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Introduction Matrix Elements Hartree–Fock Basis Sets

Many electron basis I

The many-electron basis has two requirements:

Spin: We need to consider spin-orbitals rather than just
spatial orbitals.

Antisymmetry: The many electron basis functions cannot
simply be products of one-electron spin-orbitals. It must be
antisymmetric with respect to electron exchange.
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Many electron basis II

The first condition is simple enough to take care of. If we have a
spatial orbital ψ(r) we can construct two spin-orbitals:

χ(x) =

{
ψ(r)α(ω)

ψ(r)β(ω)

All wavefunctions will be constructed from these spin-orbitals.
We have assumed that there is no difference between the up and down

spins states. This restricted solution is valid for a closed-shell systems. In

general we will want to allow the spatial parts of the two spins to vary

independently. This leads to what’s known as an unrestricted solution.

More later.
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Many electron basis III

The antisymmetry condition puts restrictions on the kinds of trial
wavefunctions we can use. Consider a two-electron case: The
following trial wavefunction is not allowed for electrons

ΨHP(x1, x2) = χi (x1)χj(x2)

This is because ΨHP(x1, x2) = ΨHP(x2, x1). I.e., the wavefunction
remains invariant on interchanging the electron labels. Such a
wavefunction is suitable for bosons and is called the Hartree
product (hence, the ‘HP’ superscript).
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Many electron basis IV

To make our trial wavefunction antisymmetric we need it to be of
the form:

Ψ(x1, x2) =
1√
2

(χi (x1)χj(x2)− χj(x1)χi (x2))

=
1√
2

∣∣∣∣χi (x1) χj(x1)
χi (x2) χj(x2)

∣∣∣∣
This is called a Slater determinant.
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Many electron basis V

More generally, for N-electrons the Slater determinant takes the
form

Ψ(x1, x2, · · · , xN) =
1√
N!

∣∣∣∣∣∣∣∣∣
χi (x1) χj(x1) · · · χk(x1)
χi (x2) χj(x2) · · · χk(x2)

...
...

. . .
...

χi (xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣ (1)

≡ |χiχj · · ·χk〉 (2)

where the last equation is short-hand for writing out the
determinant.
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Hartree–Fock (in brief) I

So now let us describe the ground state of our N-electron system
with the BO approximation using a single Slater determinant:

Ψ0(x1, x2, · · · , xN) = |χ1χ2 · · ·χN〉

The Hartree–Fock approximation to the ground state energy is
found by varying the spin-orbitals {χi} to minimize the energy:

E0 ≤ EHF = min〈Ψ0|H|Ψ0〉

subject to the conditions that the spin-orbitals are orthonormal.
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Hartree–Fock (in brief) II

As before, but with many more steps, the variational principle
leads to the following equations for the spin-orbitals

f (i)χ(xi ) = εχ(xi )

where f (i) is an effective operator called the Fock operator

f (i) = −1

2
∇2

i −
∑
α

Zα
riα

+ vHF(i)

where vHF(i) is the Hartree–Fock effective potential that depends
on the solutions to the above equations. So we must solve these
equations self-consistently: Make a guess for the solutions;
construct the potential vHF(i) from this guess; solve the Fock
equations; get new solutions; and repeat till convergence.
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One-electron operators I

We will require a number of matrix elements for Hartree–Fock and
post-HF methods. You have already seen these when we worked
through the H2 system. The rules for general N-electron matrix
elements are very similar to those for the 2-electron case; the only
complication is the added complication brought out by the algebric
complexity of the N-electron Slater determinants.

Szabo & Ostlund describes the calculation of these matrix
elements in some detail and I expect you to look through those
derivations in case the ones presented here are not clear enough for
you. A problem with the S&O derivations is that they are too long.
More on this soon.
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One-electron operators II

We are after matrix elements of the form

〈K |O1|L〉 and 〈K |O2|L〉

where |K/L〉 are N-electron Slater determinant wavefunctions. In
general, the N-electron determinant |Ψ〉 can be written as

|Ψ〉 = (N!)−1/2
N!∑
u=1

σuPu{χ1(1)χ2(2) · · ·χN(N)}

Here Pu is a permutation operator that can be expressed as a
product of binary permutations:

Pu = PijPkl · · ·

and σu is phase factor that is +1 if Pu contains an even number of
binary permutations and is −1 otherwise.
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One-electron operators III

We now define the antisymmetrization operator A as

A =
N!∑
u=1

σuPu

Recall that the Hartree product (HP) is defined as
ΨHP = {χ1(1)χ2(2) · · ·χN(N)}, so we will often write |Ψ〉 more
compactly as

|Ψ〉 = (N!)−1/2AΨHP.

The operator A is Hermitian so A = A† and

AA = N!A.
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One-electron operators IV

These properties allow us to significantly simplify matrix element
evaluation, for consider

〈Ψ|H|Ψ〉 = (N!)−1
N!∑
u=1

σu

N!∑
w=1

σw ×
∫

dx1 · · · dxN

Pu{χ1(1)χ2(2) · · ·χN(N)} H Pw{χ1(1)χ2(2) · · ·χN(N)}

Handling two permutation operators is tedious. S&O do it and you
should see how these proofs go, but we will use the following
theorem to make the proofs significantly easier:
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One-electron operators V

Theorem

〈Ψ|H|Φ〉 =
√

N! 〈ΨHP |H|Φ〉.

