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Proofs and Results Hückel Theory

Asymptotic form of |Ψ〉 I

Proof of the asymptotic form of the density/wavefunction:

Ψ→ ΨN−1e−
√
2EI r ,

or
ρ(r)→ e−2

√
2EI r ,
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Asymptotic form of |Ψ〉 II

We begin this proof by first proving a simpler result for a
1-electron system. Consider the Hamiltonian

Ĥ = −1

2
∇2 + V (r) (1)

= −1

2
(
∂2

∂r2
+

2

r

∂

∂r
+

l̂2

r2
) + V (r). (2)
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Asymptotic form of |Ψ〉 III

Now, as r →∞, assuming V (r)→ 0 (valid for all reasonable
potentials, apart for constant shifts which can be absorbed into the
energy), only the first term in the above Hamiltonian survives and
the eigenvalue problem reduces to

−1

2

∂2

∂r2
ψ(r) = Eψ(r). (3)

The solution of this equation is the asymptotic 1-electron
wavefunction, thus

ψ(r)→ ce−
√
−2Er . (4)

For the H atom, E0 = −1
2 giving ψ0 → e−r .
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Asymptotic form of |Ψ〉 IV

The N-electron case:

ĤΨN(1, 2, ...,N) = ENΨN(1, 2, ...,N) (5)

As we pull one electron out, ΨN collapses into the state ΨN−1φ(r)
— that is, the product on an N − 1-electron wavefunction and a
1-electron wavefunction φ(r). It is the latter that determines the
asymptotic properties of ΨN .
We will make the assumption that the interaction terms in Ĥ that
act between ΨN−1 and φ(r) can be neglected. This is valid if the
electronic state ΨN−1 is sufficiently compact. This results in the
separable Hamiltonian:

Ĥ = ĤN−1 + Ĥ1. (6)
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Asymptotic form of |Ψ〉 V

Therefore

ENΨN = ĤΨN = (ĤN−1 + Ĥ1)ΨN−1φ(r) (7)

= EN−1ΨN−1φ(r) + ΨN−1(Ĥ1φ(r)). (8)

And so

ΨN−1(Ĥ1φ(r)) = (EN − EN−1)ΨN−1φ(r). (9)

On integrating out ΨN−1 we get the 1-electron eigenvalue problem:

Ĥ1φ(r) = (EN − EN−1)φ(r). (10)
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Asymptotic form of |Ψ〉 VI

Using the result for the 1-electron case (Eq. (4)) we get

φ(r)→ e−
√
−2(EN−EN−1)r (11)

→ e−
√
2EI r , (12)

where EI = EN−1 − EN is the vertical ionization potential.
This will prove a useful result in our analysis of density functionals.

Q:

The more general result is:

Ψ→ rβe−
√
2EI r .

Prove it and show that β = −1 + 1/α where α =
√

2EI .



Proofs and Results Hückel Theory

Variational Principle I

The Variational Method
We now apply the variational principle to a trial state |c〉 which
contains a finite number of numerical parameters c.
Define

E (c) =
〈c|H|c〉
〈c|c〉

The stationary points of E (c) will be approximate eigenstates of Ĥ.

If the error in |0〉 is |δ〉, the error in E0 is only O(δ2), i.e., the
energy is accurate to second-order in the error in the wavefunc-
tion.
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Variational Principle II

Linear Expansions

|C〉 =
M∑
i=1

ci |i〉

where |i〉 will, in general, be an N-electron antisymmetric function
(usually a Slater determinant).

E (c) =
〈c|H|c〉
〈c|c〉

If we define the Hamiltonian and Overlap matrix elements:

Hij = 〈i |H|j〉
Sij = 〈i |j〉

we get
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Variational Principle III

Hc = E (c)Sc

This is a set of linear equations we need to solve to get the
optimized states |C〉 and energies E (c). If the basis states |i〉
are orthonormal, i.e., if Sij = δij , then the equations become

Hc = E (c)c.

