it must not be forgotten
that while the electrostatic, induction (also called
polarisation) and dispersion are all long-range inter-
actions, the dispersion is always present between every

pair of atoms and always attractive, so its cumulative
effect can be very high, particularly in the condensed
phase.

It is often argued that the dispersion is fairly
isotropic and consequently can be considered to be

a correction to the more anisotropic electrostatic and

induction interactions. This is only partly true.

For many systems the dispersion is indeed less sensitive

to orientation, but in systems exhibiting �-stacking the

anisotropy can be considerable, for here, besides

the geometric anisotropy associated with a planar

molecule, the atomic polarisabilities exhibit an intrinsic

anisotropy that is reflected in strongly anisotropic

atom–atom dispersion coefficients. The geometric ani-

sotropy can be described using an isotropic atom–atom

description, but the intrinsic anisotropy should require

the explicit inclusion of anisotropy in the atom–atom
terms.

Anisotropic atom–atom dispersion models are
bound to be complex, and they will not always be
needed. After all, the missing anisotropy can be at least
partially absorbed in the anisotropic short-range part
of the potential, as is done in many ab initio potentials
[1–3]. Even in empirical potentials that include the
dispersion only through an isotropic �C6/R

6 term
a partial inclusion of the anisotropy is possible through
the anisotropy in the electrostatic term, if present.
For example, one of the important anisotropic R�6

dispersion terms has the same angular dependence
as the quadrupole–quadrupole (R�5) electrostatic
interaction [4], and the radial behaviour is very similar
over a short distance close to contact.

To decide quantitatively on the importance of the
anisotropy, we need a means of calculating anisotropic
atom–atom dispersion coefficients accurately and
in a computationally efficient manner. Empirical
methods cannot be used in the construction of
anisotropic models due to the large number of
parameters involved. Rather we must rely on theore-
tical methods. Further, if we are to achieve a new level
of accuracy in the description of the dispersion energy,
we need to go beyond the �C6/R

6 term and include
contributions from the C7, C8, and higher-order terms.
Once again, only theoretical methods can provide us
with these terms.
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Until recently, there were very few theoretical
methods for obtaining atom–atom dispersion coeffi-
cients of organic molecules, and none of them were
really suitable for small organic molecules. One of the
approaches used has been to fit an atom–atom model
to dispersion energies calculated either from
a perturbation theory like symmetry-adapted pertur-
bation theory (SAPT) [5–7], or the more modern
version based on density functional theory
(SAPT(DFT)) [8–14] or from dispersion energies
calculated from a single-centre asymptotic expansion.
This method has been used to obtain distributed
dispersion coefficients for the water dimer [2] and the
benzene dimer [3], but has many serious limitations.
First of all, the resulting description may be
unphysical, as the parameters are always strongly
coupled, and may be ill-defined if the atoms are
‘buried’ under other atoms. Second, anisotropic
dispersion coefficients cannot be obtained using this
method because of the large number of parameters
involved. Lastly, for a well-defined fit, a large number
of dispersion energies need to be calculated; if
calculated with SAPT or SAPT(DFT), this can be
a computationally expensive step, and if calculated
using a single-centre asymptotic expansion, the
resulting energies will be nearly useless for even
the smallest of organic molecules owing to the large
sphere of divergence [15] associated with such an
expansion.

The more successful methods for calculating
atom–atom dispersion models have been based on
a distribution of molecular polarisabilities which
have been recently reviewed [16,17]. Methods based
on real-space partitioning, such as that proposed by
Hattig et al. [18] seem to be slowly convergent, and are
not ideal for practical use; while those based on fitting
distributed polarisability models to point-to-point
polarisabilities calculated on a grid around the
molecule, such as that proposed by Williams and
Stone [19], require considerable effort to avoid the
presence of unphysical terms, and this can make
the calculation of higher-rank polarisabilities very
tedious. Arguably the most successful method
for calculating distributed polarisabilities is the
Williams–Stone–Misquitta (WSM) method [20,21],
which is a combination of the constrained density-
fitted distribution of Misquitta and Stone [16] and the
Williams and Stone method. There are a number of
features of the WSM method that make it ideal for
calculating dispersion models.

. It can be applied to frequency-dependent
polarisabilities, which is essential for calculat-
ing dispersion coefficients.

. There are no known basis set restrictions. This
is quite important as fairly large and diffuse
basis sets are needed to calculate accurate
polarisabilities.

. High ranks are possible. At present, this
method has been used to calculate polaris-
abilities to rank 3.

. The polarisabilities are calculated using linear
response DFT using the same functional as
used in a standard SAPT(DFT) calculation.
Therefore, the polarisabilities, and conse-
quently, the dispersion coefficients are con-
sistent with SAPT(DFT) energies. This is
an essential requirement when building an
analytic potential.

. The atomic polarisabilities are physically
reasonable, and the very few instances of loss
of positive-definiteness occur mainly in the
high-rank terms.

. The WSM polarisability model can be chosen
to suit the problem. This has the advantage of
allowing us to create a dispersion model as
simple or complex as needed. Further, exact or
approximate symmetries can be trivially
imposed on the model, which can significantly
simplify the resulting dispersion description.

. Additionally, the WSM polarisabilities can be
calculated for small organic molecules at
relatively modest computational expense.