Proof:

〈Ψ|H|Φ〉 = 〈AΨHP|H|AΦHP〉
= (N!)−1 〈ΨHP|H|AAΦHP〉
= (N!)−1 〈ΨHP|H|N!AΦHP〉
= 〈ΨHP|H|AΦHP〉

=
√

N! 〈ΨHP|H|Φ〉
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One-electron operators VI

Using the above theorem we can write

〈Ψ|H|Ψ〉 =

∫
dx1 · · · dxN

{χ1(1)χ2(2) · · ·χN(N)} H
N!∑
u=1

σuPu{χ1(1)χ2(2) · · ·χN(N)}

There is only one permutation operator to deal with here.
Now we will consider a series of cases with the operator being: C
(a C-number),

∑
i h(i), and

∑
i>j r−1ij . Additionally, we will

consider matrix elements involving Ψ and singly and doubly excited
determinants: Ψa

i and Ψab
ij . We will not consider higher excitations

as the rules for those follow from these.
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One-electron operators VII

C: C-number

〈Ψ|C |Ψ〉 =

C 〈{χ1(1)χ2(2) · · ·χN(N)}|
N!∑
u=1

σuPu{χ1(1)χ2(2) · · ·χN(N)}〉

Pu = E : we get C 〈1|1〉〈2|2〉 · · · = C .

Pu = P12: we get −C 〈1|2〉〈1|2〉〈3|3〉 · · · = 0.

Similarly for other permutations.

Therefore, 〈Ψ|C |Ψ〉 = C . Which also means that |Ψ〉 as defined is
normalized!
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One-electron operators VIII∑
i h(i): One-electron operator

Consider h(i) only:

〈Ψ|h(i)|Ψ〉 =

〈{χ1(1)χ2(2) · · ·χN(N)}|h(i)|
N!∑
u=1

σuPu{χ1(1)χ2(2) · · ·χN(N)}〉

Pu = E : 〈1|1〉 · · · 〈i |h(i)|i〉 · · · = 〈i |h|i〉.
Pu = Pij : −〈1|1〉 · · · 〈i |h(i)|j〉 · · · 〈j |i〉 · · · = 0.

Similarly, any other permutation gives a 0.

Therefore, 〈Ψ|h(i)|Ψ〉 = 〈i |h|i〉, and

〈Ψ|
∑
i

h(i)|Ψ〉 =
∑
i

〈i |h|i〉 =
∑
i

hii .
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One-electron operators IX∑
i>j r

−1
ij : two-electron operator

Consider r−1ij only:

〈Ψ|r−1ij |Ψ〉 =

〈{χ1(1)χ2(2) · · ·χN(N)}|r−1ij |
N!∑
u=1

σuPu{χ1(1)χ2(2) · · ·χN(N)}〉

Pu = E : 〈1|1〉 · · · 〈i(i)j(j)|r−1ij |i(i)j(j)〉 · · · = (ii |jj).

Pu = Pij : −〈1|1〉 · · · 〈i(i)j(j)|r−1ij |i(j)j(i)〉 · · · = −(ij |ji).

Any other permutation gives a 0.

Therefore, 〈Ψ|r−1ij |Ψ〉 = (ii |jj)− (ij |ji), and

〈Ψ|
∑
i>j

r−1ij |Ψ〉 =
∑
i>j

[(ii |jj)− (ij |ji)].
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One-electron operators X

Putting these results together we can now write down the energy
expression of any single-determinant wavefunction |Ψ〉:

〈Ψ|H|Ψ〉 =
∑
i

〈i |h|i〉+
∑
i>j

[(ii |jj)− (ij |ji)]
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One-electron operators XI

Singly excited states: Ψa
i = (N!)−1/2A{χ1 · · ·χi−1χaχi+1 · · · }

〈Ψa
i |h|Ψ〉 =

〈{χ1 · · ·χi−1χaχi+1 · · · }|h|
N!∑
u=1

σuPu{χ1 · · ·χi−1χiχi+1 · · · }〉

Contributions from h =
∑

j h(j) must eliminate the zero overlap
term 〈χa|χi 〉. The only term that can do this is h(i). Now consider
the cases:

Pu = E : 〈1|1〉 · · · 〈a(i)|h(i)|i(i)〉 · · · = 〈a|h|i〉 = hai .

Pu = Pij : −〈1|1〉 · · · 〈a(i)|h(i)|j(i)〉 · · · 〈j(j)|i(j)〉 · · · = 0.

All other permutations result in a 0.

