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Force-fields (equivalent term: potentials) are commonly used in
simulations. These are generally fine, but may sometimes lead to
insufficiently precise, or even qualitatively wrong results. Here are
popular choices:
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‘spherical’ atoms

simple electrostatic models

‘static’ potentials

How do we go beyond the limitations of empirical potentials?
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Are point-charges good enough?

From Day et al. (2005).
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Point charges?: Metal-organic frameworks.
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Are atoms spherical?
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Going beyond static potentials: In systems with strong permanent
moments and polarizabilities (water is a good example) the effects
of polarization can be very important. This introduces a dynamical
effect to the potential: it now needs to respond to the
environment.
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So we might want to use many-body potentials of the form:
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Q: Where do we get the data to develop all these extra terms?
Q: How do we account for bond-breaking and many-body charge
transfer?
Q: What about correlation in semi-metallic systems with plasmon
modes?
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Other reasons for ab initio data:

Comformations used by complex molecules

Bond-making/breaking

No experimental data available to parameretize potentials in
region of phase-space (simulations of matter under extreme or
unusual conditions (see next example).

Complex electronic excitations coupled with dymanics: charge
(electron or proton) transfer. Lots of chaps in UCL doing this
sort of thing theoretically and a number here in QM studying
such processes experimentally.
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Matter under extreme conditions: Ab initio random structure
searching (AIRSS) of Chris Pickard and Richard Needs.
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Electronic structure methods I

Single-determinant methods: Hartree–Fock (HF), Density
functional theory (DFT), Moller-Plesset perturbation theory
at various orders (MP2, MP3, MP4,...), Configuration
interaction (CI), Coupled-cluster methods (CCSD, CCSD(T),
CCSDT,...), Full-configuration interaction (FCI)

Multi-configutation methods: MCSCF, MRCI, ...

Basis sets: STO-3G, 6-31G, 6-31G*, aug-cc-pVDZ,
aug-cc-pVTZ, ...

Programs: Castep, DALTON, NWChem, ADF, Molpro,
Gaussian, Onetep, CamCASP, SAPT2008,...

Q: What do all of these mean?
Q: How do we choose the appropriate method/basis/program?
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Electronic structure methods II

Properties of the exact wavefunctions

The Variational Method

Hückel Theory (Tight-Binding)

Second-Quantization

Survey of wavefunction methods with simple examples.

Hartree–Fock (HF) Theory

Post-HF methods: CI, CC, MBPT

Density-Functional Theory (DFT)

Failures of DFT: van der Waals
Failures of DFT: Charge-Transfer

Intermolecular perturbation theory

Fixes for DFT
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Electronic structure methods III

We will study all of these topics while exploring them
numerically using the NWChem and CamCASP programs.

Our aim will be to apply these techniques to a variety of
systems, in particular the ammonia monohydrate system: our
goal will be to develop a deep understanding of these methods
in the context of a recent research article:
High pressure ionic and molecular crystals of ammonia
monohydrate within density functional theory, G. I. G.
Griffiths, A. J. Misquitta, A. D. Fortes, C. J. Pickard and R. J.
Needs, J. Chem. Phys, 137, 064506 (2012).

You will be given other papers during the course.
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Electronic structure methods IV

Marking:

Homework: 20%. Will be given weekly and collected the
following week. Important problems will be discussed in the
class.

Report: 20% of your mark will be based on a report written
on calculations for this system. We will develop and motivate
these calculations as we go along.

Exam: 60% of your mark will be a written exam.
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Electronic structure methods V

References:

Molecular Electronic Structure Theory, Helgaker, Olsen,
Jorgensen.

Modern Quantum Chemistry, Szabo & Ostlund.

Density functional theory of atoms and molecules, Parr and
Yang

Time-dependent density functinal theory, Carsten Ulrich
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Electronic structure methods VI

Class preparation:

Homework: You will be expected to come up and solve
problems!

YouTube: I will assign YouTube lectures prepared by
colleagues. You will be expected to watch these. Some of the
class discussions will be based on these movies.

Reading assignments: These will be mainly from the book by
Szabo & Ostlund.
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Outline of the lecture I

We are going to be dealing with many-body (i.e., many electron)
wavefunctions. So we will begin by looking at what we know about
these wavefunctions and what tools we have to analyse them:

Properties of Ψ: All the exact properties the wavefunction
(and density) are expected to satisfy. Afterall, any
approximate wavefunction should satisfy as many of these as
is practically possible.

Methods for approximating the wavefunction. We cannot
solve much beyond the 1-electron, hydrogen atom. For
anything more complex, we must solve the Schrödinger
equation approximately.

Mathematical methods: We will need some advanced
mathematical methods in this course.
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Properties of Ψ I

Atomic units will be used throughout: effectively ~ = 1, me =
1, e = 1.

Mass: Has units of free-electron mass m. SI value is
9.10938× 10−31 kg.

