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Many-electron basis I

The many-electron basis has two requirements:

Spin: We need to consider spin-orbitals rather than just
spatial orbitals.

Antisymmetry: The many electron basis functions cannot
simply be products of one-electron spin-orbitals. It must be
antisymmetric with respect to electron exchange.
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Many-electron basis II

The first condition is simple enough to take care of. If we have a
spatial orbital ψ(r) we can construct two spin-orbitals:

χ(x) =

{
ψ(r)α(ω)

ψ(r)β(ω)
(1)

All wavefunctions will be constructed from these spin-orbitals.
We have assumed that there is no difference between the up and down

spins states. This restricted solution is valid for a closed-shell systems. In

general we will want to allow the spatial parts of the two spins to vary

independently. This leads to what’s known as an unrestricted solution.

More later.
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Many-electron basis III

The antisymmetry condition puts restrictions on the kinds of trial
wavefunctions we can use. Consider a two-electron case: A
possible wavefunction is the Hartree product (HP):

ΨHP(x1, x2) = χi (x1)χj(x2)

However because ΨHP(x1, x2) 6= ΨHP(x2, x1), the Hartree product
is not allowed for idential particles.
We can symmetrize the wavefunction using:

Ψ+(x1, x2) = ΨHP(x1, x2) + ΨHP(x2, x1),

but this function is not suitable for the electronic wavefunction.
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Many-electron basis IV

To make our trial wavefunction antisymmetric we need it to be of
the form:

Ψ(x1, x2) =
1√
2

(χi (x1)χj(x2)− χj(x1)χi (x2))

=
1√
2

∣∣∣∣χi (x1) χj(x1)
χi (x2) χj(x2)

∣∣∣∣
This is called a Slater determinant.
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Many-electron basis V

More generally, for N-electrons the Slater determinant takes the
form

Ψ(x1, x2, · · · , xN) =
1√
N!

∣∣∣∣∣∣∣∣∣
χi (x1) χj(x1) · · · χk(x1)
χi (x2) χj(x2) · · · χk(x2)

...
...

. . .
...

χi (xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣ (2)

≡ |χiχj · · ·χk〉 (3)

where the last equation is short-hand for writing out the
determinant.
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Many-electron basis VI

The exact N-electron wavefunction cannot, in general, be
represented as a single Slater determinant: instead it is represented
as a linear combination of determinants spanning a complete
N-electron Hilbert space:

Ψexact =
∑
i

ciΨi , (4)

where the coefficients ci may be complex.
I suspect that the above is not quite correct: Hilbert spaces are function spaces and these cannot be generally

represented with a set of countable basis functions (in the above I have assumed this using a discrete sum). This is

not too complicated: you know that only the bound eigenstates of the hydrogen atom are countable; the unbound

states are uncountable — their energies form a continuous spectrum.
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Hartree–Fock equations I

We will now describe the ground state of our N-electron system
with the BO approximation using a single Slater determinant:

Ψ0(x1, x2, · · · , xN) = |χ1χ2 · · ·χN〉 (5)

This, Hartree–Fock approximation, to the ground state energy is
found by varying the spin-orbitals {χi} to minimize the energy:

E0 ≤ EHF = min〈Ψ0|H|Ψ0〉 (6)

subject to the conditions that the spin-orbitals are orthonormal.
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Hartree–Fock equations II

We will later show using the variational principle that on
minimization we get the following equations for the spin-orbitals:

f (i)χ(xi ) = εχ(xi ) (7)

where f (i) is an effective operator called the Fock operator

f (i) = −1

2
∇2

i −
∑
α

Zα
riα

+ vHF(i) (8)

where vHF(i) is the Hartree–Fock effective potential that depends
on the solutions to the above equations. So we must solve these
equations self-consistently: Make a guess for the solutions;
construct the potential vHF(i) from this guess; solve the Fock
equations; get new solutions; and repeat till convergence.
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Hartree–Fock equations III

These are called the ‘self-consistent’ set of equations as the Fock
operator itself depends on the solutions.
The Fock equations cannot be solved directly (except for the
Hydrogen atom), but since these are one-electron equations we
solve them using a basis (details later):

Introduce a basis for the spatial part of spin-orbitals:

χi (r) =
∑
m

Cimφm(r) (9)

The basis-functions {φm} are fixed functions that we need to
choose. They determine the size of the vector space we
operate in: the larger the better (mostly!).

