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Many electron basis I

Hartree–Fock is an approximation that is exact only for a
one-electron system.

Q:

Show that for a one-electron system the Fock operator is ex-
actly the same as the exact one-electron Hamiltonian. Hence,
the HF solutions are exact. Is this something you would have
expected?

We know that the Hartree–Fock ground state energy E0 will be an
upper bound to the exact ground-state energy E0. The difference

Ecorr = E0 − E0

is called the correlation energy. This energy is often large enough
that we cannot neglect it. The question now is how do we
calculate Ecorr?
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Many electron basis II

To calculate Ecorr we need to use what are known as
post-Hartree–Fock methods. Amongst the main-stream approaches
are

Configuration Interaction (CI): Create a linear expansion of
determinants created from the HF ground-state determinant
by exciting electrons into the virtual space.

Perturbation Theory (MPn): Develop a perturbative
expansion starting with the Hartree–Fock ground state as the
zeroth order solution.

Coupled-cluster methods (CC): Like CI, but with
infinite-order summations.

Quantum Montecarlo (QMC): Variational Montecarlo
(VMC), Diffusion Montecarlo (DMC), full configuration
interaction quantum montecarlo (FCIQMC).
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Many electron basis III

Density-functional theory (DFT): Reformulate the problem
in terms of the electron density.

Density matrix theory: Variant of the above that recognises
that uses the two-electron density.

Greens function methods.....

Here we will look at CI, CC, MP2 and (finally) DFT. The other
methods require another course altogether!



Introduction CI CC MBPT Errors Summary Cost and basis sets Correlation cusp

Configuration Interaction I

CI: Increase the flexibility in the wavefunction by including in
addition the the HF ground state, excited states.
Q: What are excited states and how to we form them?
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Configuration Interaction II
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n + 1

n + m

Figure: Left: HF ground state configuration. Right: An example of an
excited state configuration. If there are n occupied levels (2 electrons
each, so N = 2n) and m virtual (un-occupied) levels, in how many ways
can we form excited states? Each of these states will correspond to a
Slater determinant.
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Configuration Interaction III

The Full CI (FCI) wavefunction:

|Ψ〉 = c0|Ψ0〉+
∑
ia

ca
i |Ψa

i 〉+
∑

i<j ,a<b

cab
ij |Ψab

ij 〉+ · · ·

= c0|Ψ0〉+ cS |S〉+ cD |D〉+ · · ·

where electrons are excited from the occupied orbitals i , j , k , · · · to
the virtual orbitals a, b, c , · · · .
Points to note about CI:

Because of Brillouin’s theorem, there is no (direct) coupling
between the HF ground state |Ψ0〉 and the single excitations.

There is no coupling between |Ψ0〉 and triples, quadruples, etc.
Similarly, singles do not mix with quadruples, quintuples etc.

Q: Why?
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Configuration Interaction IV

The double excitations have the largest effect on the
correlation energy because they mix directly with the HF g.s.

Next in importance are the quadruples.

Full CI scales exponentially with system size, so it is typically
limited to small systems for reference calculations only.

Q:
To see why the scaling is so extreme calculate the number of
single determinants in the CI expansion.
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Configuration Interaction V

CI expansion in intermediate normalized form (c0 = 1):

|Ψ〉 = |Ψ0〉+
∑
ia

ca
i |Ψa

i 〉+
∑

i<j ,a<b

cab
ij |Ψab

ij 〉+ · · ·

As defined |Ψ〉 is not normalized. (To see this calculate 〈Ψ|Ψ〉.)
Notice that this form satisfies the intermediate normalization
condition

〈Ψ0|Ψ〉 = 1

Now we have

H|Ψ〉 = E0|Ψ〉
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Configuration Interaction VI

rewrite this as

(H − E0)|Ψ〉 = (E0 − E0)|Ψ〉 = Ecorr|Ψ〉

Taking the inner product with 〈Ψ0| we get

〈Ψ0|(H − E0)|Ψ〉 = Ecorr〈Ψ0|Ψ〉 = Ecorr

Now stick in the expansion for the CI wavefunction |Ψ〉 into this to
get:

Ecorr = 〈Ψ0|(H − E0)|Ψ〉 =
∑

i<j ,a<b

cab
ij 〈Ψ0|H|Ψab

ij 〉

Q: Derive this expression for the correlation energy.
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Configuration Interaction VII

So we have an expression for the correlation energy in CI and it
seems to depend on the coefficients of the doubly excited states
only.

