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Accurate ab initio potential for argon dimer including
highly repulsive region

KONRAD PATKOWSKI, GAROLD MURDACHAEW,
CHENG-MING FOU and KRZYSZTOF SZALEWICZ*

Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

(Received 1 August 2004; in final form 12 September 2004)

An ab initio potential has been developed for the argon dimer. This potential is based on
coupled-cluster calculations with single, double, and non-iterated triple excitations in a
sequence of very large basis sets, up to augmented sextuple-zeta quality and containing bond
functions, followed by extrapolations to the complete basis set limit. The calculations included
intermolecular distances as small as 0.25 Å, where the interaction potential is of the order
of 4 keV. The computed points were fitted by an analytic expression. The new potential has
the minimum at 3.767 Å with a depth of 99.27 cm�1 respectively, very close to experimental
values of 3.761� 0.003 Å and 99.2� 1.0 cm�1 respectively. The potential was used to compute
the spectra of the argon dimer and the virial coefficients. The latter calculations suggest a
possible revision of the established experimental reference results. From the agreement
achieved with experimental values and from comparisons of the fit with available piecewise
information on specific regions of the argon–argon interaction, one can assume that the
present work provides the best overall representation of the true argon–argon potential to
date.

1. Introduction

The properties of rare gases have always been of great
interest to both experimentalists and theorists. Argon
has received a substantial share of this interest because
of its abundance in the atmosphere. The properties of
argon are determined mainly by the interaction between
a pair of argon atoms, although pair-nonadditive effects
have to be included for quantitative predictions in
condensed phase [1–4]. Like other weakly bound
complexes, the argon dimer presents a difficult challenge
for ab initio calculations since one must use both highly
correlated electronic structure methods and large basis
sets, including a significant number of polarization and
diffuse functions, to obtain a potential energy curve of
an acceptable accuracy. On the other hand, the large
number of electrons in the argon dimer make the
ab initio calculations significantly more demanding than,
e.g., for the helium dimer, for which the state-of-the-art
ab initio potentials are close to reaching millikelvin
accuracy [5–7] and are now enabling one to refine
existing thermophysical standards [8, 9]. Since argon
is another benchmark system in thermal physics,

improvements of the accuracy of the argon dimer
potential are of great importance.

The 1993 empirical argon–argon HFDID1 potential
of Aziz [10] is generally assumed to be the most accurate
one available. This potential, in a Hartree-Fock plus
individually damped dispersion form [11], has been
fitted to accurately reproduce a number of macro- and
microscopic properties of argon. However, the Aziz
potential does not predict all of the quantities that have
been measured to within the experimental error bars
[12]. Even more significant problems can be expected
for properties that depend on the strongly repulsive part
of the potential [13]. For these properties it may be more
appropriate to use the older, 1990 empirical HFD-B3
or HFDTCS2 potentials of Aziz and Slaman [14], which
were constructed with an emphasis on the reproduction
of the repulsive wall. Still, these potentials, as shown
by Phelps et al. [13], are not able to provide reasonable
predictions for the collision and viscosity cross-section
data [15–17] sensitive to very high energies (up to
10 keV, which, roughly speaking, corresponds to the
probing of the argon–argon potential for distances
starting from 0.25 Å). Notice also that HFDID1 was not
intended to be used to predict properties that depend
strongly on the repulsive wall and its performance for
the whole set of data on which HFD-B3 and HFDTCS2*Corresponding author. Email: szalewic@udel.edu
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were fitted/tested is unknown. Thus, there is even no
single potential that can be recommended for the
whole range of interatomic separations. It is evident,
therefore, that a new potential is needed that accurately
describes the highly repulsive region of the argon–argon
interaction and is a good representation of the true
potential in all other regions as well.
Highly correlated ab initio calculations of the inter-

action energies for the argon dimer have become
possible thanks to many-body perturbation theory
(MBPT) and coupled-cluster methods developed by
Bartlett and collaborators [18–39]. The first such
calculations were attempted as early as 1987 [40] using
the fourth-order MBPT (MBPT4) level. However, these
MBPT4 calculations underestimated the van der Waals
well depth by 25% compared to the Aziz potential [10],
mainly due to the lack of high angular functions (higher
than f ) in the basis set. A year later, McLean et al. [41]
reduced the error in well depth to 15% using the
interacting correlated fragments (ICF) approach. More
accurate calculations have been made possible by the
introduction of the augmented correlation-consistent
(aug-cc-pVnZ) basis sets by Dunning and coworkers
[42, 43] and by the use of the complete basis set (CBS)
extrapolation techniques. Using the coupled-cluster
approach with single, double and noniterative triple
excitations (CCSD(T)) and the CBS extrapolation
from calculations in basis sets up to d-aug-cc-pVQZ,
Woon [44] obtained an argon–argon potential that was
s5% too shallow. These calculations were later
extended to basis sets up to d-aug-cc-pV6Z, with the
correction for the core and core-valence correlation
taken into account, reducing the error in the well depth
to s3% [45].
Further advancement in the accuracy of the ab initio

argon–argon potentials has been made possible by the
use of bond functions [46–48] which provide a most
efficient way of saturating the dispersion component of
the interaction energy [49, 50]. The first calculations
of the argon–argon potential using bond functions (and
the MBPT4 method) were carried out by Tao and Pan
[51]. The resulting well depth was 8% too small. More
recently, Fernandez and Koch [58] added a set of
(3s3p2d1f 1g) midbond functions to the d-aug-cc-pV5Z
basis set. Their CCSD(T) potential curve had a well
depth s2.5% too small. Results of similar accuracy
have been obtained, using the CCSD(T) method and the
aug-cc-pV5Z basis supplemented by a (3s3p2d 2f 1g) set
of bond functions, by Cybulski and Toczylowski [53].
The most accurate ab initio argon–argon potential to

date has been developed by Slavicek et al. [54]. These
authors performed CCSD(T) calculations in bases up to
aug-cc-pV6Z supplemented with a (3s3p2d 2f 1g) set
of midbond functions. Furthermore, they calculated the

core and core-valence correlation corrections (at the
aug-cc-pV5Zþ(3s3p2d 2f 1g) midbond level) and esti-
mated the higher-level correlation contributions by
performing full CCSDT calculations in a smaller basis
set. These authors, however, did not use their large basis
set results to extrapolate the interaction energy to the
CBS limit. On the other hand, Jeziorska et al. [6] have
recently shown that extrapolations from bases using
bond functions greatly improve the predicted values
of interaction energies. These extrapolations are more
reliable than analogous extrapolations from bases with-
out such functions. Therefore, it is worth investigating
how the CBS extrapolation can improve the accuracy
of the argon–argon potential obtained by Slavicek
et al. [54].

