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Slater Determinants H2 in a minimal basis

Many electron basis I

The many-electron basis has two requirements:

Spin: We need to consider spin-orbitals rather than just
spatial orbitals.

Antisymmetry: The many electron basis functions cannot
simply be products of one-electron spin-orbitals. It must be
antisymmetric with respect to electron exchange.
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Many electron basis II

The first condition is simple enough to take care of. If we have a
spatial orbital ψ(r) we can construct two spin-orbitals:

χ(x) =

{
ψ(r)α(ω)

ψ(r)β(ω)
(1)

All wavefunctions will be constructed from these spin-orbitals.
We have assumed that there is no difference between the up and down

spins states. This restricted solution is valid for a closed-shell systems. In

general we will want to allow the spatial parts of the two spins to vary

independently. This leads to what’s known as an unrestricted solution.

More later.
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Many electron basis III

The antisymmetry condition puts restrictions on the kinds of trial
wavefunctions we can use. Consider a two-electron case: The
following trial wavefunction is not allowed for electrons

ΨHP(x1, x2) = χi (x1)χj(x2)

This is because ΨHP(x1, x2) = ΨHP(x2, x1). I.e., the wavefunction
remains invariant on interchanging the electron labels. Such a
wavefunction is suitable for bosons and is called the Hartree
product (hence, the ‘HP’ superscript).



Slater Determinants H2 in a minimal basis

Many electron basis IV

To make our trial wavefunction antisymmetric we need it to be of
the form:

Ψ(x1, x2) =
1√
2

(χi (x1)χj(x2)− χj(x1)χi (x2))

=
1√
2

∣∣∣∣χi (x1) χj(x1)
χi (x2) χj(x2)

∣∣∣∣
This is called a Slater determinant.
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Many electron basis V

More generally, for N-electrons the Slater determinant takes the
form

Ψ(x1, x2, · · · , xN) =
1√
N!

∣∣∣∣∣∣∣∣∣
χi (x1) χj(x1) · · · χk(x1)
χi (x2) χj(x2) · · · χk(x2)

...
...

. . .
...

χi (xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣ (2)

≡ |χiχj · · ·χk〉 (3)

where the last equation is short-hand for writing out the
determinant.
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Hartree–Fock (in brief) I

So now let us describe the ground state of our N-electron system
with the BO approximation using a single Slater determinant:

Ψ0(x1, x2, · · · , xN) = |χ1χ2 · · ·χN〉 (4)

The Hartree–Fock approximation to the ground state energy is
found by varying the spin-orbitals {χi} to minimize the energy:

E0 ≤ EHF = min〈Ψ0|H|Ψ0〉 (5)

subject to the conditions that the spin-orbitals are orthonormal.
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Hartree–Fock (in brief) II

As before, but with many more steps, the variational principle
leads to the following equations for the spin-orbitals

f (i)χ(xi ) = εχ(xi ) (6)

where f (i) is an effective operator called the Fock operator

f (i) = −1

2
∇2

i −
∑
α

Zα
riα

+ vHF(i) (7)

where vHF(i) is the Hartree–Fock effective potential that depends
on the solutions to the above equations. So we must solve these
equations self-consistently: Make a guess for the solutions;
construct the potential vHF(i) from this guess; solve the Fock
equations; get new solutions; and repeat till convergence.
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1-e basis I

The system: Two H-atoms, separated by distance R. We will
consider two cases: R = 1.4 Bohr (equilibrium) and R =∞
(dissociation).
One electron minimal basis:

1sA(r) =
1√
π

exp(−rA)

1sB(r) =
1√
π

exp(−rB)

where rA/rA are distances of electron from nucleus A/B.
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1-e basis II

Symmetry-adapted atomic orbitals:

φ1(r) = 1σg = Ng [1sA(r) + 1sB(r)]

φ2(r) = 1σu = Nu[1sA(r)− 1sB(r)]

where

Ng =
1√

2(1 + S)
and Nu =

1√
2(1− S)

where

S =

∫
1sA(r)1sB(r)dr = (1 + R +

1

3
R2) exp(−R).
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1-e basis III

All figures from: Molecular Electronic Structure Theory by Helgaker et al..
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1-e basis IV