Charge: Has units of absolute value of free-electron
charge e. SI value is 1.60218× 10−19 C.

Angular momentum: Units of reduced Planck’s constant
~. SI value is 1.05457× 10−34 J s.

Length: Units of Bohr radius of the H atom,
a0 = 4πε0~2/me2. SI value 5.29177× 10−11 m.

In these units c = α−1 = 1/137.036, where the fine structure
constant is defined as α = e2/4πε0~c .
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Properties of Ψ II

Notation:

|Ψ〉 : exact many-body wavefunction

|0〉 : approximate wavefunction

Our goal here is to list properties satisfied by |Ψ〉 that we’d also
like |0〉 to satisfy. Some will be obvious, others not so obvious...
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Properties of Ψ III

|Ψ〉 contains N electrons:
We definitely want |0〉 to describe the same number of electons
and so expect that, if N̂ is a number operator (more on these when
we cover second-quantization), then

N̂|0〉 = N|0〉

i.e., |0〉 is an eigenstate of the number operator with eigenvalue N.
This is not normally an issue and is made explicit when we define
the wavefunction in second-quantized form (more on this later).
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Properties of Ψ IV

Antisymmetry

P̂ij |Ψ〉 = −|Ψ〉

We expect |0〉 to be antisymmetric.

In second-quantization (which we will use), the Pauli principle
is built into the anticommutating relations of the
creation/annihilation operators.

In first-quantization, we need to make the wavefunction
antisymmetric by expressing it as a linear combination of
Slater determinants.
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Properties of Ψ V

Square-integrability of the bound states.

〈Ψ|Ψ〉 = 1

To ensure that |0〉 will always satisfy this we expand it in a basis of
normalized orbitals. These orbitals will be, in turn, expanded in a
basis of Gaussian-type orbitals (GTOs). These orbitals are, by
definition, square-integrable.
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Properties of Ψ VI

Variational stability
For all possible variations δΨ, s.t., 〈δΨ|Ψ〉 = 0 (i.e., the variations
are orthogonal to Ψ),

〈δΨ|Ĥ|Ψ〉 = E 〈δΨ|Ψ〉 = 0,

i.e., Ψ is stable to these variations to first order.
We will define |0〉 s.t. this principle is preserved. But not all
methods gaurantee variational stability.
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Properties of Ψ VII

Asymptotic form of |Ψ〉:

Ψ→ ΨN−1e−
√

2EI r ,

where EI = EN−1 − EN is the vertical first ionisation energy of the
system.
This result holds for any bound state. It is quite difficult to satisfy
as the slow decay of the exponential function can be only
approximately modelled by GTOs.
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Properties of Ψ VIII

The electron–nuclear cusp condition:
The Hamiltonian has a singularity in the electon–nuclear potential,
however the energy of a bound state is finite. So this singularity
must be cancelled by another singularity of the opposite sign. This
is possible if the wavefunction has a cusp at the nuclei:

∂Ψ

∂riα

∣∣∣∣
riα=0

= −ZαΨ(riα = 0)
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Properties of Ψ IX

The electron–electron cusp condition:
For similar reasons, there must be cusps in the wavefunction when
two electrons are at the same location. In this case, the cusp
condition depends on the electronic spins. For a singlet system
(electrons with opposite spins) we have

∂Ψ

∂rij

∣∣∣∣
rij=0

= +
1

2
Ψ(rij = 0)

While for a triplet, we get a +1/4 on the R.H.S.
This condition is responsible for correlation effects at short-range.
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Properties of Ψ X

Size-Extensivity
For a system containing non-interacting subsystems, the total
energy is equal to the sum of energies of the individual subsystems.
Consider the total Hamiltonian:

HT =
M∑
i

Hi ,

where the Hi are the Hamiltonians of non-interacting systems. If
we have HTΨT = ETΨT , then we must have

ET =
M∑
i

Ei ,

where HiΨi = EiΨi .

Q: What happens is this property is violated?
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Properties of Ψ XI

Spin
In non-relativistic theory, the exact stationary eigenstates of Ŝ2

and Ŝz :

Ŝ2Ψ = S(S + 1)Ψ

ŜzΨ = MΨ

Reminder: Atomic units used throughtout!
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Properties of Ψ XII

The Born–Oppenheimer approximation
We have electrons and nuclei in our general Hamiltonian. The
nuclei complicate matters. But we can simplify life by arguing that
since the nuclei are nearly 2000 times heavier than the electrons,
they can be considered fixed while we solve the electronic
Hamiltonian. That is we solve

HeΨe = EeΨe (1)

where

He = −
∑
i

1

2
∇2

i −
∑
i

∑
α

Zα
riα

+
∑
i

∑
j>i

1

rij
(2)
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Properties of Ψ XIII

to get the wavefunction and energy that will be parametrically
dependent on the positions of the nuclei:

Ψe = Ψe({ri}; {Rα})
Ee = Ee({Rα})

From the latter we get our notion of an energy landscape on which
the nuclei move (often assumed to be Classically using Newtons
Laws - i.e, Molecular Dynamics).
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Properties of Ψ XIV

There are two cases then the BO approximation is invalid:

Fast nuclei: The BO condition should not really be stated in
terms of the mass ratios of the electrons and nuclei, but
rather in terms of the kinetic energy ratios. If nuclei are very
fast, they can have kinetic energies comparable with those of
the electrons. Example: Radiation damage.

