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Kohn–Sham DFT: summary I

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr (1)

must be minimized subject to the orthonormality constraints

〈χi |χj〉 = δij .

This gives us the Kohn–Sham equations after the usual occupied
orbital rotation to make the eigenvalue matrix εij diagonal:(

−1

2
∇2 + vS(r)

)
χi = εiχi
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Kohn–Sham DFT: summary II

where the effective potential is defined as

vS(r) = vJ(r) + vext(r) + vxc(r)

=

∫
ρ(r′)

|r− r′|dr′ −
∑
α

Zα
|r− Rα|

+
δExc[ρ]

δρ
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Kohn–Sham DFT: summary III

We solve the 1-electron Kohn–Sham equations self-consistently:

k(1)χi (1) =

(
−1

2
∇2

1 + vS(1)

)
χi (1) = εiχi (1)

where we have defined the Kohn–Sham operator k(1).



KS-DFT KS energies Self-Interaction AC Dispersion Summary

Kohn–Sham DFT: summary IV

Once we have the orbitals χi , we can evaluate the energy using

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr

or, equivalently,

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr

=
∑
i

εi − J[ρ] + Exc[ρ]−
∫

vxc(r)ρ(r)dr
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Kohn–Sham DFT: summary V

Exchange correlation functionals are usually written in the form

Exc[ρ] =

∫
ρ(r)εxc(ρ(r),∇ρ(r), · · ·)dr (2)

where εxc(ρ(r),∇ρ(r), · · ·) can be regarded as the
exchange-correlation density.
We usually split the exchange-correlation density into its exchange
and correlation parts:

εxc(ρ(r),∇ρ(r), · · ·) = εx(ρ(r),∇ρ(r), · · ·) + εc(ρ(r),∇ρ(r), · · ·)
(3)

This separation is convenient for we can then think of using
well-understood approximations for each of these.
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Kohn–Sham DFT: summary VI

The first of the many functionals is the local density approximation
or LDA. In this approximation the exchange-correlation density
depends on the electron density alone (no dependence on gradients
etc.):

Exc[ρ] =

∫
ρ(r)εLDA

xc (ρ(r))dr (4)

The Slater approximation is used for the exchange-energy density:

εSx(ρ(r)) = −3

4

(
3

π

)3/2

ρ1/3(r)

Using this we get the Slater exchange functional:

ES
x [ρ] = −3

4

(
3

π

)3/2 ∫
ρ4/3(r)dr = −Cx

∫
ρ4/3(r)dr
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Kohn–Sham DFT: summary VII

Paired with this is a correlation functional parameterized on very
accurate quantum Monte-Carlo (QMC) calculations of the energy
of the homogeneous free electron gas as a function of density.
There are a variety of correlation parameterizations. These differ
by the choice of QMC energies used or by the interpolation scheme
used in the parameterization (the QMC energies are calculated at a
set of densities so some scheme is required to interpolate to all
densities).
Common choices of the correlation functional are:

PW91c The Perdew–Wang (1992) parameterization (called
pw91lda in NWChem.

VWN The Voski–Wilk–Nusair (1980) parameterization.

So what is called the LDA translates into a combination of the
Slater exchange functional and one of these correlation functionals.
The actual choice will vary with program.
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Kohn–Sham DFT: summary VIII

In the generalized gradient approximations the exchange-correlation
density is dependent on the density and its gradient.

Exc[ρ] =

∫
ρ(r)εGGA

xc (ρ(r),∇ρ(r))dr

As before, we split the exchange-correlation density into its
exchange and correlation parts:

εGGA
xc (ρ(r),∇ρ(r)) = εGGA

x (ρ(r),∇ρ(r)) + εGGA
c (ρ(r),∇ρ(r))

The exchange part of all GGAs takes the form

EGGA
x [ρ] =

∫
ρ(r)εLDA

x (ρ(r))Fx(s)dr
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Kohn–Sham DFT: summary IX

Fx(s) is sometimes called the enhancement factor and is written
as a function of the reduced density gradient defined as

s(r) =
|∇ρ(r)|

2(3π2)1/3ρ4/3(r)
.

Two of the common exchange enhancement factors are

Becke, 1988 (B88)

FB88
x (s) = 1− βs2

1 + 6βs sinh−1 s

Becke fitted the parameter β = 0.0042 to reproduce known
exchange energies of rare gas atoms. This particular form for
the enhancement factor was chosen to obey a few exact
relations.
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Kohn–Sham DFT: summary X

Perdew, Burke & Ernzerhof, 1996 (PBE)

FPBE
x (s) = 1 + κ− κ

1− µs2/κ

In this functional all parameters were obtained theoretically.
κ = 0.804. Most physicists use this exchange functional.
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Kohn–Sham DFT: summary XI

In 1993, Becke proposed a three-parameter semi-empirical
functional that cured this problem. The general idea is to mix
some fraction of HF exchange with DFT exchange:

Ehybrid
xc = aEHF

x + (1− a)EGGA
x + EGGA

c

The B3LYP is the most widely used of these and is a slight
modification of Becke’s 1993 proposal made the following year by
Stephens and others:

EB3LYP
xc =ESVWN

xc + a0(EHF
x − ES

x ) + ax(EB88
x − ES

x )

+ ac(ELYP
c − EVWN

c )

A better choice (in my opinion) is the PBE0 functional (sometimes called

PBE1PBE) which mixes PBE with 20% HF exchange.
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Meaning of the KS orbital energies I

The Kohn–Sham non-interacting system was initially regarded
as no more than a device to facilitate the solution of the
Schrödinger equation.

The orbitals and orbital eigenvalues were not taken to mean
anything with one exception:

εHOMO = −I
Perdew, Parr, Levy and Balduz (Phys. Rev. Lett. 49. 1691
(1982)) had shown that the energy of the highest occupied
molecular orbital was exactly equal to the negative of the
vertical Ionization energy.

However, there was a lot of empirical evidence that the
Kohn–Sham orbital energies were closely related to the
experimental ionization energies.

But they were generally shifted w.r.t. the experimental values.
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Meaning of the KS orbital energies II

In 2001, Chong, Gritsenko and Baerends (J. Chem. Phys.
116, 1760) showed that for the exact XC potential (they used
a method called SAOP that had many of the properties of the
exact XC potential):

Ik ≈ −εk
With the relation being exact for the HOMO.

In practice this means that we can use the KS orbital energies
as a good approximation to the experimental excitation levels
of our system, but with a constant, and possibly large, shift.

Q: Why are the orbital energies shifted?

Before seeing evidence for the above we will prove that
εHOMO = −I .
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Meaning of the KS orbital energies III

Q:

To prove that εHOMO = −I we follow the steps:

In principle, the DFT density is the exact density. So we
can use the result we have proved earlier (lecture on
Exact Results):

ρ(r)→ e−2
√
2EI r

In Kohn–Sham DFT the density is written as the sum of
orbital densities:

ρ(r) =
N∑
i

|χi (r)|2 =
N∑
i

ρi(r)

Now determine the asymptotic form of the orbital
densities ρi (r).

continued...
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Meaning of the KS orbital energies IV

Q:

To prove that εHOMO = −I continued....