N-electron basis:

|1Σ+
g (g 2)〉 = |1σ2

g〉 = a†1αa†1β|vac〉

|1Σ+
g (u2)〉 = |1σ2

u〉 = a†2αa†2β|vac〉
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1-e basis V

|3Σ+
u 〉 =


a†2αa†1α|vac〉

1√
2

(a†2αa†1β + a†2βa†1α)|vac〉
a†2βa†1β|vac〉

|1Σ+
u 〉 =

1√
2

(a†2αa†1β − a†2βa†1α)|vac〉
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1-e basis VI

The Configuration Interaction wavefunction:
This is a wavefunction made up of a linear combination of all
allowed single determinants. For gerade ground state of H2 in this
minimal basis set this takes the simple form:

|1Σ+
g (τ)〉 = cos(τ)|1σ2

g〉+ sin(τ)|1σ2
u〉.

No other configurations are allowed to mix as the others are all of
ungerade symmetry.
There will be two orthogonal solutions, one as above and the other
of the form |1Σ+

g (τ + π/2)〉.

Q: Show that 〈1Σ+
g (τ)|1Σ+

g (τ + π/2)〉 = 0.
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Matrix elements I

See Szabo & Ostlund secs. 2.3.1 and 2.3.5

What is the matrix element: 〈Ψ|H|Ψ〉?
Notation:

H = h(1) + h(2) +
1

r12

= O1 +O2

where the core-Hamiltonians are:

h(1) = −1

2
∇2

1 −
∑
A

ZA

r1A
,

and similarly for h(2). Here A are all the nuclei.
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Matrix elements II

We will show (in class) that:

〈Ψ|O1|Ψ〉 = 〈1|h|1〉+ 〈2|h|2〉
= h11 + h22.

and

〈Ψ|O2|Ψ〉 =

∫
dx1dx2χ

∗
1(x1)χ∗2(x2)

1

r12
χ1(x1)χ2(x2)

−
∫

dx1dx2χ
∗
1(x1)χ∗2(x2)

1

r12
χ2(x1)χ1(x2)

and, defining

〈ij |kl〉 = 〈χiχj |χkχl〉

=

∫
dx1dx2χ

∗
i (x1)χ∗j (x2)

1

r12
χk(x1)χl(x2)
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Matrix elements III

we get

〈Ψ|O2|Ψ〉 = 〈12|12〉 − 〈12|21〉.

The first term is the Coulomb term and the second the exchange
term.

We now write our single determinant energy — the Hartree–
Fock energy — as:

EHF = 〈Ψ|H|Ψ〉
= 〈1|h|1〉+ 〈2|h|2〉+ 〈12|12〉 − 〈12|21〉.
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Matrix elements IV

Now we evaluate the HF energy for |1Σ+
g (g 2)〉.

Here χ1 = φ1α and χ2 = φ1β. We will integrate out the spin
degrees of freedom using:∫

dσα∗(σ)α(σ) = 1 =

∫
dσβ∗(σ)β(σ)∫

dσα∗(σ)β(σ) = 0 =

∫
dσβ∗(σ)α(σ)

or 〈α|β〉 = 0 = 〈β|α〉 etc.
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Matrix elements V

〈1|h|1〉 =

∫
dxχ∗1(x)h(r)χ1(x)

=

∫
drdσφ∗1(r)α∗(σ)h(r)φ1(r)α(σ)

=

∫
dσα∗(σ)α(σ) ×

∫
drφ∗1(r)h(r)φ1(r)

= 1 × (1|h|1) = (1|h|1).

Similarly show that

〈12|12〉 = (11|11) ≡ g1111

〈12|21〉 = 0.

The second term on the first line is the Chemist’s notation used by
S&O and the third is the notation used by Helgaker et al.
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Matrix elements VI

So we get the energy of the |1Σ+
g (g 2)〉 state as:

E (g 2) = 2(1|h|1) + (11|11)

Q: There is no exchange term present for this state. Why not?

