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Kohn—-Sham DFT |

Ll = Tl + ol + Bl + [ vl (1)

must be minimized subject to the orthonormality constraints

<Xi\Xj> = 5ij~

This gives us the Kohn—Sham equations after the usual occupied
orbital rotation to make the eigenvalue matrix ¢;; diagonal:

1
<2V,2 + VS(I")> Xi = €iXi

AMH



where the effective potential is defined as

vs(r) =

vy(r) + vext (1) + vxc(r)
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Kohn—-Sham DFT Il

We solve the 1-electron Kohn—-Sham equations self-consistently:

@) = (3934 w) (1) = ol

where we have defined the Kohn—Sham operator k(1).
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Kohn—-Sham DFT IV

Once we have the orbitals x;, we can evaluate the energy using

L) = Tl + J[) + Elpl + [ voa ()t

or, equivalently,

Ll = Tl + ol + Bl + [ vea(0)p0)s

= Z € — J[p] + Exc[p] - / VXC(r)p(r)dr
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Exchange correlation functionals are usually written in the form

Euclpl = [ pla)esc(p). Volo), -+ ) 2)

where €,..(p(r), Vp(r),---) can be regarded as the
exchange-correlation density.

We usually split the exchange-correlation density into its exchange
and correlation parts:

exc(p(r), Vp(r), - -) = e(p(r), Vp(r), - - ) + €c(p(x), Vp(x), - -+)
(3)
This separation is convenient for we can then think of using
well-understood approximations for each of these.
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The first of the many functionals is the local density approximation
or LDA. In this approximation the exchange-correlation density
depends on the electron density alone (no dependence on gradients
etc.):

Euclpl = [ )P () @)

The Slater approximation is used for the exchange-energy density:

S (p()) = 3 (3p(r) ) 3/2

4 T

Using this we get the Slater exchange functional:

ESll = (3)3/2 [ o0 = e [ 50

™
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Kohn-Sham DFT VII

Paired with this is a correlation functional parameterized on very
accurate quantum Monte-Carlo (QMC) calculations of the energy
of the homogeneous free electron gas as a function of density.
There are a variety of correlation parameterizations. These differ
by the choice of QMC energies used or by the interpolation scheme
used in the parameterization (the QMC energies are calculated at a
set of densities so some scheme is required to interpolate to all
densities).
Common choices of the correlation functional are:

e PWO91lc The Perdew—Wang (1992) parameterization (called

pw91lda in NWCHEM.

@ VWN The Voski-Wilk—Nusair (1980) parameterization.

So what is called the LDA translates into a combination of the
Slater exchange functional and one of these correlation functionals.
The actual choice will vary with program.
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In the generalized gradient approximations the exchange-correlation
density is dependent on the density and its gradient.

amﬂ—/}MéfﬂmmVMAMr

As before, we split the exchange-correlation density into its
exchange and correlation parts:

et (p(r), Vp(r)) = €29 (p(r), Vp(r)) + €S9 (p(r), V(r))

The exchange part of all GGAs takes the form

ESSHp) = [ p(e)ekP (o) ()
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Fx(s) is sometimes called the enhancement factor and is written
as a function of the reduced density gradient defined as

o) — 1720
2(371’2)1/3p4/3(r) ’

Two of the common exchange enhancement factors are
@ Becke, 1988 (B83)
Bs?
1+68ssinh™!s

F}?SS(S) =1

Becke fitted the parameter 5 = 0.0042 to reproduce known
exchange energies of rare gas atoms. This particular form for
the enhancement factor was chosen to obey a few exact

relations.
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@ Perdew, Burke & Ernzerhof, 1996 (PBE)

FPBE(e) =14 p——
() A 1—ps?/k

In this functional all parameters were obtained theoretically.
r = 0.804. Most physcists use this exchange functional.
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In 1993, Becke proposed a three-parameter semi-empirical
functional that cured this problem. The general idea is to mix
some fraction of HF exchange with DFT exchange:

ERYPrd = afHF 4 (1 - a)ESCA + EZ9A

The B3LYP is the most widely used of these and is a slight
modification of Becke's 1993 proposal made the following year by
Stephens and others:

LI BN 4 (BT — ) + an(EP - E9)

a7 - E1Y)

A better choice (in my opinion) is the PBEO functional (sometimes called
PBE1PBE) which mixes PBE with 20% HF exchange.
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@ The Kohn—Sham non-interacting system was initially regarded
as no more than a device to facilitate the solution of the
Schrédinger equation.

