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Solving the HF equations I

The Fock equations are one-electron equations:

f |χi 〉 = εi |χi 〉

So we solve them using principles we have already developed for
one-electron systems: introduce an expansion in a basis.

χi (r) =
∑
m

cimφm(r)

This leads to the set of linear equations:

Fc = εSc (1)

which we can solve to find the energies and eigenfunctions.
The question now is: how do we choose the basis functions {φm}?
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Slater-type orbitals I

A reasonable choice for basis sets for finite systems would be what
are called Slater-type orbitals: these are very like solutions of the
1-electron Hamiltonian. They differ in two ways: (1) the radial
part is simpler and (2) the exponent is not integral but can be
varied to account for screening effects.

φ = Rnl(r)Ylm(θ, φ) (2)

where Ylm is a (real) spherical harmonic and the radial part is
given by

Rnl(r) =
(2ζ)n+1/2

[(2n)!]1/2
rn−1e−ζr (3)
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Slater-type orbitals II
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Slater-type orbitals III

Comments on Slater-type orbitals:

GOOD Nuclear cusp condition satisfied.

∂

∂r
〈ρ(r)〉sph

∣∣∣∣
r=0

= −2Z 〈ρ(0)〉sph

GOOD Exact wavefunction has the long-range form of a
Slater orbital.
If we pull one electron out of an N-electron molecule the
wavefunction behaves like

Ψ(N)→ Ψ(N − 1)× e−
√

2∗I r

where I is the first (vertical) ionization energy.

BAD Integrals very difficult for multi-atom systems.
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Gaussian-type orbitals (GTOs) I

In 1950 S. F. Boys pointed out that the problem of computing
integrals could be resolved by using not Slater-type orbitals, but
rather Gaussian-type orbitals (GTOs):

Rnl ∼ r le−αn(r−An)2

where A is the centre of the GTO. The main reason for the
efficacy of GTOs is that the product of two GTOs is a third GTO,
centred at a point in between:

exp(−α(r−A)2) exp(−β(r−B)2) = exp(−γ(A−B)2) exp(−µ(r−P)2)

where µ = α + β, γ = αβ/µ and P = (αA + βB)/µ.
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Gaussian-type orbitals (GTOs) II
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Gaussian-type orbitals (GTOs) III

The general form of a GTO is

ψGTO
αnl lm

= RGTO
lαn

(r)Ylm(θ, φ)

where Ylm(θ, φ) are the spherical harmonics, and the radial part is
given by

RGTO
lαn

(r) =
2(2αn)3/4

π1/4

√
2l

(2l + 1)!!
(
√

2αnr)l exp (−αn(r− An)2)

The spherical harmonics are usually re-written as real solid
harmonics to avoid complex algebra.
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Gaussian-type orbitals (GTOs) IV

Notice that unlike the Slater-type orbitals, the n-dependence
of a GTO lies in the choice of the exponent αnl .

The core orbitals with n = 0, 1 will be represented with
relatively large exponents so that these orbitals decay quickly
with r .

Likewise, the valence orbitals with large n will be described
with GTOs with small exponents so that they decay slowly.
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Gaussian-type orbitals (GTOs) V

GOOD GTOs makes the integrals that appear in the HF
energy expression much simpler.

BAD Nuclear cusp condition violated: zero derivative at origin.

BAD Wrong long-range form: dies off too fast with distance.



Basis Sets BSSE

Gaussian-type orbitals (GTOs) VI

Consider a GTO representation of the hydrogen 1s orbital:
1sA(r) = π−1/2 exp (−r).

No expansion in GTOs will ever be able to reproduce the cusp
at r = 0.

Likewise, any GTO expansion will decay with r much too fast.

A single GTO does an incredibly poor job at describing
1sA(r)...
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Gaussian-type orbitals (GTOs) VII
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Gaussian-type orbitals (GTOs) VIII
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Gaussian-type orbitals (GTOs) IX
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Gaussian-type orbitals (GTOs) X

We can do better using contractions
In a contraction an orbital is defined as a fixed linear combina-
tion of GTOs.

ψcont
nlm =

∑
k≡(nl)

ckψ
GTO
αk lm

where ck are the contraction coefficients and αk are the expo-
nents of the GTOs in the contraction.

The contraction coefficients can be chosen to ensure that the
contraction is normalized, but this is not always the case.

The ck and the αk are determined by fitting to reference
energies or properties. The STO basis sets are designed to
best approximate the Hartree–Fock energy of the atom.
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Gaussian-type orbitals (GTOs) XI

Once determined these parameters are fixed.

Hence a contraction significantly reduces the size of the basis
while resulting in better energies.

However, a basis must contain uncontracted GTOs too as
these allow for orbitals deformation when bonds are formed.