Using the linear variational principle, this leads to linear
equations:

FC = εSC (10)
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Hartree–Fock equations IV

And we solve these to obtain as many solutions as we had
basis functions (times 2 if we allowed the spin up and spin
down solutions to differ).

The Hartree–Fock solution will normally be the one in which
we have electrons occupying the lowest energy spin-orbitals.

Q: How do we choose the basis?
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Slater-type orbitals I

A reasonable choice for basis sets for finite systems would be what
are called Slater-type orbitals: these are very like solutions of the
1-electron Hamiltonian. They differ in two ways: (1) the radial
part is simpler and (2) the exponent is not integral but can be
varied to account for screening effects.

φ = Rnl(r)Ylm(θ, φ) (11)

where Ylm is a (real) spherical harmonic and the radial part is
given by

Rnl(r) =
(2ζ)n+1/2

[(2n)!]1/2
rn−1e−ζr (12)
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Slater-type orbitals II
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Slater-type orbitals III

Comments on Slater-type orbitals:

GOOD Nuclear cusp condition satisfied.

∂

∂r
〈ρ(r)〉sph

∣∣∣∣
r=0

= −2Z 〈ρ(0)〉sph

GOOD Exact wavefunction has the long-range form of a
Slater orbital.
If we pull one electron out of an N-electron molecule the
wavefunction behaves like

Ψ(N)→ Ψ(N − 1)× e−
√
2∗I r

where I is the first (vertical) ionization energy.

BAD Integrals very difficult for multi-atom systems.
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Gaussian-type orbitals (GTOs) I

In 1950 S. F. Boys pointed out that the problem of computing
integrals could be resolved by using not Slater-type orbitals, but
rather Gaussian-type orbitals (GTOs):

Rnl ∼ rne−α(r−A)2 (13)

where A is the centre of the GTO. The main reason for the
efficacy of GTOs is that the product of two GTOs is a third GTO,
centred at a point in between:

exp(−α(r−A)2) exp(−β(r−B)2) = exp(−γ(A−B)2) exp(−µ(r−P)2)

where µ = α + β, γ = αβ/µ and P = (αA + βB)/µ.
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Gaussian-type orbitals (GTOs) II
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Gaussian-type orbitals (GTOs) III

GOOD GTOs makes the integrals that appear in the HF
energy expression much simpler.

BAD Nuclear cusp condition violated: zero derivative at origin.

BAD Wrong long-range form: dies off too fast with distance.

The two negative points can, to some extent, be remedied by using
not single GTOs, but linear combinations of GTOs. These groups
of GTOs are termed contractions.
Basis sets consist of groups of contractions together with some
un-contracted GTOs. The better the basis, the more of these there
will be and the more GTOs in a contraction.
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Gaussian-type orbitals (GTOs) IV

cc-pvDZ Dunning basis for hydrogen:

h cc−pVDZ : [ 2 s1p ]
S 4

1 13.0100000 0.0196850000
2 1.9620000 0.1379770000
3 0.4446000 0.4781480000
4 0.1220000 0.5012400000

S 1
1 0.1220000 1.0000000000

P 1
1 0.7270000 1.0000000000
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Gaussian-type orbitals (GTOs) V
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Gaussian-type orbitals (GTOs) VI
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Gaussian-type orbitals (GTOs) VII
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Gaussian-type orbitals (GTOs) VIII
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Gaussian-type orbitals (GTOs) IX
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Gaussian-type orbitals (GTOs) X

Basis set recommendations:

GOOD Complete basis set (CBS) limit

Geometry optimization: moderate size basis sets. Double-ζ.