In this work, the ab initio argon–argon potential
developed by Slavicek et al. [54] has been refined in two
ways. First, we extend the CCSD(T) calculations
to intermonomer distances corresponding to the highly
repulsive wall probed in the cross-section measurements
analysed by Phelps et al. [13]. Next, we perform an
extrapolation of the finite-basis-set results to the CBS
limit. The extrapolated interaction energies are then
fitted to an analytic formula which is an extension of the
one developed by Korona et al. [5].

The structure of the rest of this paper is as follows.
In section 2, key theoretical and computational aspects
of obtaining an accurate argon–argon potential are
discussed. The potential is presented and analysed in
section 3. Section 4 discusses the spectra of Ar2 and
section 5 analyses the virial coefficients. Finally, section 6
contains a brief summary of our work and perspectives
for future work on the argon dimer potential.

2. Methodology and computational details

The interaction energies for 47 different argon–argon
distances have been obtained from the supermolecular
[55] CCSD(T) approach with the counterpoise scheme
of Boys and Bernardi [56] to eliminate the basis set
superposition error. For each point, results computed in
three consecutive basis sets were used: the aug-cc-pVQZ,
aug-cc-pV5Z and aug-cc-pV6Z bases supplemented by a
(3s3p2d 2f 1g) set of midbond functions (denoted as
spdfg in Slavicek et al. [54]). These basis sets are
the same as employed by Slavicek et al. [54], and
for intermonomer distances greater than or equal to 2 Å,
we utilized the interaction energies calculated by these
authors. For smaller distances, we calculated the
energies ourselves, employing the same basis sets and
the MOLPRO suite of codes [57]. When going to
the intermonomer distances smaller than 1 Å, the most
diffuse midbond functions had to be successively
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removed from the basis set to avoid linear dependencies.
Exactly as in Slavicek et al. [54], the core and core-
valence correlation correction has been established
by performing calculations in the aug-cc-pV5Zþ spdfg
basis set with all electrons correlated. This quantity has
not been extrapolated.
Following the approach employed by Murdachaew

et al. [58], the finite-basis interaction energies were
extrapolated to the CBS limit, using separate extrapola-
tions for the SCF and correlation parts of the
interaction energy:

EintðCBSÞ ¼ ESCFðCBSÞ þ EcorrðCBSÞ: ð1Þ

The SCF energies have been observed to converge
exponentially with n in a series of (aug)-cc-pVnZ basis
sets [59], so we assumed that the SCF interaction energy
calculated in the n-tuple zeta basis set behaves like

ESCFðnZÞ ¼ ESCFðCBSÞ þ Ae�Bn: ð2Þ

The CBS limit of the SCF interaction energy,
ESCFðCBSÞ, can now be determined from the interac-
tion energies calculated in three consecutive basis sets,
(n� 1)-, n-, and ðnþ 1Þ-tuple zeta (in our case, these
were the bases aug-cc-pVQZþ spdfg, aug-cc-
pV5Zþ spdfg, and aug-cc-pV6Zþ spdfg, respectively),
using the extrapolation formula

ESCFðCBSÞ

¼
ESCFððn� 1ÞZÞESCFððnþ 1ÞZÞ � E2

SCFðnZÞ

ESCFððn� 1ÞZÞ þ ESCFððnþ 1ÞZÞ � 2ESCFðnZÞ
: ð3Þ

The CBS-extrapolated values of the correlation part
of the interaction energy EcorrðCBSÞ were obtained using
the calculated values from bases aug-cc-pV5Zþ spdfg
and aug-cc-pV6Zþ spdfg and the so-called X�3 extra-
polation scheme which assumes that the difference
between the CBS energy and the energy calculated
within an n-tuple zeta basis set vanishes like n�3 and
leads to the following expression for the limit energy:

EcorrðCBSÞ ¼
n32Ecorrðn2ZÞ � n31Ecorrðn1ZÞ

n32 � n31
, ð4Þ

where, in our case, n1¼ 5 and n2¼ 6. The above
assumption is supported by theoretical investiga-
tions [60–62] as well as by a number of numerical
studies, including ones concerning, as in this work, the
interaction potentials of weakly bound systems [6, 63].
To obtain an analytic representation of the argon–

argon potential, the calculated CCSD(T) interaction
energies were fitted to a formula which is an extension

of the form proposed by Korona et al. [5],

VðRÞ ¼ ðAþ A0Rþ A00=RÞe��Rþ�R2

�
X8

n¼3

f2nðbRÞ
C2n

R2n
,

ð5Þ

where A,A0,A00,�,�, and b are fitting parameters,
C2n are the asymptotic constants and the Tang-
Toennies damping functions f2nðxÞ [64] are defined by

f2nðxÞ ¼ 1� e�x
X2n

k¼0

xk

k!
: ð6Þ

The role of the additional linear parameters A0 and A00,
not used in the helium dimer fit of Korona et al. [5],
is to provide more flexibility in the highly repulsive
region and, in the case of A00, to enable reproduction
of the correct small-R asymptotic behaviour of the
interaction potential. The introduction of terms
containing A0 can also be expected to improve the
medium-range behaviour of the potential since it is
known from the work of Herring [65] that the exchange
energy for a hydrogen atom interacting with a proton
decays with R like cRe�dR, just like our short-range
term does.