The asymptotic form of ρi (r) is found using techniques
we developed in the lecture on Exact Results. The
Kohn–Sham Hamiltonian for orbital χi is(

−1

2
∇2 + vS(r)

)
χi = εiχi

This is a one-electron Hamiltonian. We will soon show
that vS → 1

r , so you can write the large-r form of this
Hamiltonian exactly as we did in the lecture on Exact
Results and hence show that

χi (r)→ e−
√
−2εi r

Hence ρi (r)→ e−2
√
−2εi r .
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Meaning of the KS orbital energies V

Q:

To prove that εHOMO = −I continued....

Now realise that because ρ(r) is the sum of the ρi , the
asymptotic form of ρ will be determined by the
(occupied) orbital with the largest (least negative)
energy. This will be the HOMO. Hence we should have,
in KS-DFT,

ρ(r)→ e−2
√
−2εHOMOr

Hence show that εHOMO = −I .
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Meaning of the KS orbital energies VI

Now back to the evidence for the relation:

Ik ≈ −εk

Initially the evidence was numerical. Using standard methods for
solving the Schrödinger equation (in this case, a technique called
multi-reference (i.e., multiple determinant) CCSD, or, MRCCSD),
Casida et al. showed that density functionals like the LDA
(remember, this was the simplest functional we could think of),
could, when suitably corrected (more later), produce Kohn–Sham
orbital energies that satisfied the above relation.
Have a look at the TDLDA/LB94 results on the next two slides...
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Meaning of the KS orbital energies VII

sets, including supplementation with diffuse functions, the
maximum difference in TDLDA/LB94 excitation energies
among these auxiliary basis sets was 0.11 eV, for the first six
states of formaldehyde. In one test on N2, ~unbalanced!
supplementation of the auxiliary basis set resulted in differ-
ences of a few tenths of an eV, with the TDLDA/LB94 func-
tional. This level of precision of the TDLDA/LB94 results is
adequate for the present work. In contrast, the TDLDA/LDA
results do not appear to be significantly affected by the ad-
dition of diffuse functions to the auxiliary basis sets used
~observed differences being only on the order of a few hun-
dredths of an eV!, presumably because of the shorter range
of the LDA potential.

The deMon ‘‘extrafine’’ ‘‘random’’ grid ~32 radial and
194 angular points per atom! was used throughout. For
CH2O and C2H4, calculations using ‘‘nonrandom’’ grids,
with C2v and D2h symmetry, respectively, were used to con-
firm assignments with the LB94 potential because symmetry
breaking was observed with the ‘‘random’’ grid, in this case,
for some of the higher-lying unoccupied orbitals. ~Differ-
ences between excitation energies with these two grids were
insignificant — typically about 0.01 eV or less.!

The SCF calculations were performed with version 1.2
of the deMon-KS module,42 to which we added the LB94
potential.26 The SCF convergence criteria were a change of
less than 1028 a.u. in the charge density fitting coefficients
and, simultaneously, less than 1028 hartree in the total en-
ergy. We used the LDA energy expression for both the LDA
and the LB94 SCF calculations. In the case of the LB94
potential, this is simply a convenient and harmless choice,
which only affects the meaning of the SCF convergence cri-
terion, since only the density ~or more exactly the orbitals,
orbital energies, and occupations!, but not the total energy,
enters into the TD-DFRT calculations.

IV. RESULTS AND DISCUSSION
Four small, well-studied molecules, namely N2, CO,

CH2O, and C2H4, have been chosen as test molecules in
order to evaluate the quality of the TDLDA/LDA and
TDLDA/LB94 excitation energies. These molecules may
also be considered as prototypes for studying the (n ,p*) and
(p ,p*) transitions important for organic photochemistry.
Comparison is made with published single-particle excitation
energies from high-quality ab initio methods and with ex-
periment. This comparison covers both singlet and triplet
states, over a fairly wide range of energies ~almost up to the
ionization potential.! Theory predicts a number of highly ex-
cited states which either do not appear to have been observed
experimentally or for which accepted experimental excita-
tion energies are not available. For this reason, our primary
comparison is against the ab initio calculations. The choice
of ab initio results against which to compare was governed
by the desire to use, insofar as possible, a single set of results
for each molecule, that would give reasonably accurate val-
ues for all the states considered. The selected calculations are
in good agreement with experiment. The state-by-state com-
parison between the results of different calculations was
made by identifying the nth state of a given symmetry from
one calculation with the nth state of the same symmetry in

the other calculation, with the TD-DFRT N-electron term
symbol being determined according to the procedure de-
scribed in Sec. II. For ethylene, only excitations out of the
1b3u(p) orbital are considered, and the same state-by-state
comparison scheme used for the other molecules is applied
to this p-excitation manifold. The results of these compari-
sons, for the four molecules, are shown in Figs. 1, 2, 3, and
4.

FIG. 1. Correlation plot comparing TD-DFRT results with the multirefer-
ence coupled cluster singles and doubles ~MRCCSD! results of Ref. 53 for
the first 35 vertical excitation energies ~not counting degeneracies! of N2.
Experimental values taken from Ref. 53 are also shown.

FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator ~SOPPA! (Sfi1 results from Table II of Ref. 54! for
the first 23 vertical excitation energies ~not counting degeneracies! of CO.
Experimental values taken from Ref. 54 are also shown.

4442 J. Chem. Phys., Vol. 108, No. 11, 15 March 1998 Casida et al.

Downloaded 01 Oct 2001 to 128.175.112.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Casida, Jamorski,
Casida & Salahub,
J. Chem. Phys.
108, 4439 (1998).
TD =
Time-Dependent.
You need to solve
the time-dependent
Schrödinger
equation to get
excitation energies
in DFT.

IP(expt) = 15.58 eV
(S.G. Lias, NIST)
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Meaning of the KS orbital energies VIII

sets, including supplementation with diffuse functions, the
maximum difference in TDLDA/LB94 excitation energies
among these auxiliary basis sets was 0.11 eV, for the first six
states of formaldehyde. In one test on N2, ~unbalanced!
supplementation of the auxiliary basis set resulted in differ-
ences of a few tenths of an eV, with the TDLDA/LB94 func-
tional. This level of precision of the TDLDA/LB94 results is
adequate for the present work. In contrast, the TDLDA/LDA
results do not appear to be significantly affected by the ad-
dition of diffuse functions to the auxiliary basis sets used
~observed differences being only on the order of a few hun-
dredths of an eV!, presumably because of the shorter range
of the LDA potential.

The deMon ‘‘extrafine’’ ‘‘random’’ grid ~32 radial and
194 angular points per atom! was used throughout. For
CH2O and C2H4, calculations using ‘‘nonrandom’’ grids,
with C2v and D2h symmetry, respectively, were used to con-
firm assignments with the LB94 potential because symmetry
breaking was observed with the ‘‘random’’ grid, in this case,
for some of the higher-lying unoccupied orbitals. ~Differ-
ences between excitation energies with these two grids were
insignificant — typically about 0.01 eV or less.!

