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Post-HF methods I

We have looked at three kinds of post-Hartree–Fock methods:

Configuration Interaction (CI): Variational. Full CI is exact
but scales exponentially. Truncated CI (e.g. CISD) not
size-consistent.

Coupled-cluster (CC): Also potentially exact. Truncated
methods are size-consistent. CCSD(T) is the method of
choice if you can afford the O(N7) computational cost.

Møller–Plesset Perturbation Theory (MPn): Perturbation
theory starting from HF reference state. Usually only used at
second-order: MP2. Known to diverge. MP2 is the first term
to include correlation (MP0 and MP1 are parts of the HF
energy).
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Post-HF methods II

Practical considerations: CI, CC and MP2 are expensive!

Method Cost Description

HF N4 Starting point for correlated methods.
MP2 N5 OK. Useful for optimizations.
CISD N6 Not size-consistent.
CCSD(T) N7 Very accurate.

All correlated methods require large basis sets with high angular
functions.
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The electron–electron cusp I

Correlation is the description of this kink.
All figures from “Molecular Electronic Structure Theory” by Helgaker,

Jorgensen and Olsen
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The electron–electron cusp II

Principle and partial wave expansions.
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The electron–electron cusp III

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 2
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The electron–electron cusp IV

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 3



Corr DFT Thomas–Fermi–Dirac Func HF-revisited KS-DFT Functionals

The electron–electron cusp V

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 4
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The electron–electron cusp VI

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 5

These cusps make correlation hard. Not only do the methods scale
poorly with size, but we need rather large basis sets to get sensible
results.
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Density-Functional Theory I

Hohenberg & Kohn (Phys. Rev. B, 136, 864 (1964)):

Theorem

H–K Theorem 1 There is a one-to-one mapping between the
electronic density and the external potential, and hence, the
Hamiltonian:

ρ(r) ⇐⇒ H

Proof is by reductio ad absurdum.
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Density-Functional Theory II

Consider the Hamiltonian with the electron–nuclear potential vext
(this is sometimes called the external potential):

H = −1

2

N∑
i

∇2
i +

∑
i<j

1

rij
+

N∑
i

vext(ri) (1)

We already know that H determines ρ(r).

Let v 1
ext and v 2

ext arise from the same density.

We therefore have two Hamiltonians H1 and H2 with the
same ground state density but with different ground state
wavefunctions, Ψ1 and Ψ2.
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Density-Functional Theory III

Consider H1: The variational principle states that

E 1
0 < 〈Ψ2|H1|Ψ2〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|H1 −H2|Ψ2〉

= E 2
0 + 〈Ψ2|v 1

ext − v 2
ext|Ψ2〉

= E 2
0 +

∫
ρ(r)

[
v 1
ext(r)− v2ext(r)

]
dr

Similarly E 2
0 < E 1

0 +
∫
ρ(r)

[
v 2
ext(r)− v1ext(r)

]
dr

Adding the inequalities:

E 1
0 + E 2

0 < E 2
0 + E 1

0 →←

Hence ρ(r) ⇐⇒ H
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Density-Functional Theory IV

Pause!
External potential: What is vext(r)? It is a one-electron
multplicative (i.e., not differential) operator that will normally be
the electron–nuclear interaction. But it could just as well include,
say, the interaction with an external field.

Q:

Show that for a many-electron wavefunction,

〈Ψ|vext|Ψ〉 =

∫
ρ(r)vext(r)dr.

Hint: use the definition of the density used in the H2 lecture
notes. Also, keep in mind that vext is a spin-free, one-electron
operator.
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Density-Functional Theory V

Edgar Bright Wilson’s observation: To know the Hamiltonian we
need to know the number of electrons and position and charge of
the nuclei. These can be obtained from the density:

N =
∫
ρ(r)dr

Position and charge of nuclei can be obtained from the cusps:

∂

∂r
〈ρ(r)〉sph

∣∣∣∣
r=0

= −2Z 〈ρ(0)〉sph

So ρ completely determines the Hamiltonian and therefore the
ground-state energy (and also all excited state energies!).
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Density-Functional Theory VI

What the Hohenberg–Kohn theorem allows us to do is (formally)
write the energy as a functional of the density.

E = E [ρ] = T [ρ] + Vee[ρ] + Ven[ρ]

= F [ρ] +

∫
ρ(r)vext(r)dr

This leads to the second Hohenberg–Kohn theorem:

Theorem

H–K Theorem 2 If ρ̃ is an approximate density then

E [ρ] ≤ E [ρ̃]
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Density-Functional Theory VII

This is how the theorem arises:

From the previous theorem, we know that ρ̃ determines its
own unique potential ṽext, the Hamiltonian H̃, and hence the
ground state wavefunction Ψ̃: ρ̃→ ṽext → H̃ → Ψ̃.

We can now use this wavefunction Ψ̃ as a trial wavefunction
for a Hamiltonian H with external potential vext:

Using the variational principle

E0 ≡ E [ρ] ≤ 〈Ψ̃|H|Ψ̃〉 = F [ρ̃] +

∫
ρ̃(r)vext(r)dr = E[ρ̃]

That is, for any trial density ρ̃, E [ρ] ≤ E [ρ̃].