Therefore 〈Ψa
i |h|Ψ〉 = 〈a|h|i〉 = hai .
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One-electron operators XII

Singly excited states: Ψa
i = (N!)−1/2A{χ1 · · ·χi−1χaχi+1 · · · }

〈Ψa
i |
∑
kl

r−1kl |Ψ〉 =

〈{χ1 · · ·χi−1χaχi+1 · · · }|
∑
kl

r−1kl |
N!∑
u=1

σuPu{χ1 · · ·χi−1χiχi+1 · · · }〉

Once again, to eliminate the zero overlap term 〈χa|χi 〉 we must
have either k = i or l = i . It doesn’t matter which as these are
dummy variables. So let us choose k = i and l = j (j goes over all
electrons). We have effectively made the replacement:∑

kl r−1kl →
∑

j r−1ij .
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One-electron operators XIII

Pu = E :

〈{χ1 · · ·χi−1χaχi+1 · · ·χj · · · }|
∑
j

1

rij
|{χ1 · · ·χi−1χiχi+1 · · ·χj · · · }〉

=
∑
j

〈χa(i)χj(j)|r−1ij |χi (i)χj(j)〉 ≡
∑
j

〈aj |ij〉 =
∑
j

(ai |jj)

Pu = Pij :

− 〈{χ1 · · ·χi−1χaχi+1 · · ·χj · · · }|
∑
j

1

rij
|{χ1 · · ·χi−1χjχi+1 · · ·χi · · · }〉

= −
∑
j

〈χa(i)χj(j)|r−1ij |χj(i)χi (j)〉 ≡ −
∑
j

〈aj |ji〉 = −
∑
j

(aj |ji)
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One-electron operators XIV

All other permutations — those that do not involve i — will
result in a 0. Show it!

So we have the result:

〈Ψa
i |
∑
kl

1

rkl
|Ψ〉 =

∑
j

[(ai |jj)− (aj |ji)]

And, including the one-electron terms, we have:

〈Ψa
i |H|Ψ〉 = 〈a|h|i〉+

∑
j

[(ai |jj)− (aj |ji)]
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One-electron operators XV

Doubly excited states:
Ψab

ij = (N!)−1/2A{χ1 · · ·χi−1χaχi+1 · · ·χj−1χbχj+1 · · · }

Q:

Show that

There are no contributions from the one-electron
operator h =

∑
i h(i).

The two-electron operator
∑

kl
1
rkl

results in single
contribution: (ai |bj)− (aj |bi). No summations here.

Consequently,

〈Ψab
ij |
∑
kl

1

rkl
|Ψ〉 = (ai |bj)− (aj |bi)
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One-electron operators XVI

This time there is no contribution from the one-electron part, so

〈Ψab
ij |H|Ψ〉 = (ai |bj)− (aj |bi)
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Introduction I

We now know that the energy of a single determinant |Ψ〉 can be
written as

〈Ψ|H|Ψ〉 =
∑
i

〈i |h|i〉+
∑
i>j

[(ii |jj)− (ij |ji)]

The problem here is that we still do not know what the
spin-orbitals (SOs) χi are or how to calculate them. As we shall
see, the variational principle comes to our aid and allows us to
re-cast this result as an eigenvalue equation. More importantly, it
will turn out to be a one-electron eigenvalue equation of the form

f̂ |χm〉 = εm|χm〉.
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Introduction II

We will show that the one-electron Fock operator f̂ is defined as

f (1) = h(1) + vHF(1),

where h(1) is the usual one-electon Hamiltonian and vHF is the
Hartree–Fock effective potential that is defined as follows:

vHF(1) =
∑
i

[Ji (1)−Ki (1)],

where the Coulomb and exchange operators are defined as

Ji (1)χm(1) =

[∫
dx2

χ∗i (2) χi (2)

r12

]
χm(1)

Ki (1)χm(1) =

[∫
dx2

χ∗i (2) χm(2)

r12

]
χi (1)
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Introduction III

Have a look at the form of the Coulomb operator:

Ji (1) =

∫
dx2

χ∗i (2) χi (2)

r12
=

∫
dx2

ρi (2)

r12
.

This is the Coulomb potential of the electron in orbital χi . So in
the expression

Ji (1)χm(1) =

[∫
dx2

χ∗i (2) χi (2)

r12

]
χm(1)

electron 1 in orbital χi does not see the potential from a point
electron at 2, but rather, interacts with this electron via the
classical Coulomb potential arising from the electronic density.
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Introduction IV

Of course, this is a quantum system, so we also have an exchange
interaction. Unlike the Coulomb interaction, this one has a
complex form: the exchange operator includes the orbital on which
it is operating.