The SCF calculations were performed with version 1.2
of the deMon-KS module,42 to which we added the LB94
potential.26 The SCF convergence criteria were a change of
less than 1028 a.u. in the charge density fitting coefficients
and, simultaneously, less than 1028 hartree in the total en-
ergy. We used the LDA energy expression for both the LDA
and the LB94 SCF calculations. In the case of the LB94
potential, this is simply a convenient and harmless choice,
which only affects the meaning of the SCF convergence cri-
terion, since only the density ~or more exactly the orbitals,
orbital energies, and occupations!, but not the total energy,
enters into the TD-DFRT calculations.

IV. RESULTS AND DISCUSSION
Four small, well-studied molecules, namely N2, CO,

CH2O, and C2H4, have been chosen as test molecules in
order to evaluate the quality of the TDLDA/LDA and
TDLDA/LB94 excitation energies. These molecules may
also be considered as prototypes for studying the (n ,p*) and
(p ,p*) transitions important for organic photochemistry.
Comparison is made with published single-particle excitation
energies from high-quality ab initio methods and with ex-
periment. This comparison covers both singlet and triplet
states, over a fairly wide range of energies ~almost up to the
ionization potential.! Theory predicts a number of highly ex-
cited states which either do not appear to have been observed
experimentally or for which accepted experimental excita-
tion energies are not available. For this reason, our primary
comparison is against the ab initio calculations. The choice
of ab initio results against which to compare was governed
by the desire to use, insofar as possible, a single set of results
for each molecule, that would give reasonably accurate val-
ues for all the states considered. The selected calculations are
in good agreement with experiment. The state-by-state com-
parison between the results of different calculations was
made by identifying the nth state of a given symmetry from
one calculation with the nth state of the same symmetry in

the other calculation, with the TD-DFRT N-electron term
symbol being determined according to the procedure de-
scribed in Sec. II. For ethylene, only excitations out of the
1b3u(p) orbital are considered, and the same state-by-state
comparison scheme used for the other molecules is applied
to this p-excitation manifold. The results of these compari-
sons, for the four molecules, are shown in Figs. 1, 2, 3, and
4.

FIG. 1. Correlation plot comparing TD-DFRT results with the multirefer-
ence coupled cluster singles and doubles ~MRCCSD! results of Ref. 53 for
the first 35 vertical excitation energies ~not counting degeneracies! of N2.
Experimental values taken from Ref. 53 are also shown.

FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator ~SOPPA! (Sfi1 results from Table II of Ref. 54! for
the first 23 vertical excitation energies ~not counting degeneracies! of CO.
Experimental values taken from Ref. 54 are also shown.

4442 J. Chem. Phys., Vol. 108, No. 11, 15 March 1998 Casida et al.

Downloaded 01 Oct 2001 to 128.175.112.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Casida, Jamorski,
Casida & Salahub,
J. Chem. Phys.
108, 4439 (1998).

IP(expt) = 14.01 eV
(S.G. Lias, NIST)
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What Casida et al. found what that

MRCCSD and a method called SOPPA produced excitation
energies in line with experiment.

Time-dependent LDA was good for the occupied states, but
severely underestimated the higher excitation energies.

However, using the LB94 functional (more on this one) which
specifically corrected the long-range problems of functionals
like the LDA, they got very good agreement for the higher
excitations too.
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Meaning of the KS orbital energies X

Also in 1998, Savin, Umrigar & Gonze published a superb set of
results, this time using exact XC potentials. They obtained these
exact, or very accurate XC potentials using a method of inversion:

Calculate a very very accurate density, say using QMC.

From the first Hohenberg–Kohn theorem there is a one-to-one
mapping between this density and the Kohn–Sham potential
for a non-interacting system that produces this density.

Use a convenient method to obtain this potential. Q: How do
you do this for the Helium atom density?

Solve the Kohn–Sham equations using this potential.

The resulting orbitals and orbital energies are the most
accurate you can get.

Here are two sets of tables from their paper in Chem. Phys. Lett.
288, 391 (1998):
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( )A. SaÕin et al.rChemical Physics Letters 288 1998 391–395392

energies that are correct to 14 significant digits for
w xHe. In the case of Be, the density was obtained 8,9

by a combination of variational and diffusion Monte
Carlo techniques, using a wavefunction that recovers
99.2% of the correlation energy in variational Monte
Carlo and 99.9% of the correlation energy in diffu-

w xsion Monte Carlo. Efficient implementations 10,11
of the variational and diffusion Monte Carlo methods
are employed to rapidly sample the many-dimen-
sional space of the wavefunctions.
The true Kohn–Sham potential is then obtained

from the density. For the two-electron systems, it is
obtained directly from the single-particle Kohn–
Sham equation for the sole occupied orbital. For
systems with more electrons, the potential is ex-
panded in a set of functions and the expansion
parameters varied such that the potential yields the

w xtrue density 8,9,12 . All the Kohn–Sham eigenval-
ues can then be obtained by solving the Kohn–Sham
equation.

3. Results

In Tables 1 and 2, we show the excitation ener-
gies of He and Be, respectively, obtained from dif-
ferences of Kohn–Sham eigenvalues and compare
them to the corresponding experimental energies.
Note that a change of the Kohn–Sham potential by a
constant will not affect the calculated excitation en-
ergies, as these are obtained as differences of eigen-

Table 1
Excitation energies of He in hartree atomic units
Transition Final state Experiment Drake DeKS

31s™2s 2 S 0.72833 0.72850 0.7460
12 S 0.75759 0.75775
31s™2p 1 P 0.77039 0.77056 0.7772
11 P 0.77972 0.77988
31s™3s 3 S 0.83486 0.83504 0.8392
13 S 0.84228 0.84245
31s™3p 2 P 0.84547 0.84564 0.8476
12 P 0.84841 0.84858
31s™3d 1 D 0.84792 0.84809 0.8481
11 D 0.84793 0.84809
31s™4s 4 S 0.86704 0.86721 0.8688
14 S 0.86997 0.87014

w xThe theoretical energies of Drake and coworkers 14,15 and
the eigenvalue differences are for infinite nuclear mass and ne-

w xglect relativity. The experimental energies are from Ref. 17 .