Level crossing: This is a subtle one. If two electronic energy
levels cross (often happens with excited states) then if there is
a vibrational mode of appropriate symmetry, the BO
approximation breaks down. This is the Jahn–Teller effect
where we must consider a coupling of the electronic and
nuclear motions.

We will henceforth always use the electronic Hamiltonian and
wavefunction.
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Asymptotic form of |Ψ〉 I

Proof of the asymptotic form of the density/wavefunction:

Ψ→ ΨN−1e−
√

2EI r ,

or
ρ(r)→ e−2

√
2EI r ,
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Asymptotic form of |Ψ〉 II

We begin this proof by first proving a simpler result for a
1-electron system. Consider the Hamiltonian

Ĥ = −1

2
∇2 + V (r) (3)

= −1

2
(
∂2

∂r 2
+

2

r

∂

∂r
+

l̂2

r 2
) + V (r). (4)
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Asymptotic form of |Ψ〉 III

Now, as r →∞, assuming V (r)→ 0 (valid for all reasonable
potentials, apart for constant shifts which can be absorbed into the
energy), only the first term in the above Hamiltonian survives and
the eigenvalue problem reduces to

−1

2

∂2

∂r 2
ψ(r) = Eψ(r). (5)

The solution of this equation is the asymptotic 1-electron
wavefunction, thus

ψ(r)→ ce−
√
−2Er . (6)

For the H atom, E0 = −1
2 giving ψ0 → e−r .
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Asymptotic form of |Ψ〉 IV

The N-electron case:

ĤΨN(1, 2, ...,N) = ENΨN(1, 2, ...,N) (7)

As we pull one electron out, ΨN collapses into the state ΨN−1φ(r)
— that is, the product on an N − 1-electron wavefunction and a
1-electron wavefunction φ(r). It is the latter that determines the
asymptotic properties of ΨN .
We will make the assumption that the interaction terms in Ĥ that
act between ΨN−1 and φ(r) can be neglected. This is valid if the
electronic state ΨN−1 is sufficiently compact. This results in the
separable Hamiltonian:

Ĥ = ĤN−1 + Ĥ1. (8)
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Asymptotic form of |Ψ〉 V

Therefore

ENΨN = ĤΨN = (ĤN−1 + Ĥ1)ΨN−1φ(r) (9)

= EN−1ΨN−1φ(r) + ΨN−1(Ĥ1φ(r)). (10)

And so

ΨN−1(Ĥ1φ(r)) = (EN − EN−1)ΨN−1φ(r). (11)

On integrating out ΨN−1 we get the 1-electron eigenvalue problem:

Ĥ1φ(r) = (EN − EN−1)φ(r). (12)
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Asymptotic form of |Ψ〉 VI

Using the result for the 1-electron case (Eq. (6)) we get

φ(r)→ e−
√
−2(EN−EN−1)r (13)

→ e−
√

2EI r , (14)

where EI = EN−1 − EN is the vertical ionization potential.
This will prove a useful result in our analysis of density functionals.

Q:

The more general result is:

Ψ→ rβe−
√

2EI r .

Prove it and show that β = −1 + 1/α where α =
√

2EI .
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Electron–Nuclear cusp condition I

∂Ψ

∂riα

∣∣∣∣
riα=0

= −ZαΨ(riα = 0)

We will prove the electron–electron cusp condition later, when
discussing basis sets.
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Electron–Nuclear cusp condition II

Consider a 1-electron system (that’s all we need for this cusp
condition) with a nucleus of charge Z at the origin:

Ĥ = −1

2
∇2 + V (r) (15)

= −1

2
(
∂2

∂r 2
+

2

r

∂

∂r
+

l̂2

r 2
)− Z

r
. (16)

If ĤΨ = E Ψ, where E is a finite, bound-state energy, then we can
define the local energy function:

E Ψ = ĤΨ

= −1

2

∂2Ψ

∂r 2

− 1

r

∂Ψ

∂r
− l̂2Ψ

r 2
− Z

r
Ψ.
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Electron–Nuclear cusp condition III

Now, since the energy E is finite, the L.H.S. is finite everywhere,
and therefore the R.H.S. must also remain finite for all r . In fact,
it must be a constant for all r ! But the R.H.S. contains three
terms that diverge as r → 0, i.e., as the electron approaches the
nucleus. The only way for the R.H.S. to remain finite is for these
three terms to cancel as r → 0.
The l̂2Ψ term vanishes for all spherical states, and can be made to
vanish for more general states by taking the spherical average
about the nuclear position.