Ki (1)χm(1) =

[∫
dx2

χ∗i (2) χm(2)

r12

]
χi (1)

=

[∫
dx2

χ∗i (2) P12 χi (2)

r12

]
χm(1)

where, in the second form, we have used the permutation operator
P12 to perform the exchange. This also allows us to write the
operator Ki in more conventional form.
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Introduction V

Because the electrons do not interact directly with other electrons,
but rather, see the average potential (Coulomb and exchange) from
other electrons, Hartree–Fock theory is called a mean-field theory.
Here is the Fock Hamiltonian again:

f (1) = h(1) +
∑
i

∫
dx2

χ∗i (2) (1− P12) χi (2)

r12

We will now prove this and demonstrate the the SOs χa are
eigenstates of this Fock operator. (They are not eigenstates of the
Hamiltonian H!)
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Derivation I

We need to minimize

E0[{χi}] = 〈Ψ|H|Ψ〉 =
∑
i

〈i |h|i〉+
∑
i>j

[(ii |jj)− (ij |ji)]

w.r.t. the {χi} subject to the conditions 〈χi |χj〉 = δij . The
orthonormality condition can be included using the method of
Lagrange multipliers, i.e., we minimize the functional

L[{χi}] = E0[{χi}]−
N∑
ij

εji (〈χi |χj〉 − δij)
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Derivation II

First a result we will need:

Q:

All terms in the functional L are real. Use this fact to show
that εji = ε∗ij .

Hint: Set sij = 〈χi |χj〉−δij and consider the real sum
∑

ij εji sij .
Use the fact that sij = s∗ji to show the required result.



Introduction Matrix Elements Hartree–Fock Basis Sets

Derivation III

For an extremum, under the variation χi → χi + δχi we must have

0 = δL = δE0 −
∑
ij

εjiδ〈i |j〉

Consider the first term:

δE0 =
∑
i

{〈δi |h|i〉+ 〈i |h|δi〉}

+
1

2

∑
ij

{(δii |jj) + (iδi |jj) + (ii |δjj) + (ii |jδj)}

− 1

2

∑
ij

{(δij |ji) + (iδj |ji) + (ij |δji) + (ij |jδi)}
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Derivation IV

Q:

Using the symmetry relations (ij |kl) = (kl |ij), (ij |kl)∗ = (ji |lk)
and the fact that we can always rename the dummy indices i
and j , show that ∑

ij

(ii |δjj) =
∑
ij

(δii |jj)

Similar results hold for the other terms.

Hence show that

δE0 =
∑
i

〈δi |h|i〉+
∑
ij

[(δii |jj)− (δij |ji)] + c.c.
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Derivation V

Similarly, use the result εji = ε∗ij to show that∑
ij

εjiδ〈i |j〉 =
∑
ij

εji (〈δi |j〉+ 〈i |δj〉)

=
∑
ij

εji 〈δi |j〉+ c.c.

Putting this all together we get

0 = δL =
∑
i

〈δi |h|i〉+
∑
ij

[(δii |jj)− (δij |ji)]−
∑
ij

εji 〈δi |j〉+ c.c.
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Derivation VI

Let’s now write this out in terms of the Coulomb and exchange
operators:

0 =
N∑
i

∫
dx1δχ

∗
i (1)×h(1)χi (1) +
N∑
j

(Jj(1)−Kj(1))χi (1)−
N∑
j

εjiχj(1)

+ c.c.
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Derivation VII

Since the variations 1δχ∗i (1) are arbitrary, we must have the
quantities in the [· · · ] = 0. Hence,

h(1) +
N∑
j

(Jj(1)−Kj(1))

χi (1) =
∑
j

εjiχj(1)

or,

f |χi 〉 =
∑
j

εji |χj〉

This is not yet in the form we want it to be. Let’s now see how we
can recast this equation to convert it into the standard canonical
form.
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Derivation VIII

There is a freedom in defining the orbitals {χi}: the occupied SOs
can be mixed amongst themselves without changing the energy.
Let’s see how this is so by defining a new set of SOs that are
derived from the old set via a unitary transformation:

χ′i =
∑
j

χjUji

where U† = U−1, i.e., U is unitary.
We now show that the Fock operator remains unchanged if we
replace the {χi} orbitals by the s {χ′i}s.
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Derivation IX

The one-electron operator h =
∑

i h(i) is trivially unchanged as it
doesn’t depend on the SOs. Consider the Coulomb operator:∑

i

J ′i (1) =
∑
i

∫
dx2

χ′i
∗(2) χ′i (2)

r12

=
∑
kl

[U∗kiUli ]

∫
dx2

χ∗k(2) χl(2)

r12

=
∑
kl

[δkl ]

∫
dx2

χ∗k(2) χl(2)

r12

=
∑
k

∫
dx2

χ∗k(2) χk(2)

r12

=
∑
i

Ji (2)
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Derivation X

Here, the indices i , k , l all go over occupied orbitals only.

Index Notation:

Occupied orbitals: i , j , k , l
(S&O use a, b, c , d)

Un-occupied/virtual orbitals: a, b, c , d
(S&O use r , s, t, u)

General orbitals: m, n, o, p

Remember that the Fock operator is defined in terms of the
occupied orbitals but can operate on all orbitals.
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Derivation XI

Q:

Show that the exchange operator is also unchanged under a
unitary transformation of the occupied orbitals. I.e. show that∑

i K′i =
∑

i Ki .