Q:

How can this be so? Does this mean that we do not need the
other terms in the CI expansion? Read Szabo & Ostlund Sec.
4.1.1 to find an answer to this puzzle or, better yet, work it our
yourself.
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Configuration Interaction VIII

FCI:

|Ψ〉 = c0|Ψ0〉+
∑
ia

ca
i |Ψa

i 〉+
∑

i<j ,a<b

cab
ij |Ψab

ij 〉+ · · ·

= c0|Ψ0〉+ cS |S〉+ cD |D〉+ · · ·

GOOD This expansion will lead to the exact energy within the
basis set used.

BAD There are too many determinants!
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Configuration Interaction IX

If there are M spin orbitals and N electrons (N < M) then how
many n-tuple excited determinants will we have?
We have N occupied SOs and M − N virtual SOs. We can
select n electrons from the occupied set in N!/(n!(N − n)!)
ways. These n electrons can be placed in the virtual space in
(M − N)!/(n!(M − N − n)!) ways. So the total number of
n-tuple excited determinants is

N!(M − N)!

(n!)2(N − n)!(M − N − n)!

which gets large very quickly. For large M,N and n you can use
Stirling’s approximation to show that the number of exctited
determinants scales exponentially.
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Configuration Interaction X

One solution to the problem is to use only some of the many
determinants. For example we could use only double excitations.
This leads to the CID method.

|ΨCID〉 = |Ψ0〉+
∑
ij ,ab

cab
ij |Ψab

ij 〉

= |Ψ0〉+ cD |D〉

BAD This theory, like all truncated CI methods, is not size
extensive.
Size-extensivity: If E (N) is the energy of N non-interacting
identical systems then a method is size-extensive if
E (N) = N × E (1).
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Configuration Interaction XI

Q: Is CID size-extensive?
If T̂2 is an operator that creates all double excitations, then we can
write the CID wavefunction as

|ΨCID〉 = |Ψ0〉+
∑
ij ,ab

cab
ij |Ψab

ij 〉

= |Ψ0〉+ cD |D〉
= (1 + T̂2)|Ψ0〉
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Configuration Interaction XII

The CID wavefunction for each of two identical non-interacting
systems will be of that form, so the combined wavefunction will be

|ΨCID
A 〉|ΨCID

B 〉 = (1 + T̂2(A))|ΨA
0 〉(1 + T̂2(B))|ΨB

0 〉
=(1 + T̂2(A) + T̂2(B) + T̂2(A)T̂2(B))|ΨA

0 〉|ΨB
0 〉

Since T̂2(AB) = T̂2(A) + T̂2(B), the CID wavefunction for AB is

|ΨCID
AB 〉 = (1 + T̂2(AB))|ΨAB

0 〉
= ((1 + T̂2(A) + T̂2(B))|ΨA

0 〉|ΨB
0 〉 6= |ΨCID

A 〉|ΨCID
B 〉

Therefore

ECID(AB) 6= ECID(A) + ECID(B).
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CISD: Examples I

All figures from: Molecular Electronic Structure Theory by Helgaker et al..
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CISD: Examples II



Introduction CI CC MBPT Errors Summary Cost and basis sets Correlation cusp

CISD: Examples III
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Is CID size-extensive? I

Q:

In this question you will calculate the CID solution for an en-
semble of non-interacting helium atoms and demonstrate that
CID is not size-extensive.
First consider a single helium atom with a Hartree–Fock ground
state wavefunction Ψ0, doubly excited wavefunction χ and
Hamiltonian ĥ. Assume the following:

〈Ψ0|Ψ0〉 = 1

〈χ|χ〉 = 1

〈Ψ0|χ〉 = 0

〈Ψ0|ĥ|Ψ0〉 = ε0

〈Ψ0|ĥ|χ〉 = β

〈χ|ĥ|χ〉 = α
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Is CID size-extensive? II

Q:

