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HF in brief I

For an N-electron Slater determinant wavefunction:

Ψ(x1, x2, · · · , xN) =
1√
N!

∣∣∣∣∣∣∣∣∣
χi (x1) χj(x1) · · · χk(x1)
χi (x2) χj(x2) · · · χk(x2)

...
...

. . .
...

χi (xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣
≡ |χiχj · · ·χk〉

we will show that the energy is written as:

〈Ψ|H|Ψ〉 =
∑
i

〈i |h|i〉+
∑
i>j

[〈ij |ij〉 − 〈ij |ji〉]
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HF in brief II

The Hartree–Fock approximation to the ground state energy is
found by varying the spin-orbitals {χi} to minimize the energy:

E0 ≤ EHF = min〈Ψ|H|Ψ〉

subject to the conditions that the spin-orbitals are orthonormal.
As before, but with many more steps, the variational principle
leads to the following equations for the spin-orbitals

f (i)χ(xi ) = εχ(xi )

where f (i) is an effective operator called the Fock operator

f (i) = −1

2
∇2

i −
∑
α

Zα
riα

+ vHF(i)
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HF in brief III

where vHF(i) is the Hartree–Fock effective potential that depends
on the solutions to the above equations. So we must solve these
equations self-consistently: Make a guess for the solutions;
construct the potential vHF(i) from this guess; solve the Fock
equations; get new solutions; and repeat till convergence.
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Matrix Elements I

We will require a number of matrix elements for Hartree–Fock and
post-HF methods. You have already seen these when we worked
through the H2 system. The rules for general N-electron matrix
elements are very similar to those for the 2-electron case; the only
complication is the added complication brought out by the algebric
complexity of the N-electron Slater determinants.

Szabo & Ostlund describes the calculation of these matrix
elements in some detail and I expect you to look through those
derivations in case the ones presented here are not clear enough for
you. A problem with the S&O derivations is that they are too long.
More on this soon.
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Matrix Elements II

We are after matrix elements of the form

〈K |O1|L〉 and 〈K |O2|L〉

where |K/L〉 are N-electron Slater determinant wavefunctions. In
general, the N-electron determinant |Ψ〉 can be written as

|Ψ〉 =
1√
N!

N!∑
u=1

σuPu{χ1(1)χ2(2) · · ·χN(N)}

Here Pu is a permutation operator that can be expressed as a
product of binary permutations:

Pu = PijPkl · · ·

and σu is phase factor that is +1 if Pu contains an even number of
binary permutations and is −1 otherwise.
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Matrix Elements III

Binary permutation operators swap electronic states:

Pij |φiφj · · ·φq〉 ≡ Pij |ijkl · · · q〉
= −|jikl · · · q〉.

In the Schrodinger picture this can be thought of as swapping the
electronic labels 1 and 2. Here are some useful properties of these
operators:

Idempotent: PijPij = Î .

Hermitian: Pij † = Pij .
The permutation operators do not generally commute in a
Hilbert space with more than two electrons.

Commute with the Hamiltonian: Pij Ĥ = ĤPij .
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Matrix Elements IV

We now define the antisymmetrization operator A as

A =
1√
N!

N!∑
u=1

σuPu

Recall that the Hartree product (HP) is defined as
ΨHP = {χ1(1)χ2(2) · · ·χN(N)}, so we will often write |Ψ〉 more
compactly as

|Ψ〉 = AΨHP.
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Matrix Elements V

The algebra of permutation operators is described in detail in
Quantum Mechanics, Ch. XIV, Vol. 2, by Cohen-Tannoudji et
al.. Read this before attempting the following.

Q:

Show the following results:

The operator A commutes with the Hamiltonian and any
many-electron operator that is completely symmetric
under exchange of indices.

The operator A is Hermitian: A = A†

AA =
√

N!A.

AĤ = ĤA.
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Matrix Elements VI

These properties allow us to significantly simplify matrix element
evaluation, for consider

〈Ψ|H|Ψ〉 = (N!)−1
N!∑
u=1

σu

N!∑
w=1

σw ×
∫

dx1 · · · dxN

Pu{χ1(1)χ2(2) · · ·χN(N)}∗ H Pw{χ1(1)χ2(2) · · ·χN(N)}

Handling two permutation operators is tedious. S&O do it and you
should see how these proofs go, but we will use the following
theorem to make the proofs significantly easier.
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Matrix Elements VII

Theorem

〈Ψ|H|Φ〉 =
√

N!〈ΨHP |H|Φ〉.

Proof:

〈Ψ|H|Φ〉 = 〈AΨHP|H|AΦHP〉
= 〈ΨHP|H|AAΦHP〉

= 〈ΨHP|H|
√

N!AΦHP〉

=
√

N!〈ΨHP|H|Φ〉
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Matrix Elements VIII

Using the above theorem we can write

〈Ψ|H|Ψ〉 =
√

N!

