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A new representation of the dispersion interaction
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The conventional formulation of the dispersion energy as a power series in R¡1 with damping
at small R is re-examined. Symmetry-adaptedand intermolecular perturbation theory calcula-
tions have been performed and compared for the argon dimer. We show that conventional
Tang± Toennies damping functions ® t the data better when exchange as well as charge-overlap
e� ects are included. We also construct a new representation of the dispersion energy which
provides a more accurate, but still quite compact, description of the dispersion energy, and
suggest several simpler forms which would be suitable for describing dispersion more
accurately in larger systems. Some preliminary results for the HF dimer are also described.

1. Introduction

For simulations of molecular clusters and larger
systems, a simple but accurate representation of the dis-
persion energy is an important requirement. However
many potentials commonly used incorporate nothing
more elaborate than the simple London form,
¡C6R¡6 , usually as part of an atom± atom description.
Sometimes a damped form, ¡f6…R†C6R¡6 , is used, where
f6…R† is a damping function which suppresses the
singularity at R ˆ 0. Our purpose here is to explore
alternative forms that are potentially more accurate
without being unduly complicated.

We begin by examining the simpler case of spherical
atoms. For atomic systems, which lack ® rst-order elec-
trostatic and second-order induction interactions, the
second-order dispersion energy provides the major com-
ponent of the attractive potential. For large values of the
interatomic separation, R, the dispersion energy
between spherical atoms can be written as a series in
even powers of 1=R, so that

Emult
disp ˆ ¡ C6

R6 ¡ C8

R8 ¡ C10

R10 ¡ ¢ ¢ ¢ : …1†

Here, the label `mult’ indicates that this form of the
dispersion energy results from a multipolar expansion
of the perturbation operator, and it is appealing
because the long-range dispersion coe� cients, Cn , are
independent of R and can be related to the atomic
polarizabilities at imaginary frequencies. (This follows
from a second-order Rayleigh± SchroÈ dinger perturba-
tion theory treatment coupled with use of the
Casimir± Polder identity [1].) However, equation (1) is
only applicable in the limit of negligible overlap of the

charge distributions, and at short range the dispersion
energy will be in error, diverging as R ! 0. In fact the
series (1) is only asymptotically convergent [2]Ð that
is, it is formally divergent for any ® nite value of R.
The convergence can be improved by the use of
PadeÂ approximants, as was shown for interactions
involving one-electron and two-electron atoms by Pan
and Meath [3], but their approach was applied to the
series (1) and so is still valid only in the limit of neg-
ligible overlap.

The invocation of zero overlap is not necessary in the
formulation of a long-range perturbation theory, and in
a non-expanded treatment which properly accounts for
the charge overlap, the dispersion energy is ® nite for
all R. The additional approximation that there is no
intermolecular electron exchange is implicit in the
zero-overlap model, and if standard Rayleigh±
SchroÈ dinger perturbation theory is to be used, this
approximation must be retained. Methods which treat
the exchange include InterMolecular Perturbation
Theory [4, 5] (IMPT) and Symmetry-Adapted
Perturbation Theory [6, 7] (SAPT). It is possible
within a non-expanded framework to separate the
various components of the dispersion into terms which
correspond to the long-range multipolar contributions.
By selecting excited states with particular angular
momenta [8], the non-expanded dispersion energy can
be written as

Enon¡exp
disp ˆ

X1

la 0̂

X1

lb 0̂

E…la ; lb†: …2†

At long range each E…la ; lb† with la 6̂ 0 and lb 6̂ 0 varies
as R¡2…la‡ lb‡ 1†, and if the modi® cation of this behaviour
at short range is described by the damping function
X…la ; lb; R†, then for any R we can write
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E…la ; lb† ˆ ¡X…la ; lb; R†C…la ; lb†R¡2…la‡ lb‡ 1†
: …3†

From equations (1)± (3) and the long-range behaviour of
the E…la ; lb† it follows that

C6 ˆ C…1;1†;

C8 ˆ C…1;2† ‡ C…2 ;1†;

C10 ˆ C…1;3† ‡ C…2 ;2† ‡ C…3 ;1†; …4†

and for identical atoms C…la ; lb† ˆ C…lb ; la†. The terms in
equation (2) with la ˆ 0 or lb ˆ 0 contribute to the
s̀pherical’ dispersion energy. They decay exponentially
and therefore do not correspond to any long-range
multipolar terms. For H ¢ ¢ ¢ H these terms prove to be
quite signi® cant at small R [9].

In an alternative formulation, which is commonly
used, the spherical dispersion energy is ignored, and
the dispersion energy is written as

Enon¡exp
disp ˆ ¡f6…R† C6

R6 ¡ f8…R† C8

R8 ¡ f10…R† C10

R10 ¡ ¢ ¢ ¢ ;

…5†

where the fn are also known as damping functions.
Evidently, by comparison with equations (3) and (4),

f6…R† ˆ X…1;1; R†

f8…R† ˆ X…1;2; R† ‡ X…2 ;1; R†;

f10…R† ˆ X…1;3; R† ‡ X…2 ;2; R† ‡ X…3 ;1; R† …6†

and so on.
Various forms have been proposed for the fn…R†; some

have been ® tted to the results of accurate computations
[8, 10], usually on H¢ ¢ ¢H [9, 11± 15]. The most widely
used damping functions are probably those of Tang
and Toennies, who developed a damping model which
is based on coupling the short-range potential (usually
a Born± Mayer ® t of the Hartree± Fock repulsion) with
the dispersion interaction which is approximated by a
semi-classical, harmonic Drude model [16]. The original
Tang± Toennies model was later modi® ed [17] and the
damping function for each R¡n term was determined as
an incomplete gamma function of order n ‡ 1, i.e.