In this paper we have set out to describe the
dispersion models that can be calculated using the
WSM polarisabilities and provide quantitative answers
to the questions that arise when setting out to perform
such a calculation. These include questions of the basis
sets that must be used, the order of terms that must be
included for accurate energies, and whether we can do
without the explicit anisotropy in the dispersion
description. These are important questions when
high-accuracy benchmarks are needed, but are prob-
ably of little concern in practice owing to the relatively
large computational cost of evaluating energies using
our most complicated description. So we will also
explore isotropic models – in particular, the popular
isotropic C6 model. Such models could herald a new
generation of accurate atom–atom potentials that are
derived from first principles alone, but are no more
complex than conventional empirical potentials. These
models could also benefit the dispersion-corrected
DFT methods such as those of Grimme and colleagues
[22], which currently rely on empirical dispersion terms
but are otherwise derived ab initio.

We will limit our investigations to molecules cont-
aining atoms from the first row of the periodic table.
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Molecules containing atoms from the second and third
rows, in particular the halogens, are expected to exhibit
a large intrinsic anisotropy. We will explore such
systems in a subsequent paper.

This paper is organised as follows. In Section 2, we
present the basic theoretical background of the WSM
method, the dispersion models and SAPT(DFT).
The numerical details of the calculations are described
in Section 3, and in Section 4 we describe the methods
we have used to display our results. In Sections 5 and 6,
we discuss the important topics of damping and the
basis sets to be used for calculations of the models.
The main body of our results is in Section 7, where we
explore a range of dispersion models of different order
and complexity for a variety of systems. Isotropic C6

models are discussed in Section 8, and we summarize
our results in Section 9.

2. Theory

2.1. The Williams–Stone–Misquitta (WSM) method

The WSM method for calculating distributed
(frequency-dependent) polarisabilities has been desc-
ribed in detail elsewhere [17,20,21], so we will provide
only a brief outline of the method here. There are three
main steps in this procedure.

. First we obtain a distributed polarisability
model that includes non-local polarisabilities
and charge-flow terms. This description
is based on a partitioning of the density
susceptibility function using a constrained
density-fitting algorithm [16].

. Next, we use a localisation scheme to trans-
form away the non-local and charge-flow
terms. We have usually used the localisation
scheme proposed by LeSueur and Stone [23],
but have recently adopted the method
proposed by Lillestolen and Wheatley [24].

. The localisation step results in a degradation
of the convergence properties of the polarisa-
bility description. To remedy this, we use the
method of Williams and Stone [19] to
refine the local polarisability description to
reproduce a few million point-to-point polar-
isabilities computed on a grid around the
molecule; typically between the vdW� 2 and
vdW� 4 surfaces (that is, surfaces at twice or
four times the van der Waals radius from each
atom). The standard Williams and Stone
method would result in unphysical terms in
the description. In order to prevent this, the
refinement is done with quadratic constraints
imposed with the values calculated in the

localisation step used as anchors. Since we are

dealing with frequency-dependent polarisabil-

ities, we have modified the coefficients of

these constraints, the gkk0 of Equation (36)

in [20], to be

gkk0 ð!Þ ¼ 0 if k 6¼ k0,

gkkð!Þ ¼
10�5=ð1þ j!j2Þ, if k 2 f10, 10c, 10sg,

0, otherwise.

(

ð1Þ

That is, only the dipole–dipole polarisabilities are

constrained to remain close to the anchor values, with

weights that decrease with increasing magnitude of the

frequency.

2.2. Dispersion models

Having obtained the localized frequency-dependent

polarisabilities, we can now write the site–site disper-

sion energy in the form [25]

Easymp
disp ¼ �

�h

p

X
a2A, b2B

Tab
tu T

ab
t0u0

Z 1
0

�att0 ði�Þ�
b
uu0 ði�Þd�

¼ �
X

a2A,b2B

Cab
6 ðOÞ
R6

ab

þ
Cab

7 ðOÞ
R7

ab

þ
Cab

8 ðOÞ
R8

ab

þ � � �

� �
,

ð2Þ

where a and b are sites on molecules A and B

respectively, Tab
tu are the T-functions that contain

the distance and orientation information [15], Rab is

the distance between the two sites, and t, u, etc. are the

angular momentum labels and take on values 00, 10,

11c, 11s, . . . . The dispersion coefficients depend on the

relative orientation �, and can be described by a series

in the orientational S functions [15]. The general

formulation in terms of spherical tensors is given by

Stone and Tough [4] and specific examples are given

in [19] and [26].
The dispersion coefficients depend on integrals

of the form Z 1
0

�att0 ði�Þ�
b
uu0 ði�Þd�, ð3Þ

where rank-l1� rank-l1
0 and rank-l2� rank-l2

0 polari-

sability tensors contribute to a Cn coefficient with

n¼ l1þ l1
0 þ l2þ l2

0 þ 2. At present, we are able to

calculate WSM polarisabilities to rank 3, so while we

can calculate C10 and C12 terms, they will lack the

contributions from the hexadecapole and higher-rank

polarisabilities. As we shall see, this is probably not
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a serious limitation. In any case, the present dispersion
description is already cumbersome, and the inclusion
of terms of even higher order could make it almost
unusable.

The integration in Equation (3) is performed
numerically using Gauss–Legendre quadrature with
the now standard transformation �¼�(1þ t)/(1� t)
with �¼ 0.5 and a grid of 10 points.

A word about the notation and terminology used:
the dispersion energy calculated with an anisotropic
model in which Cn is the highest order term will be
denoted by E

ð2Þ
disp, d(n) and described as a model of

‘order n’. Likewise, if the model used includes
only isotropic terms, the energy will be denoted by
E
ð2Þ
disp, d(n, iso). We use ‘rank’ to refer to the maximum

rank of polarisabilities included in the model. The C10

and C12 models will generally be calculated with
a polarisability description of maximum rank 3,
but the C10 model may also be calculated with
polarisabilities of maximum rank 2. The corresponding
dispersion energies will be indicated by E

ð2Þ
disp, d(10(L2))

(E
ð2Þ
disp, d(10, iso(L2)) for the isotropic models).