Energies: At least triple-ζ quality.

Properties: Triple-ζ or more.

We will have another look at basis sets after discussion correlated
methods.
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Correlation I

Q: How to we improve on the complete basis set HF results? I.e.,
how do we get beyond the HF limit?

We know that the Hartree–Fock ground state energy E0 will
be an upper bound to the exact ground-state energy E0. The
difference

Ecorr = E0 − E0

is called the correlation energy. This energy is often large
enough that we cannot neglect it. The question now is how do
we calculate Ecorr?
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Correlation II

To calculate Ecorr we need to use what are known as
post-Hartree–Fock methods. Amongst the main-stream approaches
are

Configuration Interaction (CI): Create a linear expansion of
determinants created from the HF ground-state determinant
by exciting electrons into the virtual space.

Perturbation Theory (MPn): Develop a perturbative
expansion starting with the Hartree–Fock ground state as the
zeroth order solution.

Coupled-cluster methods (CC): Like CI, but with
infinite-order summations.

Quantum Montecarlo (QMC): Variational Montecarlo
(VMC), Diffusion Montecarlo (DMC), full configuration
interaction quantum montecarlo (FCIQMC).
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Correlation III

Density-functional theory (DFT): Reformulate the problem
in terms of the electron density.

Density matrix theory: Variant of the above that recognises
that uses the two-electron density.

Greens function methods.....

Here we will look at CI, CC, MP2 and (finally) DFT. The other
methods require another course altogether!



Many-electron basis HF Basis sets CI CC MBPT Summary DFT Summary & More

Configuration Interaction I

How do we improve on HF?
We know that the exact N-electron wavefunction is represented as
a linear combination of determinants spanning a complete
N-electron Hilbert space:

Ψexact =
∑
i

ciΨi . (14)

CI: Define these extra determinants from excitations of the HF
wavefunction:

|Ψ〉 = c0|Ψ0〉+
∑
ia

ca
i |Ψa

i 〉+
∑

i<j ,a<b

cab
ij |Ψab

ij 〉+ · · ·

Q: What are excited states and how to we form them?
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Configuration Interaction II

1

2

n

n + 1

n + m

Figure: Left: HF ground state configuration. Right: An example of an
excited state configuration. If there are n occupied levels (2 electrons
each, so N = 2n) and m virtual (un-occupied) levels, in how many ways
can we form excited states? Each of these states will correspond to a
Slater determinant.
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Configuration Interaction III

The Full CI (FCI) wavefunction:

|Ψ〉 = c0|Ψ0〉+
∑
ia

ca
i |Ψa

i 〉+
∑

i<j ,a<b

cab
ij |Ψab

ij 〉+ · · ·

= c0|Ψ0〉+ cS |S〉+ cD |D〉+ · · ·

where electrons are excited from the occupied orbitals i , j , k , · · · to
the virtual orbitals a, b, c , · · · .

GOOD This expansion will lead to the exact energy within the
basis set used.

BAD There are too many determinants!

(2(n + m))!

(2n)!(2m)!
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Configuration Interaction IV

One solution to the problem is to use only some of the many
determinants. For example we could use only double excitations.
This leads to the CID method.

|ΨCID〉 = |Ψ0〉+
∑
ij ,ab

cab
ij |Ψab

ij 〉

= |Ψ0〉+ cD |D〉

BAD This theory, like all truncated CI methods, is not size
extensive.
Size-extensivity: If E (N) is the energy of N non-interacting
identical systems then a method is size-extensive if
E (N) = N × E (1).
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Coupled-cluster Theory I

The problem of truncated CI methods is severe enough that using
them is very problematic. A resolution to the problem is the class
of coupled-cluster theories. In these the wavefunction is defined as:

|ΨCC〉 = exp(T̂)|Ψ0〉

where T̂ is an appropriate excitation operator.
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Coupled-cluster Theory II

For example, in CCD theory we use T̂2 as the excitation operator.
This gives:

|ΨCCD〉 = exp(T̂2)|Ψ0〉

= (1 + T̂2 +
1

2!
T̂2T̂2 + · · · )|Ψ0〉

The first two terms give us CID theory. The rest are needed to
make CCD size-extensive.
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Coupled-cluster Theory III

GOOD CC theories can be systematically improved.

