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The simplest way to predict London dispersion energies

involving complex multiatom objects is to add separate contri-

butions from each pair of atoms. Semiempirical, and even cer-

tain less empirical, ways to do this can be very efficient

computationally and have recently been developed to a high

level of sophistication, with considerable success. There are,

however, effects that are not captured in this way, including

surprising dependences of the dispersion energy on the num-

ber N of atoms and on separation D. Higher level quantum

chemical, perturbative, and random-phase approximation

(RPA)-like theories can capture these beyond pairwise effects,

but at a high computational cost. Very recent simplified RPA-

like approaches based on localized oscillators account for the

unusual N dependence in a computationally efficient way. To

proceed further, the present work proposes three physically

distinct categories of nonpairwise effects (types A, B, and C)

against which the performance of existing and future theories

can be assessed. VC 2014 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24635

Introduction

Second-order perturbation theory[1] shows that the London

dispersion interaction energy between two nonoverlapping

electronically polarizable objects can be written in Generalized

Casimir–Polder (GCP) form, appropriate for widely separated

finite systems:
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wherev ið Þ is the electronic density–density response of system

i. Equation (1) can be pictured as in Figure 1, with dashed

lines representing the intersystem Coulomb interaction, and

the filled bubbles representing v ið Þ, the density response

function of system i with all intrasystem Coulomb interac-

tions included.

For isotropic systems such as closed-shell atoms and for the

case where the intersystem spacing R greatly exceeds the sys-

tem size a, (1) can be reduced to a dipolar approximation

leading to (2):
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Equation (1), however, includes other multipolar terms.

The simplest way to account for this London dispersion

energy, when many centers labeled i (e.g., atoms) are present,

is to add terms like (2) for every pair of centers:
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Here, the factor f, with f ! 1as R!1, can be included to

deal with short-ranged phenomena. Higher powers R2n are

also used.

This form has provided the basis for many calculations[2]

over the years, where noncontacting macroscopic objects

interact. More recently,[3] pairwise atom–atom theory as in (3)

has been used for correction of the semilocal density func-

tional interaction between molecular species right down to

intimate contact. With carefully chosen short-ranged correction

terms f and atom–atom coefficients C6 (not the same as the

gas-phase ones!), this approach has shown much semiquanti-

tative success[4,5] across molecular systems from small chemical

species up to biomolecules.

Nevertheless, the simple pairwise-additive form (3) (includ-

ing its generalization to higher powers R2n) is not always

accurate. We now introduce three categories of dispersive

nonadditivity, defined in general as the departure of the dis-

persion part of the interaction from a sum of gas-phase-based

CnR2n terms between pairs of prechosen “centers” (usually

atoms). We term these departures type-A, type-B, and type-C

nonadditivity.

Type-A Nonadditivity

This simply refers to the fact that it would not be sensible to

use an interaction derived for free isolated atoms (the gas-

phase Cn coefficients) to describe the interaction between the
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same two atoms when they are bonded in molecules. See Fig-

ure 2. Almost all modern theories allow for this, and it is

included here for completeness. The other two types, B and C

described below, present more substantial difficulties,

however.

Figure 2 shows modification of atom–atom C6 due to bond-

ing, causing crowding of orbitals (reduction of atomic volume)

and consequent reduction of atomic polarizability.

This type-A departure is often dealt with semiempirically,[3,4]

for example, by choosing the optimal C6
(ij) for a pair of atoms

by minimizing the error of the pairwise calculation relative to

accurate molecular binding energies of a dispersion-bonded

training set. Of course, the success of this approach depends

also on an appropriate parametrization of the short-ranged

modifier f of the pair interaction. It is remarkable how transfer-

able these optimized C6
(ij) coefficients turn out to be.[3] The

transferability of C6 coefficients can be further improved by

basing them on ab initio work plus, for example, the number

of bonds in which an atom participates.[6]

The basic physics that makes the fitted C
ðijÞ
6 different from

its free-atom or gas-phase value can be understood primarily

as the quantum mechanics of compression. If the spatial

extent of an orbital is reduced (e.g., by Pauli repulsion or direc-

tional bond formation), then by de Broglie’s principle the

momentum and consequently energy of an orbital are raised.