So in principle we can search over all N-electron densities to find
the one that leads to the lowest energy.
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Density-Functional Theory VIII

Look at this another way: Consider the minimization procedure in
two steps:

E0 = min
Ψ
〈Ψ|T̂ + V̂ee + vext|Ψ〉

= min
ρ

(
min
Ψ→ρ
〈Ψ|T̂ + V̂ee + vext|Ψ〉

)
= min

ρ

(
min
Ψ→ρ

[
〈Ψ|T̂ + V̂ee|Ψ〉+

∫
vext(r)ρ(r)dr

])

In the second line the inner minimization is constrained to all
wavefunctions that give ρ(r), while in the outer minimization this
condition is removed by searching all ρ(r).
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Density-Functional Theory IX

The term in the square brackets is the functional F [ρ], therefore

E0 = min
ρ

(
F [ρ] +

∫
vext(r)ρ(r)dr

)
= min

ρ
E [ρ]

where

E [ρ] = F [ρ] +

∫
vext(r)ρ(r)dr

This double-step minimization is illustrated in the following figure
(from Parr and Yang, Density-Functional Theory).
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Density-Functional Theory X
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Density-Functional Theory XI

In practice searching over all N-electron densities is next to
impossible. How do we do this? If we are given a trial N-electron
density ρ̃, how can we obtain the corresponding external potential
vext? This can be done for a one or two electron system (Ex.
How?) but not in general.
All this would have been a curiosity had it not been for a paper by
Kohn & Sham published in 1965 (Phys. Rev. A 140, 1133) which
gave us what we now know as Kohn–Sham DFT.
But before getting to Kohn–Sham DFT, let’s look at a couple of
other attempts at formulating a density-functional theory...
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Thomas–Fermi Theory I

In 1927 Enrico Fermi and Llewellyn Thomas developed the first
true density functional for the energy. In 1928, P. A. M. Dirac
modified the TF model to include the effects of exchange. This
TFD model turned out to be poorer than the original model. As
we shall see, the beauty of the TF/TFD models is their simplicity.
However, they proved to be not so accurate, and, in particular,
could not describe chemical bonding. So what’s their use? These
models, as precursors to modern DFT, contain ideas that will form
the basis of the density functionals we use today.
We will develop a quick and elegant derivation of the TFD model
here, at the expense of mathematical rigour.
First we re-visit uniform scaling of the electronic coordinates...
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Thomas–Fermi Theory II

Theorem

Under uniform scaling of the electronic coordinates:

ri → αri ,

ψ(ri )→ ψα(ri ) = α3N/2ψ(αri ).

This form of the scaling is needed to ensure normalization.

Q: Show that ρα(r) = α3ρ(αr).

We had proved the identities:

〈ψα|T |ψα〉 = α2〈ψ|T |ψ〉
〈ψα|V (R)|ψα〉 = α〈ψ|V (αR)|ψ〉
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Thomas–Fermi Theory III

Proof of the first result:

〈ψα|T |ψα〉 = α3N

∫
ψ∗(αri )

(
−1

2

∑
i

∇2
i

)
ψ(αri )

∏
i

dri

=

∫
ψ∗(αri )

(
−1

2
α2
∑
i

∇α2
i

)
ψ(αri )

∏
i

d(αri )

= α2

∫
ψ∗(r ′i )

(
−1

2

∑
i

∇′2i

)
ψ(r ′i )

∏
i

d(r ′i )

= α2〈ψ|T |ψ〉
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Thomas–Fermi Theory IV

Q:

Prove the second result, that is:

〈ψα|V (R)|ψα〉 = α〈ψ|V (αR)|ψ〉
Hence show that for the e-e interaction operator

V̂ee =
∑
i>j

1

rij
,

we have the scaling relation

〈ψα|V̂ee|ψα〉 = α〈ψ|V̂ee|ψ〉
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Thomas–Fermi Theory V

Anticipating a DFT-terminology we will define

T [Ψ] = 〈Ψ|T̂ |Ψ〉 ≡ T [ρ]

Vee[Ψ] = 〈Ψ|V̂ee|Ψ〉 ≡ Vee[ρ]

Q: How do we justify terming these functionals of the density?

With this notation, the scaling identities can be written as

T [Ψα] = α2T [Ψ]

Vee[Ψα] = αVee[Ψ]

Alternatively we could write these as functionals of ρ.
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Thomas–Fermi Theory VI

Our task now is to derive and expression for T [ρ]. To do this we
assume that the kinetic energy functional can be written in the
form

T [ρ] =

∫
t(ρ)dr

where t(ρ) is a homogeneous function of the density. That is, t is
of the form t(x) = Axb where b is a real number. Why do we
assume this can be done? Well, we could state it as an ansatz.
But there is another reason why it is possible: it is possible to
make this derivation using ideas from the free-electron gas. We
won’t do this here.
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Thomas–Fermi Theory VII

Some important points:

This ansatz, that T [ρ] is a homogeneous function of ρ is an
approximation. It is only ever valid for the free-electron gas.

Why a homogeneous function? Because if t(x) = Axb where
b is a real number then we can figure out what b is by scaling
x : If x → kx ′ then t(kx ′) = A(kx ′)b = kbt(x ′).