2.3. SAPT(DFT) dispersion energies

Reference dispersion energies are calculated using
SAPT(DFT) [9,27]. These energies are arguably some
of the most accurate possible for small organic
molecules. Within SAPT(DFT), the dispersion has
two components: E

ð2Þ
disp, pol is the second-order disper-

sion energy defined through the polarisation expansion
[5]. Exchange effects are missing in E

ð2Þ
disp, pol. These are

included in the term E
ð2Þ
disp, exch, the exchange-dispersion

energy. We will denote by E
ð2Þ
disp, tot the sum of these two

terms, that is

E
ð2Þ
disp,tot ¼ E

ð2Þ
disp,pol þ E

ð2Þ
disp,exch: ð4Þ

The multipole-expanded dispersion energy (Equation
(2)) is formally obtained from E

ð2Þ
disp, pol by expanding

the interaction operator using the multipole expansion
[4,15], so we should expect E

ð2Þ
disp, pol to be well

approximated by E asymp
disp (suitably damped). This is

indeed the case. However, it is important to bear in
mind that because E

ð2Þ
disp, exch decays exponentially with

intermolecular separation R, it has no multipole
expansion, so that E

ð2Þ
disp, tot has the same multipole

expansion as E
ð2Þ
disp, pol.

3. Numerical details

It is well known that the dispersion energy is
difficult to converge using standard basis sets [28].

Consequently, SAPT(DFT) calculations are usually

performed using monomer basis sets augmented with

basis functions placed in the bonding region between

the two molecules and on the atomic sites of the

partner monomer, resulting in the so-called

‘monomer-centred-plus’, or MCþ basis sets. The

basis functions in the bonding region (so-called

bond functions) are needed to converge the dispersion

energy, while the functions on the partner monomer

sites are needed for the induction energy [28].

The latter are not needed in this work, but are

retained for consistency. We have used either the aug-

cc-pVTZ or the Sadlej-pVTZ basis sets for the

monomer parts of the MCþ basis sets, and a

3s2p1d basis set for the bond functions, which have

been placed at a position determined by a general-

isation of the weighting scheme described in [29].

Dispersion energies calculated in such a basis are very

close to convergence with respect to basis set.
All SAPT(DFT) calculations have used the

molecular orbitals and energies obtained from the

asymptotically-corrected PBE0 exchange-correlation

functional. The linear-response DFT calculations

needed for the second-order SAPT(DFT) energies

and the frequency-dependent polarisability calcula-

tions used a hybrid adiabatic LDA and coupled

Hartree–Fock kernel. For details see [11]. The

SAPT(DFT) calculations were performed using the

CAMCASP [30] and SAPT2006 [31] programs.
The vertical ionisation potentials (IPs) of the

interacting molecules are used in the asymptotic

correction and for calculating the damping coefficients

(see below). They were obtained either from a �DFT

calculation using the PBE0 functional [16] or from

experimental results reported in [32]. For water, urea

and benzene we have used IPs of 0.464, 0.367 and

0.340 a.u. respectively, obtained from [32], and for

formamide and N-methyl propanamide we have used

IPs of 0.375 and 0.345 respectively, obtained using the

�DFT method [16].
Rather than select dimers at just their minimum

energy configurations, we have used the algorithm

described in [33] to generate dimers randomly so as to

get a uniform coverage of the space of physically

important geometries. In brief, this is done by first

obtaining a dimer configuration using a Sobol pseudo-

random sequence and Shoemake’s uniform distribu-

tion algorithm [34]. Next the intermolecular separation

is adjusted so as to bring the dimers into van der Waals

contact, and finally, two to four dimer separations are

chosen randomly to lie around the contact distance.

This algorithm has been implemented in the CAMCASP

program.
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4. Displaying the energies

One of the problems we frequently encounter is the

analysis of multi-dimensional data. One solution is to

simply abandon the dimensionality information and

present the data as a scatter plot, with the model

energies plotted against a suitable reference energy.

We shall make use of such plots in the paper. While

there is a correlation of the intermolecular separation

with the energy scale, such a plot contains no

information about the nature of the atoms in contact,

or the angular configuration of the molecules. At least

some of this data can be obtained through an energy

map on a suitable surface around the molecule [17,21].

Such a map can be constructed by calculating the

required energy, here the dispersion energy, using

a suitable probe placed at various points on the chosen

surface. At present, we use an energy probe with

spherical symmetry, which for the dispersion energy is

taken to be a neon atom. This has the advantage of

allowing the dispersion energy maps to be made with

a reasonable amount of computational effort.

However, the small polarisability of the neon atom

results in a rather small range of dispersion energies.

Typical dispersion energies of organic molecules will be

about five times larger than those between a neon atom

and an organic molecule.
We have used the vdW� 2 surface defined in [21]

with van der Waals radii prescribed by Bondi [35],

except for hydrogen atoms capable of forming

hydrogen bonds, which have their radii set to zero.

This is sometimes referred to as the ‘water accessible’

surface.

5. Damping to reproduce E
ð2Þ
disp, tot or E

ð2Þ
disp, pol?