∫
dx1 · · · dxN

{χ1(1)χ2(2) · · ·χN(N)}

H
1√
N!

N!∑
u=1

σuPu{χ1(1)χ2(2) · · ·χN(N)}

There is only one permutation operator to deal with here.
Now we will consider a series of cases with the operator being: C
(a C-number),

∑
i h(i), and

∑
i>j r−1ij . Additionally, we will

consider matrix elements involving Ψ and singly and doubly excited
determinants: Ψa

i and Ψab
ij . We will not consider higher excitations

as the rules for those follow from these.
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Matrix Elements IX

C: C-number

〈Ψ|C |Ψ〉 =

C 〈{χ1(1)χ2(2) · · ·χN(N)}|
N!∑
u=1

σuPu{χ1(1)χ2(2) · · ·χN(N)}〉

Pu = E : we get C 〈1|1〉〈2|2〉 · · · = C .

Pu = P12: we get −C 〈1|2〉〈1|2〉〈3|3〉 · · · = 0.

Similarly for other permutations.

Therefore, 〈Ψ|C |Ψ〉 = C . Which also means that |Ψ〉 as defined is
normalized!
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Matrix Elements X∑
i h(i): One-electron operator

Consider h(i) only:

〈Ψ|h(i)|Ψ〉 =

〈{χ1(1)χ2(2) · · ·χN(N)}|h(i)|
N!∑
u=1

σuPu{χ1(1)χ2(2) · · ·χN(N)}〉

Pu = E : 〈1|1〉 · · · 〈i |h(i)|i〉 · · · = 〈i |h|i〉.
Pu = Pij : −〈1|1〉 · · · 〈i |h(i)|j〉 · · · 〈j |i〉 · · · = 0.

Similarly, any other permutation gives a 0.

Therefore, 〈Ψ|h(i)|Ψ〉 = 〈i |h|i〉, and

〈Ψ|
∑
i

h(i)|Ψ〉 =
∑
i

〈i |h|i〉 =
∑
i

hii .
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Matrix Elements XI

∑
i>j r

−1
ij : two-electron operator

Consider r−1ij only:

〈Ψ|r−1ij |Ψ〉 =

〈{χ1(1)χ2(2) · · ·χN(N)}|r−1ij |
N!∑
u=1

σuPu{χ1(1)χ2(2) · · ·χN(N)}〉

Pu = E : 〈1|1〉 · · · 〈i(i)j(j)|r−1ij |i(i)j(j)〉 · · · = 〈ij |ij〉 = (ii |jj).

Pu = Pij :
−〈1|1〉 · · · 〈i(i)j(j)|r−1ij |i(j)j(i)〉 · · · = −〈ij |ji〉 = −(ij |ji).

Any other permutation gives a 0.
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Matrix Elements XII

Therefore, 〈Ψ|r−1ij |Ψ〉 = 〈ij |ij〉 − 〈ij |ji〉, and

〈Ψ|
∑
i>j

r−1ij |Ψ〉 =
∑
i>j

[〈ij |ij〉 − 〈ij |ji〉] =
∑
i>j

〈ij ||ij〉.
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Matrix Elements XIII

Putting these results together we can now write down the energy
expression of any single-determinant wavefunction |Ψ〉:

〈Ψ|H|Ψ〉 =
∑
i

〈i |h|i〉+
∑
i>j

[〈ij |ij〉 − 〈ij |ji〉]

=
∑
i

〈i |h|i〉+
∑
i>j

[(ii |jj)− (ij |ji)]
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Matrix Elements XIV

Singly excited states: Ψa
i = (N!)−1/2A{χ1 · · ·χi−1χaχi+1 · · · }

〈Ψa
i |h|Ψ〉 =

〈{χ1 · · ·χi−1χaχi+1 · · · }|h|
N!∑
u=1

σuPu{χ1 · · ·χi−1χiχi+1 · · · }〉

Contributions from h =
∑

j h(j) must eliminate the zero overlap
term 〈χa|χi 〉. The only term that can do this is h(i). Now consider
the cases:

Pu = E : 〈1|1〉 · · · 〈a(i)|h(i)|i(i)〉 · · · = 〈a|h|i〉 = hai .

Pu = Pij : −〈1|1〉 · · · 〈a(i)|h(i)|j(i)〉 · · · 〈j(j)|i(j)〉 · · · = 0.

All other permutations result in a 0.