Hence we get our result: f ′(1) = f (1): the Fock operator is
invarient under a unitrary transformation of the occupied SOs.
Now, since

f |χi 〉 =
∑
j

εji |χj〉

we have

〈χi |f |χj〉 =
N∑
k

εkj〈χi |χk〉 = εij
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Derivation XII

therefore

ε′ij =

∫
dx1χ

′
i
∗
(1)f (1)χ′j(1)

=
∑
kl

U∗kiUlj

∫
dx1χ

∗
k(1)f (1)χl(1)

=
∑
kl

U∗kiεklUlj

So, in matrix form: ε′ = U†εU.
Now, we have shown that ε is an Hermitian matrix, so we can
always find a Unitary matrix that diagonalises it. Let this matrix
be U. Therefore, ε′ will be a diagonal matrix. Hence

f |χ′i 〉 = ε′i |χ′i 〉
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Derivation XIII

or, dropping the primes, we write the Fock equations in canonical
form:

f |χi 〉 = εi |χi 〉

Notes:

The canonical spin orbitals are generally delocalised.

Like the non-canonical SOs, they are orthonormal.

We have proved that we can obtain a set of canonical SOs for
the occupied orbitals. It turns out that this can be done for
the virtual (un-occupied) SOs too.
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Orbital Energies I

What do the spin orbitals and orbitals energies mean? When we
solve the Fock equations we formally obtain an infinity of solutions
(any partial differential equation has an infinity of solutions). We
place the N electrons in the N lowest energy SOs. These are our
occupied orbitals. The others, the un-occupied ones, are called the
virtual SOs. There are an infinity of these (formally!). We will now
try to understand what these orbitals mean. But first, something
to think about

Q:

Why have we assumed (as we will) that the putting the elec-
trons in the N lowest energy SOs is the correct thing to do?
After all, our goal is to minimize the energy E0 which, as we
will soon see, is not the same as the sum of the energies of the
occupied SOs.
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Orbital Energies II

What are the orbital energies?

εi = 〈χi |f |χi 〉 = 〈χi |h +
∑
j

(Jj −Kj)|χi 〉

= 〈χi |h|χi 〉+
∑
j

[〈χi |Jb|χi 〉 − 〈χi |Kb|χi 〉]

= 〈i |h|i〉+
∑
j

[〈ij |ij〉 − 〈ij |ji〉]

= 〈i |h|i〉+
∑
j

〈ij ||ij〉
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Orbital Energies III

Now let’s look at the energies of an occupied and a virtual orbital:

Occupied orbital

εi = 〈i |h|i〉+
∑
j

〈ij ||ij〉 = 〈i |h|i〉+
∑
j 6=i

〈ij ||ij〉

We could eliminate the j = i case in the sum as 〈ii ||ii〉 = 0.
These is the way self-interaction is removed in Hartree–Fock
theory. Notice that the sum now includes Coulomb and
exchange interactions with N − 1 electrons.

Virtual orbital

εa = 〈a|h|a〉+
∑
j

〈aj ||aj〉

Since j ∈ occ, we cannot make the same reduction in the sum
and see that this electron in the virtual orbital a interacts with
N other electrons.
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Orbital Energies IV

Q: Do the orbital energies add up to the total energy?

N∑
i

εi =
∑
i

〈i |h|i〉+
∑
ij

〈ij ||ij〉

= E0 +
1

2

∑
ij

〈ij ||ij〉

So E0 6=
∑N

i εi ! The reason for this difference is that, as we have
jsut seen, εi includes the Coulomb and exchange interactions (in
the average, HF sense) with the other N − 1 electrons. So by
summing over all εi we double count and hence to get E0 we need
to remove half these interactions.
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Koopman’s Theorem I

To find out exactly what these Hartree–Fock orbital energies mean
we evaluate the Ionization Potential (IP) and Electron Affinity
(EA) while keeping all orbitals frozen (no relaxation allowed).
The IP is defined as the energy taken to remove an electron. We
will remove the electron from orbital k. This creates the N − 1
electron state

|Ψk(N − 1)〉 = ak |Ψ0〉

And
IP = Ek(N − 1)− E0(N)

where

E0(N) = 〈Ψ0(N)|H|Ψ0(N)〉
Ek(N − 1) = 〈Ψk(N − 1)|H|Ψk(N − 1)〉.
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Koopman’s Theorem II

We already know that

E0(N) =
∑
i

〈i |h|i〉+
1

2

∑
ij

〈ij ||ij〉

To evaluate Ek(N − 1) we use a similar expression but eliminate all
instances of orbital k:

Ek(N − 1) =
∑
i 6=k

〈i |h|i〉+
1

2

∑
i 6=k,j 6=k

〈ij ||ij〉
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Koopman’s Theorem III

So the IP is

IP = Ek(N − 1)− E0(N)

= −〈k |h|k〉 − 1

2

∑
i

〈ik ||ik〉 − 1

2

∑
j

〈kj ||kj〉

= −〈k|h|k〉 −
∑
i

〈ik||ik〉

= −εk

So the orbital energy εk of occupied orbital k is negative of the
energy required to remove the electron from the orbital while
keeping all orbitals fixed.



Introduction Matrix Elements Hartree–Fock Basis Sets

Koopman’s Theorem IV

Now consider the process of adding an electron to a virtual orbital
a of the system to generate |Ψa(N + 1)〉 = a†a|Ψ0〉. The electron
affinity is defined as

EA = E0(N)− E a(N + 1).