@ The orbitals and orbital eigenvalues were not taken to mean
anything with one exception:

e egomo = —/
Perdew, Parr, Levy and Balduz (Phys. Rev. Lett. 49. 1691
(1982)) had shown that the energy of the highest occupied
molecular orbital was exactly equal to the negative of the
vertical lonization energy.

@ However, there was a lot of empirical evidence that the
Kohn—Sham orbital energies were closely related to the
experimental ionization energies.

@ But they were generally shifted w.r.t. the experimental values.
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@ In 2001, Chong, Gritsenko and Baerends (J. Chem. Phys.
116, 1760) showed that for the exact XC potential (they used
a method called SAOP that had many of the properties of the
exact XC potential):
/k ~ —€)

With the relation being exact for the HOMO.

@ In practice this means that we can use the KS orbital energies
as a good approximation to the experimental excitation levels
of our system, but with a constant, and possibly large, shift.

@ Q: Why are the orbital energies shifted?

Before seeing evidence for the above, here's a problem:
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Q:

To prove that egomo = —/ we follow the steps:

@ In principle, the DFT density is the exact density. So we
can use the result we have proved earlier (lecture 2):

,O(I’) N 672\/2E,r

@ In Kohn—Sham DFT the density is written as the sum of
orbital densities:

N N
p(r) = Z xi(n)* = Zpi(r)

@ Now determine the asymptotic form of the orbital
densities p;(r).

continued...

AMH
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Q:

To prove that egomo = —/ continued....

@ The asymptotic form of p;(r) is found using techniques
we developed in lecture 2. The Kohn—-Sham Hamiltonian
for orbital x; is

1
(—2V,2 + Vs(r)> Xi = €iXi

@ This is a one-electron Hamiltonian. We will soon show
that vg — % so you can write the large-r form of this
Hamiltonian exactly as we did in lecture 2. Do this and
show than

Xi(r) N ef\/f2e,-r

Hence p;(r) — e 2v—2¢r,

AMH
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To prove that egomo = —/ continued....

@ Now realise that because p(r) is the sum of the p;, so the
asymptotic form of p will be determined by the
(occupied) orbital with the largest (least negative)

Q: energy. This will be the HOMO. Hence we should have,
in KS-DFT,

p(r) —y g2V —2enomor

@ Hence show that egomo = — /.
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FIG. 1. Correlation plot comparing TD-DFRT results with the multirefer-
ence coupled cluster singles and doubles (MRCCSD) results of Ref. 53 for
the first 35 vertical excitation energies (not counting degeneracies) of N,.

Experimental values taken from

Ref. 53 are also shown.
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FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator (SOPPA) (S# 1 results from Table 1I of Ref. 54) for
the first 23 vertical excitation energies (not counting degeneracies) of CO.
Experimental values taken from Ref. 54 are also shown.
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Also in 1998, Savin, Umrigar & Gonze published a superb set of
results, this time using exact XC potentials. They obtained these
exact, or very accurate XC potentials using a method of inversion:

o Calculate a very very accurate density, say using QMC.

@ From the first Hohenberg—Kohn theorem there is a one-to-one
mapping between this density and the Kohn—Sham potential
for a non-interacting system that produces this density.

@ Use a convenient method to obtain this potential. Q: How do
you do this for the Helium atom density?

@ Solve the Kohn—-Sham equations using this potential.

@ The resulting orbitals and orbital energies are the most
accurate you can get.