fn…R† ˆ 1 ¡ exp …¡bR†
Xn

kˆ0

…bR†k

k!
; …7†

where b is the scale parameter from the Born± Mayer ® t
of the Hartree± Fock data. The fn…R† vary as Rn‡ 1 as
R ! 0 so that each damped term tends to zero for
small R, which is formally incorrect, but is not expected
to introduce a signi® cant error except at very small R.
The damping functions for H¢ ¢ ¢H were compared with
those calculated by Koide et al. [9] for n ˆ 6± 20 and
good agreement was found up to n ˆ 10 over a wide
range of R. The Tang± Toennies model has been widely

used and provides an e� ective way to obtain a short-
range dispersion potential from the long-range form of
equation (1). The damped series (5) is often truncated
after the R¡8 or R¡10 term, but in recent accurate work
on the He dimer it was found necessary to include terms
up to R¡16 to obtain satisfactory agreement with the
calculated dispersion energy [18, 19].

This approach is useful if the Cn are known. However
it is becoming common, especially for molecules, to cal-
culate dispersion energies at a number of geometries and
to ® t an analytical function to the results. In this case it
is not clear that (5) is the most suitable form to use.

In this paper we investigate a di� erent formulation of
the dispersion energy. Using Edisp generically to refer to
the dispersion energy with or without corrections for
exchange-dispersion e� ects, we write

Edisp ˆ ¡G…R† £ C6

R6 ; …8†

where G…R†, de® ned by this equation, describes both the
e� ects of the terms in higher powers of R¡1 at inter-
mediate range and the damping due to overlap at
short range, as well as exchange e� ects if they are
included in Edisp . G…R† tends to 1 at large R, where the
R¡6 term in equation (1) dominates. At intermediate
distances, in the region of the energy minimum, the
terms in R¡8 , R¡10 , etc. become important and
G…R† > 1. Near R ˆ 0, Edisp remains ® nite, so
G…R† ¹ R6 . In the absence of any fundamental theory
leading to an analytical expression for G…R†, we look
here for empirical representations. Ideally, a 1=R expan-
sion of G…R† will recover the conventional long-range
expansion in the form of equation (1), but we do not
view that as an important requirement since our main
concern is with the region near the potential-energy
minimum.

We begin by examining the argon dimer. We are inter-
ested in the possibility of describing the dispersion
energy more accurately than conventional methods
allow, as well as in the possibility of ® nding simple
expressions for the dispersion energy that provide
moderate accuracy with only a small number of
adjustable parameters. The latter objective is particu-
larly important for applications to large molecules,
where simple atom± atom dispersion potentials com-
prising only the undamped ¡C6R¡6 term are still
widely used. We consider the case of molecules brie¯ y
at the end of this paper, using the example of the HF
dimer.

2. The argon dimer

We have chosen the argon dimer as a test case. Our
objective is not to provide a de® nitive dispersion poten-
tial, but to explore the usefulness of various analytical
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functions for describing the calculated dispersion
energy. First we describe the perturbation theory
calculations that we have carried out on this system.
We then brie¯ y discuss weighting schemes for the ® tting
procedures followed by the results of ® tting the
long-range and short-range data.

2.1. Perturbation theory calculations
We have performed calculations on the argon dimer

using both the IMPT and SAPT methods with an
aug-cc-pVTZ basis set [20] for 2 µ R µ 30 bohr. We
see this as an opportunity to test the accuracy of the
IMPT results by comparison with SAPT, which can
account for additional intramolecular correlation cor-
rections. The terms available from the SAPT program
[21] are: E

…20†
disp , the dispersion energy calculated with

Hartree± Fock monomer wavefunctions ; E…21†
disp and

E…22†
disp , intramolecular correlation corrections to the

dispersion energy; and E…20†
exch¡disp , the modi® cation of

the dispersion energy due to a coupling with the
exchange. The IMPT dispersion energy, E…IMPT†, has
no intramolecular correlation corrections, but since the
dimer wavefunction is fully antisymmetrized, it does
account for exchange e� ects. We consider four combi-
nations of the SAPT data, which we de® ne as:

E…SAPT-20† ˆ E
…20†
disp ; …9†

E…SAPT-20X† ˆ E…20†
disp ‡ E…20†

exch-disp ; …10†

E…SAPT-2N† ˆ E
…20†
disp ‡ E

…21†
disp ‡ E

…22†
disp ; …11†

E…SAPT-2NX† ˆ E…20†
disp ‡ E…21†

disp ‡ E…22†
disp ‡ E…20†

exch-disp: …12†

These cover the inclusion and exclusion of both intra-
molecular correlation and exchange e� ects, although
note that the exchange corrections to the E

…2n†
disp terms

for n ˆ 1 and 2 are absent from E…SAPT-2NX†. We
can compare each of the four combinations with the
IMPT results, which we expect to agree best with
E…SAPT-20X† since it includes exchange e� ects but
not intramolecular correlation. Log plots of the IMPT
and the four SAPT combinations are presented in
® gure 1, which indeed shows that at long range, where
the exchange e� ects are negligible, E…IMPT† is in
agreement with E…SAPT-20† and E…SAPT-20X†.
Furthermore, at short range E…IMPT† follows the
E…SAPT-20X† data closely to separations as small as
about 5 bohr. Note that the equilibrium separation of
the dimer is about 7.1 bohr, and here E

…20†
disp ˆ ¡2:40

and E
…20†
exch-disp ˆ 0:144 kJ mol¡1, so the exchange

contribution to the dispersion is not insigni® cant. It
becomes more important as R decreases, and at
3 bohr, E

…20†
disp ˆ ¡299 and E

…20†
exch-disp ˆ 70:7 kJ mol¡1.