Because both spin orbitals in the |1Σ+
g (g 2)〉 state have the same

spatial part this is referred to as a restricted Hartree–Fock (RHF)
state. In an unrestricted HF (UHF) state we’d allow the up and
down spin electrons to reside in different spatial orbitals.
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Matrix elements VII

Summary so far:

The single determinant energy — the Hartree–Fock energy —
of the ket |Ψ〉 = |χ1χ2〉is:

EHF = 〈Ψ|H|Ψ〉
= 〈1|h|1〉+ 〈2|h|2〉+ 〈12|12〉 − 〈12|21〉.

The energy of the |1Σ+
g (g 2)〉 state is:

E (g 2) = 2(1|h|1) + (11|11)



Slater Determinants H2 in a minimal basis

Matrix elements VIII

Chemist’s Notation

〈ij |kl〉 = 〈χiχj |χkχl〉

=

∫
dx1dx2χ

∗
i (x1)χ∗j (x2)

1

r12
χk(x1)χl(x2)

=

∫
dx1dx2χ

∗
i (x1)χk(x1)

1

r12
χ∗j (x2)χl(x2)

= (ik |jl)

Symmetries are clearer in this notation:

(ij |kl) = (kl |ij)

and for real orbitals (the usual case), we additionally have:

(ij |kl) = (ji |kl) = (ij |lk) = (ji |lk)
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Matrix elements IX
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Matrix elements X
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HF I

Using the data from table 5.2 we can write down the energies of
the H2 states. In particular, E (g 2) = −1.0909 and
E (u2) = +0.1532 Hartree.

So the bonding state |1Σ+
g (g 2)〉 is more strongly bound (compared

with two isolated H atoms). Conversely, the anti-bonding state
|1Σ+

g (u2)〉 is even more strongly unbound.
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HF II

The one- and two-electron density
We first define the one- and two-electron density matrices:

γ1(x1, x
′
1) = N

∫
Ψ∗(x1, x2, · · · , xN)Ψ(x ′1, x2, · · · , xN)

dx2 · · · dxN

γ2(x1, x2, x
′
1, x
′
2) =

N(N − 1)

2∫
Ψ∗(x1, x2, x3, · · · , xN)Ψ(x ′1, x

′
2, x3, · · · , xN)

dx3 · · · dxN

The density matrices depend on spatial and spin coordinates.
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HF III

The one-electron and two-electron densities are defined to be the
diagonal elements of the density matrices with the spin degrees of
freedom integrated out:

ρ(r1) =

∫
γ1(x1, x1)dσ1

ρ(r1, r2) =

∫
γ2(x1, x2, x1, x2)dσ1dσ2

Interpretation:
The one-electron density ρ(r1) is proportional to the probability of
finding an electron at position r1.
The two-electron density ρ(r1, r2) represents the probability of
simultaneously finding two electrons at positions r1 and r2 in the
molecule.
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HF IV

Let’s work out these terms for a 2-e single-det wavefunction:
Ψ(x1, x2) = 2−1/2(χ1(x1)χ2(x2)− χ2(x1)χ1(x2)) First evaluate
Ψ∗Ψ:

Ψ∗(x1, x2)Ψ(x ′1, x
′
2)

=
1

2
[χ∗1(x1)χ∗2(x2)χ1(x ′1)χ2(x ′2)

+ χ∗2(x1)χ∗1(x2)χ2(x ′1)χ1(x ′2)

− χ∗1(x1)χ∗2(x2)χ2(x ′1)χ1(x ′2)

− χ∗2(x1)χ∗1(x2)χ1(x ′1)χ2(x ′2)]

=
1

2
[χ∗1(1)χ1(1′)χ∗2(2)χ2(2′) + χ∗2(1)χ2(1′)χ∗1(2)χ1(2′)

− χ∗1(1)χ2(1′)χ∗2(2)χ1(2′)− χ∗2(1)χ1(1′)χ∗1(2)χ2(2′)]
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HF V

Therefore the one-electron density matrix is

γ1(x1, x
′
1) = 2

∫
Ψ∗(x1, x2)Ψ(x ′1, x2)dx2

= χ∗1(x1)χ1(x ′1) + χ∗2(x1)χ2(x ′1)

And using χi (x) = φi (r)ωi (σ), the density is

ρ(r1) =

∫
γ1(x1, x1)dσ1

= φ∗1(r1)φ1(r1) + φ∗2(r1)φ2(r1)