Here are two sets of tables from their paper in Chem. Phys. Lett.
288, 391 (1998):
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Table 1

Excitation energies of He in hartree atomic units

Transition  Final state  Experiment = Drake Aegg

Is > 2s 2°s 0.72833 0.72850  0.7460
2's 0.75759 0.75775

Is—>2p 1°p 0.77039 0.77056  0.7772
1'p 0.77972 0.77988

1s = 3s 3%s 0.83486 0.83504  0.8392
3's 0.84228 0.84245

1s = 3p 2°p 0.84547 0.84564  0.8476
2'p 0.84841 0.84858

1s —> 3d 1°D 0.84792 0.84809  0.8481
1'D 0.84793 0.84809

Is—4s  4°S 0.86704 0.86721  0.8688
4's 0.86997 0.87014

The theoretical energies of Drake and coworkers [14,15] and
the eigenvalue differences are for infinite nuclear mass and ne-
glect relativity. The experimental energies are from Ref. [17].
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Table 2

Excitation energies of Be in hartree atomic units

Transition Final state Experiment Aegg

25 - 2p 1°p 0.100153 0.1327
1'p 0.193941

25 > 3s 2°s 0.237304 0.2444
2's 0.249127

25 = 3p 2°p 0.267877 0.2694
2'p 0.274233

2s — 3d 1°D 0.282744 0.2833
1'D 0.293556

25 — 4s 3’s 0.293921 0.2959
3's 0.297279

25 — 4p 3°p 0.300487 0.3046
3'p 0306314

2s — 4d 2°D 0.309577 0.3098
2'D 0313390

25 — 55 4%s 0314429 03153
4's 0.315855

The eigenvalue differences are for infinite nuclear mass and
neglect relativity. The experimental energies are from Ref..[17].



Summary: KS-DFT Interpretation Dispersion AMH
Self-Interaction |

Q: What are the problems with using an approximate XC
functional?
Q: What is the origin of the constant shift of energies mentioned

above?
To understand this we will work out how vy should behave for the

hyrdogen atom.
@ What is the form of the exact Kohn—Sham potential vg for
large r?

<—;v2 + VS(r)> Xk(r) = exxk(r)

This is equivalent to asking what the potential felt by an
electron will be as we pull it off the atom/molecule. It will see
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a hole and hence experience a —1/r potential. Therefore we
must have

Vg — ——
r

as r — OQ.

@ We know that vg = vj 4 Vext + V. We also know the
long-range (asymptotic) forms of vy and Vext:

p(r) 1
vy(r) = / = 1r,|d]r’ -+
L1
Ir — R r

Vext () = —

Therefore these two cancel out asymptotically.
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@ Hence we must have

1
Vie(1) = — .

@ How do common XC potentials behave at asymptotically?
Best to use the simplest XC functional: the Slater exchange
functional (the VWN correlation part does not change the
picture very much). The Slater functional is

ES[] = — G / o3(x)dr



Summary: KS-DFT Interpretation Dispersion AMH
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This gives us an XC potential:
ES
VXC(I') — 5 XC[p]
op
= 2 C'P0)
e

It has the wrong asymptotic form. It decays too quickly with
distance.

@ This is what leads to a small band-gap in DFT: the
unoccupied levels are all shifted down with respect to the

occupied orbitals.
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@ Self-Interaction: Another way of looking at this problem is to
realise that the too rapid decay of vy with distance is
equivalent to the electron ‘seeing’ itself. l.e., rather than see a
hole with charge +1, it sees a hole with charge +re~3". This
is the self-interaction problem. exponentially fast to zero,
eventually the electron will see no attraction.

@ Any molecular property that depends on the unoccupied levels
will there be effected. Examples are: polarizabilities,
hyperpolarizabilities, excitations, in particular charge-transfer
excitations, NMR shifts.

It is best to see this pictorially. In the next few images we will look
at the XC potential for Helium calculated using the HCTH407
functional compared with a (nearly) exact XC potential (this was
obtained by calculating a very accurate He density and inverting it
to obtain the potential).
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Asymptotic-correction |

Since we know what the asymptotic form of vy should be we can
enforce it through an empirical fix known as the asymptotic
correction. We need to account for the shift. Tozer and Handy
worked all this out in 1998:

1
VXC(I“) — —; + I+ egomo
So if know (or calculate) /, calculate egonmo from a standard DFT

calculation, then we will be able to work out the shift and apply
this correction. This is known as the asymptotic correction.
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He: eXchange-Correlation potential
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AMH
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FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator (SOPPA) (S# 1 results from Table 1I of Ref. 54) for
the first 23 vertical excitation energies (not counting degeneracies) of CO.
Experimental values taken from Ref. 54 are also shown.