Like any multipole expansion, the dispersion

series must be damped at short-range. Damping is

particularly important when terms above C6 are

included. Even the C6/R
6 term will diverge as R! 0,

and although its divergence can often be ignored, since

it manifests itself at rather small R, it can be

a problem for Monte Carlo simulations. We have

used the Tang–Toennies [36] damping functions

fn(�R), which are based on incomplete Gamma

functions. In general, the damping function should

probably be anisotropic, but the description would

then become very complicated, and in any case the

form of any anisotropy is unknown. Besides, the

anisotropy, if needed, can probably be absorbed in an

anisotropic short-range term in the potential, such as

the Born–Mayer term used to represent the exchange-

repulsion and penetration terms.

The damping coefficients used in the Tang–

Toennies functions will generally have to depend on

the atom types. In accurate ab initio potentials, the

damping parameter is often taken to be the same as

the exponent in the Born–Mayer potential, because the

repulsion and damping both arise from the overlap of

the molecular wavefunctions. Therefore a natural

method for obtaining the atom–atom damping para-

meter would be to fit the exchange-repulsion, penetra-

tion and damping terms simultaneously. Instead,

we have chosen to use a single damping parameter �
that depends only on the interacting molecules. As we

shall see, this can work very well. The small residual

errors can then be absorbed in the fit to short-range

energies.
It then remains to determine what the damped

expansion is to reproduce: E
ð2Þ
disp, tot or E

ð2Þ
disp, pol? There

are many good reasons for damping Easymp
disp to match

E
ð2Þ
disp, tot rather than E

ð2Þ
disp, pol. First of all, E

ð2Þ
disp, pol is

evaluated using wavefunctions that are not antisym-

metrized with respect to electron exchange between the

interacting monomers, so it is unphysical at short-

range, where the effects of electron exchange become

important. It seems far more satisfactory to consider

the total dispersion energy E
ð2Þ
disp, tot as the physically

important quantity. Taken individually, E
ð2Þ
disp, pol and

E
ð2Þ
disp, exch are artefacts of the symmetrized Raleigh–

Schrödinger perturbation theory on which

SAPT(DFT) is based. A more pragmatic reason is

that for our most accurate dispersion models, the

damped asymptotic expansion, when taken to high

order, is found to agree with E
ð2Þ
disp, tot as well as or better

than with E
ð2Þ
disp, pol in an energy range from 0 to

�50 kJmol�1, for all dimers considered in this paper.

In particular, for the physically important dimer

configurations the rms errors made by either choice

are between 0.2 and 0.8 kJmol�1 only. A further

reason for comparing with E
ð2Þ
disp, tot concerns the

damping coefficient (� in fn(�R)). When comparing

with E
ð2Þ
disp, pol, � has to be obtained numerically, by

a least-squares fit, but when comparing with E
ð2Þ
disp, tot,

we find that for all systems investigated here, we can

use the same damping factor as for the induction

energy, which is determined solely from the molecular

vertical ionisation energies IA and IB:

� ¼ ð2IAÞ
1=2
þ ð2IBÞ

1=2: ð5Þ

As we shall see below, this damping, which is

motivated by the asymptotic form of the overlap

between the ground-state wavefunctions of the two

monomers, is near-optimal for all systems and disper-

sion models we have considered.
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6. Basis sets

It may seem strange to question which basis set
should be used to calculate the dispersion coefficients.
After all, should we not use the same basis as was
used in calculating the reference SAPT(DFT) ener-

gies? The problem is that the basis set used for the
SAPT(DFT) energies is of the MCþ type and
therefore not only depends on the dimer geometries,
but consists of a standard molecular basis augmented
with functions in the bonding region and elsewhere.
Because of the augmentation, the effective size of the
MCþ basis is larger than that of the standard

molecular basis set that forms the main part of the
MCþ basis type. For example, the effective size of the
aug-cc-pVTZ basis of the MCþ type is probably that
of the aug-cc-pVQZ or larger. For consistency with
the SAPT(DFT) energies, the dispersion coefficients
need to be calculated in a basis that is the equivalent
of the MCþ basis used in the SAPT(DFT)

calculations.
This problem was realised in earlier work [10],

where it was suggested that the criterion for equiva-
lence should be that the (damped) expanded and non-
expanded dispersion energies should match at the
dimer minimum energy configuration. This is
a reasonable requirement, as it is at the important
geometries that we need the highest accuracy.
For systems larger than those considered in [10], such
as clusters and crystals, it is not only the global

minimum energy dimer configuration that is impor-
tant; rather we need to generalise this requirement to
include dimers at and near all of a variety of important
intermolecular contacts. This is done using the
algorithm described in Section 3.

Figure 1 shows energies calculated using the
damped asymptotic expansion E

ð2Þ
disp, d(12) plotted

against the total dispersion energy E
ð2Þ
disp, tot.

The SAPT(DFT) energies were calculated using the

aug-cc-pVTZ basis of the MCþ type. The trend is
obvious: the larger and more diffuse the basis set,
the closer the agreement between the expanded and
non-expanded energies. The aug-cc-pVDZ basis
(abbreviated to ‘aDZ’ in Figure 1) is clearly inade-
quate, with an rms error of 1.17 kJmol�1 for energies
in the range �15 to �1 kJmol�1. The rms error is more
than halved, to 0.52 kJmol�1, with the aug-cc-pVTZ

basis, which is the monomer part of the MCþ basis
used for the SAPT(DFT) calculations. The aug-cc-
pVQZ and d-aug-cc-pVTZ basis sets yield dispersion
models with rms errors of only 0.40 and 0.38 kJmol�1

respectively. This is very good given the large range of
energies. Of the last two basis sets, the d-aug-cc-pVTZ
basis (‘daTZ’) not only yields slightly more accurate

dispersion models, but is smaller than the aug-cc-
pVQZ basis. Therefore, unless otherwise specified, all
dispersion models presented in this work have been
calculated using this basis set.