2.2. W eighting schemes
One of the general problems associated with ® tting

dispersion energy data is that the energies span a large
range of valuesÐ in our case, about six orders of
magnitude. A uniform weighting scheme does not
seem appropriate here, and we have opted, based on
trial ® ttings, to adopt a r̀elative’ weighting scheme
when ® tting the energies. In this case if the data point
Ecalc

i is approximated in the ® t by Efit
i we minimize the

root-mean-square (rms) error, de® ned for N points as

1
N

XN

iˆ1

Efit
i ¡ Ecalc

i

Ecalc
i

… †2
2

4

3

5
1=2

: …13†

This is equivalent to weighting each data point in the ® t
by …Ecalc

i †¡2. We have also used the pseudo-damping
function, G…R†, de® ned in equation (8), which implicitly
accounts for all higher Cn than C6 and all the fn…R†. We
® t this function directly, using a uniform weighting
scheme; this gives a distribution of weights of the
energy similar to the relative weighting scheme described
above. The G…R† function also proves to be useful for
visualizing ® ts of the dispersion energy, as discrepancies
between the calculated and ® tted data show up more
clearly.
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Figure 1. Plot of the dispersion energy calculated with per-
turbation theory methods against interatomic separation;
the perturbation theory methods are described in the text.



2.3. L ong-range ® ts
We have ® tted the IMPT, SAPT-20 and SAPT-2N

data for R ¶ 18 bohr to the long-range form of the
dispersion energy given in equation (1), and we have
varied the maximum value of n, nmax , up to n ˆ 10.
The ® tted dispersion coe� cients and rms errors are
given in table 1. Several points emerge from these ® ts.
First, the IMPT and SAPT-20 results are very similar,
and the di� erences in the values of the C6 coe� cient are
very small for each value of nmax. For nmax ˆ 10, values
of C8 and C10 vary more, but in each case the
three-parameter ® t results in a very small rms error.
Not surprisingly, the quality of the ® t is much more
sensitive to the C6 value than to either C8 or C10.
Changing the value of C6 in the three-parameter
IMPT ® t by 1% yields a rms error of about 1.0%,
whereas an equivalent fractional change in either C8 or
C10 yields rms errors of about 0.030%.

Secondly, the intramolecular correlation e� ects are
quite signi® cant. For the ® t with nmax ˆ 10, the SAPT-
2N value of C6 , which includes intramolecular correla-
tion, is 12.5% smaller than the SAPT-20 value. Recent
literature values for C6 are 63.6± 70.8 [22] and 64.30 [23]
where the latter is estimated to be accurate to about 1%.
Our best estimate of 65.30 lies slightly outside these
error limits, but it is apparent that if quantitative
accuracy is to be approached, then intramolecular
correlation e� ects must be considered. Our best
estimates for the higher dispersion coe� cients are
C8 ˆ 1137:2 and C10 ˆ 26181 which can be compared
with the bounds of 1180± 1880 for C8 and 34 900± 60 900
for C10 given by Standard and Certain [22]. Calculations
by Knowles and Meath [8] with their `Basis II’ yielded
values of C8 ˆ 1538 and C10 ˆ 46 613, while Thakkar
et al. [24], using many-body perturbation theory,

obtained values of C8 ˆ 1623 and C10 ˆ 49 063. The
reason for the large discrepancies between our value of
C10 and the other literature values is that, because of
basis set limitations, we can only recover the C…2 ;2†
component of C10 (see equation (4)). For this reason it
is more instructive to compare our C10 with C…2 ;2†
values from the literature where available. Tang et al.
[25] reported lower and upper bounds for C…2 ;2† of 9900
and 22 300 respectively. We note that their predicted
range of values for C10 was 30 450± 55 070 which can
be compared with the later values of Standard and Cer-
tain given above. Knowles and Meath’s value of C…2 ;2†,
again using their `Basis II’ , was 18 079. Clearly a larger
basis with more high angular momentum basis functions
is needed if a good account of the C10 coe� cient is to be
obtained. However, the SAPT program [21] is interfaced
in our implementation with CADPAC [26] which at
present cannot deal with the g-functions which form
part of the aug-cc-pVQZ basis, for example.

This comparison con® rms, as one would expect, that
® tting of long-range ab initio dispersion energy data to
equation (1) does not give accurate dispersion coe� -
cients for basis sets of moderate quality. As a method
for determining dispersion interactions between
molecules it is not likely to be useful. We shall show,
however, that a good description is possible if we adopt
a di� erent approach.