In general, for an N-electron single-det wavefunction,

ρ(r) =
N∑
i=1

φ∗i (r)φi (r)
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HF VI

The two-electron density matrix is quite simply (no integration
needed for the 2-electron wavefunction):

γ2(x1, x2, x
′
1, x
′
2) =

2(2− 1)

2
Ψ∗(x1, x2)Ψ(x ′1, x

′
2)

=
1

2
[χ∗1(1)χ1(1′)χ∗2(2)χ2(2′) + χ∗2(1)χ2(1′)χ∗1(2)χ1(2′)

− χ∗1(1)χ2(1′)χ∗2(2)χ1(2′)− χ∗2(1)χ1(1′)χ∗1(2)χ2(2′)]

So, if Ψ is a singlet state with χ1 = φ1α and χ2 = φ2β then the
two-elecron density is

ρ(r1, r2) =

∫
γ2(x1, x2, x1, x2)dσ1dσ2

=
1

2
[φ∗1(1)φ1(1)φ∗2(2)φ2(2) + φ∗2(1)φ2(1)φ∗1(2)φ1(2)]



Slater Determinants H2 in a minimal basis

HF VII

Back to H2: For |1σ2
g〉 = |φ1α, φ1β〉 and |1σ2

u〉 = |φ2α, φ2β〉:

ρ1σ2
g
(r) = 2φ2

1(r)

ρ1σ2
u
(r) = 2φ2

2(r)

ρ1σ2
g
(r1, r2) = φ2

1(r1)φ2
1(r2)

ρ1σ2
u
(r1, r2) = φ2

2(r1)φ2
2(r2)

Interpretation: Since the two-elecrtron density represents the
probability of simultaneously finding two electrons at positions r1

and r2 in the molecule, we see here is that the probability of
finding an electron at r1 is unaffected by the electron at r2. Thus,
these single-determinant (Hartree–Fock) wavefunctions do not
correlate the electrons.
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HF VIII

Helgaker et al.
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HF IX

This has consequences for this restricted Hartree–Fock (RHF)
wavefunction: it does not dissociate into two H-atoms as R →∞.
In this limit, S = 〈1sA(r)|1sB(r)〉 = 0. So

φ1(r) = 1σg = 2−1/2[1sA(r) + 1sB(r)]

φ2(r) = 1σu = 2−1/2[1sA(r)− 1sB(r)].

Now let’s write |1σ2
g〉 in terms of the the atomic (non-symmetric)

basis functions

|1σ2
g〉 = |φ2α, φ2β〉

= φ1(r1)φ1(r2)× 1√
2

(α(1)β(2)− β(1)α(2))
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HF X

Focus on the spatial part φ1(r1)φ1(r2) and use the notation
A = 1sA(r) and B = 1sB(r).

φ1(r1)φ1(r2) =
1

2
[A(1)A(2) + B(1)B(2) + A(1)B(2) + B(1)A(2)]

=
1

2
|A2〉+

1

2
|B2〉+

1√
2
|AB〉.

Here |A2〉 = A(1)A(2) is the state with both electrons on A, i.e.,
the state H− (similarly for B) and
|AB〉 = 1√

2
[A(1)B(2) + B(1)A(2)] is the state with one electron

on A and one on B, i.e. the correctly dissociated state consisting
of two neutral H atoms.
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HF XI

Q: Show that the states |A2〉, |B2〉 and |AB〉 orthonormal.

Now consider the RHF energy at dissociation (all cross terms can
be shown to tend to vanish as R →∞):

E (g 2) = 〈1σ2
g|H|1σ2

g〉

= 〈1
2

A2 +
1

2
B2 +

1√
2

AB|H|1
2

A2 +
1

2
B2 +

1√
2

AB〉

=
1

4
E (H−) +

1

4
E (H−) +

1

2
(2E (H))

= E (H) +
1

2
E (H−).

So, as expected, we do not get 2E (H).



Slater Determinants H2 in a minimal basis

HF XII

Q:
What happened to the cross terms in expression for E (g 2)?
Show that they all vanish in the R →∞ limit.