In an earlier study of the induction energy [21], we
recommended using the Sadlej pVTZ [37,38] basis sets
for calculations of molecular moments and polaris-
abilities. This basis was optimized for molecular
properties and despite its small size, was shown to
yield induction energies comparable to those from the
much larger aug-cc-pVTZ basis. Unfortunately, it fares
rather poorly for calculations of the dispersion
energies, with an rms error of 0.86 kJmol�1, inter-
mediate between the aug-cc-pVDZ and aug-cc-pVTZ
bases. This is unfortunate as the small size of this basis
set (the same size as aug-cc-pVDZ) makes it very
attractive for calculations on organic molecules.
The large errors are almost certainly due to the lack
of sufficiently high angular momenta in the basis set:
for the first row atoms, the Sadlej basis includes
functions of at most d symmetry. It is possible that the
augmentation of this basis with an additional diffuse
shell would result in significantly more accurate
dispersion models, while still keeping it smaller than
the aug-cc-pVTZ basis. We are currently exploring this
possibility.

7. Order and anisotropy

The WSM polarisability models allow us to construct
dispersion models that are very detailed and
accurate, but they can be quite unwieldy, because
they may comprise a large number of terms, and
the resulting computational costs can limit their
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Figure 1. Dispersion energies for the formamide � � �water
dimer. Scatter plot of E

ð2Þ
disp, tot and E

ð2Þ
disp, d(12) dispersion

models calculated using a variety of basis sets.
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applicability severely. Consequently, we need to
examine the relationship between complexity and
accuracy in some detail. The questions we would like
to answer here are, first, at what order can we truncate
the expansion in Equation (2)? And secondly, how
important is the anisotropy in the dispersion coeffi-
cients? That is, can we construct isotropic dispersion
models of sufficient accuracy? For the purposes of this
paper, we will take the target to be an rms error of
a few tenths of a kJ mol�1 over an energy range of
between 15 to 25 kJmol�1, depending on the complex.

These are not the only questions we are interested
in. The WSM method allows great flexibility in the
choice of dispersion model. For example, we could
retain anisotropic terms for some atom–atom interac-
tions and not others, or we could truncate the
expansion at low order for interactions involving
hydrogen atoms, and retain the higher-order terms
for the heavier atom pairs. Once the model is chosen,
the WSM procedure ensures that the resulting polari-
sability description, and hence the dispersion

description, will be the most accurate possible within
the constraints of the model. We already use some of
this flexibility by limiting the polarisability description
on the hydrogen atoms to rank 1, but apart from this,
we shall not consider hybrid models in this paper.

Figure 2 shows the dispersion energy of the
formamide� � �neon system, mapped onto the vdW� 2
surface of formamide. The SAPT(DFT) energies have
been calculated using a d-aug-cc-pVTZ basis without
bond functions. Ideally we should have displayed
E
ð2Þ
disp, tot rather than E

ð2Þ
disp, pol but due to a current

limitation of the CAMCASP program [30], this was not
possible. In any case, E

ð2Þ
disp, exch is not expected to be

large in the absence of bond functions. All dispersion
models have been calculated using the d-aug-cc-pVTZ
basis.

As mentioned in Section 4, the energy range for
E
ð2Þ
disp, pol from SAPT(DFT) is quite narrow (it is only

2 kJmol�1) because of the small polarisability of neon.
The strongest dispersion interaction occurs at the
hydrogen atoms in the amide group, because of the

SAPT(DFT)
  −3.5

  −2.5

 −1.5

C
6

C
6
,iso C

8
,iso C

10
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C
8

C
10

 −1

0

+1

Figure 2. Dispersion energy maps of formamide with neon as a probe. The SAPT(DFT) dispersion energy E
ð2Þ
disp, pol is displayed

using an absolute scale in kJ mol�1. The model dispersion energies are displayed as differences taken against E
ð2Þ
disp, pol from

SAPT(DFT). The models are not damped. The d-aug-cc-pVTZ basis has been used for all calculations.
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close contacts involved. The dispersion models are
presented as difference maps against the SAPT(DFT)
energies. For simplicity of the discussion, none of the
models is damped. We see that the C6 model clearly
underestimates the dispersion energy, but the under-
estimation is not uniform: it is highest near the amide
group and smallest near the –CH hydrogen. The C8

model is substantially better, and the C10 model is
excellent except at the �NH2 hydrogen atoms, where
the dispersion energy is overestimated. This is due to
the lack of damping, and on damping (not shown), the
agreement of the C10 model and the SAPT(DFT)
energies is near perfect. From Figure 3 we see that the
same holds true for the benzene and N-methyl
propanamide molecules.