2.4. Short-range ® ts
We ® rst ® t the data by damping the dispersion using

the incomplete gamma functions proposed by Tang and
Toennies [17]. We have decided to keep the value of C6

® xed at the values determined from the corresponding
long-range ® tting procedures and to treat the C8 and C10

coe� cients as parameters of the ® t. We do not consider
the IMPT results further, but concentrate on the SAPT
quantities de® ned in equations (9) ± (12). We have also
considered the e� ect of excluding data points for which
R is less than a minimum intermolecular separation,
Rmin. This is important because it is di� cult to assess
the reliability of the SAPT results for small R, where the
perturbation is necessarily larger. Values of Rmin in the
range 2:0 µ Rmin µ 4:0 bohr have been used, and the
results are gathered in table 2 and in ® gures 2 and 3.

First we consider just those ® ts which have
Rmin ¶ 3:0. For these results, it is quite clear that the
Tang± Toennies damping functions are able to describe
the SAPT-20X and SAPT-2NX data signi® cantly better
than the SAPT-20 and SAPT-2N data. It is generally
considered that the Tang± Toennies model cannot be
expected to account for exchange e� ects, but we see
that if it is treated simply as a model with parameters
to be ® tted to dispersion energy data it performs better
when exchange is included. We do not consider a
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Table 1. Dispersion coe� cients Cn and rms errors for ® ts of
the long-range IMPT and SAPT dispersion energy data.
The number of terms used to ® t the data is governed by
the value of nmax. The Cn are given in atomic units.

nmax C6 C8 C10 rms error/%

IMPT
6 76.752 0.93
8 74.540 1188.6 0.0090

10 74.618 1103.7 20810 0.00014

SAPT-20
6 76.753 0.93
8 74.543 1187.5 0.0096

10 74.626 1097.3 22122 0.00049

SAPT-2N
6 67.514 1.1
8 65.202 1243.9 0.013

10 65.300 1137.2 26181 0.00076



detailed analysis of the ® tted values of C8 and C10 to be
particularly helpful since they might account in some
average way for such factors as varying proportions of
the E…la ; lb† being captured at di� erent values of R. We
note, however, that more consistent sets of ® tted values
of C8 and C10 are apparent for the SAPT-20X and
SAPT-2NX data.

We also note that the ® tted values do not correspond
at all to the values obtained by an undamped ® t to
the long-range data, or to the values obtained by
direct calculation [8, 24]. The reason for this is
that the function being ® tted, equation (5), does not
provide an exact representation of the dispersion
energy, even with the exact Cn , because the Tang±
Toennies damping functions do not describe the
damping exactly, nor is it likely that the exact Cn
provide the best approximation to the data. There
would be no advantage in constraining the Cn to
the exact long-range values, because the important
region of the dispersion energy for most purposes is
the region near the potential minimum, where the
long-range terms are substantially modi® ed by damping.
Accurate values of C8 and C10 are not prerequisites for
an accurate ® t, nor is this ® tting procedure a valid way
to obtain the long-range values.

For Rmin < 3:0, the quality of the ® ts is decidedly
worse. This might be attributable to a breakdown of
the model, and one reason could be that for very
small values of R the Tang± Toennies damping
functions are not physically realistic, damping each
term in the dispersion series to zero at R ˆ 0.
Another possible reason, as mentioned above, is
that the SAPT results are likely to be less reliable
for small R.

To try to ® nd more accurate models for the dispersion
energy, we return to the pseudo-damping function,
G…R†, introduced above. Comparison of equations
(5) and (8) shows that G…R† can be related to the
conventional damping functions, fn…R†, by the
expression

G…R† ˆ f6…R† ‡
C8=C6

R2 f8…R† ‡
C10=C6

R4 f10…R† ‡ ¢ ¢ ¢ :

…14†

This function should tend to 1 as R ! 1 and be of
order R6 for small R if the dispersion energy is to
remain ® nite at R ˆ 0. To provide approximations to
the G…R† function, we turn to a series of rational
functions of the general form
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Figure 2. Fits of the SAPT-20 and SAPT-20X data using
Tang± Toennies damping functions. C8 , C10 and b are
treated as parameters in the ® tting procedure. Rmin is
given in bohr.

Table 2. Dispersion coe� cients and rms errors for ® ts of the
SAPT dispersion energies using Tang± Toennies damping
functions for a range of Rmin. The Cn are given in atomic
units, Rmin in bohr and b in bohr¡1.

Rmin C8 C10 b rms error/%

SAPT-20
2.0 62.443 158 310 1.865 3.6
2.5 293.95 131 940 1.914 2.4
3.0 436.33 115 920 1.952 1.8
3.5 551.82 102 720 1.992 1.4
4.0 640.90 92 303 2.036 1.1

SAPT-20X
2.0 165.27 146 750 1.737 5.9
2.5 764.30 75 295 1.870 1.5
3.0 905.50 59 719 1.913 0.57
3.5 880.26 62 597 1.903 0.53
4.0 846.98 66 599 1.888 0.45

SAPT-2N
2.0 86.172 172 330 1.813 3.9
2.5 311.26 145 080 1.859 2.7
3.0 449.88 128 500 1.894 2.0
3.5 564.97 114 520 1.932 1.6
4.0 655.10 103 350 1.973 1.2

SAPT-2NX
2.0 755.547 198 230 1.636 7.7
2.5 689.50 99 297 1.779 1.8
3.0 836.85 81 418 1.817 0.75
3.5 813.79 84 301 1.809 0.72
4.0 793.49 86 957 1.801 0.71



gm
n …R† ˆ

Xm

i 0̂

aiR
¡i

Xn

j 0̂

bjR
¡j

: …15†

To get the correct long-range behaviour, we set both a0

and b0 to 1, and to get the desired short-range behaviour
we specify that m ˆ n ¡ 6 and de® ne

gn…R† ˆ

Xn¡6

iˆ0

aiR
¡i

Xn

jˆ0

bjR
¡j

; …16†

where the ai and bj are zero for odd values of i and j
respectively.