An accurate value of the leading asymptotic constant
C6 can be extracted from the experimentally measured
differential oscillator strength distributions (DOSD) in
the resonance absorption spectra of atoms [66] and has
been recently obtained in this way by Kislyakov [67].
The result, equal to 64.691 a.u., with an estimated error
of 0.04%, is in reasonably good agreement with several
up-to-date ab initio results, including the value
C6 ¼ 64:80 a.u. obtained in a TDMP2 calculation by
Hattig and Hess [68]. These authors also determined the
values of C8¼ 1644 a.u. and C10 ¼ 50 240 a.u., which
we employed in the fitting formula (5). The higher
asymptotic constants C12 � C16 in equation (5) have
been obtained from C6, C8 and C10 using an extrapola-
tion formula proposed by Thakkar [69]. The free
parameters A,A0,A00,�, �, and b have been determined
by a nonlinear least-squares fit with the 47 calculated
points weighed proportionally to 1=ðE þ 100 cm�1Þ

2
�

1=ðE �DeÞ
2. A FORTRAN routine calculating the

value of the fitted potential for a given distance R is
available from the authors upon request.

It is worth mentioning that our form of the fit,
equation (5), leads to unphysical values of the potential
for distances s0.1 Å smaller than the one for which the
closest ab initio point was calculated. To avoid artifacts
in applications of this potential, we have regularized it
at short-range, i.e. replaced equation (5) for R < 0:15 Å

Accurate ab initio potential for argon dimer 2033
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by the simpler function

~VVðRÞ ¼
~AA00e� ~��R

R
, ð7Þ

where the parameters ~AA00 and ~�� were determined such
that the potential and its first derivative (evaluated
analytically) agreed at R¼ 0.15 Å.

3. Comparison with literature potentials

The performance of the CBS extrapolation from the
results calculated in bases aug-cc-pVnZþ spdfg,
n¼ 4, 5, 6, is presented in table 1. From this table, it is
clear that, although very large basis sets have been used
in the calculations, the effect of the CBS extrapolation

still plays an important role in obtaining an accurate
interaction potential. The estimated contribution to
the CCSD(T) energy which is not recovered at the
augmented sextuple zetaþmidbond level amounts to
�0.37 cm�1 at the near van der Waals minimum
distance R¼ 3.775 Å and is larger for smaller R, being
at least as important as the core and core-valence
correlation correction at distances corresponding
to the highly repulsive wall. In the region of the
van der Waals minimum, both the CBS extrapolation
and inclusion of the core correction are crucial for
obtaining an interaction potential with accuracy better
than 1 cm�1. At R¼ 3.775 Å, our most accurate value
(�99.24 cm�1, the last column of table 1) is deeper by
the extrapolation increment of �0.37 cm�1 than that
of Slavicek et al. [54] (�98.87 cm�1). The depths of
minima, De, given by the respective fits are 99.27 cm�1

Table 1. Calculated and extrapolated values of the Ar2 interaction potential. The interaction energies calculated in the basis
sets aug-cc-pV5Zþ spdfg and aug-cc-pV6Zþ spdfg, and the energies extrapolated from the ab initio results using the approach
outlined in section 2, are presented in the first three columns. The results in the last column include also the correction for the
core and core-valence correlation effects. The distances are given in Å and the energies are in cm�1. The finite-basis energies

and core corrections for distances equal to 2 Å and larger have been calculated by Slavicek et al. [54].

R aug-cc-pV5Zþ spdfg aug-cc-pV6Zþ spdfg Extrapolated Extr.þ core correction

0.25 34 888 652.5 34 143 824.7 33 600 680.7 33 597 120.2

0.4 11 644 214.9 11 490 997.2 11 430 211.1 11 428 838.0

0.6 3 980 529.1 3 944 966.1 3 932 158.2 3 926 926.7

0.8 1 775 126.6 1 765 636.8 1 761 466.7 1 757 165.1

1.0 794 074.0 788 472.2 784 435.9 782 122.9

1.2 384 699.9 382 465.0 381 013.4 379 771.6

1.4 229 369.6 228 244.1 227 386.8 226 650.2

1.6 129 322.0 128 740.1 128 236.0 127 764.6

1.8 70 174.7 69 900.1 69 631.6 69 341.6

2.0 36 539.5 36 409.5 36 270.3 36 100.4

2.4 8870.82 8836.80 8795.77 8737.45

2.8 1766.00 1756.24 1743.77 1724.79

3.2 182.660 180.088 176.701 170.353

3.4 �16.7911 �18.0249 �19.6695 �23.4522

3.6 �84.8214 �85.4064 �86.1903 �88.4975

3.7 �95.0284 �95.4190 �95.9367 �97.7956

3.75 �96.7432 �97.0583 �97.4753 �99.1808

3.775 �96.9650 �97.2438 �97.6135 �99.2385

3.8 �96.8495 �97.1011 �97.4316 �98.9903

3.9 �93.6635 �93.8176 �94.0179 �95.3420

4.0 �87.6799 �87.7390 �87.8150 �88.9182

4.2 �72.5886 �72.5721 �72.5464 �73.3182

4.4 �57.6674 �57.6299 �57.5824 �58.0941

4.6 �44.9594 �44.9275 �44.8838 �45.1881

5.0 �26.9818 �26.9589 �26.9246 �27.0832

6.0 �8.2861 �8.2817 �8.2797 �8.3406

7.0 �3.0771 �3.0760 �3.0744 �3.1069

8.0 �1.3249 �1.3249 �1.3249 �1.3348

10.0 �0.3318 �0.3319 �0.3320 �0.3333

14.0 �0.0425 �0.0424 �0.0422 �0.0424

20.0 �0.0049 �0.0049 �0.0049 �0.0050
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and 98.93 cm�1, a difference of 0.34 cm�1. Notice that
table I of Slavicek et al. [54] gives 98.8 cm�1 as De for
the level of theory discussed here, apparently due to
some roundoff error.
The well depth of our potential (99.27 cm�1 fit value)

differs from the depth of the empirical Aziz [10]
potential, equal to 99.55 cm�1, by just 0.28 cm�1 or
0.3%. It is worth noting that performing the CBS
extrapolation results in cutting the difference between
the Aziz result and the non-extrapolated value in half.
Our depth agrees even better with the value extracted
from the spectroscopic measurements of Herman et al.
[70], equal to 99:2� 1:0 cm�1. One should also mention
here an older experimental well depth based on the
spectra measured by Colbourn and Douglas [71] equal
to 99.55 cm�1 (no error bars given). This is actually
more an empirical than experimental result, as in
addition to spectral data the authors used informa-
tion from virial measurements and theoretical Cn