These observations are supported by results for the
formamide� � �water complex, shown in Figure 4, in
which we have plotted the damped model dispersion
energies against the SAPT(DFT) total dispersion
energies E

ð2Þ
disp, tot. The damping coefficient

�¼ 1.83 a.u. was calculated using Equation (5).
Ideally, we would like the energies from the damped
dispersion models to lie close to the line in Figure 4,
preferably with only a small scatter. That is, a fit of the
form y¼mx should have the slope m¼ 1. As expected,
the C6 model underestimates E

ð2Þ
disp, tot quite substan-

tially with slope m¼ 0.62 and a rather large rms error
of 2.19 kJmol�1. Interestingly, this model also exhibits
a fairly large scatter of energies throughout the energy
range, even for small energies where it is often assumed

that the C6 model is reasonably accurate. As the rank

of the models used increases, the slope tends to 1 and

the scatter decreases. The damped C8, C10(L2), C10 and

C12 models have slopes of 0.83, 0.87, 0.95 and 0.97,

respectively, and reproduce E
ð2Þ
disp, tot with rms errors of

0.98, 0.79, 0.37 and 0.38 kJmol�1, respectively. The C8

model is clearly a big improvement on the C6 model.

The C10(L2) model, which includes C10 coefficients

calculated with polarisabilities of maximum rank 2,
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2.1
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1.7

Figure 3. Dispersion energy maps of benzene and N-methyl propanamide with neon as a probe. See the caption of Figure 2 for
a description. The description of benzene has been obtained using the aug-cc-pVTZ basis.
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models plotted against E ð2Þdisp, tot. All dispersion models have
been calculated with the d-aug-cc-pVTZ basis set.

1638 A.J. Misquitta and A.J. Stone

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
m
b
r
i
d
g
e
]
 
A
t
:
 
1
0
:
0
6
 
1
6
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



is not much of an improvement over the C8 model,

but the C10 model, which includes polarisabilities of

rank 3, is substantially better, being as good as the

more complex C12 model. Both of these result in

dispersion energies that agree with the SAPT(DFT)

reference energies across the entire energy range of

15 kJmol�1. This energy range includes dimers with

total interaction energies as much as 16 kJmol�1;

that is, these models are valid even in the repulsive

region. This excellent agreement continues even

below �15 kJmol�1 (not shown), where the damped

C10 and C12 models have rms errors of 0.54 and

1.72 kJmol�1 respectively, for dimers with total inter-

action energy as much as 45 kJmol�1.
In Figures 5, 6 and 7 are shown similar compar-

isons for the formamide, urea and benzene dimers. All

SAPT(DFT) energies have been calculated with the

Sadlej pVTZ basis [37,38] in the MCþ format. The

dispersion models for the formamide and urea dimers

have been calculated using the d-aug-cc-pVTZ basis,

but due to a technical problem in the DFT calculation,

we have used the aug-cc-pVTZ basis for the benzene

dimer. Using Equation (5), the damping coefficients

for the formamide, urea and benzene dimers are

determined to be 1.73, 1.71 and 1.65 a.u., respectively.
The damped C10 and C12 models for the formamide

and urea dimers are in excellent agreement with

E
ð2Þ
disp, tot, with rms errors of 0.28 and 0.24 kJmol�1 for

formamide and 0.33 and 0.32 kJmol�1 for urea.

Once again, there is little to choose between the
C10 and C12 models, but since the C10 model is
simpler, it would be the model of choice for accurate
calculations.

While the C10 and C12 models are certainly quite
good for the benzene dimer, the rms errors are
somewhat larger at 0.83 kJmol�1 in each case. These
larger errors could be in part because the dispersion
models for this system were calculated using the aug-
cc-pVTZ basis, which, from the discussion in Section 6,
has been shown to underestimate the total dispersion
energy. But there is also the possibility that the large
anisotropy of the benzene molecule requires the use of
an anisotropic damping. This needs to be investigated.
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Figure 5. Dispersion energies for the formamide dimer.
Scatter plot of dispersion energies calculated using the
damped anisotropic C10 and C12 models and the isotropic
scaled C6 model plotted against E ð2Þdisp, tot calculated using
SAPT(DFT). Also shown are undamped dispersion energies
calculated using the C6 parameters from the Williams ’01
potential [39,40]. All dispersion models have been calculated
using the d-aug-cc-pVTZ basis set.
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Figure 7. Dispersion energies for the benzene dimer. See the
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dispersion models calculated in this paper, the models for this
system have been calculated with the aug-cc-pVTZ basis set.
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have been calculated using the d-aug-cc-pVTZ basis set.
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In any case, even for the this system, the errors made
by the damped C10 and C12 models in recovering
E
ð2Þ
disp, tot are small. This is true even for the particularly

difficult and important stacked configurations, which
are highlighted in Figure 7.

7.1. Isotropic models

We now turn to the question of anisotropy: is it really
needed, or can we construct isotropic models of
comparable accuracy? We need to explore this
issue, because although the dispersion models with
anisotropic terms are accurate, they are too complex
to be used in most kinds of calculation.

We have previously constructed isotropic disper-
sion models from the models with anisotropy by simply
retaining only the isotropic terms from the final
dispersion coefficient calculation[17,33]. However we
can do better by restricting the WSM polarisability
models so that the refinement stage includes only
isotropic atomic polarisabilities. These isotropic polar-
isabilities can then adjust to absorb some of the
effects of polarisability anisotropy. For example,
this method leads to an rms error of 0.45 kJmol�1

for the formamide � � �water complex, compared with
0.55 kJmol�1 by retaining the isotropic part of the
anisotropic C12 model.

In Figure 2, we display the dispersion energy
difference maps for the isotropic dispersion models of
the formamide molecule. The results are almost
indistinguishable from the difference maps obtained
with the models that include anisotropy. In fact, the
C10,iso model seems to be better than the C10 model,
but this is only because these models have not been
damped. On damping, the isotropic models generally
tend to underestimate the dispersion energy slightly,
while the agreement is rather good with the anisotropic
models (not shown). The same holds true for the
N-methyl propanamide and benzene molecules.