We have performed trial ® ts of G…R† with a uniform
weighting scheme (see section 2.2) and have found that
the ® rst three rational functions, g6 , g8 and g10 are prone
to singularities for R < Rmin , i.e. outside the range of the
data that we include. We therefore concentrate on the
g12 function, which is well behaved for all values of Rmin

which we discuss. Problems with the g12 function are
encountered for values of Rmin greater than 3.5 bohr.
We present ® ts of the dispersion energy for all four
combinations of the SAPT data at Rmin ˆ 2:0, 2.5 and
3.0 bohr. The parameter values used in the g12 function
are listed in table 3 for Rmin ˆ 2:5 bohr.

The rms errors are collected in table 4 and we give the
Tang± Toennies errors for comparison. The ® ts with
Rmin ˆ 2:0 bohr (see ® gures 4 and 5) are signi® cantly
worse than for the other values of Rmin and this may
be because our limiting behaviour as R ! 0 is not
appropriate for the data that we are ® tting. Our func-
tions provide considerably better approximations to the
SAPT data than the Tang± Toennies functions, and the
improvement is more marked for the SAPT-20 and
SAPT-2N data where the Tang± Toennies functions
perform less well. The g12 function may seem to involve
an unacceptable proliferation of parameters, but we
stress that it can be evaluated many times more quickly
than the incomplete gamma function. The quality of
our ® ts is quite consistent for all the combinations
of the SAPT data, and in general the rms error is
about 0.1%, when Rmin ¶ 2:5 bohr ; given that the
data being represented span six orders of magnitude
this is very encouraging.
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Figure 3. Fits of the SAPT-2N and SAPT-2NX data using
Tang± Toennies damping functions. C8 , C10 and b are
treated as parameters in the ® tting procedure. Rmin is
given in bohr.

Table 3. Parameter values used in the g12 rational approximations to the SAPT dispersion
energies. …‡ n† represents 10n. Values are in atomic units: bohrn for an and bn.
Rmin ˆ 2:5 bohr.

SAPT-20 SAPT-20X SAPT-2N SAPT-2NX

a2 73.888 (‡ 1) 75.178 (‡ 1) 75.593 (‡ 1) 76.469 (‡ 1)
a4 2.707 (‡ 3) 2.827 (‡ 3) 3.317 (+ 3) 3.305 (‡ 3)
a6 5.625 (‡ 4) 5.383 (‡ 4) 5.642 (‡ 4) 4.478 (‡ 4)
b2 75.500 (‡ 1) 76.757 (‡ 1) 77.501 (‡ 1) 78.344 (‡ 1)
b4 3.893 (‡ 3) 4.069 (‡ 3) 5.007 (‡ 3) 5.009 (‡ 3)
b6 76.626 (‡ 4) 75.929 (‡ 4) 79.719 (‡ 4) 79.729 (‡ 4)
b8 1.309 (‡ 6) 1.655 (‡ 6) 1.749 (‡ 6) 2.268 (‡ 6)
b10 75.860 (‡ 6) 71.092 (‡ 7) 78.561 (‡ 6) 71.582 (‡ 7)
b12 2.340 (‡ 7) 4.915 (‡ 7) 3.074 (‡ 7) 6.308 (‡ 7)



We can assess whether ® ts to G…R† using gn…R† are
physically meaningful at long range by expanding
equation (16) as a power series in R¡1. For example,
for n ˆ 6

g6…R† ˆ 1 ¡ …b2R
¡2 ‡ b4R

¡4 ‡ b6R¡6†

‡ …b2R¡2 ‡ b4R¡4 ‡ b6R¡6†2 ¡ ¢ ¢ ¢
ˆ 1 ¡ b2R

¡2 ‡ …b2
2 ¡ b4†R¡4 ‡ ¢ ¢ ¢ : …17†

Comparing with equation (14) and remembering that
each fn…R† ! 1 as R ! 1 , we can derive the following
relationships:

C8=C6 ˆ ¡b2 ;

C10=C6 ˆ b2
2 ¡ b4: …18†

More generally, i.e. for any gn…R†, these quantities are
given by

C8=C6 ˆ a2 ¡ b2 ;

C10=C6 ˆ a4 ‡ b2
2 ¡ b4 ¡ a2b2: …19†

Applying this approach, we obtain the values of C8

and C10 shown in table 4. It is apparent that meaningful
values of C10 cannot be obtained from this dataset using
this model, although the values of C8 seem to be quite
reasonable for Rmin ¶ 2:5 bohr and in good agreement

with those calculated from the long-range data in table 1.
As with the Tang± Toennies model, however, this ® tting
procedure cannot be regarded as a useful method for
® nding the true long-range Cn. It nevertheless provides
a very accurate ® t to the dispersion energy data over the
whole range ® ttedÐ better than 0.1% if the points at
very small R are excluded.

