Hückel Theory (tight-binding)

Alston J. Misquitta

Centre for Condensed Matter and Materials Physics Queen Mary, University of London

February 13, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hückel Theory I

Calculations without a computer

When dealing with unsaturated conjugated systems (polyenes, acenes, graphene) we can use the Hückel approximation to allow us to perform calculations by hand (or a small computer). This method relies on the idea of $\sigma - \pi$ separability: for a planar acene, the π orbitals (the p_z) are of a different symmetry from the more tightly bound σ orbitals. The σ orbitals are symmetric under reflection in the plane of the molecule while the π orbitals change sign. Hence they do not mix. Consequently we can consider the π orbitals separately from the σ . In periodic systems this method goes by the name *tight binding*.

Hückel Theory II

We start with the linear variation equations:

$$Hc = E(c)Sc$$

and assume that our basis space is orthonormal, i.e., $\boldsymbol{S}=\boldsymbol{I}.$ This gives

$$(\mathbf{H} - E\mathbf{I})\,\mathbf{c} = 0.$$

This has nontrivial solutions only if

$$\det |\mathbf{H} - E\mathbf{I}| = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hückel Theory III

Now assume a very local form of \mathbf{H} :

$$H_{ij} = \begin{cases} \alpha & \text{if } i = j \\ \beta & \text{if } i \text{ and } j \text{ neighbours} \\ 0 & \text{otherwise.} \end{cases}$$

Here $\alpha = \langle \pi_i | H | \pi_i \rangle$ can be regarded as the energy of the π_i orbital and $\beta = \langle \pi_i | H | \pi_j \rangle$ (*i* and *j* are neighbouring atoms) can be regarded as a *resonance* integral coupling the two π orbitals.

How can we justify making all resonance integrals the same?You may think that there should be a dependence on the na-Q: ture of the C—C bond, i.e., whether it is a single, double or triple bond. The key here is that this approximation is valid for *delocalised* systems in which all C—C bonds are equivalent.

Hückel Theory IV

The idea here is that we solve for the energies ϵ_i and calculate the total (π) energy of the system as

$$E_{\rm tot} = \sum_i \epsilon_i.$$

Here we have used the conventional notation ϵ_i for the energies of the eigenstates.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Hückel Theory V

Consider ethylene:

 $\mathbf{H} - \mathbf{C} = \mathbf{C} - \mathbf{H}$

we don't care about hydrogen atoms in the Hückel approximation so this becomes:

-----C = ------ CIt has only two carbon atoms so our basis set consists of two $2p_{\pi}$ atomic orbitals. Call these ϕ_1 on carbon 1 and ϕ_2 on carbon 2. Therefore, the eigenstates will be of the form:

$$\psi_i = c_{1i}\phi_1 + c_{2i}\phi_2.$$

Using the Hückel rules we can write the Hamiltonian matrix as:

$$H_{i,j} = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hückel Theory VI

The secular equation is

$$\det \begin{vmatrix} \alpha - \epsilon & \beta \\ \beta & \alpha - \epsilon \end{vmatrix} = 0$$

which leads to

$$(\alpha - \epsilon)^2 - \beta^2 = 0$$

leading to the roots:

$$\epsilon_1 = \alpha + \beta$$
$$\epsilon_2 = \alpha - \beta$$

Substitute these energies in turn back into

$$(\mathbf{H} - E\mathbf{I})\mathbf{c} = 0.$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● ●

Hückel Theory VII

which takes the form

$$c_{1i}(\alpha - \epsilon_i) + c_{2i}\beta = 0$$

to get

• For
$$\epsilon_1$$
: $c_{11} = c_{12} = c$ and $\psi_1 = c(\phi_1 + \phi_2)$.

• For
$$\epsilon_2$$
: $c_{11} = -c_{12}$ and $\psi_2 = c(\phi_1 - \phi_2)$.

Since we have assumed the ϕ_i are orthonormal, the normalization constant $c = 1/\sqrt{2}$.

Note that since both α and β are negative, $\epsilon_1 < \epsilon_2$. We have solved our first many electron system by hand!

Hückel Theory VIII

Now what about butadiene:

 $\begin{array}{c} \hline & C & \longrightarrow & C \\ \hline & Show that the secular equation is \end{array}$

$$\det \begin{vmatrix} \alpha - \epsilon & \beta & 0 & 0\\ \beta & \alpha - \epsilon & \beta & 0\\ 0 & \beta & \alpha - \epsilon & \beta\\ 0 & 0 & \beta & \alpha - \epsilon \end{vmatrix} = 0$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

and solve for the energies and eigenfunctions.