Dispersion AMH

The LB9%4
functional is one
route to imposing
an asymptotic
correction. The
effect of this on the
excitation energies
is quite dramatic.
Casida, Jamorski,
Casida & Salahub,
J. Chem. Phys.
108, 4439 (1998).
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Figure 9-2. Performance of various functionals in the framework of time-dependent DFT for excitation energies
of ethylene.
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Polarizabilities

Interpretation

5 molecules, TZVP+FIP basis set, Calami

Dispersion

ici, Jug and Koster, 1998

HF 129 BLYP 0.41
LDA 033 CCsD(T) 031
12 molecules, POL basis set, Adamo et al., 1999

MP2 0.25 B97 042
MP4 028 B3LYP 039
BD(T) 023 HCTH 0.29
PBEIPBE 020

20 molecules, POL basis set, Cohen and Tozer, 1999
HF 176 HCTH
MP2 B3LYP
BD BY7
BLYP B97-1

AMH
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@ The asymptotic correction does fix what is called the
one-electron self-interaction error.

@ But there is no clear way to apply an asymptotic correction in
the bulk phase. And the self-interaction error manifests itself
there too.

@ We know that Hartree—Fock is free of self-interaction, so one
solution to the problem is to include more and more
Hartree—Fock-type exchange in KS-DFT. But this leads to an
overall loss in accuracy.
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@ A better solution is to use range-separation: Split the e-e
interaction operator into a short- and long-range part:

1 _ erfc(Br2) N (1 — erfe(Bri2)

rn2 r2 r2

The complementary error function is chosen as it allows easy
integral evaluation. Now use DFT on the short-range part and
Hartree—Fock-exachange on the long-range part. In this way
you get the best of both worlds.

@ Functionals such as CamB3LYP use this principle.

@ It is also possible to use post-Hartree—Fock methods on the
long-range part. For example, you could use MP2. This would
allow the dispersion interaction to be described by DFT. More
on this next.
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The other problem with DFT is that almost all conventional
functionals fail to describe the dispersion (sometimes called the
van der Waals) interaction. This is a long-range and non-local
interaction that arises from the correlation of quantum
menchanical fluctuations on the interaction species.

Consider the argon dimer: this is a dispersion-bound system, that
is, the attraction between two argon atoms arises purely from the
dispersion interaction. This is typical of the rare-gas atoms. On
the next slide we see interaction energies calculated for this system
with MP2, LDA, PBE and B3LYP using the aug-cc-pVTZ basis
set using the counterpoise correction.
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@ The reference MP2 energies exhibit the classic interaction
energy curve as expected. Recall that MP2 is not perfect for
this system, but it will serve as a reference here.

@ The density functionals are all over the place. LDA and PBE
show some binding but is it from the dispersion?

@ The clue is in the long-range behaviour: all density functionals
decay to zero much too quickly with R.

@ On the other hand, the dispersion energy (in the MP2 tail) is
more slowly decaying as R~°.

@ B3LYP is completely repulsive!

Why is this the case? ‘
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The dispersion energy cannot be described in terms of classical
interactions as the electrostatic and induction terms can. A
semi-classical picture is required.
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Model each molecule with a fixed charge +Q at the centre and an
oscillating charge —Q. In the usual scaled units (i.e. energy in
units of hv = hw, length in units of (%2/km)/#) the Hamiltonian
is (assuming infinite separation):

19 1 , 18 1 ,
—s s+ zA® — S + Zz5°% 5
2022 T 2% + 528 (5)

"= 2025° | 2

The energy is the sum of the individual energies, i.e.,
Ey,vs = va+ v + 1. The ground state energy (v4a = vg =0) is 1
unit, i.e. hv.
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If the instantaneous displacements are z4(t) and zg(t), the dipole
moments on A and B are pig = —Qza(t) and ug = —Qzp(t),
respectively.