This procedure does not tell us what the coefficient A is.
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Thomas–Fermi Theory VIII

Consider the kinetic energy under electronic coordinate scaling:

T [ρα] =

∫
t(ρα(r))dr

=

∫
t(α3ρ(αr))dr

= α−3

∫
t(α3ρ(αr))d(αr)

= α−3

∫
t(α3ρ(r))dr

where, in the last step we have made a change of variables.
But we also have T [ρα] = α2T [ρ], therefore

α−3

∫
t(α3ρ(r))dr = α2

∫
t(ρ(r))dr
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Thomas–Fermi Theory IX

Therefore

t(α3ρ(r)) = α5t(ρ)

or, by substituting α′ = α3 and then dropping the primes,

t(αρ(r)) = α5/3t(ρ)

That is, t is a homogeneous function of degree 5/3 in ρ:
t(ρ) = Aρ5/3.

Therefore, using A = CF ,

T [ρ] = CF

∫
ρ5/3(r)dr

where it can be shown that CF = 3
10 (3π2)2/3 = 2.871 · · · .
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Thomas–Fermi Theory X

What about the functional Vee[ρ]?
It consists of two parts: Vee[ρ] = J[ρ] + K [ρ]. We already know
the exact form of the Coulomb part:

J[ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2

The exchange energy functional K [ρ], as part of the full
electron–electron energy Vee[ρ], also involves the operator 1/r , so
the two share the same scaling relation, i.e.,

K [ρα] = αK [ρ]
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Thomas–Fermi Theory XI

We need to find a density functional for this and we do it the same
way as we did the kinetic energy functional: Assume

K [ρ] =

∫
k(ρ(r))dr

where k is a homogeneous function of ρ and use the scaling
relation to find the form of k .

Q:

Show that

K [ρ] = −CX

∫
ρ4/3(r)dr,

where it can be shown that the constant CX = 3
4 ( 3
π )1/3.

Why is this energy defined to be negative?
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Thomas–Fermi Theory XII

Q:

Show that the Coulomb energy functional J[s] atisfies the scal-
ing relation:

J[ρα] = αJ[ρ]



Corr DFT Thomas–Fermi–Dirac Func HF-revisited KS-DFT Functionals

Thomas–Fermi Theory XIII

Now we define the Thomas–Fermi functional (no exchange in this
one):

ETF[ρ] = T [ρ] + J[ρ] +

∫
ρ(r)vext(r)dr

= CF

∫
ρ5/3(r)dr +

1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 +

∫
ρ(r)vext(r)dr

We minimize ETF[ρ] subject to the condition N =
∫
ρ(r)dr using

the Lagrange multiplier µTF:

δ

[
ETF[ρ]− µTF

(∫
ρ(r)dr−N

)]
= 0
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Thomas–Fermi Theory XIV

Q:

Show that we get

µTF =
δETF

δρ(r)
=

5

3
CFρ

2/3(r)− φ(r)

where φ(r) = vext(r)−
∫ ρ(r′)
|r−r′|dr

′ is the electrostatic potential.

This can be solved (we will not do it) for atoms, and if you’d like
to find out more see Chapters 3 and 6 in “Density functional
theory of Atoms and Molecules” by Parr and Yang. The solution
to the Thomas–Fermi–Dirac equation is given in Ch. 6.
All Dirac did was to modify the TF functional to include the
exchange functional K [ρ]. This turned out to result in somewhat
worse agreement with the more accurate Hartree–Fock energies.
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Thomas–Fermi Theory XV
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Thomas–Fermi Theory XVI

Another problem with TF/TFD theory is that they do not result in
any shell structure. Here’s the density of Argon obtained using
Hartree–Fock and various modifications of the TFD model:
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Thomas–Fermi Theory XVII

The Thomas–Fermi equations can be solved numerically and
a number of trends derived. (As this is an approximate the-
ory, we look for trends rather than quantitative results.) For
more about this model, and for a description of extensions that
Dirac (and others) made to it, see chapters 3 and 6 in Density-
Functional theory of Atoms and Molecules by Parr and Yang.
These authors are the ‘P’ and ‘Y’ in density functionals like
BLYP, PBE. The book is meant for Physicists and is quite
rigorous. It is an old book (old by the standards of a fast mov-
ing field like DFT), so do not expect an exposition of the recent
developments, some of which will be discussed in this course.
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Functionals I

Revision of functionals and functional derivatives.
See Appendix B in Ullrich’s Time-Dependent Density-Functional
Theory for an overview of this topic. Or else, a mathematical
physics book such as the one by Arfken.
Definition of the functional derivative:

δF [φ]

δφ(y)
= lim

ε→0

1

ε
{F [φ(x) + εδ(x − y)]− F [φ(x)]}.