constants to obtain this value.
For a further increase of the accuracy of the ab initio

potential, the correlation effects beyond CCSD(T) have
to be included. One may note that a partial inclusion of
these effects by Slavicek et al. [54]—utilizing the full
CCSDT calculation carried out in a much smaller basis
set than those used in the CCSD(T) calculations—
actually worsened the agreement of their potential
with the Aziz [10] potential, and the agreement of the
resulting rovibrational spectra with the experimental
results. This fact suggests that the effects of higher-
than-triple excitations may be, as could be expected on
theoretical grounds, of comparable size as the contribu-
tion CCSDT-CCSD(T). We could not include the
complete triples correction in our potential since it has
apparently been computed by Slavicek et al. [54] only
at four values of R, not enough for high-accuracy fitting
in the broader range of R used in our work.
The parameters defining our analytical fit to the set of

CBS-extrapolated CCSD(T) interaction energies, with
the core correction included (i.e. to the data in the last
column of table 1), are gathered in table 2. The accuracy
of our fit around the van der Waals minimum is close to
0:01% (the depth of the fit being equal to 99.27 cm�1)
and it worsens to slightly below 0.2% for distances
around 4.2 Å. This behaviour of the fit can be attributed
mainly to the fact that the leading constant C6,
governing the asymptotics of the fitted potential, is
nearly exact and was not calculated from our CCSD(T)
interaction energies. Due to the improved asymptotic
behaviour, our analytical fit may be viewed as an even
more reliable description of the Ar-Ar potential for
large distances than our extrapolated ab initio points. In
fact, in the asymptotic region our potential is certainly
more accurate than the commonly used HFDID1

potential of Aziz [10], since the latter employs
a significantly underestimated value of C6 ¼ 63:50 a.u.;
note that the earlier potentials of Aziz and Slaman [14]
used the value of C6 ¼ 64:30 a.u. obtained by Kumar
and Meath [66], closer to the most accurate available
value of 64.691 a.u. [67].

3.1. Van der Waals minimum region

The behaviour of our calculated and fitted argon–argon
potential at the van der Waals minimum region is
graphically displayed in figure 1. For comparison, we
have also drawn the curves corresponding to the Aziz
[10] HFDID1 potential and the potential fitted by
Slavicek et al. [54] to their non-extrapolated, core-
corrected aug-cc-pV6Zþ spdfg results. As is explained in
section 4, the fit of Slavicek et al. (with the parameters
given in table 8 of [54]), presented in figure 1, does not
include the CCSDT-CCSD(T) correction. It is clearly
seen that these three currently most accurate argon–
argon potentials have reached an unprecedented level of
consistency. As discussed in the previous paragraph, for
distances larger than the minimum, our potential is
slightly deeper than the Aziz potential since it employs
a larger, more accurate value of the asymptotic constant
C6. For distances smaller than the minimum, the Aziz
potential becomes progressively deeper than ours as
R decreases, up to a few inverse centimetres at the
smallest R in figure 1, which means it has a softer wall
than both the ab initio potentials.

Table 2. Parameters of our analytical fit of the calculated
argon–argon interaction energies to the formula (5), expressed
in atomic units of energy and length. Not all presented digits

are significant. Note that the values of the asymptotic
constants Cn were not fitted.

Parameter

A �134.209 907 5

A0 62.932 592 2

A00 206.875 820 2

� 1.623 806 026

� �0.046 730 112 7

b 1.500 497 187

C6 64.691a

C8 1644b

C10 50 240b

C12 1 898 195c

C14 86 445 426c

C16 4 619 452 502c

~AA00 32 837.873 43

~�� 19.772 617 9

a[67].
b[68].
cExtrapolated from C6–C10 using the scheme of Thakkar [69].
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3.2. Highly repulsive region

At distances corresponding to the highly repulsive
wall of the argon–argon potential, the differences
between various potentials available are much more
significant. The behaviour of our potential and of
several others in this region has been presented in
figure 2. For these distances, the agreement between our
calculated and fitted results was, of course, not as good
as for larger R—the differences between the above
quantities amounted to s3% on the average and up to
10% for some points (this is partly due to the weights
used in our fitting procedure). Nevertheless, as figure 2
shows, the discrepancies between various potentials
are significantly larger than inaccuracies of the fit.
The work of Aziz and Slaman [14] was aimed at

improving the representation of the argon dimer
potential in the region of R in the range 1.7–2.7 Å,
corresponding to energies in the range of s0.5–10 eV
or 3000–100 000 cm�1, where actual numerical values
of the potential are known from the inversion of beam
scattering data of Rol [72]. The experimental data are
shown in figure 3 together with the most recent
empirical potentials of Aziz-Slaman [14] and Aziz [10].
The HFD-B3 potential has a single functional form

and fits the points obtained by Rol [72] to within
experimental error bars. However, this potential did
not reproduce the available high-temperature viscosity
and thermal conductivity data satisfactorily enough
[14]. Therefore, Aziz and Slaman [14] proposed
another potential, a piece-wise one denoted by
HFDTCS2, which was equal to HFD-B3 down to
R¼ 2.98 Å and then was joined by a spline to a simple
exponential starting at R¼ 2.73 Å. This exponential
was chosen such that HFDTCS2 passes near the
upper end of the experimental range, see figure 3.
Although HFDTCS2 represented the Rol [72] data a
little worse than HFD-B3, it recovered the other data
mentioned above much better and this potential was
the one recommended by Aziz and Slaman. Figure 3
displays also the HFDID1 potential of Aziz [10] which
was fitted to Rol [72] data but otherwise was aimed at
reproducing low-temperature experiments. In fact,
high-temperature properties have not been computed
for this potential. The Phelps et al. [13] potential,
which will be discussed in more detail below, is also
shown in figure 3. For R > 2:65 Å (5 bohr), this
potential is equal to HFD-B3 and for the remainder
of the R range shown it is a spline joining HFD-B3
to the higher-energy region. Clearly, the Phelps et al.
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Figure 1. The van der Waals minimum region of the argon–argon interaction. Our extrapolated single-point energies are denoted
by squares, and the solid line represents our analytical fit to these points (table 2). The long-dashed line represents the Aziz [10]
empirical potential and the short-dashed line is the potential fitted by Slavicek et al. [54] (table 8).
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[13] potential does not reproduce Rol [72] data well
for R smaller than 2 Å.
Figure 3 shows that our potential falls within