Table 2
Excitation energies of Be in hartree atomic units
Transition Final state Experiment DeKS

32s™2p 1 P 0.100153 0.1327
11 P 0.193941
32s™3s 2 S 0.237304 0.2444
12 S 0.249127
32s™3p 2 P 0.267877 0.2694
12 P 0.274233
32s™3d 1 D 0.282744 0.2833
11 D 0.293556
32s™4s 3 S 0.293921 0.2959
13 S 0.297279
32s™4p 3 P 0.300487 0.3046
13 P 0.306314
32s™4d 2 D 0.309577 0.3098
12 D 0.313390
32s™5s 4 S 0.314429 0.3153
14 S 0.315855

The eigenvalue differences are for infinite nuclear mass and
w xneglect relativity. The experimental energies are from Ref. 17 .

values. Of course, the single-electron Kohn–Sham
energies do not distinguish between the energies
within a multiplet. The energies obtained from the
eigenvalue differences, lie between the experimental
singlet and triplet excitation energies with the excep-

Ž .tion of only the 1s ™ 3d 1D excitation for He
Ž q w x.similar results have been obtained for Li . 13 .
The calculated energies are for an infinite mass
nucleus and do not include relativity, whereas the
experimental numbers are, of course, for finite mass
nuclei and are relativistic. In the case of the two-
electron systems it is possible to calculate exceed-
ingly accurate infinite nuclear mass non-relativistic

w xtotal energies 14,15 . The excitation energies ob-
tained from these calculations are also shown for He

Žin Table 1. We observe that now even the 1s ™
.3d 1D excitation energy of He obtained from the

eigenvalue differences agrees with the true calcu-
lated excitation energy to the number of digits shown.
To the best of our knowledge, this remarkable agree-
ment between the Kohn–Sham eigenvalue differ-
ences and the excitation energies has not been no-
ticed before, for any real system, though it has been

w xnoticed for a model semiconductor 16 .
It should be emphasised that the agreement exists

only for accurate Kohn–Sham eigenvalues. Those
obtained from popular approximate density function-

Ž .als, such as the local density approximation LDA
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( )A. SaÕin et al.rChemical Physics Letters 288 1998 391–395392

energies that are correct to 14 significant digits for
w xHe. In the case of Be, the density was obtained 8,9

by a combination of variational and diffusion Monte
Carlo techniques, using a wavefunction that recovers
99.2% of the correlation energy in variational Monte
Carlo and 99.9% of the correlation energy in diffu-

w xsion Monte Carlo. Efficient implementations 10,11
of the variational and diffusion Monte Carlo methods
are employed to rapidly sample the many-dimen-
sional space of the wavefunctions.
The true Kohn–Sham potential is then obtained

from the density. For the two-electron systems, it is
obtained directly from the single-particle Kohn–
Sham equation for the sole occupied orbital. For
systems with more electrons, the potential is ex-
panded in a set of functions and the expansion
parameters varied such that the potential yields the

w xtrue density 8,9,12 . All the Kohn–Sham eigenval-
ues can then be obtained by solving the Kohn–Sham
equation.

3. Results

In Tables 1 and 2, we show the excitation ener-
gies of He and Be, respectively, obtained from dif-
ferences of Kohn–Sham eigenvalues and compare
them to the corresponding experimental energies.
Note that a change of the Kohn–Sham potential by a
constant will not affect the calculated excitation en-
ergies, as these are obtained as differences of eigen-

Table 1
Excitation energies of He in hartree atomic units
Transition Final state Experiment Drake DeKS

31s™2s 2 S 0.72833 0.72850 0.7460
12 S 0.75759 0.75775
31s™2p 1 P 0.77039 0.77056 0.7772
11 P 0.77972 0.77988
31s™3s 3 S 0.83486 0.83504 0.8392
13 S 0.84228 0.84245
31s™3p 2 P 0.84547 0.84564 0.8476
12 P 0.84841 0.84858
31s™3d 1 D 0.84792 0.84809 0.8481
11 D 0.84793 0.84809
31s™4s 4 S 0.86704 0.86721 0.8688
14 S 0.86997 0.87014

w xThe theoretical energies of Drake and coworkers 14,15 and
the eigenvalue differences are for infinite nuclear mass and ne-

w xglect relativity. The experimental energies are from Ref. 17 .

Table 2
Excitation energies of Be in hartree atomic units
Transition Final state Experiment DeKS

32s™2p 1 P 0.100153 0.1327
11 P 0.193941
32s™3s 2 S 0.237304 0.2444
12 S 0.249127
32s™3p 2 P 0.267877 0.2694
12 P 0.274233
32s™3d 1 D 0.282744 0.2833
11 D 0.293556
32s™4s 3 S 0.293921 0.2959
13 S 0.297279
32s™4p 3 P 0.300487 0.3046
13 P 0.306314
32s™4d 2 D 0.309577 0.3098
12 D 0.313390
32s™5s 4 S 0.314429 0.3153
14 S 0.315855

The eigenvalue differences are for infinite nuclear mass and
w xneglect relativity. The experimental energies are from Ref. 17 .

values. Of course, the single-electron Kohn–Sham
energies do not distinguish between the energies
within a multiplet. The energies obtained from the
eigenvalue differences, lie between the experimental
singlet and triplet excitation energies with the excep-

Ž .tion of only the 1s ™ 3d 1D excitation for He
Ž q w x.similar results have been obtained for Li . 13 .
The calculated energies are for an infinite mass
nucleus and do not include relativity, whereas the
experimental numbers are, of course, for finite mass
nuclei and are relativistic. In the case of the two-
electron systems it is possible to calculate exceed-
ingly accurate infinite nuclear mass non-relativistic

w xtotal energies 14,15 . The excitation energies ob-
tained from these calculations are also shown for He

Žin Table 1. We observe that now even the 1s ™
.3d 1D excitation energy of He obtained from the

eigenvalue differences agrees with the true calcu-
lated excitation energy to the number of digits shown.
To the best of our knowledge, this remarkable agree-
ment between the Kohn–Sham eigenvalue differ-
ences and the excitation energies has not been no-
ticed before, for any real system, though it has been

w xnoticed for a model semiconductor 16 .
It should be emphasised that the agreement exists

only for accurate Kohn–Sham eigenvalues. Those
obtained from popular approximate density function-

Ž .als, such as the local density approximation LDA
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Meaning of the KS orbital energies XIII

To summarise:

In KS-DFT with an exact functional, we have Ik ≈ −εk .

This relation gets better as the excitations involve the higher
lying states.

For the HOMO level we have an exact relation: εHOMO = −I .
Contrast these relations with Koopman’s theorem from
Hartree–Fock theory.

However, for approximate functionals none of these results
hold. Instead the HOMO level is generally shifted closer to
the LUMO (the gap closes), and the excitation energies are
therefore underestimated.

The LB94 functional appears to fix the problem (but...see
later).
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Self-Interaction I

Q: What are the problems with using an approximate XC
functional?
Q: What is the origin of the constant shift of energies mentioned
above?
To understand this we will work out how vxc should behave for the
hydrogen atom.

What is the form of the exact Kohn–Sham potential vS for
large r? (

−1

2
∇2 + vS(r)

)
χk(r) = εkχk(r)

This is equivalent to asking what the potential felt by an
electron will be as we pull it off the atom/molecule. It will see
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Self-Interaction II

a hole and hence experience a −1/r potential. Therefore we
must have as r →∞

vS → −
1

r
.

We know that vS = vJ + vext + vxc. We also know the
long-range (asymptotic) forms of vJ and vext:

vJ(r) =

∫
ρ(r′)

|r− r′|dr′ → +
N

r

vext(r) = − Z

|r− R| → −
Z

r

Here N is the number of electrons and Z is the nuclear
charge. For a neutral system these are equal. Therefore these
two cancel out asymptotically.
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Self-Interaction III

Hence we must have

vxc(r)→ −1

r

How do common XC potentials behave at asymptotically?
Best to use the simplest XC functional: the Slater exchange
functional (the VWN correlation part does not change the
picture very much). The Slater functional is

ES
x [ρ] = −Cx

∫
ρ4/3(r)dr
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Self-Interaction IV

Using ρ→ e−αr , this gives us an XC potential:

vxc(r) =
δES

xc[ρ]

δρ

= −4

3
Cxρ

1/3(r)

→ −e−α
3
r

It has the wrong asymptotic form. It decays too quickly with
distance.