Product Rule:

δF [φ]G [φ]

δφ(y)
= F [φ]

δG [φ]

δφ(y)
+
δF [φ]

δφ(y)
G [φ].
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Functionals II

Chain Rule:

δF [γ[φ]]

δφ(y)
=

∫
dy ′

δF [γ]

δγ(y ′)

δγ(y ′)

δφ(y)
.
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Hartree–Fock again I

Before getting on with DFT, let’s have another look at
Hartree–Fock, but this time, from a slightly different angle.
The HF energy can be written as

EHF = min
|ΨSD〉→N

〈ΨSD|T̂ + V̂ne + V̂ee|ΨSD〉

= min
|ΨSD〉→N

〈ΨSD|T̂ + vext + V̂ee|ΨSD〉

Here |ΨSD〉 is our Slater determinant that yields an N electron
density. In the second line I have used our notation for the
electron–nuclear potential: the external potential.
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Hartree–Fock again II

This minimization procedure gives rise to an effective Hamiltonian
— the Fock operator:

f HF(i) = −1

2
∇2

i −
∑
α

Zα
riα

+ vHF(i) (2)

The HF potential is an effective potential that contains the
effective electron–electron Coulomb and exchange interactions (no
correlation!). To get us ready for Kohn–Sham theory, we will make
a few changes to the above equation.
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Hartree–Fock again III

First of all recognise that the second term in the Fock
operator is just the external potential: vext

Next, split the HF operator into its Coulomb and Exchange
parts. These are usually labeled by ‘J’ and ‘X’, respectively:

vHF = vJ + vX

So our Fock operator is now written as

f HF(i) = −1

2
∇2

i + vext(i) + vJ(i) + vX(i) (3)
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Hartree–Fock again IV

Now we postulate that the HF ground state energy is a functional
of the density and can be written as

EHF[ρ] = TS[ρ] + J[ρ] + EHF
x [ρ] +

∫
ρ(r)vext(r)dr (4)

where the non-interacting Kinetic energy functional is

TS[ρ] = −1

2

N∑
i=1

〈χi |∇2|χi 〉 (5)

Notice that neither TS[ρ] nor EHF
x [ρ] are functionals of the

density. They depend on the orbitals {χi}. We will assume that
given a density, we can find these orbitals. This is not to be taken
for granted, but it is a reasonable assumption that has a (partial)
mathematical justification.
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Hartree–Fock again V

We have swept some mathematical details under the Physicists
rug. In the above, we have assumed that given a density ρ,
we can find a set of orbitals {χi} that give us the density. It’s
easy to see how this can be done for 1 and 2-electron systems
(can you see it?), but can we assume that it can be done
in general? Of course, we can simply assume it can always
be done, then proceed with the derivation (as we will do),
and see if we come up with a means of making this mapping
from ρ to {χi} possible, and hence, retrospectively define TS[ρ]
and EHF

x [ρ] as shown above. This issue is termed the non-
interaction v -representibility problem and is discussed at length
by Parr & Yang.
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Hartree–Fock again VI

The Coulomb energy functional is defined as

J[ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

r12
dr1dr2

or we can write this as

J[ρ̃] =
1

2

∫∫
ρ̃(x1)ρ̃(x2)

r12
dx1dx2,

where ρ̃(x) =
∑N

i=1 χ
∗
i (x)χi(x) is the density before the spin

integration step. That is ρ(r) =
∫
ρ̃(x)dω. We will use ρ̃ rather

than ρ as it will significantly simplify the functional calculus.
In the derivations that follow we will use ρ̃(x) as the “density”.
Once we are done with the derivations, we will switch back to
using ρ(r).
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Hartree–Fock again VII

The exchange energy functional is non-local and is, like the KE
functional, dependent on the HF orbitals:

EHF
x [ρ̃] = −1

2

N∑
i

N∑
j

∫∫
dx1dx2χ

∗
i (x1)

χ∗j (x2)P12χj(x2)

r12
χi(x1)

where P12 is the permutation operator and i and j go over
occupied states.
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Hartree–Fock again VIII

Looked at in this way HF theory is a kind of density functional
theory, but one that is not, even in principle, exact (except for
1-electron systems).
In this formulation of HF theory, we define the HF energy as

EHF = min
ρ̃→|ΨSD〉,N

EHF[ρ̃]

That is, we minimize the functional EHF[ρ̃] over all N-electron
densities that arise from a Slater determinant. We need to impose
the N-electron constraint and this is done using Lagrange
multipliers. We minimize the functional:

Ω[ρ̃] = EHF[ρ̃]−
N∑
i ,j

εij(〈χi |χj〉 − δij)
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Hartree–Fock again IX

Since Ω[ρ̃] really is a functional of the orbitals, we need to perform
the variation over the orbitals and use the chain rule:

δ

δχ∗i (x)
=

∫
dx′

δ

δρ̃(x′)

δρ̃(x′)

δχ∗i (x)
(6)

Since ρ̃(x) =
∑N

i=1 χ
∗
i (x)χi(x) from the definition of the functional

derivative we get:

δρ̃(x′)

δχ∗i (x)
= χi (x)δ(x− x′)
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Hartree–Fock again X

Now consider the functional derivative of J[ρ̃]:

δJ[ρ̃]

δχ∗i (x)
=

∫
dx′′

δJ[ρ̃]

δρ̃(x′′)

δρ̃(x′′)

δχ∗i (x)

=

∫
dx′′

δ

δρ̃(x′′)

[
1

2

∫∫
ρ̃(x)ρ̃(x′)

|r− r′|
dxdx′

]
× χi(x)δ(r′′ − r)

=

∫∫
dx′′dx′

ρ̃(x′)

|r′′ − r′|
χi(x)δ(x′′ − x)