Q:

Show that

EA = E0(N)− E a(N + 1) = −εa

That is, the energy of a virtual orbital is the negative of the
electron affinity for adding an electron to that orbital.
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Koopman’s Theorem V

This now explains why an electron in a virtual orbital has an
energies that is consistent with it interacting with N other
electrons. From the above we see that this is so because the
energy of a virtual orbital is (minus) the energy required to create
an N + 1 state.
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Koopman’s Theorem VI

Koopmans’ Theorem
Given an N-electron Hartree–Fock single determinant with oc-
cupied and virtual spin orbital energues εi and εa, the ionization
potential to produce an N − 1-electron state with all orbitals
frozen and the electron removed from orbital i is −εi , and the
electron affinity to produce a N + 1-electron state with an ad-
ditional electron in virtual orbital a is −εa.
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Brillioun’s Theorem I

Brillioun’s theorem deals with the stability of the Hartree–Fock
solution w.r.t. first-order changes to the wavefunction (the Fock
single-determinant).
We have derived the Fock equations using the variational principle,
so, the solutions to the Fock equations should be stable in the
variational sense, that is, the Hartree–Fock energy should not
change (to first order) with small changes to the wavefunction.
What Brillioun’s Theorem tells us is that this is indeed true if by
small changes we mean single excitations: that is, single
excitations will not change the Hartree–Fock energy.
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Brillioun’s Theorem II

To demonstrate this we need a couple of results:

〈Ψa
i |H|Ψ0〉 = 〈a|h|i〉+

∑
j

[(ai |jj)− (aj |ji)]

= 〈a|h|i〉+
∑
j

〈aj ||ij〉
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Brillioun’s Theorem III

and we need the general form of matrix elements of the Fock
operator:

fmn = 〈χm|f |χn〉 = 〈χm|h +
∑
j

(Jj −Kj)|χn〉

= 〈χm|h|χn〉+
∑
j

[〈χm|Jb|χn〉 − 〈χm|Kb|χn〉]

= 〈m|h|n〉+
∑
j

[〈mj |nj〉 − 〈mj |jn〉]

= 〈m|h|n〉+
∑
j

〈mj ||nj〉
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Brillioun’s Theorem IV

Now, because the SOs χm are eigenstates of the Fock operator, we
have

fmn = 〈χm|f |χn〉 = εn〈χm|χn〉 = εnδmn.

From the second result we see that

〈Ψa
i |H|Ψ0〉 = 〈a|h|i〉+

∑
j

〈aj ||ij〉

= 〈χa|f |χi 〉
= εiδai = 0 since a 6= i

That is, the singly excited determinant Ψa
i does not (directly)

connect with the Hartree–Fock ground state Ψ0.
To see the significance of this result, let us consider a CI expansion
to improve the Hartree–Fock wavefunction and energy.
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Brillioun’s Theorem V

1

2

n

n + 1

n + m

Figure : Left: HF ground state configuration. Right: An example of an
excited state configuration. If there are n occupied levels (2 electrons
each, so N = 2n) and m virtual (un-occupied) levels, in how many ways
can we form excited states? Each of these states will correspond to a
Slater determinant.
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Brillioun’s Theorem VI

We generate the full CI (FCI) wavefunction by including all kinds
of single determinants in a linear expansion:

|Ψ〉 = c0|Ψ0〉+
∑
ia

ca
i |Ψa

i 〉+
∑
ij ,ab

cab
ij |Ψab

ij 〉+ · · ·

= c0|Ψ0〉+ cS |S〉+ cD |D〉+ · · ·

where electrons are excited from the occupied orbitals i , j , k , · · · to
the virtual orbitals a, b, c , · · · .
We may think that the simplest way to improve the HF solution
|Ψ0〉 is to include the single excitations |S〉. This is a reasonable
assumption that proves to be wrong because of Brillouin’s
theorem. To see this, consider the simple case where we have only
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Brillioun’s Theorem VII

one singly excited determinant |Ψa
i 〉. So the CI — call it CIS for

configuration interaction with single excitations — expansion is

|Ψ〉 = |Ψ0〉+ ca
i |Ψa

i 〉

Using the usual variational methods we have discussed before to
determine the coefficients c0 and cab

ij we convert this problem into
the set of linear equations(

〈Ψ0|H|Ψ0〉 〈Ψ0|H|Ψa
i 〉

〈Ψa
i |H|Ψ0〉 〈Ψa

i |H|Ψa
i 〉

)(
c0
ca
i

)
= E

(
c0
ca
i

)
From Brillouin’s theorem 〈Ψa

i |H|Ψ0〉 = 0 and 〈Ψ0|H|Ψ0〉 = E0,
therefore we get(

E0 0
0 〈Ψa

i |H|Ψa
i 〉

)(
c0
ca
i

)
= E

(
c0
ca
i

)
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Brillioun’s Theorem VIII

The ground-state solution is simply E = E0 with c0 = 1 and
ca
i = 0. I.e., the ground-state of the CIS variational expansion is

the Hartree–Fock solution. That is, singly excited determinants
(on their own) cannot improve the Hartree–Fock solution. I.e.,
Hartree–Fock is stable to perturbations that take the form of single
excitations.