Therefore 〈Ψa
i |h|Ψ〉 = 〈a|h|i〉 = hai .
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Matrix Elements XV

Singly excited states: Ψa
i = (N!)−1/2A{χ1 · · ·χi−1χaχi+1 · · · }

〈Ψa
i |
∑
kl

r−1kl |Ψ〉 =

〈{χ1 · · ·χi−1χaχi+1 · · · }|
∑
kl

r−1kl |
N!∑
u=1

σuPu{χ1 · · ·χi−1χiχi+1 · · · }〉

Once again, to eliminate the zero overlap term 〈χa|χi 〉 we must
have either k = i or l = i . It doesn’t matter which as these are
dummy variables. So let us choose k = i and l = j (j goes over all
electrons). We have effectively made the replacement:∑

kl r−1kl →
∑

j r−1ij .
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Matrix Elements XVI

Pu = E :

〈{χ1 · · ·χi−1χaχi+1 · · ·χj · · · }|
∑
j

1

rij
|{χ1 · · ·χi−1χiχi+1 · · ·χj · · · }〉

=
∑
j

〈χa(i)χj(j)|r−1ij |χi (i)χj(j)〉 ≡
∑
j

〈aj |ij〉 =
∑
j

(ai |jj)

Pu = Pij :

− 〈{χ1 · · ·χi−1χaχi+1 · · ·χj · · · }|
∑
j

1

rij
|{χ1 · · ·χi−1χjχi+1 · · ·χi · · · }〉

= −
∑
j

〈χa(i)χj(j)|r−1ij |χj(i)χi (j)〉 ≡ −
∑
j

〈aj |ji〉 = −
∑
j

(aj |ji)
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Matrix Elements XVII

All other permutations — those that do not involve i — will
result in a 0. Show it!

So we have the result:

〈Ψa
i |
∑
kl

1

rkl
|Ψ〉 =

∑
j

[〈aj |ij〉 − 〈aj |ji〉]

=
∑
j

[(ai |jj)− (aj |ji)]

And, including the one-electron terms, we have:
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Matrix Elements XVIII

〈Ψa
i |H|Ψ〉 = 〈a|h|i〉+

∑
j

[〈aj |ij〉 − 〈aj |ji〉]

= 〈a|h|i〉+
∑
j

[(ai |jj)− (aj |ji)]
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Matrix Elements XIX

Doubly excited states:
Ψab

ij = (N!)−1/2A{χ1 · · ·χi−1χaχi+1 · · ·χj−1χbχj+1 · · · }

Q:

Show that

There are no contributions from the one-electron
operator h =

∑
i h(i).

The two-electron operator
∑

kl
1
rkl

results in single
contribution: (ai |bj)− (aj |bi). No summations here.

Consequently,

〈Ψab
ij |
∑
kl

1

rkl
|Ψ〉 = 〈ab|ij〉 − 〈ab|ji〉 = (ai |bj)− (aj |bi)
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Matrix Elements XX

This time there is no contribution from the one-electron part, so

〈Ψab
ij |H|Ψ〉 = 〈ab|ij〉 − 〈ab|ji〉

= (ai |bj)− (aj |bi)
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Introduction I

We now know that the energy of a single determinant |Ψ〉 can be
written as

〈Ψ|H|Ψ〉 =
∑
i

〈i |h|i〉+
∑
i>j

[〈ij |ij〉 − 〈ij |ji〉]

=
∑
i

〈i |h|i〉+
1

2

∑
ij

[〈ij |ij〉 − 〈ij |ji〉]

The problem here is that we still do not know what the
spin-orbitals (SOs) χi are or how to calculate them.
Here, the variational principle comes to our aid and allows us to
re-cast this optimization problem as an eigenvalue equation. More
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Introduction II

importantly, it will turn out to be a one-electron eigenvalue
equation of the form

f̂ |χm〉 = εm|χm〉.

We will show that the one-electron Fock operator f̂ is defined as

f (1) = h(1) + vHF(1),

where h(1) is the usual one-electon Hamiltonian and vHF is the
Hartree–Fock effective potential that is defined as follows:

vHF(1) =
∑
i

[Ji (1)−Ki (1)],
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Introduction III

where the Coulomb and exchange operators are defined as

Ji (1)χm(1) =

[∫
dx2

χ∗i (2) χi (2)

r12

]
χm(1)

Ki (1)χm(1) =

[∫
dx2

χ∗i (2) χm(2)

r12

]
χi (1)
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Introduction IV

Have a look at the form of the Coulomb operator:

Ji (1) =

∫
dx2

χ∗i (2) χi (2)

r12
=

∫
dx2

ρi (2)

r12
.

This is the Coulomb potential of the electron in orbital χi . So in
the expression

Ji (1)χm(1) =

[∫
dx2

χ∗i (2) χi (2)

r12

]
χm(1)

electron 1 in orbital χi does not see the potential from a point
electron at 2, but rather, interacts with this electron via the
classical Coulomb potential arising from the electronic density.
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Introduction V

Of course, this is a quantum system, so we also have an exchange
interaction. Unlike the Coulomb interaction, this one has a
complex form: the exchange operator includes the orbital on which
it is operating.