The real differences between the anisotropic and
isotropic dispersion models become visible in the
scatter plots of model energies against E

ð2Þ
disp, tot from

SAPT(DFT). In Figure 8 we present such a scatter plot
for the damped isotropic dispersion models for the
formamide � � �water complex. Compare this with
Figure 4. One difference that stands out quite
dramatically is the increased scatter of the dispersion
energies calculated using the damped isotropic models,
with the exception of the C6,iso model. The rms errors
made by the C6,iso, C8,iso, C10,iso(L2), C10,iso and C12,iso

models in reproducing E
ð2Þ
disp, tot are 2.12, 1.02, 0.85, 0.45

and 0.45 kJmol�1, respectively. It is interesting that
the C6,iso model has a slightly smaller rms error than

the C6 model. Apart from this anomaly, the errors are
larger than those in the corresponding anisotropic
models, but they are not very large and could well be
acceptable for many situations.

These observations are also true for the formamide
and urea dimers (not shown). For the benzene dimer
the C10,iso and C12,iso models do describe the dispersion
energies reasonably well, but errors are non-negligible
at the stacked geometries, where these models under-
estimate the total dispersion energy. For the stacked
dimer with molecules separated by 3.8 Å the under-
estimation with these models is 2.01 and 1.51 kJmol�1.
This error is large compared with the total interaction
energy, which is only �7.6 kJmol�1 [21]. However, as
we shall see, the errors made by the even simpler scaled
C6,iso model are even larger.

Therefore, the damped C10,iso model in particular is
a good alternative to the more complex C10 model.
The price to pay is a larger scatter in dispersion
energies and an underestimation of the dispersion
energies at the stacked configurations of benzene.
However, it is possible that at least some of these
deficiencies could be compensated by using an
anisotropic short-range potential. We are currently
investigating this possibility.

8. Isotropic C6 models

The small scatter of the damped C6,iso model naturally
leads us to ask whether this model could be scaled to
reproduce E

ð2Þ
disp, tot better. This scaling could be done

during the refinement step of the WSM procedure by
biasing the point-to-point polarisabilities to points
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Figure 8. Dispersion energies for the formamide � � �water
dimer. Scatter plot of various isotropic, damped dispersion
models plotted against E ð2Þdisp, tot. All dispersion models have
been calculated with the d-aug-cc-pVTZ basis set.
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close to the molecule, for example by choosing the
points to lie between the vdW� 1.8 and vdW� 3.0
surfaces, or by scaling the C6,iso model to reproduce the
SAPT(DFT) energies as well as possible. The former
method has the advantage of being unbiased by
orientation, but the latter allows us to choose sele-
ctively those configurations at which we require higher
accuracies. We will adopt the latter method here.

In general, the scaling coefficient would depend on
the atom pairs; that is, we would minimize a function
of the form:

� ¼
X
i

wðiÞ E
ð2Þ
disp,totðiÞ þ

X
a2A,b2B

�ab
Cab

6 , iso

R6
ab

 !2

, ð6Þ

where i labels the configurations, the coefficients �ab
are determined by a least-squares fit and w is a weight,
which will generally be energy dependent. Here
we have considered the simplest possible fit: all
configurations are weighted equally and a single
constant of proportionality � is used. This constant
has been determined to be 1.60, 1.44, 1.43 and 1.35 for
the formamide� � � water complex and formamide, urea
and benzene dimers respectively.

The scatter plots of the damped scaled C6,iso models
are shown in Figures 9, 5, 6 and 7. On the whole, the
results are very encouraging. The rms errors for the
scaled models are 0.49, 0.52, 0.62 and 0.94 kJmol�1

for the formamide � � �water complex and the forma-
mide, urea and benzene dimers respectively. These
errors are quite tolerable, but there are large errors
at configurations with total dispersion energies
less than �15 kJmol�1, where the dispersion is under-
estimated in magnitude. Likewise, the dispersion
energy is overestimated (in magnitude) above
�10 kJmol�1.

These errors are inevitable: the scaled C6 model is
too simple to describe the dispersion energy across the
entire range of energies and contacts. What we get is
a compromise model that may be adequate for some
purposes, but seriously inadequate for others. One
such failure occurs at the stacked geometries of the
benzene dimer. Because of the importance of
this configuration in organic crystals and biological
systems, it is important that we get it right. However,
the scaled C6 model under-binds one stacked config-
uration, with molecules separated by 3.8 Å, by
2.8 kJmol�1. Compare this to the underestimation by
2.01 and 1.51 kJmol�1 made by the C10,iso and C12,iso

models (above). In this particular case, the stacked
configurations were not included in the data set used to
obtain the scaling parameter, so we could have
obtained a better fit at this configuration, but it
would be at the cost of an even larger overestimation of
the dispersion energies at other geometries.

For the sake of comparison, we have also included
energies calculated using the C6 coefficients taken from
the Williams ’01 potential parameters [39,40]. These
parameters have been obtained by a simultaneous fit of
the short-range and long-range parameters to a range
of crystal structures and heats of sublimation. Strictly,
the long-range parameters cannot be isolated from the
short-range parameters, as they will be coupled, but
the comparison does give us an idea of how
experimentally derived dispersion models compare
with ours. The Williams potentials were fitted with
undamped dispersion, so damping has not been used.
Additionally, the potential specification requires the
effective centre of the hydrogen in the C—H and O—H
bonds to be foreshortened by 0.1 Å. We have not done
this, so the resulting dispersion energies for the
formamide and benzene dimers will be slightly over-
estimated. These results are presented in Figures 5, 6
and 7. The most noticeable feature of these energies is
their large scatter, which is much more than any of our
models. Additionally, the Williams parameters and our
scaled damped C6 models both fail at configurations
with dispersion energies that are large in magnitude.
However, for configurations with energies smaller in
magnitude than �15 kJmol�1, our scaled model is
considerably better.