GOOD CCSD(T) is a very accurate theory. Here single and
double excitations are included as described above and triple
excitations are included through a perturbative treatment.

GOOD Size-extensive.

BAD Computationally very expensive: CCSD(T) scales as
O(N7). So double the system size and the calculation costs
128 times more.

BAD (kind of!) These are single-determinant theories as
described. If the system is multi-configurational (more than
one state contributing dominantly) the standard CC methods
are not appropriate.
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Møller–Plesset Perturbation Theory I

Based on Raleigh–Schrödinger perturbation theory:

Split the Hamiltonian into two parts:

H = H0 + λV

where H0 is a Hamiltonian which we know how to solve and
V contains that troublesome parts. We expect V to be a
perturbation so it must be small in some sense.

Many-body perturbation theory (MBPT) starts from
Hartree–Fock theory:

H0 =
N∑
i=1

f (i) =
n∑

i=1

(
h(i) + vHF(i)

)
(15)

where h(i) = −1
2∇2

i −
∑

α
Zα
riα
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Møller–Plesset Perturbation Theory II

We can now define the perturbation as

V =
N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

vHF(i) (16)

Unlike vHF, the perturbation V is a 2-electron operator.

The zeroth and first-order MBPT terms are included in the
Hartree-Fock energy, so the first term beyond this one is the
second-order expression:

E
(2)
0 =

occ∑
a,b>a

vir∑
r ,s>r

[
〈ab|r−112 |rs〉 − 〈ab|r−112 |sr〉

]2
εr + εs − εa − εb

(17)

This expression is termed as MBPT2 or MP2. The latter
name comes from the other name for this kind of perturbation
theory: Møller–Plesset perturbation theory.
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Møller–Plesset Perturbation Theory III

BAD A problem with Møller–Plesset perturbation theory: it
diverges! See Olsen et al. J. Chem. Phys. 112, 9736 (2000)
for details. We now rarely go beyond MP2 in practical
calculations.

GOOD MP2 contains correlation.

BAD But not enough correlation. Problems with systems with
small HOMO-LUMO gaps (band gap — HOMO is highest
occupied MO and LUMO is lowest unoccupied MO).

GOOD (kind of!) It has a computational cost of O(N5). I.e.,
double the system in size and it will cost 32 times more
computational power.

GOOD MBPT is size-consistent
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Which method and basis? I

Practical considerations: CI, CC and MP2 are expensive!

Method Cost Description

HF N4 Starting point for correlated methods.
MP2 N5 OK. Useful for optimizations.
CISD N6 Not size-consistent.
CCSD(T) N7 Very accurate.

DFT N3 Accurate, but with systematic shortcomings.

All correlated methods require large basis sets with high angular
functions.
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Apparent and intrinsic errors I
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Apparent and intrinsic errors II
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Apparent and intrinsic errors III
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Apparent and intrinsic errors IV
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Summary 1 I

Which Method should I use?

The Gold Standard:

CCSD(T) / aug-cc-pVTZ (or larger)
BAD: Cannot be used on periodic systems. . . yet!