Ki (1)χm(1) =

[∫
dx2

χ∗i (2) χm(2)

r12

]
χi (1)

=

[∫
dx2

χ∗i (2) P12 χi (2)

r12

]
χm(1)

where, in the second form, we have used the permutation operator
P12 to perform the exchange. This also allows us to write the
operator Ki in more conventional form.
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Introduction VI

Because the electrons do not interact directly with other electrons,
but rather, see the average potential (Coulomb and exchange) from
other electrons, Hartree–Fock theory is called a mean-field theory.
Here is the Fock Hamiltonian again:

f (1) = h(1) +
∑
i

∫
dx2

χ∗i (2) (1− P12) χi (2)

r12

We will now prove this and demonstrate the the SOs χa are
eigenstates of this Fock operator. (They are not eigenstates of the
Hamiltonian H!)
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Functionals I

Revision of functionals and functional derivatives.
See Appendix B in Ullrich’s Time-Dependent Density-Functional
Theory for an overview of this topic. Or else, a mathematical
physics book such as the one by Arfken.
Definition of the functional derivative:

δF [φ]

δφ(y)
= lim

ε→0

1

ε
{F [φ(x) + εδ(x − y)]− F [φ(x)]}.
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Functionals II

Alternative definition:
If F [y ] is a functional of y(x), and if δy(x) is some arbitrary
variation in y , then we may define dF = F [y + δy ]− F [y ]. The
functional derivative of F [y ] w.r.t. y(x) is then defined via

dF =

∫
dx
δF [y ]

δy(x)
δy(x).

The latter definition is often more useful than the first, though the
first is the one we should fall back on in case of doubt.
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Functionals III

Q:

F [y ] =

∫
y(x)2dx .

Show that

δF [y ]

δy(x)
= 2y(x).

Use both definitions to do this.
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Functionals IV

Useful results:

F [φ] = g(φ(x))

δF [φ]

δφ(y)
=
δg(φ(x))

δφ(y)
= g ′(φ(x))δ(x − y).

F [φ] =
∫

g(φ(x))dx

δF [φ]

δφ(y)
= g ′(φ(y)).

F [φ] =
∫

g(∇φ(x))dx

δF [φ]

δφ(y)
= −∇g ′(∇φ(y)).

The last result follows using integration by parts. Using the above
you can derive the Euler–Lagrange equations for the functional
F [x , y(x), y ′(x)]. Try it.
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Functionals V

Product Rule:

δF [φ]G [φ]

δφ(y)
= F [φ]

δG [φ]

δφ(y)
+
δF [φ]

δφ(y)
G [φ].

Chain Rule:

δF [γ[φ]]

δφ(y)
=

∫
dy ′

δF [γ]

δγ(y ′)

δγ(y ′)

δφ(y)
.



Intr Matrix Elements HF Funcs Derivation of HF equations

Functionals VI

When we write the energy in terms of the spin-orbitals we will end
up with expressions that involve both χi and its complex conjugate
χ∗i . Mathematically these are independent functions. One way of
looking at this is to consider that the real and imaginary parts of
the spin-orbitals can be varied independently.
A consequence of this is that the energy functional can be thought
of as being a functional of both χi and χ∗i . So the variation can be
carried out w.r.t. either, or both. But as the Hamiltonian is
Hermitian, only one need be considered, and it is usually more
convenient to conduct the variation w.r.t. χ∗i .
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HF: Derivation I

We need to minimize:

E0[{χi}] = 〈Ψ|H|Ψ〉 =
∑
i

〈i |h|i〉+
1

2

∑
i ,j

[〈ij |ij〉 − 〈ij |ji〉]

w.r.t. the {χi} subject to the conditions 〈χi |χj〉 = δij . The
orthonormality condition can be included using the method of
Lagrange multipliers, i.e., we minimize the functional

L[{χi}] = E0[{χi}]−
N∑
ij

εji (〈χi |χj〉 − δij)
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HF: Derivation II

First a result we will need:

Q:

We will impose the condition that L is real. This is reasonable
as the energy is real. Show that this condition implies εji = ε∗ij ,
i.e., the Lagrange multiplier matrix is Hermitian.