These equations have non-trivial solutions when

det |H− E (c)S| = 0.
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Variational Principle IV

Since Ĥ is Hermitian we have exactly M orthonormal solutions:

cK = (c1K , c2K , · · · , cMK )T

s.t. cTKcL = δKL and

EK = E (cK ), E1 ≤ E2 ≤ · · · ≤ EM .

The approximate wavefunctions are

|K 〉 =
M∑
i=1

ciK |i〉.
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Variational Principle V

Upper bounds and the Hylleras–Undheim theorem
Consider two orthonormal sets of N-electron basis functions:
S ′ = {|I ′〉} and S ′′ = {|I ′′〉} s.t. S ′ ⊂ S ′′.
We have the eigenvalue equations (assume the eigenvalues are
sorted in ascending order):

H′c′K = E ′Kc
′
K

H′′c′′K = E ′′Kc
′′
K

Since S ′ ⊂ S ′′, we can express the eigenfunctions {|K ′〉} in terms
of the {|K ′′〉}:

|K ′〉 =
∑
L

aKL|L′′〉.

Q: Show that 〈K ′|K ′〉 = 1 implies
∑

L |aKL|2 = 1.
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Variational Principle VI

Now consider E ′1:

E ′1 = 〈1|H|1〉

=
∑
KL

a∗1K 〈K ′′|H|L′′〉a1L

=
∑
K

|a1K |2E ′′K ≥ E ′′1
∑
K

|a1K |2 = E ′′1 .

Therefore E ′′1 ≤ E ′1. I.e., in a linear variation method, the lowest
eigenvalue will drop (or remain the same) as the variational space
is increased.
This result is a special case of
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Variational Principle VII

Theorem

Cauchy’s Interval Theorem:
If S ′ ⊂ S ′′,

E ′′K ≤ E ′K ≤ E ′′K+δ,

where δ = dim S ′′ − dim S ′ is the difference in the dimensions of
the two linear spaces.

For δ = 1 we get the Hylleras–Undheim Theorem.



Proofs and Results Hückel Theory

The Hellmann–Feynmann Theorem I

For a stationary state, the first-order change in the energy due
to a perturbation may be calculated as the expectation value
of the perturbation operator:

∂E (α)

∂α

∣∣∣∣
α=0

= 〈Ψ|V |Ψ〉.

Proof:
Let H(α) = H + αV where V is the perturbation. Further, let
|Ψα〉 be a stationary state of H(α), i.e.,

H(α)|Ψα〉 = E (α)|Ψα〉.
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The Hellmann–Feynmann Theorem II

This implies

E (α) =
〈Ψα|H(α)|Ψα〉
〈Ψα|Ψα〉

Therefore, using the definition |Ψ〉 = |Ψα〉|α=0, and 〈Ψα|Ψα〉 = 1,

∂E (α)

∂α

∣∣∣∣
α=0

=
∂

∂α

〈Ψα|H(α)|Ψα〉
〈Ψα|Ψα〉

∣∣∣∣
α=0

= 2<〈 ∂Ψα

∂α

∣∣∣∣
α=0

|H − E (0)|Ψ〉+ 〈Ψ|V |Ψ〉

and since H(0)|Ψ〉 = E (0)|Ψ〉, we get

∂E (α)

∂α

∣∣∣∣
α=0

= 〈Ψ|V |Ψ〉.
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The Hellmann–Feynmann Theorem III

This theorem is useful for evaluating properties and in geometry
optimizations. For example, in the presence of an electric field F
along x , the Hamiltonian is H(F ) = H − Fx . From the
Hellmann–Feynmann theorem we can evaluate the dipole moment
µx as

µx =
∂E

∂F

∣∣∣∣
F=0

= 〈Ψ|x |Ψ〉.