experimental error bars for smaller and larger R and
is up to about one deviation from the upper experi-
mental range in the middle. The deviations of the
present potential from the empirical potentials are
similar in magnitude to the differences between the
empirical potentials. With this behaviour, our potential
may do very well in predicting high-temperature
measurements. Notice also that the behaviour of all
the potentials included in figure 3 may indicate some
systematic downward shift of the experimental data in
the middle of the displayed R range.
The very-high energy region of the potential is shown

in figure 2. Aziz and Slaman considered their potentials
to be determined by the available data only down to
an R of 1.7 Å, the lowest R in the Rol [72] data.
They recommended that for smaller R the potential
should be represented by the united atom theoretical
potential of Pathak and Thakkar [73], with the region
0.2 Å<R<1.7 Å interpolated by a spline. The unusual
behaviour of the Aziz-Slaman potentials seen in figure 2

is just an artifact of the spline interpolation. The
HFDID1 potential of Aziz [10] was not extended in
such a way, so that figure 2 shows just the values
computed from the overall formula.

The high-energy region of the Phelps et al. [13]
potential, R smaller than 1.6 Å (3 bohr), is taken
from a fit done by the authors to the Kim-Gordon
electron gas calculations by Gianturco and Dilonardo
[74] based on accurate SCF atomic densities. The
potential of Phelps et al. [13] gave reasonable predictions
for several experiments sensitive to the very high-energy
region [15–17]. Despite some deviations visible in
figure 3, it gave also good predictions in the mildly
repulsive region, i.e. for collision energies smaller
than 10 eV. Apparently, the energies where the devia-
tions are large are not particularly important for these
experiments and the fact that Phelps et al. potential
becomes equal to the HFD-B3 potential starting at
R>5bohr (V<1eV) is sufficient to assure accurate
predictions.

As it is clearly seen in figure 2, the potential developed
by us agrees extremely well with the potential of
Phelps et al. [13] for energies larger than 100 eV.
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Figure 2. The highly repulsive wall of the argon–argon interaction. Our extrapolated single-point energies are denoted by
squares and the solid line represents our analytical fit to these points (table 2). The long-dashed line represents the Aziz and Slaman
[14] empirical HFD-B3 potential and the short-dashed line shows the short-range part of the piecewise-constructed potential
HFDTCS2 from the same paper. The dash-dotted line is the more recent, 1993 potential of Aziz [10] and the dotted line represents
the empirical potential recommended by Phelps et al. [13] on the basis of fitting several high-energy cross-section measurements.
Note the logarithmic scale on the vertical axis.
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Comparison of figures 2 and 3 suggests that our
potential is probably the best representation of the
true potential in the range 10–100 eV. Since, as discussed
above, this potential is also comparable in accuracy to
empirical potentials in the range 1–10 eV, it is clearly
the best overall representation for the whole high-energy
range of 1–10 000 eV.
The agreement of our potential with the values

computed by Gianturco and Dilonardo [74] is perhaps
surprisingly good taking into account that these authors
have used a fairly approximate theoretical method.
However, for very small R (in contrast to the negative
energy region), the potential becomes in fact very well
described by simple methods. For example, for
R¼ 0.6 Å, the Hartree-Fock method gives the interac-
tion energy with only 4% error. At R¼ 0.5 and 1.0 bohr,
Gianturco and Dilonardo’s interaction energies differ
from those given by our potential by only 1% and 0.2%,
respectively. Such small differences are hardly visible on
a logarithmic scale.
One may also note that the Aziz-Slaman [14] or

Aziz [10] potentials shown in figure 2 would clearly give
poor results in predicting quantities depending on the
very-high-energy region, as these are several times lower

than the potential of Phelps et al. [13] or our potential.
One may note that if the HDF-B3 and HFDTCS2
potentials were not connected to the united atom
potential as described above, these would behave
somewhat better (but they still would be far from our
potential) in the range 0.5–1 Å. Only for R smaller than
s0.3 Å does the interpolated model become more
accurate.

4. Spectra of argon dimer

The characteristic properties of the potential: the
position Re and depth De of the van der Waals
minimum, as well as the dissociation energy D0 and
the rotational constant B0, are gathered in table 3.
For comparison, we included also the characteristic
properties of several other argon–argon potentials
[10, 14, 52–54, 75], as well as the values measured by
Herman et al. [70]. The one-dimensional Schrödinger
equation for the relative motion of the argon nuclei
was solved numerically, employing the finite difference
method implemented in terms of a tri-diagonal matrix,
as described by Cooney et al. [76]. The finite-difference
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Figure 3. The mildly repulsive region of the argon–argon interaction. The solid line represents our fitted potential (our computed
points, denoted by ‘x’, are also shown), the long-dashed line is the Aziz and Slaman [14] empirical HFD-B3 potential and the short-
dashed line shows the piecewise-constructed potential HFDTCS2 from the same paper. The dash-dotted line is the more recent, 1993
potential of Aziz [10] and the dotted line represents the empirical potential recommended by Phelps et al. [13] on the basis of fitting
several high-energy cross-section measurements. The squares denote the experimental beam potential data of Rol [72].
The experimental error bars are also given. Note the logarithmic scale on the vertical axis.
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solutions were then extrapolated to zero step size by
means of a Richardson extrapolation [77]. For the
argon–argon potentials available in the literature,
the rovibrational levels calculated by the above method
agreed with their respective literature values to within
0.02 cm�1 (mostly to within 0.01 cm�1). The only
exception are the results of Slavicek et al. [54], where
the discrepancies were up to 0.06 cm�1.
The characteristic properties of the argon–argon