= vJ(r)χi (x)

Do this for all terms and we get back our Fock equation (in a
generalised form).
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Hartree–Fock again XI

Q:

Prove that the variation of

Ω[ρ̃] = EHF[ρ̃]−
N∑
i ,j

εij(〈χi |χj〉 − δij)

with respect to χ∗i does lead to the Fock equations:

f |χi 〉 =
∑
j

εji |χj〉

This is the non-canonical form of the Fock equations. As we
saw in the Hartree–Fock lectures, with a suitable unitrary trans-
formation we can recover the canonical form:

f |χi 〉 = εi |χi 〉
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Kohn–Sham DFT I

From the two Hohenberg–Kohn theorems we know we can write
the ground-state energy as a functional of the density:

E [ρ̃] = T [ρ̃] + Vee[ρ̃] +

∫
vext(r)ρ̃(x)dx

The problem is that we do not know how to define the first two
functionals.
We have seen that Thomas–Fermi theory gives us an expression for
T [ρ], but we also saw that this expression was too approximate to
be of use for atomic/molecular systems as it does not give rise to
the shell structure or chemical bonding.
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Kohn–Sham DFT II

In 1965 Walter Kohn & Lu Sham put DFT on a practical footing
through what is now known as Kohn–Sham DFT. They began by
postulating the existence of a non-interacting system with external
potential vS that yields the exact density. That is

HKS =
∑
i

(
−1

2
∇2

i + vS(i)

)
has a ground state single determinant solution with density ρ̃.

This is a non-interating system so we can solve it just as we solved
the Fock Hamiltonian. The results will be a set of orbitals {χi}
and orbital eigenvalues {εi}.
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Kohn–Sham DFT III

Just as we wrote the kinetic energy in Hartree–Foct, we write the
kinetic energy of this Kohn–Sham non-interacting system:

TS[ρ̃] =
N∑
i

−1

2
〈χi |∇2|χi 〉

What Kohn & Sham did was to state that this non-interacting
kinetic energy functional TS[ρ̃] could be considered a good
approximation to the true functional T [ρ̃].
Importantly, they knew (from Hartree–Fock theory) that TS[ρ̃], as
it depended on the orbitals, could describe the molecular shell
structure.
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Kohn–Sham DFT IV

Using TS[ρ̃], we can write the Hohenberg–Kohn functional as

F [ρ̃] = T [ρ̃] + Vee[ρ̃]

= TS[ρ̃] + J[ρ̃] + Exc[ρ̃]

where this eXchange-Correlation functional is defined as

Exc[ρ̃] = (T [ρ̃]− TS[ρ̃])− (Vee[ρ̃]− J[ρ̃])

The idea here is that we have defined as much as we could define
(TS[ρ̃] and J[ρ̃]), and have swept the rest of the energy into the
unknown functional Exc[ρ̃].



Corr DFT Thomas–Fermi–Dirac Func HF-revisited KS-DFT Functionals

Kohn–Sham DFT V

So we get the following functional for the ground state energy:

E [ρ̃] = TS[ρ̃] + J[ρ̃] + Exc[ρ̃] +

∫
vext(r)ρ̃(x)dx (7)

Compare this to what we had for the Hartree–Fock functional:

EHF[ρ̃] = TS[ρ̃] + J[ρ̃] + EHF
x [ρ̃] +

∫
ρ̃(x)vext(r)dx

The difference between the two is that EHF[ρ̃] is necessarily
approximate while E [ρ̃] is exact, albeit, in principal.
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Kohn–Sham DFT VI

E [ρ̃] = TS[ρ̃] + J[ρ̃] + Exc[ρ̃] +

∫
vext(r)ρ̃(x)dx (8)

must be minimized subject to the orthonormality constraints

〈χi |χj〉 = δij .

As before, we include these constraints using Lagrange multipliers
and minimize

Ω[ρ̃] = E [ρ̃]−
N∑
i ,j

εij(〈χi |χj〉 − δij)
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Kohn–Sham DFT VII

This gives us the Kohn–Sham equations after the usual occupied
orbital rotation to make the eigenvalue matrix εij diagonal:(

−1

2
∇2 + vS(r)

)
χi = εiχi

where the effective potential is defined as

vS(r) = vJ(r) + vext(r) + vxc(r)
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Kohn–Sham DFT VIII

The various potentials that enter this expression are:

vJ: The Coulomb potential defined as:

vJ(r) =

∫
ρ̃(x′)

|r− r′|
dx′ =

∫
ρ(r′)

|r− r′|
dr′

vext: The external potential, i.e., the electron-nuclear
potential:

vext(r) = −
∑
α

Zα
|r− Rα|
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Kohn–Sham DFT IX

vxc: The exchange-correlation potential which is defined
through the exchange-correlation energy Exc[ρ̃] as:

vxc(r) ≡ vxc(x) =
δExc[ρ̃]

δρ̃(x)

As will be explained below, vxc will be spin-independent for
us, so we can make this equivalence.