To see how it can be used to determine the force on a nucleus
consider the Hamiltonian with nuclei at RI displaced by αI :
H(RI +αI ). Let |Ψ〉 be the eigenfunction of H(RI ), i.e., at αI = 0.
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The Hellmann–Feynmann Theorem IV

We can write

H(RI + αI ) = −1

2

∑
i

∇2
i +

∑
j>i

1

|ri − rj |

−
∑
iI

ZI

|ri − RI − αI |

+
∑
J>I

ZIZJ

|RI + αI − RJ − αJ |

= H(RI )−
∑
iI

ZI (ri − RI ) · αI

|ri − RI |3

−
∑
J>I

ZIZJ(RI − RJ) · αI

|RI − RJ |3
+O(α2)
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The Hellmann–Feynmann Theorem V

We have used the expansion in the last step as we know we need
to differentiate w.r.t. αI and then set αI = 0. I.e., we have written
the Hamiltonian in the form H(RI + αI ) = H(RI ) + αI · V , with

V = −
∑
iI

ZI (ri − RI )

|ri − RI |3
−
∑
J>I

ZIZJ(RI − RJ)

|RI − RJ |3

Hence, from the H-F theorem,

∂E

∂αI

∣∣∣∣
αI=0

= −〈Ψ|
∑
iI

ZI (ri − RI )

|ri − RI |3
|Ψ〉

−
∑
J>I

ZIZJ(RI − RJ)

|RI − RJ |3

This makes it easy to evaluate first derivatives of the energy w.r.t.
nuclear coordinates. So we can do geometry optimizations.



Proofs and Results Hückel Theory

The Hellmann–Feynmann Theorem VI

Q:
This theorem holds not only for the exact wavefunction but also
for variationally optimized wavefunctions such as |c〉. Prove
this.

Pulay Forces: We usually obtain variational wavefunctions us-
ing nuclear-centered basis sets. In this case, the basis space
alters with changes in the nuclear positions. So there are terms
in the gradient w.r.t. the basis functions. These terms are
called Pulay forces after Peter Pulay.



Proofs and Results Hückel Theory

The Virial Theorem I

You will have come across the Virial theorem in the form:

〈V 〉 = −2〈T 〉,

that is, the expectation value of a Coulomb potential V̂ is twice
the expectation value of the kinetic energy operator T̂ . The
molecular virial theorem takes the form

2〈T 〉+ 〈V (R)〉+ 〈 ∂V (αR)

∂α

∣∣∣∣
α=1

〉 = 0.

This may seem rather strange, but, as we shall see, the additional
term is a consequence of the Born–Oppenhiemer approximation.
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The Virial Theorem II

To prove the molecular virial theory we will use the idea of uniform
scaling (we will also use this idea a lot when we take up density
functional theory):

Theorem

Under uniform scaling of the elecronic coordinates:

ri → αri ,

ψ(ri )→ ψα(ri ) = α3N/2ψ(αri ).

This form of the scaling is needed to ensure normalization.

Q: Prove that as defined above, ψα is normalized.
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The Virial Theorem III

We need two more identities:

〈ψα|T |ψα〉 = α2〈ψ|T |ψ〉
〈ψα|V (R)|ψα〉 = α2〈ψ|V (αR)|ψ〉
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The Virial Theorem IV

Proof of the first result:

〈ψα|T |ψα〉 = α3N

∫
ψ∗(αri )

(
−1

2

∑
i

∇2
i

)
ψ(αri )

∏
i

dri

=

∫
ψ∗(αri )

(
−1

2
α2
∑
i

∇α2i

)
ψ(αri )

∏
i

d(αri )

= α2

∫
ψ∗(r ′i )

(
−1

2

∑
i

∇′2i

)
ψ(r ′i )

∏
i

d(r ′i )

= α2〈ψ|T |ψ〉
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The Virial Theorem V

Now consider

∂E (α)

∂α

∣∣∣∣
α=1

=
∂

∂α
〈ψα|H(R)|ψα〉

∣∣∣∣
α=1

=
∂

∂α

(
α2〈ψα|T |ψα〉+ α〈ψα|V (αR)|ψα〉

)∣∣∣∣
α=1

= 2α〈ψ|T |ψ〉+ 〈ψ|V (αR)|ψ〉+ α〈ψ|∂V (αR)

∂α
|ψ〉
∣∣∣∣
α=1

Therefore we get the molecular virial theorem:

2〈ψ|T |ψ〉+ 〈ψ|V (R)|ψ〉 = −〈ψ| ∂V (αR)