Q:

How do we see this?
Hint: l̂2Ψ can be expanded in terms of spherical harmonics
and radial functions. What is the spherical average of Ylm for
l > 0?
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Electron–Nuclear cusp condition IV

The other two terms must cancel giving:

0 = −2

r

∂Ψ

∂r
− Z

r
Ψ

and since Ψ(0) 6= 0, we have

∂Ψ

∂r

∣∣∣∣
r=0

= −Z Ψ(0).

Or, more generally,〈
∂Ψ

∂r

〉
sph

∣∣∣∣∣
r=0

= −Z 〈Ψ(0)〉sph.
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Electron–Nuclear cusp condition V

The e-e cusp condition proofs are more involved. Here we will look
at a simplified ‘proof’ of the condition.
Consider two electrons i and j approaching each other. We will
work in the limit r ≡ rij = |ri − rj| → 0. Here, the only interactions
that matter are those involving these two electrons. Hence the
effective 2-particle Schrödinger equation can be written as follows:

E Ψ =

(
− 1

2µ
∇2 +

1

r

)
Ψ,

where the reduced mass is µ = 1/2 (Why?). Now let’s use the
same ideas we used for the electron-nuclear cusp. For the system
in a spherically symmetric state (this requires that the electron
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Electron–Nuclear cusp condition VI

spins are opposite, i.e. we have a singlet state. A triplet state
would have a node at rij = 0) we can write

E Ψ = ĤΨ

= −∂
2Ψ

∂r 2

− 2

r

∂Ψ

∂r
− l̂2Ψ

2r 2
+

1

r
Ψ.

Since the L.H.S. is finite, the divergent terms on the R.H.S. need
to cancel. For a spherically symmetric state, l̂2Ψ = 0, so we must
have, at electron coalscence

−2

r

∂Ψ

∂r
+

1

r
Ψ = 0
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Electron–Nuclear cusp condition VII

or, remembering that r is short for rij ,

∂Ψ

∂rij

∣∣∣∣
rij=0

= +
1

2
Ψ(rij = 0).

This holds for the singlet state only! For the triplet state instead
of a half, we get a +1/4 (no proof). There are cusp conditions
involving more than two electrons. Or indeed, the conditions
could involve two electrons and a nucleus, and another other
number and permutation of particles.
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Variational Principle I

Variational stability
For all possible variations δΨ, s.t., 〈δΨ|Ψ〉 = 0 (i.e., the varia-
tions are orthogonal to Ψ),

〈δΨ|Ĥ|Ψ〉 = E 〈δΨ|Ψ〉 = 0,

i.e., Ψ is stable to these variations to first order.
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Variational Principle II

Let the exact (ground state) eigenvalue equation be

Ĥ|0〉 = E0|0〉.

Let |0̃〉 be an approximation to |0〉 and let

|0̃〉 = |0〉+ |δ〉

where |δ〉 is an allowed variation. We will often impose
intermediate normalisation (this is a convenient way of ensuring
normalization to first order in the variation) and require that
〈0|δ〉 = 0, but we will not do this here.
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Variational Principle III

E [0 + δ] =
〈0 + δ|H|0 + δ〉
〈0 + δ|0 + δ〉

=
〈0|H|0〉+ 〈0|H|δ〉+ 〈δ|H|0〉+ 〈δ|H|δ〉

〈0|0〉+ 〈0|δ〉+ 〈δ|0〉+ 〈δ|δ〉
=
(
E0 + 〈0|H|δ〉+ 〈δ|H|0〉+O(δ2)

)
×
(
1− (〈0|δ〉+ 〈δ|0〉) +O(δ2)

)
= E0 + 〈0|H − E0|δ〉+ 〈δ|H − E0|0〉+O(δ2)

= E0 + δE +O(δ2)

Now δE = 0 whenever Ĥ|0〉 = E0|0〉, therefore the state |0〉 is a
stationary state point in the energy functional E [0̃].
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Variational Principle IV

Conversely, we will now show that all stationary states of E [0̃] are
eigenstates of Ĥ. Notice that here we are treating E [0̃] as a
functional of 0̃.
Let |0〉 be a stationary point (state) of E [0̃]. By definition, for the
variation |δ〉 in |0〉, all terms in E [0 + δ] that linear in |δ〉 must
vanish. From the previous page his means that δE = 0, or

δE = 0 = 〈0|H − E [0]|δ〉+ 〈δ|H − E [0]|0〉.

Now consider the variation i |δ〉. This gives us the condition

δE = 0 = 〈0|H − E [0]|δ〉 − 〈δ|H − E [0]|0〉.