Let’s see how these potentials arise.
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Kohn–Sham DFT X

Once again, since Ω[ρ̃] really is a functional of the orbitals, we need
to perform the variation over the orbitals and use the chain rule:

δ

δχ∗i (x)
=

∫
dx′

δ

δρ̃(x′)

δρ̃(x′)

δχ∗i (x)
(9)

For a single determinant wavefunction ρ̃(x) =
∑N

i=1 χ
∗
i (x)χi(x), so

we get

δρ̃(x′)

δχ∗i (x)
= χi (x)δ(x′ − x)

More generally, for a multi-determinant wavefunction

ρ̃(x) =

Nbasis∑
i=1

fiχ
∗
i (x)χi(x),

where Nbasis is the size of the basis, i.e., the size of the function space we are working in. Here the fi are

occupation numbers that satisfy 0 ≤ fi ≤ 1, ∀i and
∑

i fi = N, where N is the number of electrons.
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Kohn–Sham DFT XI

We have already shown that the functional derivative of J[ρ̃] is:

δJ[ρ̃]

δχ∗i (x)
= vJ(r)χi (x),

but let’s see this again:

δJ[ρ̃]

δχ∗i (x)
=

∫
dx′′′

δJ[ρ̃]

δρ̃(x′′′)

δρ̃(x′′′)

δχ∗i (x)

=

∫
dx′′′

δ

δρ̃(x′′′)

[
1

2

∫∫
ρ̃(x′)ρ̃(x′′)

|r′ − r′′|
dx′dx′′

]
× χi(x)δ(x′′′ − x)

=

∫∫
dx′′′dx′

ρ̃(x′)

|r′′′ − r′|
χi(x)δ(x′′′ − x)

=

(∫
dx′

ρ̃(x′)

|r− r′|

)
χi (x) = vJ(r)χi(x)
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Kohn–Sham DFT XII

Now consider the functional derivative of
Eext[ρ̃] =

∫
vext(r)ρ̃(x)dx:

δEext[ρ̃]

δχ∗i (x)
=

∫
dx′

δEext[ρ̃]

δρ̃(x′)

δρ̃(x′)

δχ∗i (x)

=

∫
dx′vext(r

′)× χi(x)δ(x′ − x)

= vext(r)χi (x)

We cannot evaluate the functional derivative of Exc[ρ̃] as we still
do not know the form of this functional. So we simply define:

vxc(r) ≡ vxc(x) =
δExc[ρ̃]

δρ̃(x)

We can state that vxc(r) ≡ vxc(x) as vxc will be spin-independent
as far as we are concerned.
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Kohn–Sham DFT XIII

So the Kohn–Sham non-interacting potential is defined as:

vS(r) = vJ(r) + vext(r) + vxc(r)

=

∫
ρ̃(x′)

|r− r′|
dx′ + vext(r) +

δExc[ρ̃]

δρ̃(x)

We solve the 1-electron Kohn–Sham equations self-consistently:

k(1)χi (1) =

(
−1

2
∇2

1 + vS(1)

)
χi (1) = εiχi (1)

where we have defined the Kohn–Sham operator k(1).
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Kohn–Sham DFT XIV

Once we have the orbitals χi , we can evaluate the energy using

E [ρ̃] = TS[ρ̃] + J[ρ̃] + Exc[ρ̃] +

∫
vext(r)ρ̃(x)dx

NOTE: Now that we are done with the derivation, we move back
to using ρ(r) instead of ρ̃(x).
Recall that ρ(r) =

∫
ρ̃(x)dσ. So the above can be written as:

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr
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Kohn–Sham DFT XV

Equivalently, we may use the results derived when studying
Hartree–Fock to relate energy to the orbital energies:∑

i

εi = 〈Ψ0|
∑
i

k(i)|Ψ0〉

= 〈Ψ0|
∑
i

(
−1

2
∇2

i + vS(i)

)
|Ψ0〉

= 〈Ψ0|
∑
i

−1

2
∇2

i |Ψ0〉+ 〈Ψ0|
∑
i

vS(i)|Ψ0〉

= TS[ρ] + 〈Ψ0|
∑
i

(vJ(i) + vext(i) + vxc(i))|Ψ0〉

= TS[ρ] + 2J[ρ] +

∫
vext(r)ρ(r)dr +

∫
vxc(r)ρ(r)dr
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Kohn–Sham DFT XVI

Using this, we can write an expression for the kinetic energy
functional:

TS[ρ] =
∑
i

εi − 2J[ρ]−
∫

vext(r)ρ(r)dr−
∫

vxc(r)ρ(r)dr

And then we can write the total energy:

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr

=
∑
i

εi − J[ρ] + Exc[ρ]−
∫

vxc(r)ρ(r)dr
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Kohn–Sham DFT XVII

In a sense, what Kohn & Sham did was to sweep all the
unknowns under the rug. But they did this intelligently as they
had a good idea of how to approximate the unknown bits: the
exchange-correlation energy and its functional derivative.

Also, they knew that their formalism was in principle exact as
they had proved various theorems to that effect.

It turned out that their proofs were not mathematically sound,
but this was fixed by others.

The rest of the DFT story is how we find the
exchange-correlation functional Exc[ρ].
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Kohn–Sham DFT XVIII

Q:

Use the Slater–Condon rules for integrals to show the last step
in the previous equation. We have already shown that, for a
one-electron spin-free operator v̂ we have

〈Ψ|v |Ψ〉 =

∫
ρ(r)v(r)dr.