∂α

∣∣∣∣
α=1

|ψ〉
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The Virial Theorem VI

For exact or variational states, using the Hellmann–Feynmann
theorem we know that

∂E (αR)

∂α

∣∣∣∣
α=1

= 〈ψ| ∂V (αR)

∂α

∣∣∣∣
α=1

|ψ〉

so, the virial theorem becomes

2〈ψ|T |ψ〉+ 〈ψ|V (R)|ψ〉 = − ∂E (αR)

∂α

∣∣∣∣
α=1
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The Virial Theorem VII

The R.H.S. is just the classical force w.r.t. uniform scaling of the
nuclear framework.
This force vanishes at molecular equilibrium, at which point the
molecular virial theorem becomes the more famaliar:

〈ψ|T |ψ〉 = −1

2
〈ψ|V (Re)|ψ〉

with all quantities evaluated at R = Re .
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Hückel Theory I

Calculations without a computer
When dealing with unsaturated conjugated systems (polyenes,
acenes, graphene) we can use the Hückel approximation to allow
us to perform calculations by hand (or a small computer). This
method relies on the idea of σ − π separability: for a planar acene,
the π orbitals (the pz) are of a different symmetry from the more
tightly bound σ orbitals. The σ orbitals are symmetric under
reflection in the plane of the molecule while the π orbitals change
sign. Hence they do not mix. Consequently we can consider the π
orbitals separately from the σ. In periodic systems this method
goes by the name tight binding.



Proofs and Results Hückel Theory

Hückel Theory II

We start with the linear variation equations:

Hc = E (c)Sc

and assume that our basis space is orthonormal, i.e., S = I. This
gives

(H− E I) c = 0.

This has nontrivial solutions only if

det |H− E I| = 0
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Hückel Theory III

Now assume a very local form of H:

Hij =


α if i = j

β if i and j neighbours

0 otherwise.

Here α = 〈πi |H|πi 〉 can be regarded as the energy of the πi orbital
and β = 〈πi |H|πj〉 (i and j are neighbouring atoms) can be
regarded as a resonance integral coupling the two π orbitals.

Q:

How can we justify making all resonance integrals the same?
You may think that there should be a dependence on the na-
ture of the C—C bond, i.e., whether it is a single, double or
triple bond. The key here is that this approximation is valid for
delocalised systems in which all C—C bonds are equivalent.
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Hückel Theory IV

The idea here is that we solve for the energies εi and calculate the
total (π) energy of the system as

Etot =
∑
i

εi .

Here we have used the conventional notation εi for the energies of
the eigenstates.
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Hückel Theory V

Consider ethylene:
H C C H
we don’t care about hydrogen atoms in the Hückel approximation
so this becomes:

C C
It has only two carbon atoms so our basis set consists of two 2pπ
atomic orbitals. Call these φ1 on carbon 1 and φ2 on carbon 2.
Therefore, the eigenstates will be of the form:

ψi = c1iφ1 + c2iφ2.

Using the Hückel rules we can write the Hamiltonian matrix as:

Hi ,j =

(
α β
β α

)
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Hückel Theory VI

The secular equation is

det

∣∣∣∣α− ε β
β α− ε

∣∣∣∣ = 0

which leads to

(α− ε)2 − β2 = 0

leading to the roots:

ε1 = α + β

ε2 = α− β

Substitute these energies in turn back into

(H− E I) c = 0.
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Hückel Theory VII

which takes the form

c1i (α− εi ) + c2iβ = 0

to get

For ε1: c11 = c12 = c and ψ1 = c(φ1 + φ2).

For ε2: c11 = −c12 and ψ2 = c(φ1 − φ2).

Since we have assumed the φi are orthonormal, the normalization
constant c = 1/

√
2.

Note that since both α and β are negative, ε1〈ε2.
We have solved our first many electron system by hand!
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Hückel Theory VIII

Now what about butadiene:

C C C C
Show that the secular equation is

det

∣∣∣∣∣∣∣∣
α− ε β 0 0
β α− ε β 0
0 β α− ε β
0 0 β α− ε

∣∣∣∣∣∣∣∣ = 0

and solve for the energies and eigenfunctions.
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