Hint: Set sij = 〈χi |χj〉−δij and consider the real sum
∑

ij εji sij .
Use the fact that sij = s∗ji to show the required result.
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HF: Derivation III

L[{χi}] =
∑
i

〈i |h|i〉+
1

2

∑
i ,j

[〈ij |ij〉 − 〈ij |ji〉]−
N∑
ij

εji (〈χi |χj〉 − δij)

0 =
δL
δ〈k |

= h|k〉+
1

2

∑
j

〈j | 1

r12
|j〉|k〉+

1

2

∑
i

〈i | 1

r12
|i〉|k〉

− 1

2

∑
j

〈j | 1

r12
|k〉|j〉 − 1

2

∑
i

〈i | 1

r12
|k〉|i〉 −

∑
j

εjk |j〉

= h|k〉+
∑
i

〈i | 1

r12
|i〉|k〉 −

∑
i

〈i | 1

r12
|k〉|i〉 −

∑
i

εik |i〉
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HF: Derivation IV

We can write this as∑
i

εik |i〉 = h|k〉+
∑
i

〈i | 1

r12
|i〉|k〉 −

∑
i

〈i | 1

r12
|k〉|i〉

= h|k〉+
∑
i

〈i | 1

r12
(1− Pik)|i〉|k〉

=

(
h +

∑
i

〈i | 1

r12
(1− Pik)|i〉

)
|k〉

= f |k〉

where Pik is the permutation operator that permutes the states i
and k , and the last step defines the Fock operator.
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HF: Derivation V

We now have the Fock equations, but they are in an unusual form:

f |k〉 =
∑
i

εik |i〉,

or

〈i |f |k〉 = εik .

What we’d like to do is re-cast these equations in their canonical
form in which εik = εkδik . How can we do this?
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HF: Derivation VI

Before moving on let us analyse the Fock operator f :

f = h +
∑
i

〈i | 1

r12
(1− Pik)|i〉.

This can be written as

f (1) = h(1) +
∑
i

[∫
dx2

χ∗i (2) χi (2)

r12
−
∫

dx2
χ∗i (2) P12 χi (2)

r12

]
= h(1) +

∑
i

[Ji (1)−Ki (1)]

= h(1) + vHF(1),
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HF: Derivation VII

where h(1) is the usual one-electron Hamiltonian and vHF is the
Hartree–Fock effective potential that is defined as follows:

vHF(1) =
∑
i

[Ji (1)−Ki (1)] ,

and the Coulomb and exchange operators are defined as

Ji (1)χm(1) =

[∫
dx2

χ∗i (2) χi (2)

r12

]
χm(1)

Ki (1)χm(1) =

[∫
dx2

χ∗i (2) χm(2)

r12

]
χi (1).
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HF: Derivation VIII

Have a look at the form of the Coulomb operator:

Ji (1) =

∫
dx2

χ∗i (2) χi (2)

r12
=

∫
dx2

ρi (x2)

r12
,

where ρi = χi ∗ χi is the density associated with spin-orbital i .
This is the Coulomb potential of the electron in orbital χi , so in
the expression

Ji (1)χm(1) =

[∫
dx2

χ∗i (2) χi (2)

r12

]
χm(1)

electron 1 in orbital χm does not see the 1/r12 potential from a
point electron at r2, but rather, interacts with this electron in an
average manner through the Coulomb potential Ji .
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HF: Derivation IX

The exchange operator is given in a similar way:

Ki (1)χm(1) =

[∫
dx2

χ∗i (2) P12 χi (2)

r12

]
χm(1)

=

[∫
dx2

χ∗i (2) χm(2)

r12

]
χi (1).

Only this time we need to include the permutation operator. Note
that this operator can operate either on the electron labels or on
the spin-orbital indices.
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HF: Derivation X

Because the electrons do not interact directly with other electrons,
but rather, see the average potential (Coulomb and exchange) from
other electrons, Hartree–Fock theory is called a mean-field theory.
Here is the Fock operator again:

f (1) = h(1) +
∑
i

∫
dx2

χ∗i (2) (1− P12) χi (2)

r12

In the Dirac formalism we will use

f = h +
∑
i

〈i | 1

r12
(1− Pik)|i〉.
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HF: Derivation XI

Once we have the spin-orbitals, the Hartree–Fock energy is given
by

〈Ψ|H|Ψ〉 =
∑
i

〈i |h|i〉+
∑
i>j

[〈ij |ij〉 − 〈ij |ji〉]

=
∑
i

〈i |h|i〉+
1

2

∑
ij

〈ij ||ij〉.
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HF: Derivation XII

Q:
What does the sum over i go over in the Fock operator? All
spin-orbitals? Only some sub-set of them?

Q:
In the Dirac notation we have the permutation operator Pik .
What is k here?

Q:
In what sense is the permutation operator Pik that acts on spin-
orbital labels equivalent to the operator P12 that exchanges
electron labels?

Q:
How many solutions to the Fock equation are there? I.e., what
is the dimension of the energy matrix ε?
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Canonical form I

The Fock equations in their non-canonical form are given by

f |i〉 =
∑
i

εji |j〉.

This implies that we can define the energy matrix:

εij =〈i |f |j〉.