Therefore, adding them up we get

0 = 〈δ|H − E [0]|0〉 ∀ |δ〉.



Why ab initio? Outline Proofs and Results Approximate Methods Hückel Theory

Variational Principle V

Since this must hold for all variations |δ〉, we must have

Ĥ|0〉 = E [0]|0〉 ≡ E0|0〉,

i.e., |0〉 is an eigenstate of Ĥ.

Hence the variational principle states that the solution of
Ĥ|0〉 = E0|0〉 is equivalent to a variational optimization of
E [0̃].
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The Hellmann–Feynmann Theorem I

For a stationary state, the first-order change in the energy due
to a perturbation may be calculated as the expectation value
of the perturbation operator:

∂E (α)

∂α

∣∣∣∣
α=0

= 〈Ψ|V |Ψ〉.

Proof:
Let H(α) = H + αV where V is the perturbation. Further, let
|Ψα〉 be a stationary state of H(α), i.e.,

H(α)|Ψα〉 = E (α)|Ψα〉.
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The Hellmann–Feynmann Theorem II

This implies

E (α) =
〈Ψα|H(α)|Ψα〉
〈Ψα|Ψα〉

Therefore, using the definition |Ψ〉 = |Ψα〉|α=0, and 〈Ψα|Ψα〉 = 1,

∂E (α)

∂α

∣∣∣∣
α=0

=
∂

∂α

〈Ψα|H(α)|Ψα〉
〈Ψα|Ψα〉

∣∣∣∣
α=0

= 2<〈 ∂Ψα

∂α

∣∣∣∣
α=0

|H − E (0)|Ψ〉+ 〈Ψ|V |Ψ〉

and since H(0)|Ψ〉 = E (0)|Ψ〉, we get

∂E (α)

∂α

∣∣∣∣
α=0

= 〈Ψ|V |Ψ〉.
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The Hellmann–Feynmann Theorem III

This theorem is useful for evaluating properties and in geometry
optimizations. For example, in the presence of an electric field F
along x , the Hamiltonian is H(F ) = H − Fx . From the
Hellmann–Feynmann theorem we can evaluate the dipole moment
µx as

µx =
∂E

∂F

∣∣∣∣
F=0

= 〈Ψ|x |Ψ〉.

To see how it can be used to determine the force on a nucleus
consider the Hamiltonian with nuclei at RI displaced by αI :
H(RI +αI ). Let |Ψ〉 be the eigenfunction of H(RI ), i.e., at αI = 0.
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The Hellmann–Feynmann Theorem IV

We can write

H(RI + αI ) = −1

2

∑
i

∇2
i +

∑
j>i

1

|ri − rj |

−
∑
iI

ZI

|ri − RI − αI |

+
∑
J>I

ZIZJ

|RI + αI − RJ − αJ |

= H(RI )−
∑
iI

ZI (ri − RI ) · αI

|ri − RI |3

−
∑
J>I

ZIZJ(RI − RJ) · αI

|RI − RJ |3
+O(α2)
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The Hellmann–Feynmann Theorem V

We have used the expansion in the last step as we know we need
to differentiate w.r.t. αI and then set αI = 0. I.e., we have written
the Hamiltonian in the form H(RI + αI ) = H(RI ) + αI · V , with

V = −
∑
iI

ZI (ri − RI )

|ri − RI |3
−
∑
J>I

ZIZJ(RI − RJ)

|RI − RJ |3

Hence, from the H-F theorem,

∂E

∂αI

∣∣∣∣
αI =0

= −〈Ψ|
∑
iI

ZI (ri − RI )

|ri − RI |3
|Ψ〉

−
∑
J>I

ZIZJ(RI − RJ)

|RI − RJ |3

This makes it easy to evaluate first derivatives of the energy w.r.t.
nuclear coordinates. So we can do geometry optimizations.
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The Hellmann–Feynmann Theorem VI

Q:
This theorem holds not only for the exact wavefunction but also
for variationally optimized wavefunctions such as |c〉. Prove
this.

Pulay Forces: We usually obtain variational wavefunctions us-
ing nuclear-centered basis sets. In this case, the basis space
alters with changes in the nuclear positions. So there are terms
in the gradient w.r.t. the basis functions. These terms are
called Pulay forces after Peter Pulay.



Why ab initio? Outline Proofs and Results Approximate Methods Hückel Theory

The Virial Theorem I

You will have come across the Virial theorem in the form:

〈V 〉 = −2〈T 〉,

that is, the expectation value of a Coulomb potential V̂ is twice
the expectation value of the kinetic energy operator T̂ . The
molecular virial theorem takes the form

2〈T 〉+ 〈V (R)〉+ 〈 ∂V (αR)

∂α

∣∣∣∣
α=1

〉 = 0.