If not, use MP2, but with caution! Or else, use DFT!
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Density-Functional Theory I

Hohenberg & Kohn (Phys. Rev. B, 136, 864 (1964)):

Theorem

H–K Theorem 1 There is a one-to-one mapping between the
electronic density and the external potential, and hence, the
Hamiltonian:

ρ(r) ⇐⇒ H

Proof is by reductio ad absurdum. We will prove it later, but try it
yourself.
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Density-Functional Theory II

E. Bright Wilson’s observation: To know the Hamiltonian we need
to know the number of electrons and position and charge of the
nuclei. These can be obtained from the density:

N =
∫
ρ(r)dr

Position and charge of nuclei can be obtained from the cusps:

∂

∂r
〈ρ(r)〉sph

∣∣∣∣
r=0

= −2Z 〈ρ(0)〉sph

So ρ completely determines the Hamiltonian and therefore the
ground-state energy (and also all excited state energies!).
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Density-Functional Theory III

What the Hohenberg–Kohn theorem allows us to do is (formally)
write the energy as a functional of the density.

E = E [ρ] = T [ρ] + Vee[ρ] + Ven[ρ]

= F [ρ] +

∫
ρ(r)vext(r)dr

We will later show that this can be written as

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr (18)

where TS[ρ] is the kinetic energy functional, J[ρ] is the Classical
Coulomb energy functional — these two are known — and all the
unknown stuff is swept into the so-called exchange-correlation
functional, Exc[ρ].
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Density-Functional Theory IV

What is the exchange-correlation (XC) energy functional?
If we knew Exc[ρ] and could compute it effeciently, that would be
all we’d talk about in a course like this. But we don’t know it
exactly; all we have are approximations, and each approximation
has weaknesses.
Common approximations are

LDA : Local density approximation

PBE : Perdew–Burke–Wang functional

BLYP : From A. Becke with the LYP correlation functional.

B3LYP, PBE0, B97....
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Density-Functional Theory V

In a sense, what Kohn & Sham did was to sweep all the
unknowns under the rug. But they did this intelligently as they
had a good idea of how to approximate the unknown bits: the
exchange-correlation energy and its functional derivative.

Also, they knew that their formalism was in principle exact as
they had proved various theorems to that effect.

It turned out that their proofs were not mathematically sound,
but this was fixed by others.

The rest of the DFT story is how we find the
exchange-correlation functional Exc[ρ].
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DFT has systematic problems I

Our approximate DFT models all have problems. Two of the
biggest are the self-iteraction error and the lack of the dispersion
energy. Let’s look at the latter.
Consider the argon dimer: this is a dispersion-bound system, that
is, the attraction between two argon atoms arises purely from the
dispersion interaction. This is typical of the rare-gas atoms. On
the next slide we see interaction energies calculated for this system
with MP2, LDA, PBE and B3LYP using the aug-cc-pVTZ basis
set using the counterpoise correction.
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DFT has systematic problems II
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DFT has systematic problems III

There are ways of reducing both problems and we will focus a
good deal on these. It is very important that you understand the
weaknesses of the methods you use, as this then leads to ways in
which these weaknesses may be fixed.
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Which method? I

Practical considerations: CI, CC and MP2 are expensive!

Method Cost Description

HF N4 Starting point for correlated methods.
MP2 N5 OK. Useful for optimizations.
CISD N6 Not size-consistent.
CCSD(T) N7 Very accurate.

DFT N3 Accurate, but with systematic shortcomings.

All correlated methods require large basis sets with high angular
functions.
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Which method? II

The Gold Standard:

CCSD(T) / aug-cc-pVTZ (or larger)

If not, use MP2, but with caution! Or else, use DFT — also with
caution!
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There’s more I

Electronic structure theory does not end with these methods; there
is much more:

Intermolecular perturbation theory. (this is my own work)

Stochastic methods. QMC, DMC, FCIQMC — the last one is
very neat and has revolutionised the field.

Non-adiabatic method in which the Born–Oppenheimer
approximation is not used.

Methods that treat the nuclei quantum mechanically.

Methods that use the Dirac equation to include relativistic
effects and effects from QED.

Quantum algorithms for Quantum Computers??? Pure
speculation of course, but who knows!
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