Q:

Show the previous result starting from the energy expression
for |1σ2

g〉:

E (g 2) = 2(1|h|1) + (11|11)

Hint: Expand the symmetry-adapted atomic orbital φ1 in terms of
the 1sA(r) and 1sB(r) basis functions and use

E (A2) = E (H−) = 2(A|h|A) + (AA|AA)
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CI I

The CI wavefunction
Now we will repeat the calculation with the CI wavefunction:

|1Σ+
g (τ)〉 = cos(τ)|1σ2

g〉+ sin(τ)|1σ2
u〉.

The energy of H2 now becomes (real orbitals):

E (τ) = 〈1Σ+
g (τ)|H|1Σ+

g (τ)〉
= cos2(τ)E (g 2) + sin2(τ)E (u2) + 2 sin(τ) cos(τ)〈1σ2

g|H|1σ2
u〉

Q:
Show that 〈1σ2

g|H|1σ2
u〉 = 〈11|22〉 = (12|12). This can also be

written as (21|21) = g2121 due to symmetry of these integrals.
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CI II

So the energy of the CI state is

E (τ) = cos2(τ)E (g 2) + sin2(τ)E (u2) + sin(2τ)(21|21).

To find the optimum τ we minimize to get

tan(2τ) =
2(21|21)

E (g 2)− E (u2)

so solutions are

τn =
1

2
arctan

[
2(21|21)

E (g 2)− E (u2)

]
+

nπ

2
,

where n is an integer.
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CI III

From tables 5.1 and 5.2, for H2 at its equilibrium separation, we
get two solutions: τ0 = −0.1109 and τ1 = −0.1109 + π/2. Recall
that the solutions must be π/2 apart to result in orthogonal states.
These give (the ’e’ indicates equilibrium separation):

|1Σ+
g (τ0)〉e = 0.9939|1σ2

g〉 − 0.1106|1σ2
u〉

|1Σ+
g (τ1)〉e = 0.1106|1σ2

g〉+ 0.9939|1σ2
u〉

I.e., the g.s. is dominated with the HF solution |1σ2
g〉 with a

weight of 98.8%.
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CI IV

Here is Table 5.2 from Helgaker et al. again:
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CI V

Energies of these states are listed in table 5.2. We see that the CI
g.s. is 1.4% lower than the |1σ2

g〉 HF ground state. This may not
seem like much, but it is significant. Further, the effect of the CI
g.s. on the two-electron density is enormous (fig. 5.5): the small
fraction of the |1σ2

u〉 state introduces what is known as Left–Right
correlation: the two electrons are now correlated and prefer to sit
on opposite nuclei.
We will later demonstrate that this mixing of states allows the CI
g.s. to correctly dissociate into two H-atoms at R →∞, whereas,
the HF g.s. doesn’t.
The one- and two-electron densities can be calculated as for the
RHF wavefunction. These are displayed on the next slide.
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CI VI

Helgaker et al.
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CI VII

Q:

Work out the one- and two-electron densities of the CI wave-
function. As we will show soon, in the R → ∞ limit,
τ0 = −π/4. Write down the two-electron density in this limit
and by expressing it in terms of the 1sA(r) and 1sB(r) orbitals,
show that the CI wavefunction has indeed introduced Left–
Right correlation as shown in Fig. 5.5.
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CI VIII

Notice the following:

There is very little change in the one-electron density from the
RHF case. Here the |1σ2

g〉 (i.e. RHF) state has a weight of
98.8%. The |1σ2

u〉 state contributing only 1.2%.

However, the two-electron density is vastly different. Now it
indicates a vanishing probability for the electrons to be on the
same atom. Instead, electrons in the CI wavefunction prefer
to reside on opposite nuclei.

This correlation is called Left–Right correlation. It is a
non-dynamical correlation that arises when multiple
configurations (many-electron determinants) are used to
describe the state.
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CI IX

Dissociation of the CI wavefunction

|1Σ+
g (τ)〉 = cos(τ)|1σ2

g〉+ sin(τ)|1σ2
u〉.

with an energy

E (τ) = cos2(τ)E (g 2) + sin2(τ)E (u2) + sin(2τ)(12|12)

where

τn =
1

2
arctan

[
2(12|12)

E (g 2)− E (u2)

]
+

nπ

2
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CI X

What is τ in the dissociation limit?
For R →∞ we have (show it!):

E (g 2) = E (u2) = 2hAA +
1

2
(AA|AA)

This degeneracy can be expected on physical grounds. Also, in the
R →∞ limit

(12|12) =
1

4
((A(1) + B(1))(A(1)− B(1))|(A(2) + B(2))(A(2)− B(2)))

=
1

4
[(AA|AA) + (BB|BB)]

=
1

2
(AA|AA) 6= 0

Here we have used the fact that any cross-terms involving A and B
will vanish in the large-R limit.
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CI XI

Consequently, for R →∞, 2(21|21)
E(g2)−E(u2)

→ −∞, so

τn = −π
4

+
nπ

2
.