CID continued...
The CID wavefunction for this atom is

Ψ = Ψ0 + c χ,

where c is a constant that needs to be determined variationally
using the linear variational principle.
Set up and solve the CID equations for this system and find
the CID energy. Hence define the correlation energy, εcorr, for
this system.
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Is CID size-extensive? III

Q:

CID continued...
Now consider a system of N non-interacting helium atoms with
Hamiltonian Ĥ =

∑N
i=1 ĥi . Notice that there are no interaction

terms in this Hamiltonian. The reference ground state for this
system is given by

Φ0 = A{Ψ0(1)Ψ0(2) · · ·Ψ0(N)},

where Ψ0(i) is the reference state for atom i and A is the
antisymmetrization operator.
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Is CID size-extensive? IV

Q:

CID continued...
Doubly excited states have the form

Φi = A{Ψ0(1) · · ·Ψ0(i − 1)χ(i)Ψ0(i + 1) · · ·Ψ0(N)},

where Ψi is a state with the i th atom excited into doubly excited
state χ(i).
How many doubly excited states can you form for this system?
Write down the CID wavefunction in terms of these states and
solve the CID equations for the CID energy of this system.
Hence obtain the CID correlation energy, ECID

corr , for this system.
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Is CID size-extensive? V

Q:

CID continued...
What should be the exact correlation energy, Ecorr, of this sys-
tem?
Show that ECID

corr /Ecorr → 0 as N → ∞. What does this tell
you?
For more on size-extensivity see Sec. 4.6 in Szabo & Ostlund.
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Coupled-cluster Theory I

The problem of truncated CI methods is severe enough that using
them is very problematic. A resolution to the problem is the class
of coupled-cluster theories. In these the wavefunction is defined as:

|ΨCC〉 = exp(T̂)|Ψ0〉

where T̂ is an appropriate excitation operator.
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Coupled-cluster Theory II

For example, in CCD theory we use T̂2 as the excitation operator.
This gives:

|ΨCCD〉 = exp(T̂2)|Ψ0〉

= (1 + T̂2 +
1

2!
T̂2T̂2 + · · · )|Ψ0〉

The first two terms give us CID theory. The rest are needed to
make CCD size-extensive:

exp(T̂2(A))|ΨA
0 〉 × exp(T̂2(B))|ΨB

0 〉 = exp(T̂2(A) + T̂2(B))|ΨA
0 〉|ΨB

0 〉
≡ exp(T̂2(AB))|ΨA

0 〉|ΨB
0 〉
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Coupled-cluster Theory III

GOOD CC theories can be systematically improved.

GOOD CCSD(T) is a very accurate theory. Here single and
double excitations are included as described above and triple
excitations are included through a perturbative treatment.

GOOD Size-extensive.

BAD Computationally very expensive: CCSD(T) scales as
O(N7). So double the system size and the calculation costs
128 times more.

BAD (kind of!) These are single-determinant theories as
described. If the system is multi-configurational (more than
one state contributing dominantly) the standard CC methods
are not appropriate.
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Integrals needed for MBPT I

Doubly excited states:
Ψab

ij = (N!)−1/2A{χ1 · · ·χi−1χaχi+1 · · ·χj−1χbχj+1 · · · }

〈Ψab
ij |
∑
kl

1

rkl
|Ψ〉 = 〈ab|ij〉 − 〈ab|ji〉

As there is no contribution from the one-electron part we have

〈Ψab
ij |H|Ψ〉 = 〈ab|ij〉 − 〈ab|ji〉
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Møller–Plesset Perturbation Theory I

The HF single-determinant wavefunction is not an eigenstate of
the Hamiltonian:

H|Ψ0〉 6= E0|Ψ0〉.

But it is an exact eigenstate of the Hartree–Fock Hamiltonian

H0 ≡ F =
N∑
i

f (i)

Q:

Show that it is. And show that the eigenvalue is E
(0)
0 =

∑
i εi .

Hint: We know that f |i〉 = εi |i〉. Use this to show that

H0|Ψ0〉 = E
(0)
0 |Ψ0〉. You may assume (or prove) that the Fock

operator F commutes with the anti-symmetrization operator.
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Møller–Plesset Perturbation Theory II

Now we can write H = H0 + V, where V is the fluctuation
operator defined as

V = H−H0 ≡ H−F

=
∑
i ,j>i

1

rij
−
∑
i

vHF(i).