This tends to increase the energy level separation, and hence,

the energy denominator in the perturbative expression for the

atomic polarizability v, which is thereby reduced. Within simple

models (or indeed on dimensional grounds), the polarizability

of a fixed number of electrons is approximately proportional

to the volume, ai / V . Tkatchenko and Scheffler[5] exploited

this using a density-partitioning scheme to identify the effec-

tive volume Vi of each atom in a molecule. Noting that C6
AA

/ aA
2 and starting from accurate high-level quantum chemical

calculations of the gas-phase atomic polarizability aðfree Þ
A , they

wrote the dispersion coefficient of a pair of atoms of species A

in a molecule as

C6
AA 5 VA=VA

freeð Þ
� �2

C6
AA freeð Þ (4)

where C6
AA freeð Þis the coefficient calculated from the accurate

free-atom polarizability. This gave a high degree of transferability.

Sato and Nakai[7] have also given a nonempirical density-

based way to obtain C6 coefficients for atoms in molecules.

The Becke–Johnson C6 scheme[8] based on the exchange

hole may be useful in the present context, and was extended

to include multipolar pairwise terms R-n, n> 6.

The basic Antony–Grimme,[4] Tkatchenko–Scheffler,[5] Sato–

Nakai,[7] and Becke–Johnson[8] approaches all still make the

assumption of additivity of two-center interactions only (e.g.,

atom pairs). Ref. [6] also considers three-center interactions,

and the next sections discuss these and higher effects.

Type-B Nonadditivity

In contrast to type-A nonadditivity, which is a quantal but pair-

wise effect, type B is an essentially classical electromagnetic

effect that goes beyond pairwise additivity.

Type-B nonadditivity occurs because an additional polariz-

able center C can screen the Coulomb interaction between a

given pair of centers A, B, thus altering one of the dashed

Coulomb lines in Figure 1 and thereby changing the correla-

tion energy (see Fig. 3a).

The lowest-order term shown in Figure 3a leads, in the iso-

tropic case, to an irreducible three-centre angularly dependent

interaction energy of form C9f h1; h2ð ÞRAB
23RBC

23RAC
23, some-

times termed the Axilrod–Teller interaction.

Clearly, infinitely many further terms (ring diagrams) like this

arise from multiple response function insertions into all possi-

ble Coulomb lines, leading to N-center contributions for all

positive integers N.

If the shaded bubbles are interpreted as the isolated-center

responses within the direct random-phase approximation[9]

(dRPA), then[10] the set of ring diagrams like Figure 3 consti-

tute the part of the total dRPA correlation energy[9–13] that

depends on the subsystem separations Rij. Thus, Ec
dRPA con-

tains type-B nonadditive effects. So does the correlation

energy from theories that go beyond dRPA, such as

dRPA 1 second-order screened exchange, coupled-cluster

theory, adiabatic connection, fluctuation dissipation, time-

dependent density functional approaches,[14,15] and high-level

quantum chemical approaches in general.

Second-order Moeller–Plesset perturbation theory (MP2)

cannot, however, capture type-B effects because the lowest-

order type-B diagram (Fig. 3a) already contains more than two

coulomb lines.

The nth-order symmetry-adapted perturbation theory

approach also contains n-center type-B terms.

The dRPA theory is convenient because it captures type-B

effects and because its correlation energy is related to a sum

of zero-point energies
P

j 1=2ð Þ�hxjof interacting modes [Eq.

(35)of Ref. [9]], a fact that helps in understanding some recent

simplified models[12,16,17] to be discussed below.

Note that here the type-B nonpairwise interaction is defined

as an interaction between more than two centers. This
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definition does not correspond to the number of Coulomb

lines[11,13] but rather to the number of centers involved. For

example, Figure 3b shows a fourth-order coulomb term pres-

ent in the dRPA correlation energy that is part of the pair

interaction between centers A and B and falls off faster than

R26. It, therefore, modifies the R26 pairwise interaction at

shorter distances. Such terms are not classified as type B in

the present scheme because they involve only two centres.