Hence basis sets consist of groups of contractions together
with some un-contracted GTOs. The better the basis, the
more of these there will be and the more GTOs in a
contraction.
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Gaussian-type orbitals (GTOs) XII

cc-pvDZ Dunning basis for hydrogen:

h cc−pVDZ : [ 2 s1p ]
S 4

1 13.0100000 0.0196850000
2 1.9620000 0.1379770000
3 0.4446000 0.4781480000
4 0.1220000 0.5012400000

S 1
1 0.1220000 1.0000000000

P 1
1 0.7270000 1.0000000000
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Gaussian-type orbitals (GTOs) XIII
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Gaussian-type orbitals (GTOs) XIV
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Gaussian-type orbitals (GTOs) XV

Clearly, the three contracted GTOs in the STO-3G basis do a much
better job at describing the 1sA(r) orbital of the hydrogen atom.

Q:

The cc-pVDZ basis for hydrogen contains a p-orbital in addition
to the two s orbitals. What is the purpose of this p orbitals?
Also, since hydrogen has only one electron, why bother with an
extra s orbital?

We typically refer to a basis set by the number of orbitals it
has in each symmetry. For example, the cc-pVDZ hydrogen
basis is a 2s1p basis set.

The better the basis the more the GTOs in a contraction and
the more the number of GTOs of each symmetry.
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Gaussian-type orbitals (GTOs) XVI

Basis sets for each atom need to be matched: you cannot use
a small carbon basis with a large hydrogen basis. Q: Why
not?

A set of matching basis sets will typically contain a similar
number of functions on each atom in a given row of the
periodic table. Allowances are made for the increasing number
of shells as we go down the rows. So the cc-pVDZ Dumming
basis set has: H:2s1p, C:3s2p1d, O:3s2p1d, Ar:4s3p1d.
Notice how argon gets an extra s and p set.

Commonly used families of basis sets are the Pople basis sets
(typically used by chemists) and the Dunning basis sets
(essential for correlated methods).
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Gaussian-type orbitals (GTOs) XVII

The Dunning basis sets go by the name (aug-)cc-p(C)VnZ.
These are termed (augmented-)correlation-consistent-
polarized-(contracted)-valence-n − ζ basis sets. The optional
aug- refers to a set of extra diffuse GTOs that can be
included to better describe response properties like the
polarizability and hyperpolarizability.

We typically think of these basis sets as a sequence that
converges systematically to the complete basis set (CBS)
limit.
cc-pVDZ < cc-pVTZ < cc-pVQZ < ... < CBS

Ideally, we would always work at the CBS limit.
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Gaussian-type orbitals (GTOs) XVIII

Basis set recommendations:

GOOD Complete basis set (CBS) limit

Geometry optimization: moderate size basis sets. Double-ζ.

Energies: At least triple-ζ quality.

Properties: Triple-ζ or more.

We will have another look at basis sets after discussion correlated
methods.
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BSSE I

Basis-set superposition error (BSSE) is an error encountered when
using finite (incomplete) basis sets to calculate energy differences.
First a few words about energy differences: we now know how to
calculate molecular energies within the Hartree–Fock
approximation. But energies on their own are almost meaningless:
what is much more useful are differences in energy such as
ionisation energies, or binding energies. We usually want to know
what happens when, say, a complex forms. What is the energy
gained or lost? Is it a stable or unstable process? (No
thermodynamics here; we are at 0K)
An important process is the formation of a complex. This is
associated with an interaction energy defined as

Eint(R,Ω) = E[A · · ·B](R,Ω)− E[A]− E[B],
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BSSE II

where E [A] and E [B] are the energies of the isolated monomers
and E [A · · ·B](R) is the energy of the complex in which the
monomers are separated by R and rotated by Ω.
We need three energy calculations to compute an interaction
energy and though it appears to be a straightforward calculation,
we will generally get too large an interaction energy and the results
with increasingly large basis sets do not always converge smoothly.
The problem is largest with van der Waals complexes such as Ar2

and Ne2. See the following figure for the latter complex:
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BSSE III
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BSSE IV

All figures from: Molecular Electronic Structure Theory by Helgaker et al..

In the left panel the HF interaction energy is plotted with a variety
of basis sets. There should be no binding at the HF level as this is
a van der Waals complex and in such complexes all the binding
arises from electron correclation that results in the van der Waals
dispersion interaction. Yet, both the d-aug-cc-pVDZ and
d-aug-cc-pVTZ basis sets result in binding! Even the
d-aug-cc-pVQZ basis shows some binding at the HF level. The
solid black line is what we should get. This error is termed the
basis set superposition error or BSSE.
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BSSE V

SNOOP, Kristensen et al. (2015)

The problem can be understood as follows: When we calculate the
energy of the complex we use the basis space of both monomers.
However, when we calculate the energy of the monomers, we have
only the basis space of each individual monomer available.
Therefore, for a variational method (and usually also for other
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BSSE VI

methods), the energies of the monomers will be too high compared
with the energy of the complex, resulting in too large an
interaction energy.
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BSSE VII

SNOOP, Kristensen et al. (2015)

A solution is to calculate the monomer energies using the full basis
of the dimer. This results in the counterpoise-corrected (CP)
energies. Another solution is to calculate the energy of A using its
own basis and the virtual space of B, and vice versa, for B. The
latter approaches are termed VCP (virtual CP), and, in a very new
development, the SNOOP (same number of optimised parameters)
approach of Kristensen et al. (to appear in 2015).
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