It is possible that the poor values for C10 re¯ ect the
quality of the data that we are ® tting, the de® ciencies of
which have already been mentioned. To test this
assumption, we have ® tted Koide et al.’ s data for
H¢ ¢ ¢H. We have included just those components corre-
sponding to terms up to C10. For Rmin ˆ 2 bohr, we
obtain values of 130.7 and 130.4 for C8 with and without
the spherical dispersion contribution respectively. The
asymptotic limit of C8 for this system is about
124.4 au. For C10, the asymptotic limit is about
3286 au and our corresponding ® tted values are 1234
and 1247. These values of C8 and C10 are not too unrea-
sonable, and we also note that they are not very sensitive
to the inclusion of the spherical dispersion contribution.
We see once again, however, that although the g12 repre-
sentation describes the data very accurately, it is not
su� ciently sensitive to the long-range behaviour to
give accurate values for C8 and C10. The problem is
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Figure 4. Fits of the SAPT-20 and SAPT-20X G…R†
functions using the g12 rational approximation for
Rmin ˆ 2:0 bohr. The Tang± Toennies (TT) results are
shown for comparison.

Figure 5. Fits of the SAPT-2N and SAPT-2NX G…R†
functions using the g12 rational approximation for
Rmin ˆ 2:0 bohr. The Tang± Toennies (TT) results are
shown for comparison.



that the g12 function cannot be expected to give an exact
description of the dispersion energy at all distances, and
in order to get a good ® t to the short-range data it is
necessary to push the values of C8 and C10 away from
their true long-range values. We emphasize, however,
that the quality of the ® t in the long range region,
where the dispersion energy is very small, is much less
important than the ® t in the region of the minimum. In
fact the ® t is very good throughout the range of values
of R.

It is possible to constrain the ® t so that the values of
C8 and C10 given by equation (19) are the same as
those given by the long-range ® t. For Ar2 , this
increases the rms error in the SAPT-2NX case from
about 0.1% to about 0.125% when the C8 constraint
is applied, and to about 0.5% when the C10 constraint
is also applied. However, there seems to be little
advantage in doing this ; the improved description at
long range, which is not very important, is obtained at
the expense of the ® t in the more important short-range
region.

3. Simpler models

So far we have been concentrating on an accurate
description of the SAPT data for the argon dimer.
This led to the g12 function described above, which
gives an excellent account of our data over the whole
range of R. However, for many purposes a much more
modest objective is more appropriate. We recall that
many calculations on molecular systems, especially for
larger molecules, are carried out using very simple

potentials. Lennard-Jones and exp-6 potentials are still
widely used, and in both of these forms the dispersion
term is simply ¡C6R¡6 . The Lennard-Jones form is no
longer a serious contender for calculations that attempt
to achieve reasonable accuracy, but the exp-6 form has a
reasonable theoretical basis and is a sensible starting
point. How can we improve on it? We use the Ar data
as a convenient test-bed for exploring this issue, bearing
in mind however that we are concerned with applica-
tions to molecules, not to Ar2 itself .

Note that ¡C6R¡6 corresponds to a G…R† that is
equal to unity everywhere. This undamped expression
tends to ¡1 as R ! 0, and since the exponential repul-
sive term remains ® nite at R ˆ 0 there is an unphysical
singularity which often leads to di� culties. We can
avoid this and also improve on the treatment near the
minimum by using the simplest gn…R†, i.e. g6…R†. This
cannot describe the behaviour of G…R† accurately at the
shortest distances, and attempts to ® t it there have been
unsuccessful. However, with Rmin ˆ 5:0 bohr a satisfac-
tory ® t can be obtained with a rms error of 1.15%. We
have ® tted g6…R†C6R¡6 to the SAPT-2NX data, opti-
mizing C6 and the parameters b2 , b4 and b6. In ® gure 6
the circles denote G…R† ˆ E…SAPT-2NX†=C0

6R¡6 , where
C0

6 ˆ 65:3 is the long-range value. The short dashes
show the ® tted g6…R† £ C6=C0

6 , where C6 is the ® tted
value and C0

6 ˆ 65:3 as before. We see that g6 gives a
good account of the behaviour of G…R† down to
R ˆ 5 bohr, but damps the dispersion too severely at
shorter distances. At R ˆ 5 bohr the Ar¢ ¢ ¢Ar interaction
energy is more than 40 kJ mol¡1 [27], so a good descrip-
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Table 4. Dispersion coe� cients and rms errors for ® ts of the SAPT dispersion energies using
a g12 rational approximation for a range of Rmin. The corresponding Tang± Toennies rms
errors are given for comparison. The Cn are given in atomic units and Rmin in bohr.

g12 Tang± Toennies

Rmin C8 C10 rms error/% rms error/%

SAPT-20
2.0 1225.9 738 033 0.14 3.6
2.5 1202.4 722 390 0.10 2.4
3.0 1189.8 714 813 0.086 1.8

SAPT-20X
2.0 918.05 51 468 0.83 5.9
2.5 1178.4 713 071 0.080 1.5
3.0 1165.8 76 127.2 0.066 0.57

SAPT-2N
2.0 1272.2 732651 0.20 3.9
2.5 1246.1 716 854 0.12 2.7
3.0 1231.5 79 095.5 0.10 2.0

SAPT-2NX
2.0 926.74 61 136 1.7 7.7
2.5 1224.2 79 182.5 0.10 1.8
3.0 1210.1 72 394.0 0.079 0.75



tion at smaller R is not required for most ambient-
temperature phenomena.

The values of C6 , C8 and C10 that correspond to this
® t, according to equation (18), are 64.07, 1525 and
36 280. These are quite respectable values, but we
emphasize once again that they are irrelevant; the
important feature is that this very simple function
gives a much better account of the dispersion energy
than the simple ¡C6R¡6 expression. We note that it
has the same number of parameters as a Tang± Toennies
treatment, if the distance scaling parameter is treated as
adjustable.