potentials listed in table 3 confirm that the state-
of-the-art ab initio (this work and Slavicek et al. [54])
and empirical (Aziz [10]) potentials are very close to
each other and must be very close to the true
interaction potential probed in experiments. Note
that the values given for the Slavicek et al. potential
correspond to their analytic fit with the parameters
specified in table 8 of [54]. This fit apparently
corresponds to the data marked ‘C’ in tables 10–13
of Slavicek et al. [54], i.e. the CCSDT-CCSD(T)
correction was not included. As already mentioned,
adding this correction (cf. the columns marked ‘CC’
in tables 10–13 of Slavicek et al. [54]) actually
worsened the agreement with experiment for all
quantities compared and we have not included these
results in the tables. The slightly older potentials of
Fernandez and Koch [52] and Cybulski and
Toczylowski [53] give noticeably less accurate results

for all the quantities listed. Comparing to the
potential of Slavicek et al. [54], one may note that
the CBS extrapolation and a different fitting proce-
dure employed by us lead to a significantly better
agreement with experiment for the dissociation
energy D0. It did not, however, influence the value
of the rotational constant which remained outside of
the experimental error bars (see, however, a further
discussion below).

Further assessment of the accuracy of various argon–
argon potentials can be done by comparing the spacings
between the lowest pure vibrational ðJ ¼ 0Þ levels,
presented in table 4. As already observed by Slavicek
et al. [54], the rovibrational spectra predicted by the
potentials of Fernandez and Koch [52] and Cybulski
and Toczylowski [53] are not as accurate as the results
obtained from newer potentials, so we excluded those
potentials from further comparisons. As can be seen
from table 4, in the case of vibrational spacings,
in contrast to De and D0, our results do not agree
significantly better with experiment than the ones
predicted by the Slavicek et al. potential (the data
marked ‘C’ in table 11 of Slavicek et al. [54]): out of
five quanta, our predictions are slightly closer to
experiment in four cases. One may say that both sets
are almost equally distant from experiment. This is
not surprising, since a fairly uniform shift of the

Table 3. Characteristic properties of the argon dimer predicted by various potentials.

Property This work [53] [52] [54] HFDID1 [10] HFD-B3 [14] Experiment [70]

Re (bohr) 7.119 7.140 7.139 7.126 7.100 7.107 7.107 (6)

De (cm
�1) 99.27 96.99 97.60 98.93a 99.55 99.56 99.2 (10)

D0 (cm
�1) 84.38 82.38 82.98 84.16 84.75b 84.71c 84.47 (10)d

B0 (cm
�1) 0.05743e 0.05708 0.05745 0.05777 0.05764f 0.05776 (6)

aValue from fit C. Computed De at R¼ 3.775 Å is 98.87 cm�1.
bComputed in the present work.
cFrom table 4 of Aziz et al. [75]. The value computed by us is 84.66 cm�1.
dExperimental D0 minus G0 from table V of Herman et al. [70].
eComputed as half of the difference between J¼ 1 and 0 levels.
fComputed by Aziz [10].

Table 4. Energy differences (in cm�1) between consecutive vibrational levels with rotational quantum number J¼ 0 of the
argon dimer, predicted by several different potentials and compared to the measured values.

v0 � v0 0 This work [54]a HFDID1 [10] HFD-B3 [14]b Experiment [70]

1� 0 25.75 25.58 25.68 25.75 25.69 (1)

2� 1 20.48 20.44 20.56 20.51 20.58 (2)

3� 2 15.44 15.46 15.58 15.51 15.58 (2)

4� 3 10.79 10.78 10.92 10.87 10.91 (3)

5� 4 6.76 6.74 6.83 6.81 6.84 (7)

aQuoted from Slavicek et al. [54]. Our calculations give values up to 0.06 cm�1 different.
bComputed by Aziz [10]. Notice that values quoted in table 4 of Aziz et al. [75] are slightly different.
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potential should have a small effect on vibrational
quanta.
Our vibrational quanta generally agree with the

experimental results of Herman et al. [70] to
s0.1 cm�1. For the 5–4 transition, the discrepancy of
0.08 cm�1 is very close to the experimental error bar
of 0.07 cm�1. For the remaining transitions, however,
the experimental error bars are smaller, 0.01–0.03 cm�1,
and, therefore, our predictions are several standard
deviations outside the experimental range. The agree-
ment in absolute terms is similar to that achieved for
De and D0, but now the experimental uncertainties are
much smaller. The empirical Aziz potential [10] was
fitted to the experimental rovibrational quanta and
obviously gives results within experimental error bars.
The experimental values of Re, De and D0 listed in

table 3 result from a fairly involved processing of
measured data. It is also worth mentioning, however,
that the rotational constants and vibrational quanta
listed in tables 3 and 4 are not directly measured in
rovibronic experiments and there exists some small
arbitrariness in obtaining these quantities. In fact, Boyes
[12] reanalysed the data of Herman et al. [70] and
obtained somewhat different results. For example, the
rotational constant recommended by Boyes is 0.057 55�
0.000 11 cm�1, which differs by 0.000 21 cm�1 from the
value published by Herman et al. [70] and agrees with
our value almost to within experimental error bars.
The vibrational quanta obtained by Boyes are 0.01–
0.04 cm�1 different from those originally published. In
three out of five cases, our results agree better with the
former than with the latter data. On the other hand,

Aziz’s [10] potential predictions are outside Boyes’ error
bars in two cases.

We have also included in tables 3 and 4 the results
obtained with the HFD-B3 potential of Aziz and
Slaman [14]. This potential was apparently considered
by Aziz to be the best of several potentials developed
by him, as he recommended it in a 1996 review [75]. The
HFD-B3 potential was fitted to the older spectroscopic
data of Colbourn and Douglas [71], so it does not agree
as well with the Herman et al. [70] quanta as HFDID1
does [10]. Table 4 shows that the vibrational quanta
obtained from our potential agree significantly better
with those produced by HFD-B3 than by HFDID1,
but this is probably accidental.