That is, V is the difference in the exact two-electron interaction
operator and the approximate HF operator.
We can treate V as a perturbation to H0 and expand the energy
using Raleigh–Schrödinger perturbation theory:
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Møller–Plesset Perturbation Theory III

Split the Hamiltonian into two parts:

H = H0 + λV

where H0 is a Hamiltonian which we know how to solve and
V contains that troublesome parts. We expect V to be a
perturbation so it must be small in some sense.
λ is a complex number that will be 1 for the physical solution.

Let the solutions of H0 be:

H0Ψ
(0)
i = E

(0)
i Ψ

(0)
i

Here the ‘0’ indicates that these eigenvalues and
eigenfunctions are of zeroth-order in the perturbation V. We

will use the short-form: |Ψ(0)
i 〉 ≡ |i〉.
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Møller–Plesset Perturbation Theory IV

Express the solutions of H in a power-series:

Ψi = Ψ
(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i + · · · =

∑
n

λnΨ
(n)
i

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · =

∑
n

λnE
(n)
i

Energies can be calculated by collecting terms at various
orders:

E
(0)
i = 〈Ψ(0)

i |H0|Ψ(0)
i 〉 = 〈i |H0|i〉

E
(1)
i = 〈Ψ(0)

i |V|Ψ
(0)
i 〉 = 〈i |V|i〉

E
(2)
i = 〈Ψ(0)

i |V|Ψ
(1)
i 〉

etc. for higher order terms.
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Møller–Plesset Perturbation Theory V

The first-order correction to the wavefunction is given by

|Ψ(1)
i 〉 =

∑
n 6=0

|n〉〈n|V|i〉
E

(0)
i − E

(0)
n

So we get

E
(2)
i =

∑
n 6=0

|〈n|V|i〉|2

E
(0)
i − E

(0)
n

This is all we need to derive the experession for MP2.

Note: We still have not decided what the excited states are.
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Møller–Plesset Perturbation Theory VI

Many-body perturbation theory (MBPT) starts from Hartree–Fock
theory:

H0 ≡ F =
N∑
i=1

f (i) =
n∑

i=1

(
h(i) + vHF(i)

)
(1)

where h(i) = −1
2∇

2
i −

∑
α

Zα
riα

and

V = H−H0 =
N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

vHF(i) (2)

Unlike vHF, the perturbation V is a 2-electron operator.
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Møller–Plesset Perturbation Theory VII

MBPT energy at λ0:

E
(0)
0 = 〈0|F|0〉 =

∑
i∈occ

εi

At first-order we get:

Q: Show that E
(1)
0 = 〈Ψ0|V|Ψ0〉 = −1

2

∑
ij〈ij ||ij〉

The sum of E
(0)
0 and E

(1)
0 is just the Hartree–Fock ground state

energy (see the lecture notes on HF theory):

EHF = E
(0)
0 + E

(1)
0 (3)

This means that we need to get to at least second-order in
perturbation theory to go beyond the Hartree–Fock description.
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Møller–Plesset Perturbation Theory VIII

At second order, we have

E
(2)
0 =

∑
n 6=0

|〈n|V|0〉|2

E
(0)
0 − E

(0)
n

We will take state |0〉 to be the HF g.s., i.e., |0〉 = |Ψ0〉. But what
about the excited states |n〉?

Q:

Can they be single excitations: |Ψa
i 〉? To see why not

evaluate the matrix element 〈Ψa
i |V|Ψ0〉.

They cannot be triple or higher excitations as matrix
elements of these with the HF g.s. are zero. Why?