This is what leads to a small band-gap in DFT: the
unoccupied levels are all shifted down with respect to the
occupied orbitals.
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Self-Interaction V

Self-Interaction: Another way of looking at this problem is to
realise that the too rapid decay of vxc with distance is
equivalent to the electron ‘seeing’ itself.

vxc(r)→ −e−α
3
r

→ −(+re−
α
3
r )

r

I.e., rather than see a hole with charge +1, it sees a hole with
charge +re−

α
3
r which goes exponentially fast to zero.

Thus for moderate separation the electron will see little or no
attraction to the ion, and will therefore be very weakly bound,
or even unbound.
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Self-Interaction VI

This is the self-interaction problem, and is termed thus as it
is as if the electron interacts with itself as the hole ‘fills up’
with increasing r .

Any molecular property that depends on the unoccupied levels
will there be effected. Examples are: polarizabilities,
hyperpolarizabilities, excitations, in particular charge-transfer
excitations, NMR shifts.
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Self-Interaction VII

In 1994, van Leeuwen and Baerends (Phys. Rev. A 49)
constructed an XC functional that resulted in an XC potential that
decayed as −1/r . This functional, termed LB94 takes the form:

vLB94
xc (r) = −βn1/3(r)

x2

1 + 3βx sinh−1(x)
,

where β = 0.05, n(r) is the electronic density, and the
reduced-gradient is defined as x = |∇n|/n4/3.

Q:

Using the asymptotic form of the electronic density: r → ∞,
n→ e−αr , where α is a constant. Show that vLB94

xc → −1/r .
You will need to use an appropriate series expansion for
sinh−1(x).
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Self-Interaction VIII

Here is how the LB94 functional behaves for the beryllium atom:
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Self-Interaction IX

Here, vxc is the reference XC potential obtained from a very
accurate density. vLDA and vLDA + vBecke−Perdew are two
variants of the LDA that include the Slater form of the
exchange. The latter two clearly decay too quickly with
separation in comparison with the reference vxc.

Finally we have vLDA + vmodel which is XC potential from the
LB94 functional. This one agrees with vxc quite well indeed,
but only at long range!.

Notice what happens at short range: The LDA model
potentials are both far off from the exact potential, but they
are uniformly shifted from vxc. A uniform shift in a potential
is never a problem. However the short-range behaviour of
LB94 is, by comparison, rather poor.
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Self-Interaction X

As a consequence, all properties that depend on the
short-range part of the XC potential (the density, and all
properties that depend on the density) come out poorly with
LB94.

But properties that are more sensitive to the long-range part
(higher excitation energies) come out better. We have already
seen this above.

It was Casida and Salahub (J. Chem. Phys., 113 (2000)) who
noticed this problem with LB94. They argued that rather than
decay as −1/r , all local and semi-local functionals should decay as
−1/r + ∆, where ∆ is a constant shift.
The then demonstrated that rather than use the LDA or LB94 on
their own, we should instead splice LB94 to the LDA so as to
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Self-Interaction XI

achieve a much better form of the overall XC potential. But this
splicing should include the constant off-set ∆:

vAC−LDA
xc (r) = max[vLDA

xc (r)−∆, vLB94
xc (r)].

where the shift is given by ∆ = εLDA
HOMO + I .

This is the CS00 asymptotic correction used in NWChem.
It is one of a handful of possible corrections, but NWChem
includes just this one.
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Self-Interaction XII

What is the origin of the shift?
It can be shown that the exact asymptotic form of the XC
potential is

vxc → −
1

r
+ (εHOMO + I ).

This is a generalisation of the result we derived earlier. The proof
is not essential.

For an exact functional, we have shown that εHOMO = −I . So
the term in the brackets vanish.

But for local and semi-local functionals it does not.

This has to do with what is called the derivative discontinuity.
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Self-Interaction XIII

Put simply, for the exact XC functional, the energy of the
HOMO orbital changes discontinuously as the electron
number crosses an integer value. Think about it like this: For
N electrons our HOMO orbital energy will be
εHOMO = εN = −I (N), but for N + δ electrons it will be
εHOMO = εN+1 = −I (N + 1) = A(N), where I (N) is the
vertical ionisation energy for an N-electron system and A(N)
is the electron affinity for the N-electron system. So the
HOMO energy is discontinuous around N.

However, local and semi-local functionals cannot describe this
discontinuity, instead they interpolate between the two values.

This means that we no longer have εHOMO = −I , and so
approximate XC potentials will be offset by the amount
εapproxHOMO + I . This is the origin of the ∆.
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Self-Interaction XIV

It is best to see this pictorially. In the next few images we will look
at the XC potential for Helium calculated using the HCTH407
functional compared with a (nearly) exact XC potential (this was
obtained by calculating a very accurate He density and inverting it
to obtain the potential).
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Self-Interaction XV
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Self-Interaction XVI
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Asymptotic-correction I

Since we know what the asymptotic form of vxc should be we can
enforce it through an empirical fix known as the asymptotic
correction. We need to account for the shift. Tozer and Handy &
Casida worked all this out in 1998:

vxc(r)→ −1

r
+ I + εHOMO

So if know (or calculate) I , calculate εHOMO from a standard DFT
calculation, then we will be able to work out the shift and apply
this correction. This is known as the asymptotic correction.



KS-DFT KS energies Self-Interaction AC Dispersion Summary

Asymptotic-correction II
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Asymptotic-correction III

sets, including supplementation with diffuse functions, the
maximum difference in TDLDA/LB94 excitation energies
among these auxiliary basis sets was 0.11 eV, for the first six
states of formaldehyde. In one test on N2, ~unbalanced!
supplementation of the auxiliary basis set resulted in differ-
ences of a few tenths of an eV, with the TDLDA/LB94 func-
tional. This level of precision of the TDLDA/LB94 results is
adequate for the present work. In contrast, the TDLDA/LDA
results do not appear to be significantly affected by the ad-
dition of diffuse functions to the auxiliary basis sets used
~observed differences being only on the order of a few hun-
dredths of an eV!, presumably because of the shorter range
of the LDA potential.

The deMon ‘‘extrafine’’ ‘‘random’’ grid ~32 radial and
194 angular points per atom! was used throughout. For
CH2O and C2H4, calculations using ‘‘nonrandom’’ grids,
with C2v and D2h symmetry, respectively, were used to con-
firm assignments with the LB94 potential because symmetry
breaking was observed with the ‘‘random’’ grid, in this case,
for some of the higher-lying unoccupied orbitals. ~Differ-
ences between excitation energies with these two grids were
insignificant — typically about 0.01 eV or less.!