Other functions may be used to approximate G…R†.
One simple form that has the correct behaviour as
R ! 0 and tends to 1 as R ! 1 is

ge ˆ …1 ‡ c exp …¡bR† ¡ …1 ‡ c† exp …¡tbR††6
: …20†

This approaches 1 exponentially as R ! 1 , so it has no
1=R expansion at large R and we cannot use it to extract
values of C8 and C10. We emphasize once again that this
is not an important limitation. The important property
is that it ® ts G…R† with a rms error of about 1.25%Ð
again not particularly good in comparison with the g12

function discussed above, but comparable with the
Tang± Toennies ® ts discussed above, and very much
better than no damping at all. It turns out that the ® t
is not sensitive to the value of the coe� cient c, and if this
is ® xed at a suitable value (we used c ˆ 3) there are only
two parameters apart from C6. The result is shown in
® gure 6 ; again C6 has been ® tted, so the function plotted
is ge £ C6=C0

6 . In this case the dispersion at small R
is under-damped, but again this is a region of little
importance for many phenomena, and one where
other terms in the potential are likely to be in error also.

Another similar function uses gaussians instead of
exponentials:

gg ˆ …1 ‡ c exp …¡bR2† ¡ …1 ‡ c† exp …¡tbR2††3
: …21†

Here c is well determined by the data, so this has three
e� ective parameters besides C6 . It ® ts the SAPT-2NX
data for R ¶ 5:0 bohr with a rms error of 1.29%.
Figure 6 shows that this function gives a good account
of G…R† for R < 5 bohr, even though it was not ® tted to
those points.

In both of the latter two functions the parameter b
plays the roÃ le of a distance scaling parameter, so it is
easy to arrange for the maximum to occur at an
appropriate distance. The height of the maximum can
also be adjusted, although this involves more trial and
error. Consequently these functions are well suited for
use as empirical damping functions for atom± atom
potentials in molecular systems.

4. Molecules

Atoms are relatively easy to handle. Molecules pose
much more di� cult problems. The dispersion energy
becomes a function of the relative orientation of the
moleculesÐ 5 angular coordinates in the general caseÐ
as well as the distance. In the long-range limit this is
handled by allowing the dispersion coe� cients in
equation (1) to depend on orientation. Note that the
sum will include odd powers of R if either of the
interacting molecules is not centrosymmetric. The
orientation dependence can be expanded in terms of S-
functions [28] or other equivalent functions of orienta-
tion, and the coe� cients in the expansion have been
calculated for a number of systems by Wormer’ s
group [29± 31]. This however provides a single-site treat-
ment, and for all but the smallest molecules the expan-
sion will fail to converge for small R. In any case the
description requires a large number of expansion coe� -
cients (HF dimer requires 20 di� erent coe� cients to
describe the orientation dependence up to C10) and the
evaluation of complicated orientational functions. A
site± site treatment has proved much more satisfactory
for describing the electrostatic, induction and repulsion
interactions, and the same is likely to be true for disper-
sion. The advantage of a site± site description is that the
sites describe regions of the molecule (usually atoms)
that are much more nearly spherical than the molecule
as a whole.

Furthermore, the standard Tang± Toennies damping
functions are isotropic, and we can be sure that this is
not correct for molecules, especially in a single-site treat-
ment, although they have been used, in conjunction with
the Wormer anisotropic Cn coe� cients, in the accurate
ASP potentials for water [32, 33]. Isotropic damping
functions are likely to be more successful if used in a
site± site treatment. Fellers et al. [34] found that the
ASP-S potential of Millot and Stone [32], which incor-
porates a three-parameter isotropic atom± atom disper-
sion function due to SzczeË sÁ niak et al. [35], gives a better
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Figure 6. Fits of the SAPT-2NX G…R† points using the g6 , ge
and gg approximations. Rmin ˆ 5:0 bohr.



account of the vibration± rotation± tunnelling spectrum
of the water dimer than the ASP-W version, which
uses the largest 67 of Wormer’ s anisotropic dispersion
coe� cients.

A site± site version of ¡G…R†C6R¡6 must have the
following properties. G…R† ! 1 as the site± site distance
R tends to in® nity, and G…R† ¹ R6 as R ! 0, as for the
atomic case. The orientation dependence of C6 for a
molecule is known [36]; in addition to the isotropic
component, it includes contributions that involve the
functions Sk0

202, S0k 0

022, Skk 0

220, Skk 0

222 and Skk 0

224. The ® rst two
of these terms involve the polarizability anisotropy of
one molecule and the mean polarizability of the other,
and are larger than the last three terms, which involve
the polarizability anisotropy of both molecules. These
are the only orientational dependences that can survive
at large R, where G…R† ! 1, so any other orientation
dependence must be described by the G…R† function.