Start from there (or elsewhere if you prefer) and show the pre-
vious result.
Why do we get a 2 in front of the Coulomb functional? Make
sure you see how this arises.
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Density Functionals I

Exchange correlation functionals are usually written in the form

Exc[ρ] =

∫
ρ(r)εxc(ρ(r),∇ρ(r), · · ·)dr (10)

where εxc(ρ(r),∇ρ(r), · · ·) can be regarded as the
exchange-correlation density.
We usually split the exchange-correlation density into its exchange
and correlation parts:

εxc(ρ(r),∇ρ(r), · · ·) = εx(ρ(r),∇ρ(r), · · ·) + εc(ρ(r),∇ρ(r), · · ·)
(11)

This separation is convenient for we can then think of using
well-understood approximations for each of these.
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LDA I

The first of the many functionals is the local density approximation
or LDA. In this approximation the exchange-correlation density
depends on the electron density alone (no dependence on gradients
etc.):

Exc[ρ] =

∫
ρ(r)εLDA

xc (ρ(r))dr (12)

The Slater approximation is used for the exchange-energy density:

εSx(ρ(r)) = −3

4

(
3

π

)3/2

ρ1/3(r)

Using this we get the Slater exchange functional:

ES
x [ρ] = −3

4

(
3

π

)3/2 ∫
ρ4/3(r)dr = −Cx

∫
ρ4/3(r)dr
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LDA II

Paired with this is a correlation functional parameterized on very
accurate quantum Monte-Carlo (QMC) calculations of the energy
of the homogeneous free electron gas as a function of density.
There are a variety of correlation parameterizations. These differ
by the choice of QMC energies used or by the interpolation scheme
used in the parameterization (the QMC energies are calculated at a
set of densities so some scheme is required to interpolate to all
densities).
Common choices of the correlation functional are:

PW91c The Perdew–Wang (1992) parameterization (called
pw91lda in NWChem.

VWN The Vosko–Wilk–Nusair (1980) parameterization.

So what is called the LDA translates into a combination of the
Slater exchange functional and one of these correlation functionals.
The actual choice will vary with program.
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LDA III

73

ε 2(ρ )(r )

ε 1(ρ( ))rxc

xc

from homogeneous
electron gas

from inhomogeneous
system

∫= rdrrE xc
LDA
XC

!!!

))(()(][ ρερρ

1ρ( )r

2ρ( )r

)r(

)r()r(
!

!!

ρ
ρ−ρ

=ξ βα
. (6-16)

ξ attains values from 0 (spin compensated) to 1 (fully spin polarized, i. e., all electrons
have only one kind of spin). For details see in particular Appendix E of Parr and Yang,
1989. In the following we do not differentiate between the local and the local spin-density
approximation and use the abbreviation LDA for both, unless otherwise noted.

How do we interpret the LDA for the exchange-correlation functional? Let us consider
the general case of an open-shell atom or molecule. At a certain position r

!

 in this system
we have the corresponding spin densities )r(

!

αρ  and )r(
!

βρ . In the local spin-density ap-
proximation we now take these densities and insert them into equation (6-15) obtaining

)r(EXC
!

. Thus, we associate with the densities )r(
!

αρ  and )r(
!

βρ  the exchange and corre-
lation energies and potentials that a homogeneous electron gas of equal, but constant den-
sity and the same spin polarization ξ would have. This is now repeated for each point in
space and the individual contributions are summed up (integrated) as schematically indi-
cated in Figure 6-2. Obviously, this approximation hinges on the assumption that the ex-
change-correlation potentials depend only on the local values of )r(

!

αρ  and )r(
!

βρ .
This is a very drastic approximation since, after all, the density in our actual system is

certainly anything but constant and does not even come close to the situation characteristic
of the uniform electron gas. As a consequence, one might wonder whether results obtained
with such a crude model will be of any value at all. Somewhat surprisingly then, experience
tells us that the local (spin) density approximation is actually not that bad, but rather deliv-

Figure 6-2. The local density approximation.

6.4  The Local Density and Local Spin-Density Approximations

1(r )ρ
2(r )ρ xc 1( (r ))ε ρ

xc 2( (r ))ε ρ

LDA
XC xcE [ ] (r) ( (r)) drρ = ρ ε ρ∫ ! ! !

From Koch & Holthausen A Chemist’s Guide to density Functional Theory

(2001).
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LDA IV

Generalization to open-shell systems (local spin-density
approximation (LSD)): the exchange-correlation density depends
on the spin-up and spin-down densities:

Exc[ρα, ρβ] =

∫
ρ(r)εLDA

xc (ρα(r), ρβ(r))dr (13)

GOOD LDA is better than HF. Good equilibrium geometries,
harmonic frequencies.

BAD Energetics very poor. Errors in atomization energies 36
kcal/mol. (HF has errors of 78 kcal/mol on same set of
molecules)
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GGA I

In the generalized gradient approximations the exchange-correlation
density is dependent on the density and its gradient.