While not appearing explicitly in the pairwise expansion of

Eq. (3), terms such as that of Figure 3b may be implicitly

included in an averaged way, when the shorter-ranged damp-

ing factors fij are optimally fitted to accurate energies for

dispersion-dominated molecular test sets. In practice, the R212

term from Figure 3b is probably not more important than the

R28, R210, . . . terms that arise by going beyond the dipolar

approximation for the response functions vin Eq. (1). Recent

works based on pairwise additivity do include these multipolar

terms, and have also been extended to three-center nonpair-

wise terms.[6] Jones et al.[12] have given a diagrammatic

scheme explaining multipole, high-order Coulomb, and multi-

center terms within an oscillator model.

An example of a pure type-B effect is the calculation[17] by

Kim et al. on chains of noncontacting SiO2 spheres using a dis-

cretized harmonic-oscillator version of the dRPA. Each “center”

here is a macroscopic silica sphere, not an atom. Striking dis-

persion energy dependences were found on the geometrical

arrangement of the spheres, quite different from the predic-

tions of Eq. (3), and not adequately described by simply add-

ing the three-center Axilrod–Teller term of Figure 3a.

Grimme et al. in their recent work[6] also included a lowest-

order type-B term between three atoms, corresponding to Fig-

ure 3a, as did Schwerdtfeger and Hermann[18] in their work on

rare-gas crystals. Tkatchenko et al.[16]implemented a more

sophisticated “many-body” dRPA-like scheme with atoms as

the basic centers, each also represented as a harmonic oscilla-

tor. These schemes include type-B many-center terms as well

as modified two-center terms such as that in Figure 3b.

Sato and Nakai[19] also refined their earlier work[7] by includ-

ing some three- and four-center terms, but it is not clear that

the physical origin of these is the type-B electric screening

process.

The “many-body” method of Tkatchenko et al.[16] was used

to show[20] that the dependence of the dispersion interaction

between two molecules on the number of atoms (centers) N

in each molecule can be completely different from the pair-

wise prediction (E / 2N2) from (3). A similar conclusion was

reached[21] by Ruzsinszky et al. concerning the N-dependence

of the dispersion interaction between N-atom bucky balls.

(Their calculation may also include type-C effects: see the next

section below). This type of N-dependence is perhaps the

most striking qualitative consequence of type-B nonadditivity.

Inclusion of the Axilrod–Teller three-center term is often insuf-

ficient[17] to capture these N-dependences.

All these type-B effects are missed by pairwise-additive the-

ories, even ones in the van der Waals Density Functional (vdW-

DF) class that are quite sophisticated, seamless, and nonempir-

ical in their treatment of the short-ranged part of the disper-

sion interaction.

Type-C Nonadditivity

The discrete atom-based approaches described above assume

that each electron can be ascribed to a particular center

(atom). Type-C nonadditivity is an intrinsically quantal phe-

nomenon that occurs in cases of degeneracy. This causes zero

energy denominators in perturbation theory, which favors

large bare electronic response and large electron density

Figure 1. Feynman diagram for GCP interaction. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 2. Modification of atom–atom C6 due to bonding, causing crowding

of orbitals (reduction of atomic volume), and consequent reduction of

atomic polarizability. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 3. a) Lowest-order type-B nonadditive (beyond pairwise) energy:

center C screens the Coulomb interaction between centers A and B and (b)

A fourth-order dRPA term contributing to pairwise interaction beyond R-6

(not type B). [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 4. Long electron paths, type-C physics. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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fluctuations related to hopping of electrons between neigh-

boring atoms: see Figure 4.

A metal is a case in point. The longer electronic motions per-

mit large dipoles to be induced, enhancing the bare electronic

susceptibility/polarizability and thereby tending to increase the

vdW interaction. This is, however, strongly suppressed by type-B

screening effects for the case of three-dimensional (3D) metals,

although less so for 2D or 1D metals. The dRPA is sensitive to

energy gaps and metallic screening, so is suitable to describe

type-C effects. These were calculated within the dRPA approach

for graphene sheets,[22,23] 2D metals,[24] and 1D conductors

such as metallic nanotubes.[22,25] Type-C effects were also dem-

onstrated[26] to be present for chains of hydrogen atoms with

equal spacing (high-symmetry, degenerate case) but not for

unequal spacing (lower symmetry, nondegenerate case).

Perhaps the most striking consequence[22] of type-C nonad-

ditivity is to cause quite different and slower spatial decay of

the asymptotic interaction energy E(D) between gapless

extended low-dimensional objects separated by distance D,

compared with the pairwise predictions from Eq. (3). The type-

C predictions from RPA theory are as follows: E � 2C3D23for

parallel graphene sheets[22] compared with 2C4D24 from Eq.