Interestingly, for the benzene system our scaled
C6 coefficients and those from the Williams ’01
potential differ by only 5 to 8%, yet the dispersion
energies calculated using these models differ quite
considerably around the �15 kJmol�1 energy. This is
due to the lack of damping in the Williams potential.
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Figure 9. Dispersion energies for the formamide � � �water
dimer. Scatter plot of dispersion energies calculated using the
damped anisotropic C10 and C12 models and the isotropic
scaled C6 model plotted against E ð2Þdisp, tot calculated using
SAPT(DFT). All dispersion models have been calculated
using the d-aug-cc-pVTZ basis set.
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However, damping makes little difference to the scatter

in the Williams ’01 energies for the urea and
formamide dimers.

9. Summary

We have presented a method for calculating dispersion

models for small organic molecules that is based on the
theoretically well-founded and ab initio Williams–
Stone–Misquitta method. Using a theoretically moti-

vated damping factor that depends on the vertical
ionisation potentials of the interacting molecules, we

have demonstrated an excellent agreement between the
dispersion energies from our most advanced damped
models, including anisotropic terms up to C12, and the

total dispersion energies from SAPT(DFT). Our best
and most complex models reproduce the benchmark
SAPT(DFT) energy E

ð2Þ
disp, tot with rms errors of only

0.2 to 0.8 kJmol�1 across an energy range of 15 to
25 kJmol�1, depending on the complex.

Though accurate, these models are probably too
complex to be used in practice, so we have made use of

the inherent flexibility of the WSM method to
construct isotropic polarisability models from which
we have calculated isotropic dispersion models, which

have proved only slightly less accurate than their
anisotropic counterparts. In particular, using a large
sample of configurations of the formamide � � �water

complex and the formamide, urea and benzene dimers,
we have shown the isotropic C10,iso model to result in
rms errors between 0.45 and 1.06 kJmol�1, making this

model ideal for reasonably accurate calculations on
a variety of systems. However, we emphasise that the
isotropic models can be deficient for molecules like

benzene which exhibit a large anisotropy. In particular,
there are undoubted shortcomings at the important
stacked configurations of benzene. This is the price we

may have to pay for simplicity.
Simple though the C10,iso models are, many existing

programs are not in a position to use them, as they are
limited to isotropic C6 models only. Therefore, we have

investigated scaled C6,iso models, and have shown that
they can be constructed to be of reasonable accuracy,
but at the cost of larger errors at potentially important

dimer configurations, like the stacked geometry of the
benzene dimer. Additionally, the scaled C6,iso models
tend to over-bind at configurations with total disper-

sion energies less than about �7 kJmol�1 in magni-
tude. Since the bulk of the dispersion interactions

occur in this energy range, these models could
over-bind denser and more compact structures over
the more open ones. Interestingly, the scaling para-

meter is not a constant, but varies from 1.35 to 1.60

across systems. This has implications about the
transferability of the derived atomic dispersion coeffi-
cients and seems to suggest that we will have to look at
the transferability of larger groups instead.

All of these models have been constructed using the
CAMCASP [30] program. Such calculations are now
quite routine on a modest workstation. But we should
point out that these accurate dispersion models cannot
be used with repulsion parameters derived empirically.
Each system requires a dedicated set of parameters
derived from first principles. We are working on
developing an efficient route to obtaining these
parameters.

10. Programs

Many of the theoretical methods described in this
paper are implemented in programs available for
download. Some of these, together with their main
uses in the present work, are:

. SAPT2006 [31]: E
ð2Þ
disp, exch calculations.

. CAMCASP 5.1.02 [30]: Calculation of WSM
polarisabilities, the dispersion models and the
SAPT(DFT) dispersion energies.

. ORIENT 4.6 [41]: localisation of the distributed
polarisabilities, calculation of dimer energies
using the dispersion models and visualisation
of the energy maps.

. DALTON 2.0 [42]: DFT and CKS calculations.
A patch [31] is needed to enable DALTON 2.0 to
work with CAMCASP.

Acknowledgements

AJM would like to dedicate this article to Anthony J. Stone
on his 70th birthday as a small token in recognition
of the sheer fun it has been working with him these last
few years. We are grateful to Sarah L. Price for her
comments and suggestions. AJM wishes to thank Girton
College, Cambridge for a research fellowship. This research
was supported by EPSRC grant EP/C539109/1.

References

[1] C. Millot and A.J. Stone, Mol. Phys. 77, 439 (1992).
[2] E.M. Mas, R. Bukowski, K. Szalewicz, et al., J. Chem.

Phys. 113, 6687 (2000).
[3] P. Podeszwa, R. Bukowski, and K. Szalewicz, J. Phys.

Chem. A 110, 10345 (2006).
[4] A.J. Stone and R.J.A. Tough, Chem. Phys. Lett. 110, 123

(1984).

[5] B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem.

Rev. 94, 1887 (1994).

1642 A.J. Misquitta and A.J. Stone

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
m
b
r
i
d
g
e
]
 
A
t
:
 
1
0
:
0
6
 
1
6
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



[6] B. Jeziorski and K. Szalewicz, in Encyclopedia of
Computational Chemistry, edited by P. von Ragué
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