5. Virial coefficients

The second virial coefficients, B(T), are important
quantities to compare two-body potentials with experi-
ments since these quantities are by definition dependent
only on two-body interactions. Moreover, due to the
importance of the virial equation of state in thermal
physics, extensive experimental data exist for most pure
substances and many mixtures. Table 5 compares the
second virial coefficients calculated with and without
quantum corrections using the potential obtained in
this work to those calculated using the ab initio poten-
tial of Slavicek et al. [54], the empirical potential of
Aziz [10] and to experimental data [78]. One should
mention here that Aziz did not use virial coefficients
in the set of data that his potential was fitted to.

Table 5. Comparison of second virial coefficients B(T ) obtained from various argon dimer potentials to experimental data. The
values of B(T ) were computed from the respective potentials by us using the classical expression (Bc) and including a quantum

correction (Bcþ q). Temperatures T are in K, virial coefficients and uncertainties are in cm3mol�1.

This work Slavicek et al. [54] Aziz [10] Experiment [78]

T Bc Bcþq Bc Bcþq Bc Bcþq Bexp

100.00 �183.33 �181.84 �183.08 �181.61 �183.44 �181.98 �183.5 (10)

133.15 �108.12 �107.44 �108.02 �107.34 �108.26 �107.59 �109.2 (10)

150.00 �86.32 �85.81 �86.25 �85.75 �86.49 �85.99 �86.2 (10)

200.00 �47.89 �47.63 �47.87 �47.61 �48.15 �47.89 �47.4 (10)

250.00 �27.54 �27.37 �27.54 �27.37 �27.86 �27.70 �27.9 (10)

300.00 �15.04 �14.92 �15.06 �14.94 �15.41 �15.30 �15.5 (5)

400.00 �0.67 �0.60 �0.70 �0.62 �1.10 �1.03 �1.0 (5)

500.00 7.21 7.26 7.18 7.23 6.74 6.78 7.0 (5)

600.00 12.09 12.13 12.05 12.09 11.59 11.62 12.0 (5)

700.00 15.34 15.37 15.31 15.34 14.82 14.85 15.0 (10)

800.00 17.63 17.66 17.60 17.62 17.09 17.12 17.7 (10)

900.00 19.30 19.32 19.26 19.28 18.75 18.77 20.0 (10)

1000.00 20.54 20.56 20.51 20.53 19.99 20.00 22.0 (10)

1073.16 21.26 21.28 21.23 21.25 20.70 20.72

1223.16 22.38 22.39 22.35 22.36 21.81 21.82
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The low-temperature virial coefficients calculated with
the ab initio potentials of Fernandez and Koch [52] and
Cybulski and Toczylowski [53] had relatively larger
positive deviations from experiment and are not shown.
The coefficients computed by us from the Aziz’s
potential agree with analogous coefficients computed
by Mas et al. [3] except for T¼ 133.15K for which there
is a misprint in Mas et al. [3].
The quantum correction has been computed in the

�hh2 approximation. This approximation is completely
sufficient for argon, as shown by Dardi and Dahler [79].
At the smallest temperature considered, T¼ 100K, the
correction of the order of �hh2 computed by Dardi and
Dahler from the Koide et al. [80] potential is equal to
1.49 cm3mol�1 (Aziz’s [10] potential and our potential
give 1.47 and 1.49 cm3mol�1, respectively, cf. table 5),
whereas the full quantum correction is 1.53 cm3mol�1.
The difference of 0.04 cm3mol�1 is much smaller than
current experimental error bars. As the results in table 5
show, the quantum corrections are completely negligible
for temperatures larger than s300K and are significant
compared to experimental error bars only at the two
lowest temperatures listed.
The theoretical results are compared to experiment

[78, 81–84] in figure 4(a) and (b). Some experimental
points have been taken from interpolations performed
by Mas et al. [3]. The coefficients computed from the
Slavicek et al. [54] potential are not shown since these
would be indistinguishable from the coefficients
computed with our potential except for T ¼ 100K
where, as shown in table 5, the former results would be
0.22 cm3mol�1 further from experiment. The figures
show deviations of computed values from reference
experimental results. Notice that such a presentation
strongly emphasizes the discrepancies. On a straight-
forward plot of B(T ) vs T, all the discussed
potentials would give results appearing to be in
essentially perfect agreement with each other and with
experiment.
Figure 4(a) displays the deviations from the values

recommended by Dymond and Smith [78], who com-
piled experimental data from several sources. Such
a choice was made since these recommendations are
utilized by the CRC Handbook [85], a very popular
reference source. Figure 4(a) and (b) shows both the
classical coefficients and the ones with the quantum
correction included. This confirms visually the statement
made above about the quantum correction being
important only for the two lowest temperatures from
table 5. For these two temperatures, the quantum
corrections do make a significant difference in compar-
isons to experimental data. From now on we will always
refer exclusively to theoretical results with quantum
corrections.

As it can be seen in figure 4(a) and in table 5, the virial
coefficients predicted by our and Aziz’s potentials agree
very well. The latter values are fairly uniformly shifted
down by s0.6 cm3mol�1 at large T and by 0.14 cm3

mol�1 at the lowest T, the differences being smaller than
the experimental error bars. Both sets of data lie within
the experimental error bars fromDymond and Smith [78]
for most of the range: from 150 to 900K (800K for Aziz’s
potential values). For high T, the virial coefficients are
sensitive to the repulsive wall of the potential and the
larger values obtained from our potential compared to
that of Aziz are consistent with the softer wall in the
latter case. For small T, where the virial coefficients
are sensitive to the volume of the potential well, the two
sets of coefficients are virtually identical, showing that
the small differences in region of the van der Waals well
visible in figure 1 are inconsequential for virial coeffi-
cients. From comparisons of the convergence of ab initio
calculations and estimates of terms neglected by theory,
it is clear that the exact potential cannot lie more than
s1 cm�1 from our potential at the minimum. Therefore,
the exact virial coefficient at low T should be very close to
the current theoretical predictions and the discrepancies
with the values recommended byDymond and Smith [78]
are hard to explain.

To understand the issue of agreement with experiment
better, we have included several sets of experimental
data in figure 4(a) and (b). First, for high temperatures,
the values measured by Lecocq [84] (denoted by L-3 in
figure 4(a)) are outside the errors bars of Dymond and
Smith [78] and agree very well with theory in the range
800–1000K. Thus, it is likely that theoretical values may
better represent the exact virial coefficients than the
values from Dymond and Smith [78].