This does not mean that single excitation can never contribute.
They can if we also include double excitations. Can you see
how?
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The HF Hamiltonian I

The HF single-determinant wavefunction is not an eigenstate of
the Hamiltonian:

H|Ψ0〉 6= E0|Ψ0〉.

But it is an exact eigenstate of the Hartree–Fock Hamiltonian

H0 =
N∑
i

f (i)

Q: Show that it is. And show that the eigenvalue is E
(
00) =

∑
i εi .
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The HF Hamiltonian II

Now we can write H = H0 + V , where V is the fluctuation
operator defined as

V = H − H0

=
∑
i ,j>i

1

rij
−
∑
i

vHF(i).

That is, V is the difference in the exact two-electron interaction
operator and the approximate HF operator.
We can treate V as a perturbation to H0 and expand the energy as

E0 = E
(0)
0 + E

(1)
0 + E

(2)
0 + · · ·

We will do this properly later when covering perturbation theory in
detail, but for now, all we need are the first two terms. Recall from
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The HF Hamiltonian III

your Quantum Mechanics that E
(0)
0 = 〈Ψ0|H0|Ψ0〉 =

∑
i εi and

E
(1)
0 = 〈Ψ0|V |Ψ0〉.

Q: Show that E
(1)
0 = 〈Ψ0|V |Ψ0〉 = −1

2

∑
ij〈ij ||ij〉

Hence we see that the Hartree–Fock energy is the sum of the first
two terms in the perturbation theory expansion:

E0 = E
(0)
0 + E

(1)
0 =

∑
i

εi −
1

2

∑
ij

〈ij ||ij〉.

Q:
Show that this expression is exactly the same as the earlier one
we derived for the Hartree–Fock energy.

Therefore, there is no first-order contribution to this perturbation
theory. The first-order term is included in Hartree–Fock.
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Solving the HF equations I

The Fock equations are one-electron equations:

f |χi 〉 = εi |χi 〉

So we solve them using principles we have already developed for
one-electron systems: introduce an expansion in a basis.

χi (r) =
∑
m

cimφm(r)

This leads to the set of linear equations:

Fc = εSc (3)

which we can solve to find the energies and eigenfunctions.
The question now is: how do we choose the basis functions {φm}?
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Slater-type orbitals I

A reasonable choice for basis sets for finite systems would be what
are called Slater-type orbitals: these are very like solutions of the
1-electron Hamiltonian. They differ in two ways: (1) the radial
part is simpler and (2) the exponent is not integral but can be
varied to account for screening effects.

φ = Rnl(r)Ylm(θ, φ) (4)

where Ylm is a (real) spherical harmonic and the radial part is
given by

Rnl(r) =
(2ζ)n+1/2

[(2n)!]1/2
rn−1e−ζr (5)
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Slater-type orbitals II

2 4 6 8 10
·10−2

0.1

0.2

0.3

0.4

0.5
ζ = 1.0, n = 1
ζ = 1.0, n = 2
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Slater-type orbitals III

Comments on Slater-type orbitals:

GOOD Nuclear cusp condition satisfied.

∂

∂r
〈ρ(r)〉sph

∣∣∣∣
r=0

= −2Z 〈ρ(0)〉sph

GOOD Exact wavefunction has the long-range form of a
Slater orbital.
If we pull one electron out of an N-electron molecule the
wavefunction behaves like

Ψ(N)→ Ψ(N − 1)× e−
√
2∗I r

where I is the first (vertical) ionization energy.

BAD Integrals very difficult for multi-atom systems.



Introduction Matrix Elements Hartree–Fock Basis Sets

Gaussian-type orbitals (GTOs) I

In 1950 S. F. Boys pointed out that the problem of computing
integrals could be resolved by using not Slater-type orbitals, but
rather Gaussian-type orbitals (GTOs):

Rnl ∼ rne−α(r−A)
2

where A is the centre of the GTO. The main reason for the
efficacy of GTOs is that the product of two GTOs is a third GTO,
centred at a point in between:

exp(−α(r−A)2) exp(−β(r−B)2) = exp(−γ(A−B)2) exp(−µ(r−P)2)

where µ = α + β, γ = αβ/µ and P = (αA + βB)/µ.
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Gaussian-type orbitals (GTOs) II

2 4 6 8 10
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Gaussian-type orbitals (GTOs) III

The general form of a GTO is

ψGTO
αnl lm

= RGTO
αnl l

(r)Ylm(θ, φ)

where Ylm(θ, φ) are the spherical harmonics, and the radial part is
given by

RGTO
αnl l

(r) =
2(2αnl)

3/4

π1/4

√
2l

(2l + 1)!!
(
√

2αnl r)l exp (−αnl r
2)

The spherical harmonics are usually re-written as real solid
harmonics to avoid complex algebra.
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Gaussian-type orbitals (GTOs) IV

Notice that unlike the Slater-type orbitals, the n-dependence
of a GTO lies in the choice of the exponent αnl .