Exc[ρ] =

∫
ρ(r)εGGA

xc (ρ(r),∇ρ(r))dr

As before, we split the exchange-correlation density into its
exchange and correlation parts:

εGGA
xc (ρ(r),∇ρ(r)) = εGGA

x (ρ(r),∇ρ(r)) + εGGA
c (ρ(r),∇ρ(r))

The exchange part of all GGAs takes the form

EGGA
x [ρ] =

∫
ρ(r)εLDA

x (ρ(r))Fx(s)dr



Corr DFT Thomas–Fermi–Dirac Func HF-revisited KS-DFT Functionals

GGA II

Fx(s) is called the enhancement factor and is written as a function
of the reduced density gradient defined as

s(r) =
|∇ρ(r)|

2(3π2)1/3ρ4/3(r)
.

Note that in general all quantities will depend on spin.

Q: Show that the reduced density gradient s is dimensionless.

This is important as mathematical expansions of physical
quantities are best done in terms of a dimensionless quantity.
Imagine how we could make a power series in terms of a variable x
having the units of length. Much better to use x/x0, where x0 is
some characteristic length, as this ratio is dimensionless.
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GGA III

But there is another reason for choosing to use the reduced density
gradient: As s is large both when the gradient of the density is
large (where the LDA should fail) and also where the density is
small (in the region of the density tails, where once again, LDA
should be a poor approximation), it is natural to expand the
correction in terms of this variable as it picks out exactly those
places where a correction is required.
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GGA IV

Two of the common exchange enhancement factors are

Becke, 1988 (B88)

FB88
x (s) = 1− βs2

1 + 6βs sinh−1 s

Becke fitted the parameter β = 0.0042 to reproduce known
exchange energies of rare gas atoms. This particular form for
the enhancement factor was chosen to obey a few exact
relations.

Perdew, Burke & Ernzerhof, 1996 (PBE)

FPBE
x (s) = 1 + κ− κ

1− µs2/κ

In this functional all parameters were obtained theoretically.
κ = 0.804. Most physcists use this exchange functional.
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Hybrid Functionals I

The exchange contribution to the energy is much larger than the
correlation energy (which is why HF is not too bad!). So why not
use the best exchange energy we have — from HF, usually termed
exact exchange in this context — and combine it with the best
correlation funtional available:

Exc[ρ] = EHF
x [ρ] + Ec[ρ]

This turns out to be better than HF, but much worse than the
GGAs.
This has to do with a cancellation of errors that occurs when we pair a local

exchange functional with a local correlation functional, but does not happen

when the latter is paired with the non-local HF-type exchange functional.
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Hybrid Functionals II

In 1993, Becke proposed a three-parameter semi-empirical
functional that cured this problem. The general idea is to mix
some fraction of HF exchange with DFT exchange:

Ehybrid
xc = aEHF

x + (1− a)EGGA
x + EGGA

c

The B3LYP is the most widely used of these and is a slight
modification of Becke’s 1993 proposal made the following year by
Stephens and others:

EB3LYP
xc =ESVWN

xc + a0(EHF
x − ES

x ) + ax(EB88
x − ES

x )

+ ac(ELYP
c − EVWN

c )

A better choice (in my opinion) is the PBE0 functional (sometimes called

PBE1PBE) which mixes PBE with 25% HF exchange.
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Hybrid Functionals III

In a sense, hybrid functional are simply linear combinations of the
Kohn–Sham and Hartree–Fock energy functionals:

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr

and

EHF[ρ] = TS[ρ] + J[ρ] + EHF
x [ρ] +

∫
vext(r)ρ(r)dr

Functionally, all terms, but those in colour, are the same. So if we
take a linear-combination of the two we get the hybrid functionals.

Ehyb[ρ] = (1− x) E [ρ] + (x) EHF[ρ]

= TS[ρ] + J[ρ] + (1− x)Exc[ρ] + (x)EHF
x [ρ] +

∫
vext(r)ρ(r)dr.

Other types of linear combinations are possible and these lead to
the range-separated functionals.
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Jacob’s Ladder I

John Perdew has summarised the state of DFT using the Biblical
picture of Jacob’s Ladder: At the base we have the LDA and at
the top, in the heaven of chemical accuracy (interesting concept -
what is Physical Accuracy?) we have some unknown functional.
Here’s the whole Ladder...
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Jacob’s Ladder II

CHEMICAL HEAVEN
1 corr-hyper-GGA: Modifies the hyper-GGAs by including

correlation through range-separation. This is currently done at
the RPA level.

2 hyper-GGA: Adds exact exchange using range-separation.
Leads to functionals that can fix (part of) the charge-transfer
problem of most DFT functionals. CamB3LYP

3 meta-GGA: ρ,∇ρ,∇2ρ, τ , here τ = 1
2

∑
a∈occ |∇χa|2 is the

Kohn–Sham orbital kinetic energy density. TPSS

4 GGA: ρ,∇ρ. PBE

5 LDA,LSD: ρ

INACCURATE HELL
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Jacob’s Ladder III

A philosophical question:
Is Kohn–Sham theory a density-functional theory?

Thomas–Fermi theory is definitely a density-functional theory. But
in Kohn–Sham theory we work with the spin orbitals and use these
to define the kinetic energy functional, and also, in hybrid
functionals, the exchange functional.
Perhaps we should refer to this theory not as density functional
theory, but as Kohn–Sham theory. Some authors do make this
distinction and call modern ‘density-functional theory’ as KS-DFT.
This is good practice.
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