(3); E � 2C5=2D25=2 for parallel 2D metal sheets[24] compared

with 2C4D24from Eq. (3); and E � 2K2D22ln ðD=D0Þ23=2 for 1D

metallic nanotubes,[22,25,27] compared with 2C5D25 from Eq.

(3). By contrast, for gapped systems (including insulators and

semiconductors), and for 3D metals, the D dependence of the

asymptotic dispersion interaction follows the same power laws

in pairwise-additive and RPA-like theories. (Quantitative differ-

ences are still present for small-gap systems at intermediate

distances,[20,27] however). The variety of asymptotic power laws

exhibited in type-C cases is due to degeneracy, and also partly

to the qualitative differences in type-B Coulomb screening in

different dimensionalities.

The author and collaborators are currently working on some

model small degenerate molecular systems that also exhibit

surprising type-C dispersion effects without major influence

from type-B screening.

Conclusions

To summarize, three distinct physical considerations (labeled

type A, B, and C) have been identified that cause qualitative

departures of the dispersion interactions of complex systems

from the pairwise-additive predictions of Eq. (3) with gas-

phase parameters. Virtually, all current modeling methodolo-

gies account for type A, but types B and C are more challeng-

ing. The systems used above as examples of type-B and type-

C effects should prove useful for benchmarking existing and

future theories of the dispersion interaction.

Type-A nonadditivity refers to the different dispersion Cij
n

coefficients for atoms in molecules, compared with their gas-

phase values, a basically quantal orbital-compression effect.

Type-B nonadditivity is an electromagnetic effect arising

from the screening of the Coulomb interaction between elec-

trons on different centers by the electrons in yet other centres.

It is most significant in large collections of highly polarizable

centres (e.g., bucky balls, some molecular crystals). Its most

dramatic chemical effects found to date are in the N-depend-

ence of the vdW interaction between two well-separated N-

Table 1. Expected performance of dispersion theories based on their physical content.

Method

Describes type A

nonadditivity?

Describes type B

nonadditivity?

Describes type C

nonadditivity? Comments

Wu–Yang, Becke–John-

son, DFT 1 D1,

DFT 1 D2, DFT 1 D3

Y N N Becke–Johnson, D3 also

include multipoles

(R28)

(D3 gets 3-center)

Tkatchenko and

Scheffler[5]
Y N N Ref. [16] is RPA-related

but lacks hopping.

Tkatchenko et al.[16] Y Y (N?)

vdW-DF Y N N Includes multipoles

Lifshitz (theory for paral-

lel thick plates)

N/A (not atom-based) N/A (but does include

long-ranged screening)

N/A (but can deal with

3D metals)

Takes dielectric function

from experiment

dRPA 1 extensions Y (if decomposed by

centers such as

atoms)

Y Y Right answers for right

reasons (but short-

ranged correlation

beyond dRPA needed

in some cases).

Recently becoming

computable for real

solids

MP2 Y N Y (but lacks correct

metallic screening)

MPn describes up to

n-centre interactions

DMC, high-order quan-

tum-chemical

approaches

Y Y Y Right answers for right

reasons. Conver-

gence? Comp. time?
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atom molecules.[20] However, it has distinct effects on other

systems as well.[17,18,20,28]

Type-C nonadditivity is a quantum mechanical effect arising

from electronic degeneracy, with consequent high-polarizabilty

and intercenter electronic hopping. Its most striking effects[22–

27] found to date are changes in the exponent p of the asymp-

totic decay with distance, D2p, of the dispersion energy

between extended low-dimensional gapless systems (e.g.,

metallic nanostructures, graphene). In such systems, it may

also have consequences at shorter separations.[26,27]

Table 1 summarizes the expected performance of some

popular computational algorithms in treating type-A, B, and C

nonadditivity, based on the physics that these methods contain.

A number of open questions remain. Two examples are as

follows:

i. How important are type-B effects beyond the three-

center Axilrod–Teller term, in various types of system?

ii. How can one predict type-C effects in small-gap systems

including metals, for all cases and not just in asymptotic

geometries, without invoking the computational intensity

of microscopic RPA-type approaches?
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