So they have to be double excitations: |Ψab
ij 〉.
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Møller–Plesset Perturbation Theory IX

Q:

Show the following results:

H0|Ψab
ij 〉 = (E

(0)
0 − (εi + εj − εa − εb))|Ψab

ij 〉

〈Ψab
ij |V|Ψ0〉 = 〈ij ||ab〉

We therefore get the second-order MBPT energy expression:

E
(2)
0 =

occ∑
i ,j>i

vir∑
a,b>a

|〈ij ||ab〉|2

εa + εb − εi − εj
(4)

This expression is termed as MBPT2 or MP2. The latter name
comes from the other name for this kind of perturbation theory:
Møller–Plesset perturbation theory.
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Møller–Plesset Perturbation Theory X

BAD A problem with Møller–Plesset perturbation theory: it
diverges! See Olsen et al. J. Chem. Phys. 112, 9736 (2000)
for details. We now rarely go beyond MP2 in practical
calculations.

GOOD MP2 contains correlation.

BAD But not enough correlation. Problems with systems with
small HOMO-LUMO gaps (band gap — HOMO is highest
occupied MO and LUMO is lowest unoccupied MO).

GOOD (kind of!) It has a computational cost of O(N5). I.e.,
double the system in size and it will cost 32 times more
computational power.

GOOD MBPT is size-consistent.
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Møller–Plesset Perturbation Theory XI

Q:

Using the system of N non-interacting He atoms, show that
MP2 is size-consistent. Hints: first find the MP2 correlation
energy for a single He atom, then for the N atoms. Show that
the latter is N times the former.
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Apparent and intrinsic errors I
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Apparent and intrinsic errors II
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Apparent and intrinsic errors III
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Apparent and intrinsic errors IV
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Apparent and intrinsic errors V
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Which method and basis? I

The Gold Standard:

CCSD(T) / aug-cc-pVTZ (or larger)

If not, use MP2, but with caution! Or else, use DFT (next lecture).
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Many electron basis I

Practical considerations: CI, CC and MP2 are expensive!

Method Cost Description

HF N4 Starting point for correlated methods.
MP2 N5 OK. Useful for optimizations.
CISD N6 Not size-consistent.
CCSD(T) N7 Very accurate.

All correlated methods require large basis sets with high angular
functions.
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The electron–electron cusp I

For helium in its 1S ground state, rather than use a wavefunction
of the form

Ψ = |1sα1sβ〉

we should use a wavefunction that satisfied the e-e cusp condition,
such as:

Ψ = (1 +
1

2
r12)|1sα1sβ〉

This is an example of an explicitly correlated wavefunction.
However, the r12 term is difficult to handle as integrals involving
such a term are complex and computationally demanding. Rather
than use such a wavefunction, we generally expand the r12 term in
a partial-wave expansion:



Introduction CI CC MBPT Errors Summary Cost and basis sets Correlation cusp

The electron–electron cusp II

r12 =
∞∑
l=0

Pl(cos θ12)

(
1

2l + 3

r l+2
<

r l+1
>

− 1

2l − 1

r l<
r l−1
>

)
,

where r> = max(r1, r2) and r< = min(r1, r2).

For a proof see Helgaker et al. sec. 7.4 and ex. 7.3.

The wavefunction Ψ can now be expressed in terms of this
expansion and we now see that we need to include basis functions
with angular momenta l > 0 even for the spherically symmetric 1S
ground state of helium.
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The electron–electron cusp III

How well does this expansion converge?
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The electron–electron cusp IV

Dynamic correlation is the description of this kink.
All figures from “Molecular Electronic Structure Theory” by Helgaker,

Jorgensen and Olsen
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The electron–electron cusp V

Principle and partial wave expansions for the basis:
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The electron–electron cusp VI

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 2

Grey line : Reference (Hylleraas); Dotted line: HF; Thin, black line : Different principal expansions



Introduction CI CC MBPT Errors Summary Cost and basis sets Correlation cusp

The electron–electron cusp VII

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 3
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The electron–electron cusp VIII

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 4
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The electron–electron cusp IX

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 5

These cusps make correlation hard. Not only do the methods scale
poorly with size, but we need rather large basis sets to get sensible
results.
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Summary I

Post-HF method like CI, CC and MP2 are expensive!

Method Cost Description

HF N4 Starting point for correlated methods.
MP2 N5 OK. Useful for optimizations.
CISD N6 Not size-consistent.
CCSD(T) N7 Very accurate.

In addition to the poor computational scaling with system size, N,
correlated methods require large basis sets with high angular
functions to describe the e-e cusp. There is not much point in
using a small basis with an advanced method like CCSD(T).
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