The SCF calculations were performed with version 1.2
of the deMon-KS module,42 to which we added the LB94
potential.26 The SCF convergence criteria were a change of
less than 1028 a.u. in the charge density fitting coefficients
and, simultaneously, less than 1028 hartree in the total en-
ergy. We used the LDA energy expression for both the LDA
and the LB94 SCF calculations. In the case of the LB94
potential, this is simply a convenient and harmless choice,
which only affects the meaning of the SCF convergence cri-
terion, since only the density ~or more exactly the orbitals,
orbital energies, and occupations!, but not the total energy,
enters into the TD-DFRT calculations.

IV. RESULTS AND DISCUSSION
Four small, well-studied molecules, namely N2, CO,

CH2O, and C2H4, have been chosen as test molecules in
order to evaluate the quality of the TDLDA/LDA and
TDLDA/LB94 excitation energies. These molecules may
also be considered as prototypes for studying the (n ,p*) and
(p ,p*) transitions important for organic photochemistry.
Comparison is made with published single-particle excitation
energies from high-quality ab initio methods and with ex-
periment. This comparison covers both singlet and triplet
states, over a fairly wide range of energies ~almost up to the
ionization potential.! Theory predicts a number of highly ex-
cited states which either do not appear to have been observed
experimentally or for which accepted experimental excita-
tion energies are not available. For this reason, our primary
comparison is against the ab initio calculations. The choice
of ab initio results against which to compare was governed
by the desire to use, insofar as possible, a single set of results
for each molecule, that would give reasonably accurate val-
ues for all the states considered. The selected calculations are
in good agreement with experiment. The state-by-state com-
parison between the results of different calculations was
made by identifying the nth state of a given symmetry from
one calculation with the nth state of the same symmetry in

the other calculation, with the TD-DFRT N-electron term
symbol being determined according to the procedure de-
scribed in Sec. II. For ethylene, only excitations out of the
1b3u(p) orbital are considered, and the same state-by-state
comparison scheme used for the other molecules is applied
to this p-excitation manifold. The results of these compari-
sons, for the four molecules, are shown in Figs. 1, 2, 3, and
4.

FIG. 1. Correlation plot comparing TD-DFRT results with the multirefer-
ence coupled cluster singles and doubles ~MRCCSD! results of Ref. 53 for
the first 35 vertical excitation energies ~not counting degeneracies! of N2.
Experimental values taken from Ref. 53 are also shown.

FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator ~SOPPA! (Sfi1 results from Table II of Ref. 54! for
the first 23 vertical excitation energies ~not counting degeneracies! of CO.
Experimental values taken from Ref. 54 are also shown.

4442 J. Chem. Phys., Vol. 108, No. 11, 15 March 1998 Casida et al.
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The LB94
functional is one
route to imposing
an asymptotic
correction. The
effect of this on the
excitation energies
is quite dramatic.
Casida, Jamorski,
Casida & Salahub,
J. Chem. Phys.
108, 4439 (1998).
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Asymptotic-correction IV

Excitation energies

173

certain robustness of the computed excitation energies with regard to the choice of the basis
set, provided basis sets of at least polarized triple-zeta quality augmented by diffuse func-
tions are used.

A particular class of excitation energies is provided by the relative stability of the low-
est lying singlet and triplet states of carbenes and related species. Even though the energy
difference between these two states can easily be computed by the ∆SCF approach, be-
cause they both represent the lowest states in their respective multiplicity, the computation
of reliable excitation energies for such species is a long standing problem in quantum
chemistry (for general overviews see Bettinger et al., 1997 and 1998). Let us take methyl-
ene as the simplest example to illustrate the peculiarities and concomitant problems for the
theoretical treatment of this group of molecules. A carbene is characterized by two elec-
trons not engaged in bonding, and two non-bonding orbitals to accommodate them, i. e.,
the π-type (b1 in case of the C2v symmetric CH2) and the lower lying σ-type orbital (a1 for
CH2). In the singlet 1A1 state, the two electrons are spin paired while in the 3B1 triplet the
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Figure 9-2. Performance of various functionals in the framework of time-dependent DFT for excitation energies
of ethylene.

9.6  Electronic Excitation Energies and the Singlet/Triplet Splitting in Carbenes
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Asymptotic-correction V

Polarizabilities

187

Table 10-3. Compilation of mean absolute deviations for static average polarizabilities [a.u.] of small main group
molecules from different sources.

13 molecules, POL basis set, McDowell, Amos and Handy, 1995

HF 1.18 BD(T) 0.36
MP2 0.36 LDA 0.99
MP4 0.40 BLYP 0.95

19 molecules, augmented TZP STO basis set, van Gisbergen et al., 1996

LDA 0.92 LB94 0.63a

BP86 0.43

8 molecules, numerical, basis set free, Dickson and Becke, 1996

LDA 0.60

16 molecules, POL basis set, Van Caillie and Amos, 1998

HF 1.06 B3LYP 0.38
LDA 0.99

16 molecules, d-aug-cc-pVTZ basis set, Van Caillie and Amos, 1998

HF 1.07 B3LYP 0.39
LDA 0.98

14 molecules, POL basis set,Tozer and Handy, 1998

LDA 0.83 HCTH 0.36
BLYP 0.90 HCTH(AC) 0.26
B3LYP 0.33 MP2 0.24

5 molecules,TZVP+FIP basis set, Calaminici, Jug and Köster, 1998

HF 1.29 BLYP 0.41
LDA 0.33 CCSD(T) 0.31

12 molecules, POL basis set, Adamo et al., 1999

MP2 0.25 B97 0.42
MP4 0.28 B3LYP 0.39
BD(T) 0.23 HCTH 0.29
PBE1PBE 0.20

20 molecules, POL basis set, Cohen and Tozer, 1999

HF 1.76 HCTH 1.38
MP2 0.95 B3LYP 1.79
BD 1.29 B97 1.50
BLYP 2.25 B97-1 1.53

a Note that the signed average error is considerably smaller. The LB94 potential shows no systematic errors.

10.3  Polarizabilities
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Asymptotic-correction VI

The asymptotic correction does fix what is called the
one-electron self-interaction error.

But there is no clear way to apply an asymptotic correction in
the bulk phase. And the self-interaction error manifests itself
there too.

We know that Hartree–Fock is free of self-interaction, so one
solution to the problem is to include more and more
Hartree–Fock-type exchange in KS-DFT. But this leads to an
overall loss in accuracy.
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Asymptotic-correction VII

A better solution is to use range-separation: Split the e-e
interaction operator into a short- and long-range part:

1

r12
=

erfc(βr12)

r12
+

(1− erfc(βr12)

r12

The complementary error function is chosen as it allows easy
integral evaluation. Now use DFT on the short-range part and
Hartree–Fock-exchange on the long-range part. In this way
you get the best of both worlds.

The DFT usually takes care of all correlation, and only the
local part of the exchange which it is known to get right. HF
(or something better) then takes care of the long-range
exchange.

Functionals that use this technique are termed
range-separated or Long-range Corrected (LC) functionals.
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Asymptotic-correction VIII

Functionals such as CamB3LYP, LC-PBE, LC-PBE0 use this
principle.