We have shown that ε is an Hermitian matrix, so we can always
find a Unitary matrix, U that diagonalises it giving the diagonal
matrix ε′. That is

ε′ = U†εU,
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Canonical form II

where U†U = I. In index notation we have

ε′ij = ε′iδij = U∗kiεklUlj

= U∗ki 〈k|f |l〉Ulj

= 〈i ′|f |j ′〉,

where, in the last step we have defined a new set of spin-orbitals:

|i ′〉 ≡ χ′i =
∑
j

χjUji .
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Canonical form III

In this basis of what are called the canonical orbitals, the energy
matrix is diagonal so the Fock equations become

f |i ′〉 =
∑
i

ε′ji |j ′〉

=
∑
i

ε′iδij |j ′〉

= ε′i |i ′〉.

Equivalently we can write this as

f χ′i = ε′iχ
′
i .

This is the usual form of an eigenvalue equation. When codes like
NWChem present the spin-orbitals they present them in this,
canonical, form.
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Canonical form IV

There is one complication with the previous derivation: the Fock
operator is defined in terms of the spin orbitals {χi}, so when we
transform to the canonical orbitals {χ′i} we will have also changed

f̂ to f̂ ′. This would seem to imply that we have made a
fundamental change to the problem we were trying to solve.
However, as we will now show, the form of the Fock operator
implies that it remains invariant under a unitary transformation.

f (1) = h(1) +
∑
i

∫
dx2

χ∗i (2) (1− P12) χi (2)

r12

The one-electron Hamiltonian h(1) does not depend on the
spin-orbitals so the unitary transformation has no effect on this
term.
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Canonical form V

Consider the Coulomb operator:∑
i

J ′i (1) =
∑
i

∫
dx2

χ′i
∗(2) χ′i (2)

r12

=
∑
kl

∑
i

[U∗kiUli ]

∫
dx2

χ∗k(2) χl(2)

r12

=
∑
kl

[δkl ]

∫
dx2

χ∗k(2) χl(2)

r12

=
∑
k

∫
dx2

χ∗k(2) χk(2)

r12

=
∑
i

Ji (2) change of dummy index.

Here, the indices i , k , l all go over occupied orbitals only.
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Canonical form VI

Q:

Show that the exchange operator is also unchanged under a
unitary transformation of the occupied orbitals. I.e. show that∑

i K′i =
∑

i Ki .

Hence we get our result: f ′(1) = f (1): the Fock operator is
invariant under a unitary transformation of the occupied
spin-orbitals. Henceforth we always deal with canonical
spin-orbitals and drop the primes to write:

f χi = εiχi .



Intr Matrix Elements HF Funcs Derivation of HF equations

Canonical form VII

Pause here: Why does the unitary transformation apply to the
occupied spin-orbitals only? Better yet, what do we mean by
occupied?

The Fock operator yields an infinite number of solutions.

The ground-state is usually obtained by placing the
electron in the lowest energy spin-orbitals. These will be
the occupied orbitals.

The remaining will be the un-occupied or virtual orbitals.

The Fock operator itself contains only the occupied
orbitals.

Q: What is meant by the last statement?
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Canonical form VIII

Q:
Can you think of a scenario in which we may not place the
electrons in the lowest energy orbitals?

Index Notation:

Occupied orbitals: i , j , k , l
(S&O use a, b, c , d)

Un-occupied/virtual orbitals: a, b, c , d
(S&O use r , s, t, u)

General orbitals: m, n, o, p

Remember that the Fock operator is defined in terms of the
occupied orbitals but can operate on all orbitals.
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Canonical form IX

Notes:

The canonical spin orbitals are generally delocalised.

Like the non-canonical SOs, they are orthonormal.

We have proved that we can obtain a set of canonical SOs for
the occupied orbitals. It turns out that this can be done for
the virtual (un-occupied) SOs too.
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Orbital Energies I

What do the spin orbitals and orbitals energies mean? When we
solve the Fock equations we formally obtain an infinity of solutions
(any partial differential equation has an infinity of solutions). We
place the N electrons in the N lowest energy SOs. These are our
occupied orbitals. The others, the un-occupied ones, are called the
virtual SOs. There are an infinity of these (formally!). We will now
try to understand what these orbitals mean. But first, something
to think about

Q:

Why have we assumed (as we will) that the putting the elec-
trons in the N lowest energy SOs is the correct thing to do?
After all, our goal is to minimize the energy E0 which, as we
will soon see, is not the same as the sum of the energies of the
occupied SOs.
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Orbital Energies II

What are the orbital energies?