The core orbitals with n = 0, 1 will be represented with
relatively large exponents so that these orbitals decay quickly
with r .

Likewise, the valence orbitals with large n will be described
with GTOs with small exponents so that they decay slowly.
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Gaussian-type orbitals (GTOs) V

GOOD GTOs makes the integrals that appear in the HF
energy expression much simpler.

BAD Nuclear cusp condition violated: zero derivative at origin.

BAD Wrong long-range form: dies off too fast with distance.
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Gaussian-type orbitals (GTOs) VI

Consider a GTO representation of the hydrogen 1s orbital:
1sA(r) = π−1/2 exp (−r).

No expansion in GTOs will ever be able to reproduce the cusp
at r = 0.

Likewise, any GTO expansion will decay with r much too fast.

A single GTO does an incredibly poor job at describing
1sA(r)...
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Gaussian-type orbitals (GTOs) VII
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Gaussian-type orbitals (GTOs) VIII

2 4 6 8 10
·10−2

x

φ ζ = 1.0, n = 1
STO-1G



Introduction Matrix Elements Hartree–Fock Basis Sets

Gaussian-type orbitals (GTOs) IX

2 4 6 8 10
·10−2

x

4π|φ|2 ζ = 1.0, n = 1
STO-1G
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Gaussian-type orbitals (GTOs) X

We can do better using contractions
In a contraction an orbital is defined as a fixed linear combina-
tion of GTOs.

ψcont
nlm =

∑
k≡(nl)

ckψ
GTO
αk lm

where ck are the contraction coefficients and αk are the expo-
nents of the GTOs in the contraction.

The contraction coefficients can be chosen to ensure that the
contraction is normalized, but this is not always the case.

The ck and the αk are determined by fitting to reference
energies or properties. The STO basis sets are designed to
best approximate the Hartree–Fock energy of the atom.
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Gaussian-type orbitals (GTOs) XI

Once determined these parameters are fixed.

Hence a contraction significantly reduces the size of the basis
while resulting in better energies.

However, a basis must contain uncontracted GTOs too as
these allow for orbitals deformation when bonds are formed.

Hence basis sets consist of groups of contractions together
with some un-contracted GTOs. The better the basis, the
more of these there will be and the more GTOs in a
contraction.
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Gaussian-type orbitals (GTOs) XII

cc-pvDZ Dunning basis for hydrogen:

h cc−pVDZ : [ 2 s1p ]
S 4

1 13.0100000 0.0196850000
2 1.9620000 0.1379770000
3 0.4446000 0.4781480000
4 0.1220000 0.5012400000

S 1
1 0.1220000 1.0000000000

P 1
1 0.7270000 1.0000000000
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Gaussian-type orbitals (GTOs) XIII
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Gaussian-type orbitals (GTOs) XIV
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Gaussian-type orbitals (GTOs) XV

Clearly, the three contracted GTOs in the STO-3G basis do a much
better job at describing the 1sA(r) orbital of the hydrogen atom.

Q:

The cc-pVDZ basis for hydrogen contains a p-orbital in addition
to the two s orbitals. What is the purpose of this p orbitals?
Also, since hydrogen has only one electron, why bother with an
extra s orbital?

We typically refer to a basis set by the number of orbitals it
has in each symmetry. For example, the cc-pVDZ hydrogen
basis is a 2s1p basis set.

The better the basis the more the GTOs in a contraction and
the more the number of GTOs of each symmetry.
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Gaussian-type orbitals (GTOs) XVI

Basis sets for each atom need to be matched: you cannot use
a small carbon basis with a large hydrogen basis. Q: Why
not?

A set of matching basis sets will typically contain a similar
number of functions on each atom in a given row of the
periodic table. Allowances are made for the increasing number
of shells as we go down the rows. So the cc-pVDZ Dumming
basis set has: H:2s1p, C:3s2p1d, O:3s2p1d, Ar:4s3p1d.
Notice how argon gets an extra s and p set.

Commonly used families of basis sets are the Pople basis sets
(typically used by chemists) and the Dunning basis sets
(essential for correlated methods).
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Gaussian-type orbitals (GTOs) XVII

The Dunning basis sets go by the name (aug-)cc-p(C)VnZ.
These are termed (augmented-)correlation-consistent-
polarized-(contracted)-valence-n − ζ basis sets. The optional
aug- refers to a set of extra diffuse GTOs that can be
included to better describe response properties like the
polarizability and hyperpolarizability.

We typically think of these basis sets as a sequence that
converges systematically to the complete basis set (CBS)
limit.
cc-pVDZ < cc-pVTZ < cc-pVQZ < ... < CBS

Ideally, we would always work at the CBS limit.
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Gaussian-type orbitals (GTOs) XVIII

Basis set recommendations:

GOOD Complete basis set (CBS) limit

Geometry optimization: moderate size basis sets. Double-ζ.

Energies: At least triple-ζ quality.

Properties: Triple-ζ or more.

We will have another look at basis sets after discussion correlated
methods.
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