This may seem rather strange, but, as we shall see, the additional
term is a consequence of the Born–Oppenhiemer approximation.
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The Virial Theorem II

To prove the molecular virial theory we will use the idea of uniform
scaling (we will also use this idea a lot when we take up density
functional theory):

Theorem

Under uniform scaling of the electronic coordinates:

ri → αri ,

ψ(ri )→ ψα(ri ) = α3N/2ψ(αri ).

This form of the scaling is needed to ensure normalization.

Q: Prove that as defined above, ψα is normalized.
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The Virial Theorem III

We need two more identities:

〈ψα|T |ψα〉 = α2〈ψ|T |ψ〉
〈ψα|V (R)|ψα〉 = α〈ψ|V (αR)|ψ〉
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The Virial Theorem IV

Proof of the first result:

〈ψα|T |ψα〉 = α3N

∫
ψ∗(αri )

(
−1

2

∑
i

∇2
i

)
ψ(αri )

∏
i

dri

=

∫
ψ∗(αri )

(
−1

2
α2
∑
i

∇α2
i

)
ψ(αri )

∏
i

d(αri )

= α2

∫
ψ∗(r ′i )

(
−1

2

∑
i

∇′2i

)
ψ(r ′i )

∏
i

d(r ′i )

= α2〈ψ|T |ψ〉
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The Virial Theorem V

Now consider

∂E (α)

∂α

∣∣∣∣
α=1

=
∂

∂α
〈ψα|H(R)|ψα〉

∣∣∣∣
α=1

=
∂

∂α

(
α2〈ψα|T |ψα〉+ α〈ψα|V (αR)|ψα〉

)∣∣∣∣
α=1

= 2α〈ψ|T |ψ〉+ 〈ψ|V (αR)|ψ〉+ α〈ψ|∂V (αR)

∂α
|ψ〉
∣∣∣∣
α=1

Therefore we get the molecular virial theorem:

2〈ψ|T |ψ〉+ 〈ψ|V (R)|ψ〉 = −〈ψ| ∂V (αR)

∂α

∣∣∣∣
α=1

|ψ〉
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The Virial Theorem VI

For exact or variational states, using the Hellmann–Feynmann
theorem we know that

∂E (αR)

∂α

∣∣∣∣
α=1

= 〈ψ| ∂V (αR)

∂α

∣∣∣∣
α=1

|ψ〉

so, the virial theorem becomes

2〈ψ|T |ψ〉+ 〈ψ|V (R)|ψ〉 = − ∂E (αR)

∂α

∣∣∣∣
α=1
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The Virial Theorem VII

The R.H.S. is just the classical force w.r.t. uniform scaling of the
nuclear framework.
This force vanishes at molecular equilibrium, at which point the
molecular virial theorem becomes the more famaliar:

〈ψ|T |ψ〉 = −1

2
〈ψ|V (Re)|ψ〉

with all quantities evaluated at R = Re .
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Approximate Methods I

What are the methods we have to solve the Schrödinger equation
for many electron systems?

Variational principle

Perturbation theory

Non-perturbative, approximate methods

We will look at the first two now. You have already seen these
before, but let’s go over these again. The non-perturbative
methods will be covered later in the course.
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The Variational Method I

The Variational Method
We now apply the variational principle to a trial state |c〉 which
contains a finite number of numerical parameters c.
Define

E (c) =
〈c|H|c〉
〈c|c〉

The stationary points of E (c) will be approximate eigenstates of Ĥ.

If the error in |0〉 is |δ〉, the error in E0 is only O(δ2), i.e., the
energy is accurate to second-order in the error in the wavefunc-
tion.
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The Variational Method II

Linear Expansions

|C〉 =
M∑
i=1

ci |i〉

where |i〉 will, in general, be an N-electron antisymmetric function
(usually a Slater determinant).

E (c) =
〈c|H|c〉
〈c|c〉

Define the electronic gradient:

E
(1)
i (c) =

∂E (c)

∂ci
,
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The Variational Method III

and the electronic Hessian:

E
(2)
ij (c) =

∂2E (c)

∂cicj
.

We need both quantities to determine and characterise the
extrema of E (c).
To evaluate these quantities write the energy function as

E (c)〈c|c〉 = 〈c|H|c〉,
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The Variational Method IV

and differentiate w.r.t. ci to get

E
(1)
i (c) =

2 (〈i |H|c〉 − E (c)〈i |c〉)
〈c|c〉

E
(2)
ij (c) =

2 (〈i |H|j〉 − E (c)〈i |j〉)
〈c|c〉

− 2E
(1)
i (c)

〈j |c〉
〈c|c〉

− 2E
(1)
j (c)

〈i |c〉
〈c|c〉

At a stationary point, E
(1)
i (c) = 0, therefore

〈i |H|c〉 = E (c)〈i |c〉
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The Variational Method V

If we define the Hamiltonian and Overlap matrix elements:

Hij = 〈i |H|j〉
Sij = 〈i |j〉

we get

Hc = E (c)Sc

This is a set of linear equations we need to solve to get the
optimized states |C〉 and energies E (c). If the basis states |i〉
are orthonormal, i.e., if Sij = δij , then the equations become

Hc = E (c)c.