εi = 〈χi |f |χi 〉 = 〈χi |h +
∑
j

(Jj −Kj)|χi 〉

= 〈χi |h|χi 〉+
∑
j

[〈χi |Jj |χi 〉 − 〈χi |Kj |χi 〉]

= 〈i |h|i〉+
∑
j

[〈ij |ij〉 − 〈ij |ji〉]

= 〈i |h|i〉+
∑
j

〈ij ||ij〉
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Orbital Energies III

Now let’s look at the energies of an occupied and a virtual orbital:

Occupied orbital

εi = 〈i |h|i〉+
∑
j

〈ij ||ij〉 = 〈i |h|i〉+
∑
j 6=i

〈ij ||ij〉

We could eliminate the j = i case in the sum as 〈ii ||ii〉 = 0.
These is the way self-interaction is removed in Hartree–Fock
theory. Notice that the sum now includes Coulomb and
exchange interactions with N − 1 electrons.
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Orbital Energies IV

Virtual orbital

εa = 〈a|h|a〉+
∑
j

〈aj ||aj〉

Since j ∈ occ, we cannot make the same reduction in the sum
and see that εa is the energy of an electron in the virtual
orbital a and this electron interacts with N electrons in the
occupied orbitals.
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Orbital Energies V

Q: Do the orbital energies add up to the total energy?

N∑
i

εi =
∑
i

〈i |h|i〉+
∑
ij

〈ij ||ij〉

= E0 +
1

2

∑
ij

〈ij ||ij〉

So E0 6=
∑N

i εi ! The reason for this difference is that, as we have
just seen, εi includes the Coulomb and exchange interactions (in
the average, mean-field sense) with the other N − 1 electrons. So
by summing over all εi we double count and hence to get E0 we
need to remove half these interactions.
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Koopman’s Theorem I

To find out exactly what these Hartree–Fock orbital energies mean
we evaluate the Ionization Potential (IP) and Electron Affinity
(EA) while keeping all orbitals frozen (no relaxation allowed).
The IP is defined as the energy taken to remove an electron. We
will remove the electron from orbital k . This creates the N − 1
electron state

|Ψk(N − 1)〉 = ak |Ψ0〉

And
IP = Ek(N − 1)− E0(N)

where

E0(N) = 〈Ψ0(N)|H|Ψ0(N)〉
Ek(N − 1) = 〈Ψk(N − 1)|H|Ψk(N − 1)〉.
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Koopman’s Theorem II

We already know that

E0(N) =
∑
i

〈i |h|i〉+
1

2

∑
ij

〈ij ||ij〉

To evaluate Ek(N − 1) we use a similar expression but eliminate all
instances of orbital k:

Ek(N − 1) =
∑
i 6=k

〈i |h|i〉+
1

2

∑
i 6=k,j 6=k

〈ij ||ij〉
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Koopman’s Theorem III

So the IP is

IP = Ek(N − 1)− E0(N)

= −〈k |h|k〉 − 1

2

∑
i

〈ik ||ik〉 − 1

2

∑
j

〈kj ||kj〉

= −〈k |h|k〉 −
∑
i

〈ik ||ik〉

= −εk

So the orbital energy εk of occupied orbital k is negative of the
energy required to remove the electron from the orbital while
keeping all orbitals fixed.
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Koopman’s Theorem IV

Now consider the process of adding an electron to a virtual orbital
a of the system to generate |Ψa(N + 1)〉 = a†a|Ψ0〉. The electron
affinity is defined as

EA = E0(N)− E a(N + 1).

Q:

Show that

EA = E0(N)− E a(N + 1) = −εa

That is, the energy of a virtual orbital is the negative of the
electron affinity for adding an electron to that orbital.
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Koopman’s Theorem V

This now explains why an electron in a virtual orbital has an
energies that is consistent with it interacting with N other
electrons. From the above we see that this is so because the
energy of a virtual orbital is (minus) the energy required to create
an N + 1 state.
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Koopman’s Theorem VI

Koopmans’ Theorem
Given an N-electron Hartree–Fock single determinant with oc-
cupied and virtual spin orbital energues εi and εa, the ionization
potential to produce an N − 1-electron state with all orbitals
frozen and the electron removed from orbital i is −εi , and the
electron affinity to produce a N + 1-electron state with an ad-
ditional electron in virtual orbital a is −εa.
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Brillioun’s Theorem I

Brillioun’s theorem deals with the stability of the Hartree–Fock
solution w.r.t. first-order changes to the wavefunction (the Fock
single-determinant).
We have derived the Fock equations using the variational principle,
so, the solutions to the Fock equations should be stable in the
variational sense, that is, the Hartree–Fock energy should not
change (to first order) with small changes to the wavefunction.
What Brillioun’s Theorem tells us is that this is indeed true if by
small changes we mean single excitations: that is, single
excitations will not change the Hartree–Fock energy.
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Brillioun’s Theorem II

Brillioun’s theorem states that a singly-excited determinant Ψa
i

does not connect to the HF solution Ψ0 via the Hamiltonian.
I.e.,

〈Ψa
i |H|Ψ0〉 = 0.