There is one free parameter in this model: the extent of the
range-separation controlled by β. Several authors have worked
on techniques to determine β self-consistently. But issues
remain: in a strongly anisotropic system, β should probably
vary with position, or in direction. Issues like this remain
unsolved.

It is also possible to use post-Hartree–Fock methods on the
long-range part. For example, you could use MP2 or the RPA
(random phase approximation). This would allow the
dispersion interaction to be described by DFT. More on this
next.
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Dispersion I

The other problem with DFT is that almost all conventional
functionals fail to describe the dispersion (van der Waals)
interaction. This is a long-range and non-local interaction that
arises from the correlation of quantum mechanical fluctuations on
the interaction species.
Consider the argon dimer: this is a dispersion-bound system, that
is, the attraction between two argon atoms arises purely from the
dispersion interaction. This is typical of the rare-gas atoms. On
the next slide we see interaction energies calculated for this system
with MP2, LDA, PBE and B3LYP using the aug-cc-pVTZ basis
set using the counterpoise correction.
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Dispersion II
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Dispersion III

The reference MP2 energies exhibit the classic interaction
energy curve as expected. Recall that MP2 is not perfect for
this system, but it will serve as a reference here.

The density functionals are all over the place. LDA and PBE
show some binding but is it from the dispersion?

The clue is in the long-range behaviour: all density functionals
decay to zero much too quickly with R.

On the other hand, the dispersion energy (in the MP2 tail) is
more slowly decaying as R−6.

B3LYP is completely repulsive!
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Perturbation Theory I

The dispersion energy first arises at second-order in intermolecular
perturbation theory.
Consider a pair of spherical atoms A and B placed along the z-axis
and separated by a distance R. The Hamiltonian for this system
may be written as

H = H(0) + H(1),

where H(0) = H
(0)
A + H

(0)
A is the sum of the unperturbed

Hamiltonians of A and B, and, the intermolecular interaction
operator takes the leading-order multipole expanded form:

H(1) =
1

R3
(x̂Ax̂B + ŷAŷB − 2ẑAẑB),
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Perturbation Theory II

where, x̂A is the position operator (dipole moment operator) along
the x-axis and centred at A.
If H

(0)
A |m〉 = E

(0)
A,m|m〉 and H

(0)
B |n〉 = E

(0)
B,n|n〉, then a convenient

basis for the dimer are the states |mn〉.
The zeroth order wavefunction for this system is then |00〉 and the

zeroth order energy is E (0) = E
(0)
A,0 + E

(0)
B,0.

Q:

Show that the first-order Raleigh–Schrödinger perturbation the-
ory (RSPT) energy correction for this system is zero. That is,

E (1) = 〈00|H(1)|00〉 = 0.
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Perturbation Theory III

The second-order dispersion energy for the two interacting systems
takes the standard Raleigh–Schrödinger form

E (2) ≡ E
(2)
disp = −

∑
m 6=0,n 6=0

|〈00|H(1)|mn〉|2

E
(0)
A,m + E

(0)
B,n − E

(0)
A,0 − E

(0)
B,0

.

This term can be evaluated using ideas borrowed from
linear-response time-dependent DFT (To find out more about
LR-TDDFT see the book by Carsten), but here we will use the
average energy approximation to simplify this expression.
In the average energy approximation each energy difference in the

denominator is approximated as a constant E
(0)
m − E

(0)
0 ≈ ∆ which

will represent an average excitation energy, that will typically be
the atomic ionisation energy.
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Perturbation Theory IV

Q:

Show that in this approximation the dispersion energy for two
identical atoms may be written as

E
(2)
disp ≈ −

C6

R6
,

where

C6 =
3

∆
〈0|ẑ2|0〉.

Hints:

Use the resolution of the identity to result in an expression
that involves terms such as 〈0|xy |0〉.
Use the fact that the state |0〉 is invariant under reflection in,
say, the yz-plane to show that such terms are zero.
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Perturbation Theory V

Using the expression for the dynamic polarizability:

αij(ω) = 2
∑
n 6=0

ωn0〈0|ri |n〉〈n|rj |0〉
ω2
n0 − ω2

it can be shown (try it!) that in the average energy approximation

C6 =
3

4
∆α(0)2,

where α(0) is the static polarizability.



KS-DFT KS energies Self-Interaction AC Dispersion Summary

Perturbation Theory VI

This is the origin of the well-known −C6
R6 form for the van der

Waals, or dispersion interaction. A few comments about this
expression:

It is only the first term in an infinite series. More generally we
will have an expansion like −C6

R6 − C7
R7 − C8

R8 · · · .
The Cn coefficients will generally be orientationally dependent.

For a spherically symmetric system, you can show (using
symmetry arguments) that both the angular dependence and
the odd-n terms vanish.

The expansion diverges as R → 0 so it must be damped using
functions that cancel out the offending powers of 1/R.
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Perturbation Theory VII

For a molecular system the expansion is usually generalised to
include a double sum over the atoms a in molecule A and
atoms b in molecule B:

E
(2)
disp[AB] = −

∑
a∈A,b∈B

∞∑
n=6

C ab
n

rnab
.

For low-dimensional systems with small HOMO–LUMO
(band) gaps, this expression is qualitatively wrong as it
implicitly assumes that all electron fluctuations (see next topic
on Drude oscillators) are local. This is not the case in such
materials and we get a substantial contribution from the
long-range plasmon-like fluctuations. This leads to the
presence of terms in the expression that behave like 1/R2.
(See the Casimir force and papers by Misquitta et al. and
Tkatchenko et al. that have addressed this unusual case.)
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Drude Model I

An alternative picture for the dispersion energy arises from coupled
quantum Drude oscillators as follows.
The dispersion energy cannot be described in terms of classical
interactions as the electrostatic and induction terms can. A
semi-classical picture is required.
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Drude Model II

Model each molecule with a fixed charge +Q at the centre and an
oscillating charge −Q. In the usual scaled units (i.e. energy in
units of hν = ~ω, length in units of (~2/km)1/4) the Hamiltonian
is (assuming infinite separation):

H = −1

2

∂2

∂zA
2

+
1

2
zA

2 − 1

2

∂2

∂zB
2

+
1

2
zB

2. (5)

The energy is the sum of the individual energies, i.e.,
EvAvB = vA + vB + 1. The ground state energy (vA = vB = 0) is 1
unit, i.e. hν.
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Drude Model III

If the instantaneous displacements are zA(t) and zB(t), the dipole
moments on A and B are µA = −QzA(t) and µB = −QzB(t),
respectively.
At a finite separation R, these dipoles interact. The general form
of the dipole–dipole interaction operator is (Q: How does it relate
to the earlier form used in the Perturbation Theory section above?)