These equations have non-trivial solutions when

det |H− E (c)S| = 0.
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The Variational Method VI

Since Ĥ is Hermitian we have exactly M orthonormal solutions:

cK = (c1K , c2K , · · · , cMK )T

s.t. cTKcL = δKL and

EK = E (cK ), E1 ≤ E2 ≤ · · · ≤ EM .

The approximate wavefunctions are

|K 〉 =
M∑
i=1

ciK |i〉.
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The Variational Method VII

We now need to characterise these stationary points using the

electric Hessian. At the stationary point cK , E
(1)
i (cK ) = 0.

Therefore, from the expression for the Hessian,

E
(2)
ij (cK ) = 2 (〈i |H|j〉 − E (cK )〈i |j〉) .

This is the Hessian in terms of the |i〉 basis set. We can express it
in terms of the |K 〉 basis of eigenvectors using

∑
i

∑
j ciMcjN to get

E
(2)
MN(cK ) = 2 (〈M|H|N〉 − E (cK )〈M|N〉)

= 2(EM − EK )δMN .

Therefore, the eigenvalues of the Hessian at the stationary points
are given by

E
(2)
MM(cK ) = 2(EM − EK ).
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The Variational Method VIII

That is, E
(2)
MM(cK ) is twice the transition energy between state |K 〉

and state |M〉.
We can make a number of observations from this:

E
(2)
MN(cK ) is a singular matrix since E

(2)
KK (cK ) = 0.

Eigenstate |K 〉 has K − 1 negative eigenvalues (in the absence
of degenaricies) as EM < EK for M < K .

Therefore, for K = 1 there are 0 negative eigenvalues, hence
this state, |1〉, is a minimum.

K = 2 has one negative eigenvalue, therefore it is a first-order
saddle point. Etc. for the other states.
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The Variational Method IX

Upper bounds and the Hylleras–Undheim theorem
Consider two orthonormal sets of N-electron basis functions:
S ′ = {|I ′〉} and S ′′ = {|I ′′〉} s.t. S ′ ⊂ S ′′.
We have the eigenvalue equations (assume the eigenvalues are
sorted in ascending order):

H′c′K = E ′Kc
′
K

H′′c′′K = E ′′Kc
′′
K

Since S ′ ⊂ S ′′, we can express the eigenfunctions {|K ′〉} in terms
of the {|K ′′〉}:

|K ′〉 =
∑
L

aKL|L′′〉.

Q: Show that 〈K ′|K ′〉 = 1 implies
∑

L |aKL|2 = 1.
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The Variational Method X

Now consider E ′1:

E ′1 = 〈1|H|1〉

=
∑
KL

a∗1K 〈K ′′|H|L′′〉a1L

=
∑
K

|a1K |2E ′′K ≥ E ′′1
∑
K

|a1K |2 = E ′′1 .

Therefore E ′′1 ≤ E ′1. I.e., in a linear variation method, the lowest
eigenvalue will drop (or remain the same) as the variational space
is increased.
This result is a special case of
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The Variational Method XI

Theorem

Cauchy’s Interval Theorem:
If S ′ ⊂ S ′′,

E ′′K ≤ E ′K ≤ E ′′K+δ,

where δ = dim S ′′ − dim S ′ is the difference in the dimensions of
the two linear spaces.

For δ = 1 we get the Hylleras–Undheim Theorem.
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Raleigh–Schrödinger Perturbation Theory I

We will now briefly recap of Raleigh–Schrödinger perturbation
theory. We use perturbation theory when we cannot solve a
differential (or any other) equation exactly, but can find solutions
to the major part of it; we then treat the remainder as a
perturbation over the solution we can find. This is how it works:

Split the Hamiltonian into two parts:

H = H0 + λV

where H0 is a Hamiltonian which we know how to solve and
V contains that troublesome parts. We expect V to be a
perturbation so it must be small in some sense.
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Raleigh–Schrödinger Perturbation Theory II

λ is a complex number that will be 1 for the physical solution.
Think of the problem like this: We start from λ = 0. This
gives the solution we already know. Then consider small, but
non-zero λ; develop a perturbation expansion; and then
consider the limit λ→ 1 and hope that our expansion is still
meaningful (or convergent) in this limit.