For low T, one can clearly see that the experimental
data from [81–83] follow the theoretical curve as it
deviates from the recommendation of Dymond and
Smith [78]. Thus, again theory may be more accurate
than values of Dymond and Smith [78] at low
temperatures. Figure 4(b) shows the expanded range of
T from 133 to 400K. In view of the observations made
using figure 4(a), we have changed the reference point
and used the data of Michels et al. [81] instead of those
from Dymond and Smith [78]. Compared to the former
data, the virial coefficients computed from Aziz’s
potential are within experimental error bars (notice
that these are smaller than those of Dymond and Smith
[78]) except for the two lowest points. Our potential
predicts virial coefficients that are up to one standard
deviation above the experimental range. However, the
data from Gilgen et al. [82] and Tegeler et al. [83] are
also at most points above the values of Michels et al. [81]
and our results are within or very close to the upper
range of the error bars of these measurements.
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Figure 4. (a) Deviations of various second virial coefficients from values recommended by Dymond and Smith [78]. The
theoretical coefficients calculated using our potential and the potential of Aziz [10] are shown as open symbols for the classical
(c) and by filled symbols for the quantum (cþq) calculations. The lines connecting these symbols are drawn only to guide the eye.
The light horizontal lines are the estimated uncertainties in the recommended values taken from Dymond and Smith [78]. The other
experimental data included are from [81] (M-3), [82] (GKW), [83] (TSW) and [84] (L-3). The values used were taken from
interpolations performed by Mas et al. [3] for the data of [81, 82, 84] and by us for the data of [83]. (b) Similar to (a), except that the
reference data are those of Michels et al. [81]. The values recommended by Dymond and Smith [78] are denoted by DS.
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Based on the present results, it appears that the
compilation of Dymond and Smith [78] should not be
used anymore as the standard reference for the second
virial coefficients of argon. For temperatures larger than
300K, the virials computed from either our potential or
Aziz’s potential appear to represent a more trustworthy
reference point. For 120K< T < 340K, the data of
Tegeler et al. [83] appear to be the most accurate, also
based on the agreement with theory. For T smaller than
120K, again the theoretical data are probably the most
accurate reference.

6. Conclusions

The present work developed a new ab initio potential
for the argon dimer. This potential is based on CCSD(T)
calculations in a sequence of aug-cc-pVnZþ spdfg basis
sets, n¼ 4, 5, 6 and CBS extrapolations. Our potential is
an improvement of that developed recently by Slavicek
et al. [54] who used the same basis sets, but did
not apply CBS extrapolations. We have also computed
points for R from 0.25 to 1.8 Å, which were not included
in Slavicek et al. [54], and used a different functional
form for the fit. At the van der Waals minimum, our
potential is 0.34 cm�1 deeper than that of Slavicek et al.
[54], bringing the theoretical depth of the potential
closer to the experimental value: the well depths
obtained by Slavicek et al. [54], the present work
and experiment [70] are 98.93, 99.27 (from the fit,
the computed value at R¼ 3.775 Å is 99.24) and
99.2� 1.0 cm�1, respectively. The depth of Aziz’s [10]
empirical potential, equal to 99.55 cm�1, is farther from
the experimental value than our result (although well
within experimental error bars).
The very good agreement of our potential with the

experimental depth of the true argon–argon potential is
to some extent due to cancellations of contributions
between higher levels of theory neglected by us. We know
from the work of Slavicek et al. [54] that the complete
triples correction, i.e. the difference between the complete
coupled clusters approach up to triple excitations
(CCSDT) and CCSD(T), is positive (0.6 cm�1 contribu-
tion to the interaction energy at the minimum) and,
therefore, diminishes the agreement with experiment.
This contribution may be offset by effects of
quadruple and higher excitations which are presently
unknown. It may also be offset by the relativistic effects
which have been computed by Faas et al. [86] to
contribute �0.7 cm�1 to the interaction energy at the
minimum.
Although the present work was initially aimed at

developing an accurate potential at the very strongly
repulsive region, evaluations of the quality of our results

in the whole range of interatomic separations suggest
that the present potential may actually be the overall
most accurate representation of the argon–argon
interaction. It is clearly the best representation for
energies larger than s1 eV, all the way up to nearly
10 keV, i.e. to the upper limit probed by experiments.
This statement is based on the excellent agreement
for very high energies with the potential of Phelps
et al. [13] developed to represent this region and on the
agreement in the range 1–10 eV with the pointwise
potential obtained by a direct inversion of experimental
data by Rol [72]. For very large R, our potential
becomes nearly exact due to the use of the very accurate
asymptotic constant [67]. In the minimum region, it
is difficult to tell whether our potential or the empirical
Aziz [10] potential is more accurate. Two characteristic
parameters, the depth of the potential and the dissocia-
tion energy, are closer to the experimental values
for our potential than for Aziz’s. On the other hand,
the vibrational quanta are better reproduced by
the latter potential. The Aziz potential’s ground-state
rotational constant is closer to experiment if the
comparison is made to the original value of Herman
et al. [70], but the one predicted by our potential is
closer to the value recommended by Boyes [12].
Compared to the potentials of Aziz and Slaman [14]
and Aziz [10], our potential was tested on a much
smaller number of observables. Additional tests, to
be performed in the near future, will provide an
ultimate evaluation of its quality. Also, the work on
a further refinement of our potential by including
effects of higher excitations and possibly the relativistic
effects is in progress in our group. Another refinement
will come from using core-valence optimized basis
sets to describe the core contributions to the
interaction energy and from CBS extrapolations of
these quantities.

The virial coefficients computed with our potential
have been critically compared to experimental data.
The accuracy of the theoretical potential allowed us
to evaluate the quality of various measurements.
Based on these evaluations, we suggest that the set of
reference virial coefficients from the compilation by
Dymond and Smith [78], recommended by the CRC
Handbook [85], should be replaced by a combination of
theoretical data and the most recent measurements by
Tegeler et al. [83].
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