Hµµ = − µ̂Aµ̂B
R3

(
2 cos θA cos θB − sin θA sin θB cosφ

)
,

Here, θA = θB = π and φ = 0 so the Hamiltonian at finite
separations has the additional term czAzB where c = −2Q2

R3 .
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Drude Model IV

Using the new variables Z1 =
√

1
2(zA + zB) and

Z2 =
√

1
2(zA− zB), the potential term in the Hamiltonian becomes

V =
1

2
zA

2 + czAzB +
1

2
zB

2 =
1

2
(1 + c)Z1

2 +
1

2
(1− c)Z2

2,

while the kinetic energy is unchanged in form:

T = −1

2

∂2

∂zA
2
− 1

2

∂2

∂zB
2

= −1

2

∂2

∂Z1
2
− 1

2

∂2

∂Z2
2
.
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Drude Model V

So we now have an oscillator Z1 with frequency
√

1 + c , and
another, Z2, with frequency

√
1− c . The allowed energies (in the

original scaled units) are now (v1 + 1
2)
√

1 + c + (v2 + 1
2)
√

1− c .
In a classical system the coupling doesn’t change the minimum
energy, which occurs when both oscillators are at rest. That is,
zA = zB = 0, so Z1 = Z2 = 0 also, and the total energy is zero.
A quantum system, however, has zero-point energy: 1 unit in the
original uncoupled system.
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Drude Model VI

When v1 = v2 = 0 the energy of the interacting system is

E =
1

2
(
√

1 + c +
√

1− c) =
1

2
[(1 +

1

2
c − 1

8c
2 + · · · )

+ (1− 1

2
c − 1

8c
2 − · · · )]

= 1− 1
8c

2 − · · · .

That is, the zero-point energy is smaller for the correlated
oscillators than for the uncoupled ones, whether c is positive or
negative. The stabilization energy is the Drude approximation to
the dispersion.
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Drude Model VII

The Drude expression for the dispersion energy is −1
8c

2 = − Q4

2R6

which varies as 1
R6 . The coefficient of this term is usually labeled

C6 and, inserting the energy factors scaled out, is defined as

C6 =
~ωQ4

2(4πε0)2k2
.

We now need to relate Q and k to measurable quantities. This is
done using classical ideas.
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Drude Model VIII

If the charge −Q extends by z in an electric field E then balancing
forces we must have kz = −QE , or z = −QE

k . Now, by definition,

µ = −zQ = Q2

k E . But, by definition of the polarizability, µ = αE ,
therefore

α =
Q2

k
.

This allows us to re-write the C6 as

C6 =
~ωα2

2(4πε0)2
.
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Drude Model IX

In 3-dimensions this expression becomes

C6 =
3~ωα2

4(4πε0)2
,

Q: Show this!

and taking, as London did, ~ω = EI , the ionization energy, we get

C6 =
3EIα

2

4(4πε0)2
.

This is an approximation, but it contains all the correct physics.
The dispersion energy is always attractive (at second-order) and
can be interpreted as arising from a correlation in the electronic
fluctuations on the molecules.
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Drude Model X

In this phenomenological model, the dispersion energy arises
from the correlations of quantum fluctuations. It is a purely
quantum phenomenon and has no classical analogue.

Further, it as it is a non-local phenomenon, we can now
understand why local and semi-local density functional are
unable to describe this energy. Functionals need to be
explicitly non-local to be able to describe the dispersion
energy.

However many density functionals can be corrected to account
for the missing dispersion by adding to the DFT energy a
term like:

Edisp = −
∑
b>a

fswitch(βrab)
C ab
6

r6ab
,
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Drude Model XI

where a and b are atomic sites separated by rab and with a
dispersion coefficient C ab

6 . The switching function
fswitch(βrab) which typically depends on one or more
parameters (here only one is indicated) has to be very
carefully chosen to avoid double-counting the dispersion at
short range. Also, this switching function needs to be tuned
to each density functional.

This kind of correction was first introduced in 2001 by Wu et
al. from the Scoles group, and was generalized by Grimme in
2004. Grimme has subsequently improved this correction in
methods termed ‘D2’ (2006), ‘D3’ (2010), and a ‘D4’
correction is due to come out soon.
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Drude Model XII

In many of these models, it is assumed that the dispersion
coefficient between atoms is fixed and does not vary with
changes in chemical environment. This is often a poor
approximation.

Furthermore, the C6 term is only one term in the dispersion
expansion and it is generally angular-dependent.

Additionally, for semiconductors and metals additional terms
(as low as C2) arise from plasmon modes. These are long
wavelength fluctuations arising from the conduction electrons.
For such systems the above model breaks down.

There are explicitly non-local functionals which do not need
this correction, but in practice, this correction, if well tuned,
can be more accurate than many other more sophisticated
non-local functionals.
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Drude Model XIII

There are at present many empirical dispersion correction
models and some that are less empirical. One of the latter is
the so-called ‘many-body dispersion’ , or MBD, method of
Tkatchenko, diStasio and others (2012). Here the dispersion
energy is computed through a coupled dipole oscillator model
in much the same way as we coupled the two Drude
oscillators. This method uses a physical model for the terms
and can account for much of the anisotropy in the dispersion.
The authors call this a ‘many-body’ method as the atomic
polarizabilities of the atoms (which are the bodies) are
coupled together to result in a many-atom, or many-body
dispersion energy.
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Drude Model XIV

One problem all empirical dispersion models face is the choice
of the switching function. No matter how accurate the
long-range dispersion energy may be, if the switching is not
done correctly, errors can and will be large. It is quite possible
that the main differences in the various models is not so much
in the choice of dispersion parameters, but is in the methods
used to switch from the dispersion model to the
density-functional.

Finally, just to emphasise an important and often ignored
point: none of the dispersion models used in DFT actually
compute the dispersion energy as defined through a
perturbation theory like SAPT (symmetry-adapted
perturbation theory — one of the most accurate methods for
intermolecular interactions). Instead what is computed is the
leading and perhaps next-leading order contribution only. This
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Drude Model XV

is often sufficient for DFT as the higher order terms come into
play mainly at short-range, and this is where the switching
function together with the density-functional are meant to
account (i.e., fudge) the missing terms. Therefore it is wrong
to term these energies as the dispersion energy, nevertheless it
is often, erroneously, done in the literature.



KS-DFT KS energies Self-Interaction AC Dispersion Summary

DFT: Best usage I
How do we best use DFT?

Use a basis set appropriate to the problem!

Try a range-separated functional, and determine the
range-separation needed by enforcing the DFT version of
Koopman’ theorem: εHOMO = −I
The DFT+U scheme (which we have not discussed) may be
appropriate when you have transition metals in your system.
Here, an empirical parameter (the ‘U’) is used to fix the
self-interaction problem.

Use a dispersion correction. This should be the default as any
correction may prove better than none.
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DFT: Best usage II
How do we best use DFT?

If you are after subtle correlation effects use range-separation
with the RPA (random-phase approximation) for the
long-range. This account for both exchange and correlation
(approximately) at long-range.

For weak interactions consider the dispersionless
density-functional (dlDF) of Pernal et al. (2009). To this you
need to add an accurate dispersion model. This method has
been shown to result in reliably accurate interaction energies
for weakly bound complexes.

For large systems where even DFT becomes too
computationally expensive consider the newer of the
tight-binding DFT (TB-DFT) methods. These are of course
more approximate.
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