The ground state is n = 0, or τ0 = −π
4 and we get

|1Σ+
g (τ)〉 → 1√

2
[|1σ2

g〉 − |1σ2
u〉]

E (τ)→ 1

2
(E (g 2) + E (u2))− (12|12)
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CI XII

Q:
Show that in this limit |1Σ+

g (τ)〉 correctly describes two H-
atoms. I.e., show that |1Σ+

g (τ)〉 = |AB〉.

Using the results we have stated (and you have to prove) earlier,
we get

E (−π/4) =
1

2
(E (g 2) + E (u2))− (12|12)

= 2hAA +
1

2
(AA|AA)− 1

2
(AA|AA)

= 2hAA = 2E (H).

I.e., the CI energy correctly tends to the energy of 2 hydrogen
atoms as R →∞.
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CI XIII

In summary:

H2(RHF)→ H +
1

2
H−

H2(FCI)→ 2H
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UHF I

CI is computationally expensive. In general there are a lot of
determinants possible and the variational space increases
exponentially with the size of the basis. So it would be nice to
have an alternative way to dissociate H2. There is one: the
unrestricted Hartree–Fock (UHF) method.
Here we realise that at dissociation we want the spatial parts of
orbitals used by the two electrons to be different: the α-spin
electron will be associated with one hydrogen atom and the β-spin
electron with the other. So we need to allow our single
determinant this freedom. This leads to the UHF solution.
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UHF II

Define the UHF wavefunction |Ψ〉 = |χα1χ
β
1 〉 where the unrestricted

spin-orbitals are defined to be

χα1 (x) = ψ1α(r)α(ω)

χβ1 (x) = ψ1β(r)β(ω)

where

ψ1α = cos(θ)φ1 + sin(θ)φ2

ψ1β = cos(θ)φ1 − sin(θ)φ2

Q:

Show that this choice for the spatial orbitals covers all possi-
bilities. I.e., that for θ = 0 we get the RHF solution and for
θ = π/4 we get the dissociated limit of 2 H-atoms.
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UHF III

Rather than solve the UHF problem for you, I will outline it
and expect you to solve it completely for homework. This is an
important problem so I require you to write it up and submit it
to me!

Next write down the energy of this UHF wavefunction. Start
from the general form for the energy of a single determinant
state (we proved this at the start of this lecture):

E = 〈Ψ|H|Ψ〉 = 〈1|h|1〉+ 〈2|h|2〉+ 〈12|12〉 − 〈12|21〉.

Show that the last term vanishes.

Write each of the terms in the energy expression in terms of
g = φ1 and u = φ2. I will use g and u are short forms for
these orbitals in the expressions below.
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UHF IV

Hence show that the energy can be written as a function of
the angle θ:

E (θ) = 2 cos2(θ)hgg + 2 sin2(θ)huu

+ 2 cos4(θ)(gg |gg) + 2 sin4(θ)(uu|uu)

+ 2 sin2(θ) cos2(θ)[(gg |uu)− 2(gu|gu)].

Find the extrema of E (θ). There should be two solutions.

Characterize the solutions: they are not both minima so you
will need to find the second derivative of E (θ). Do this
carefully.

Use integral values from table 5.1 to make a plot of the energy
as a function of θ at Re and at dissociation (R →∞). Do
your results agree with this plot? (use any plotting package -
but Mathematica or Gnuplot may be best suited for this)
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UHF V

For the θ 6= 0 solution: evaluate all matrix elements in the
R →∞ limit and show that in this limit θ → π/4.

Hence show that the UHF energy in this limit is that of two
H-atoms.

Solve this correctly and completely and you will have understood
everything we have covered so far.
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