To demonstrate this we need a couple of results:

〈Ψa
i |H|Ψ0〉 = 〈a|h|i〉+

∑
j

[〈aj |ij〉 − 〈aj |ji〉]

= 〈a|h|i〉+
∑
j

〈aj ||ij〉
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Brillioun’s Theorem III

and we need the general form of matrix elements of the Fock
operator:

fmn = 〈χm|f |χn〉 = 〈χm|h +
∑
j

(Jj −Kj)|χn〉

= 〈χm|h|χn〉+
∑
j

[〈χm|Jj |χn〉 − 〈χm|Kj |χn〉]

= 〈m|h|n〉+
∑
j

[〈mj |nj〉 − 〈mj |jn〉]

= 〈m|h|n〉+
∑
j

〈mj ||nj〉

Since the SOs χm are eigenstates of the Fock operator, we have

fmn = 〈χm|f |χn〉 = εn〈χm|χn〉 = εnδmn.
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Brillioun’s Theorem IV

From the second result we see that

〈Ψa
i |H|Ψ0〉 = 〈a|h|i〉+

∑
j

〈aj ||ij〉

= 〈χa|f |χi 〉
= εiδai = 0 since a 6= i

That is, the singly excited determinant Ψa
i does not (directly)

connect with the Hartree–Fock ground state Ψ0.
This means that we cannot improve the HF solution by mixing in
contributions from the virtual space. Or, in other words, the HF
solution is stable to first-order changes to the HF solution.
To see the significance of this result, let us consider a CI expansion
to improve the Hartree–Fock wavefunction and energy.
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Brillioun’s Theorem V

1

2

n

n + 1

n + m

Figure: Left: HF ground state configuration. Right: An example of an
excited state configuration. If there are n occupied levels (2 electrons
each, so N = 2n) and m virtual (un-occupied) levels, in how many ways
can we form excited states? Each of these states will correspond to a
Slater determinant.
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Brillioun’s Theorem VI

We generate the full CI (FCI) wavefunction by including all kinds
of single determinants in a linear expansion:

|Ψ〉 = c0|Ψ0〉+
∑
ia

ca
i |Ψa

i 〉+
∑
ij ,ab

cab
ij |Ψab

ij 〉+ · · ·

= c0|Ψ0〉+ cS |S〉+ cD |D〉+ · · ·

where electrons are excited from the occupied orbitals i , j , k , · · · to
the virtual orbitals a, b, c , · · · .
We may think that the simplest way to improve the HF solution
|Ψ0〉 is to include the single excitations |S〉. This is a reasonable
assumption that proves to be wrong because of Brillouin’s
theorem. To see this, consider the simple case where we have only
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Brillioun’s Theorem VII

one singly excited determinant |Ψa
i 〉. So the CI — call it CIS for

configuration interaction with single excitations — expansion is

|Ψ〉 = |Ψ0〉+ ca
i |Ψa

i 〉

Using the usual variational methods we have discussed before to
determine the coefficients c0 and cab

ij we convert this problem into
the set of linear equations(

〈Ψ0|H|Ψ0〉 〈Ψ0|H|Ψa
i 〉

〈Ψa
i |H|Ψ0〉 〈Ψa

i |H|Ψa
i 〉

)(
c0
ca
i

)
= E

(
c0
ca
i

)
From Brillouin’s theorem 〈Ψa

i |H|Ψ0〉 = 0 and 〈Ψ0|H|Ψ0〉 = E0,
therefore we get(

E0 0
0 〈Ψa

i |H|Ψa
i 〉

)(
c0
ca
i

)
= E

(
c0
ca
i

)
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Brillioun’s Theorem VIII

The ground-state solution is simply E = E0 with c0 = 1 and
ca
i = 0. I.e., the ground-state of the CIS variational expansion is

the Hartree–Fock solution. That is, singly excited determinants
(on their own) cannot improve the Hartree–Fock solution. I.e.,
Hartree–Fock is stable to perturbations that take the form of single
excitations.

This does not mean that single excitation can never contribute.
They can if we also include double excitations. Can you see
how?
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Brillioun’s Theorem IX

An elaboration on the above:
If we have a wavefunction Ψ0 and wish to add a small change δΨ
to it, what are the allowed kinds of δΨ? Not all choices will be
physically valid as the following conditions must be satisfied:

δΨ must be anti-symmetric in an N-electron Hilbert space.

It must be integrable.

It should be orthogonal to Ψ0 for it to be a change to Ψ0.

The easiest way to satisfy these conditions is to construct δΨ out
of Slater determinants, and these are going to be the determinants
formed by single-excitations, double-excitations, etc. formed by
starting from the HF wavefunction Ψ0. That is

|δΨ〉 =
∑
ia

ca
i |Ψa

i 〉+
∑
ij ,ab

cab
ij |Ψab

ij 〉+ · · ·
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Brillioun’s Theorem X

What Brillioun’s theorem implies is that if we construct the
simplest change δΨ =

∑
ia ca

i |Ψa
i 〉 formed only of single excitations

from the HF wavefunction, then there will be no change to the
ground-state energy.
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