Let the solutions of H0 be:

H0Ψ
(0)
i = E

(0)
i Ψ

(0)
i

Here the ‘0’ indicates that these eigenvalues and
eigenfunctions are of zeroth-order in the perturbation V. We
will use the short-form:

|Ψ(0)
i 〉 ≡ |i〉
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Raleigh–Schrödinger Perturbation Theory III

Express the solutions of H in a power-series:

Ψi = Ψ
(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i + · · · =

∑
n

λnΨ
(n)
i

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · =

∑
n

λnE
(n)
i

Energies can be calculated by collecting terms at various
orders:

E
(0)
i = 〈Ψ(0)

i |H0|Ψ(0)
i 〉 = 〈i |H0|i〉

E
(1)
i = 〈Ψ(0)

i |V|Ψ
(0)
i 〉 = 〈i |V|i〉

E
(2)
i = 〈Ψ(0)

i |V|Ψ
(1)
i 〉
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Raleigh–Schrödinger Perturbation Theory IV

etc. for higher order terms.

The first-order correction to the wavefunction is given by

|Ψ(1)
i 〉 =

∑
n 6=0

|n〉〈n|V|i〉
E

(0)
i − E

(0)
n

So we get for the second-order energy correction:

E
(2)
i =

∑
n 6=0

|〈n|V|i〉|2

E
(0)
i − E

(0)
n
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Raleigh–Schrödinger Perturbation Theory V

Higher-order corrections to the wavefunction and the energy can
be obtained by keeping more and more terms in the expansion. We
often use these, but we must not assume that they will be
meaningful. The problem here is that we cannot guarantee the
convergence of perturbation expansions. These expansions are
often divergent (bad!) or only asymtotically convergent (usuable
with care!).

Q:

Wigner’s 2n + 1 rule:
This theorem states that a knowledge of the wavefunction to
order n is sufficient to determine the energy to order 2n + 1.
Show this.
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Hückel Theory I

Calculations without a computer
When dealing with unsaturated conjugated systems (polyenes,
acenes, graphene) we can use the Hückel approximation to allow
us to perform calculations by hand (or a small computer). This
method relies on the idea of σ − π separability: for a planar acene,
the π orbitals (the pz) are of a different symmetry from the more
tightly bound σ orbitals. The σ orbitals are symmetric under
reflection in the plane of the molecule while the π orbitals change
sign. Hence they do not mix. Consequently we can consider the π
orbitals separately from the σ. In periodic systems this method
goes by the name tight binding.
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Hückel Theory II

We start with the linear variation equations:

Hc = E (c)Sc

and assume that our basis space is orthonormal, i.e., S = I. This
gives

(H− E I) c = 0.

This has nontrivial solutions only if

det |H− E I| = 0
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Hückel Theory III

Now assume a very local form of H:

Hij =


α if i = j

β if i and j neighbours

0 otherwise.

Here α = 〈πi |H|πi 〉 can be regarded as the energy of the πi orbital
and β = 〈πi |H|πj〉 (i and j are neighbouring atoms) can be
regarded as a resonance integral coupling the two π orbitals.

Q:

How can we justify making all resonance integrals the same?
You may think that there should be a dependence on the na-
ture of the C—C bond, i.e., whether it is a single, double or
triple bond. The key here is that this approximation is valid for
delocalised systems in which all C—C bonds are equivalent.
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Hückel Theory IV

The idea here is that we solve for the energies εi and calculate the
total (π) energy of the system as

Etot =
∑
i

εi .

Here we have used the conventional notation εi for the energies of
the eigenstates.
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Hückel Theory V

Consider ethylene:
H C C H
we don’t care about hydrogen atoms in the Hückel approximation
so this becomes:

C C
It has only two carbon atoms so our basis set consists of two 2pπ
atomic orbitals. Call these φ1 on carbon 1 and φ2 on carbon 2.
Therefore, the eigenstates will be of the form:

ψi = c1iφ1 + c2iφ2.

Using the Hückel rules we can write the Hamiltonian matrix as:

Hi ,j =

(
α β
β α

)
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Hückel Theory VI

The secular equation is

det

∣∣∣∣α− ε β
β α− ε

∣∣∣∣ = 0

which leads to

(α− ε)2 − β2 = 0

leading to the roots:

ε1 = α + β

ε2 = α− β

Substitute these energies in turn back into

(H− E I) c = 0.
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Hückel Theory VII

which takes the form

c1i (α− εi ) + c2iβ = 0

to get

For ε1: c11 = c12 = c and ψ1 = c(φ1 + φ2).

For ε2: c11 = −c12 and ψ2 = c(φ1 − φ2).

Since we have assumed the φi are orthonormal, the normalization
constant c = 1/

√
2.

Note that since both α and β are negative, ε1 < ε2.
We have solved our first many electron system by hand!
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Hückel Theory VIII

Now what about butadiene:

C C C C
Show that the secular equation is

det

∣∣∣∣∣∣∣∣
α− ε β 0 0
β α− ε β 0
0 β α− ε β
0 0 β α− ε

∣∣∣∣∣∣∣∣ = 0

and solve for the energies and eigenfunctions.
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