We have explored the use of our new G…R† approach
for molecules with the example of HF. We have calcu-
lated the SAPT-2NX dispersion energy for 1205 con® g-
urations of the HF dimer, keeping the HF bond length
® xed. The basis set was aug-cc-pVTZ, and we used the
mono‡ method of Williams et al. [37]. The magnitude of
the dispersion energy ranged from about 60 to about
2:5 £ 10¡4 kJ mol¡1. We have ® tted these points to a
2-site model, with one site at the F nucleus and the
other at a position X in the bond, arbitrarily placed
1.1 bohr from the F atom. (The bond length is
1.732 bohr.) As has been observed for Ar¢ ¢ ¢HCl and
Ar¢ ¢ ¢HF [38], the polarizability of the halogen site is
expected to be larger in the direction perpendicular to
the bond, while the polarizability of the bond site is
expected to be larger in the direction parallel to the
bond. If we include only the larger anisotropic terms
in C6 , this leads to the following model:

Edisp ˆ
X

ab

Gab…Rab†…C00
ab ‡ S022C

02
ab ‡ S202C

20
ab†R¡6

ab ;

…22†

where the sum runs over sites a in one molecule and b
in the other. The indices k and k 0 are zero for linear
molecules and have been dropped. The coe� cients
C00, C02 and C02 are the isotropic C6 coe� cient and
its anisotropic components ; the `6’ has been dropped.
Symmetry considerations imply that C02

ab ˆ C20
ba and

C00
ab ˆ C00

ba. Consequently there are 7 C6 coe� cients:
C00

FF , C02
FF , C00

FX , C02
FX , C20

FX , C00
XX and C02

XX . In the
exponential model, there are 2 parameters for each
Gab…Rab† function. However, we used the same t for all
three, so there are 4 parameters. In the Gaussian model,
using the same c and t for each Gab , there are ® ve, so the
total number of adjustable parameters is 11 or 12. While

this is quite a large number, it should be remembered
that we are describing a function of four coordinates,
and that we are ® tting this function to 1205 data
points.

The parameters obtained in the ® t are given in table 5,
together with the rms error. Both models perform
reasonably well, with the Gaussian version giving a
slightly better result. The table also shows the long-
range isotropic C6 , which is equal to C00

FF ‡ 2C00
FX ‡

C00
XX . This may be compared with the value derived by

Kumar and Meath from dipole oscillator strength dis-
tributions, which was 19:0 § 0:2 au, and with the value
obtained by Rijks and Wormer, which was 20.48 au.
Note also that C02

FF and C20
FX are negative and C02

FX and
C02

XX are positive, as expected from the polarizability
anisotropies.

Also shown in the table is the result of using the
anisotropic dispersion coe� cients of Rijks and
Wormer, later corrected [30], with isotropic Tang±
Toennies damping. There is only one adjustable
parameter, the damping scale factor b, and moreover
the basis set used by Rijks and Wormer was di� erent,
so it is unreasonable to expect a good ® t. On the other
hand there are 20 isotropic and anisotropic dispersion
coe� cients in the Rijks and Wormer description, so the
present model is considerably simpler in form as well as
more accurate.

5. Discussion and conclusions

We believe that the formulation of the dispersion
energy as a product of the long-range form ¡C6R¡6
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Table 5. Parameters for the ® t of the SAPT dispersion energy
in the HF dimer to equation (22). Values are in atomic
units.

Model for G…R†

Coe� cient ge gg Wormer/TT

C00
FF 10.5643 10.6060

C02
FF 70.3498 70.2485

C00
FX 3.7084 3.8336

C02
FX 1.2653 1.2997

C20
FX 70.0324 70.0565

C00
XX 1.4214 1.4670

C02
XX 0.4925 0.4543

bFF 0.4393 0.0196
bFX 0.3897 0.0201
bXX 0.4010 0.0173
c (3.0) 0.2519
t 1.2245 8.2056

b 1.877
rms error 1.765% 1.225% 10.125%
C6 19.403 19.740 20.478



and a correction function G…R† provides a useful
description, avoiding the use of the power series in
1=R. It has promise both for an accurate description
of dispersion for small systems such as the Ar dimer
studied here, and for improved descriptions of disper-
sion in larger molecules, where the simple undamped
¡C6R¡6 form is still widely used.

We consider our model to be particularly useful if the
dispersion energy is calculated point by point using
IMPT or SAPT. Fitting the Cn and fn…R† of equation
(5) to the total dispersion energy is likely to be a di� cult
numerical problem, involving a large number of
strongly-correlated parameters, and by considering the
G…R† function, these problems are generally avoided.
Moreover, the use of a power series in R¡1 at short
range is arti® cial, and the undamped series is only
asymptotically convergent, i.e. divergent at any ® nite R.

The ab initio data for Ar¢ ¢ ¢Ar can be ® tted accurately
using a rational function approximation for G…R†. This
gives a description of the dispersion energy with a rela-
tive accuracy of about 0.1% from 30 bohr down to
2.5 bohr. Values for the higher coe� cients C8, C10 ,
etc. , of the conventional multipole series can be derived
in principle from the rational-function form for G…R†,
but this is not a recommended procedure, because the ® t
is very insensitive to their values. This emphasizes the
fact that the coe� cients of the long-range R¡1 expansion
are irrelevant to a good description of the dispersion
energy in the important region around the energy
minimum.

The rational function form is not ideal; low-order
forms of it are prone to unphysical singularities near
R ˆ 0, and higher-order forms, such as g12 , which we
have used here, require more adjustable parameters than
is convenient for most purposes. We suggest several
simpler functions that can be used to approximate
G…R† in situations where very high accuracy is not a
realistic objective, for instance for site± site dispersion
functions in molecules. In the case of the HF dimer, a
site± site description of this sort, including site aniso-
tropy, has a rms error of less than 1.25% over a set of
1205 points calculated by SAPT.

MPH acknowledges ® nancial support from the
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