At a finite separation R, these dipoles interact. The general form
of the dipole—dipole interaction energy is (derived later)

Eu= —u;'l;B (2 cos B, cosfp — sinf4sinOg cos gb),
Here, 04 = g = m and ¢ = 0 so the Hamiltonian at finite

. e 2
separations has the additional term czazg where ¢ = —2’%.
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Using the new variables Z; = \/g(zA + zg) and

Zr = \@(ZA — zg), the potential term in the Hamiltonian becomes

1 1 1 1
V = §ZA2 + CzZpazp + 5232 = 5(1 + C)Zl2 + 5(1 — C)Zgz,

while the kinetic energy is unchanged in form:

F_ 1o 19 19 19
B 2 aZA2 2 8232 B 2 8212 2 8222 '
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Drude Model V

So we now have an oscillator Z; with frequency /1 + ¢, and
another, Z,, with frequency /1 — c. The allowed energies (in the
original scaled units) are now (vi + 3)vVI+c+ (v +3)vVI—c
In a classical system the coupling doesn't change the minimum
energy, which occurs when both oscillators are at rest. That is,
zp =2z =0, so Z; = Z, = 0 also, and the total energy is zero.
A quantum system, however, has zero-point energy: 1 unit in the
original uncoupled system.
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When vi = v, = 0 the energy of the interacting system is

(\/14—764—\/7) f[(l—i—lc TP+

That is, the zero-point energy is smaller for the correlated
oscillators than for the uncoupled ones, whether c is positive or
negative. The stabilization energy is the Drude approximation to
the disperion.



Summary: KS-DFT Interpretation Dispersion AMH
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The Drude expression for the dispersion energy is —%c2 -

which varies as %. The coefficient of this term is usually labeled

GCs and, inserting the energy factors scaled out, is defined as

iw Q4

Co = 2(4meg)?k?

We now need to relate @ and k to measurable quantities. This is
done using classical ideas.
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If the charge —Q extends by z in an electric field E then balancing

forces we must have kz = —QE, or z = —%. Now, by definition,
u=—-zQ = QTZE. But, by definition of the polarizability, u = aE,
therefore

QZ
This allows us to re-write the Cg as

huwa?

Co— >
7 2(47e)?
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In 3-dimensions this expression becomes

3hwa?

Co = 4(4meg)?’

|Q: Show this!

and taking, as London did, wwv = Ej, the ionization energy, we get

3E/Oé2

Co— 1
6 4(4meg)?

This is an approximation, but it contains all the correct physics.
The dispersion energy is always attractive (at second-order) and
can be interpreted as arising from a correlation in the electronic
fluctuations on the molecules.
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@ In this phenomenological model, the dispersion energy arises
from the correlations of quantum fluctuations. It is a purely
quantum phenomenon and has no classical analogue.

@ Further, it as it is a non-local phenomenon, we can now
understand why local and semi-local density functional are
unable to describe this energy. Functionals need to be
explicitely non-local to be able to describe the dispersion
energy.

@ However many density functionals can be corrected to account
for the missing dispersion by adding to the DFT energy a
term like:

cb
Edisp = - Z fswitch(ﬁrab)rT;

b>a ab
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where a and b are atomic sites separated by r,, and with a
dispersion coefficient Cgb. The switching function

fswitch (Brap) which typically depends on one or more
parameters (here only one is indicated) has to be very
carefully chosen to avoid double-counting the dispersion at
short range. Also, this switching function needs to be tuned
to each density functional.

@ The most popular of such corrections is by Stefan Grimme.

@ In many of these models, it is assumed that the dispersion
coefficient between atoms is fixed and does not vary with
changes in chemical environment. This is often a poor
approximation.

@ Furthermore, the Cg term is only one term in the dispersion
expansion and it is generally angular-dependent.
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e Additionally, for semiconductors and metals additional terms
(as low as () arise from plasmon modes. These are long
wavelength fluctuations arising from the conduction electrons.
For such systems the above model breaks down.

@ There are explicitely non-local functionals which do not need
this correction, but in practice, this correction, if well tuned,
can be more accurate than many other more sophisticated
non-local functionals.
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Density functional calculations:

dft
xc b3lyp
end

set geometry " Ar4+Ar”
task dft

unset geometry "Ar+Ar"
scf; vectors atomic; end
set geometry "Ar+ghost”

task dft
unset geometry "Ar+ghost”
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This would be a standard DFT calculation in NWChem with the
B3LYP functional. To define the PBE functional use:

dft
xc xpbe96 cpbe96
end

And to define the PBEO functional use:

dft
xc pbe0
end



dft

xc pbe0
disp
end

«O» «Fr « =>»

« =

To define the Grimme dispersion correction with, say, PBEO, use:

DA
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