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The goal of electonic structure theory is to be predictive!
Computational Electronic Structure Theory is an ever-growing field which

combines theoretical physics and chemistry with computer science and math.
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1 The Schrödinger Equation

A system of electrons and nuclei is governed by the Schrödinger equation

HΨ = EΨ (1.1)

where H is the Hamiltonian of the system, E the energy and Ψ the many-particle wave
function. The dynamics of the system obey the time-dependent Schrödinger equation

HΨ(t) = i ∂
∂t

Ψ(t) (1.2)

Strictly speaking, we would have to solve the Dirac equation, but for now we are not
interested in relativistic effects. We also do not include external fields. Throughout this
lecture we will use atomic units, this means

me = e = ~ =
1

4πε0
= 1

and all energies are given in Hartree (1Ha = 27.211eV ). Therefore, the general Hamil-
tonian in our systems is given by Equation 1.3.

H =

Tn︷ ︸︸ ︷
−

Nn∑
I=1

∇2
RI

2MI
+

V nn︷ ︸︸ ︷
Nn∑
I=1

Nn∑
J>I

ZIZJ

|RI − RJ |

−
Ne∑
i=1

∇2
ri
2︸ ︷︷ ︸

T e

+

Ne∑
i=1

Ne∑
j>i

1

|ri − rj |︸ ︷︷ ︸
V ee

+

Ne∑
i=1

Nn∑
J=1

−ZJ

|ri − RJ |︸ ︷︷ ︸
V ne

(1.3)

R : nuclear coordinate r : electronic coordinate
Nn : number of nuclei Ne : number of electrons
M : nuclear mass Z : nuclear charge

Our Hamiltonian can be viewed as coupled nuclear and electronic problems. If the nuclei
were fixed in space, V ne in Equation 1.3 would become an external potential and the
problem we have to solve would become a purely electronic one:

HeΦe = [T e + V ee + V ne] Φe (1.4)

For a few special cases the electronic Schrödinger equation can be solved analytically:
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1 The Schrödinger Equation

particle in a box: plane waves / sine and cosines

harmonic oscillator: Hermite polynomials

hydrogen atom: Laguerre polynomials

But in general, the interaction term V ee precludes any analytic solution. Since the
Schrödinger equation is a differential equation where all terms are known to us, one
could try to solve it numerically on a grid. But this naive approach fails because of
Φe = Φ(r1, r2 . . . rNe) is a high-dimensional object. Take a single Silicon atom as ex-
ample: it has 14 electrons and therefore 42 electronic coordinates. Even if we would
sample with only ten grid points per coordinate, we need a stack of DVDs from here to
the moon just to store the wave function.
To solve the Schrödinger equation we have to find suitable approximate ways!
Different frameworks lead to different approach that lead themselves to different approx-
imations, that in turn work for different systems and circumstances.

• Wave function Φe({ri}) based methods

– Quantum Chemistry
These methods rely on successively improving the accuracy of the approx-
imated wave function in a hierarchical manner. So far, these methods are
mostly applied to finite systems, e.g. molecules and clusters. Commonly
used methods from this class are for example Hartree-Fock, Mjøller-Plesset
perturbation theory and Coupled Cluster.

– Quantum Monte Carlo
QMC methods are based on a stochastic solution of the Schrödinger equation
and representation of Φe and can be applied to finite as well as periodic
systems. Popular variants are Variational and Diffusion Monte Carlo. These
methods will not be covered in this lecture.

• Density n(r) based methods
Density Functional Theory reformulates the problem in terms of the electronic
density and can be applied to finite and periodic systems. A wide range of differ-
ent functionals exist an the challenge with these approaches is finding good and
systematically improvable approximations for the functional.

• Green’s function G(r, r′, ω) based methods
Many-body perturbation theory methods are often used in solid state physics and
quantum chemistry and can be systematically improved. Well-known methods
from this class are GW, T-Matrix, BSE and FLEX.
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1.1 The Born-Oppenheimer Approximation

• Density-matrix n(r, r′) = G(r, r′, t = 0) based methods
Density-matrix functional theory is one of the so far little explored methods and
will not be covered in this lecture.

The important thing about the different frameworks is that all of them are in principle
exact. Since they are based on different quantities and make different approximations,
they give us a diverse set of tool to study a system.

1.1 The Born-Oppenheimer Approximation

The dynamics of a system are described by the time-dependent Schrödinger equation:

HΨ(t) = i ∂
∂t

Ψ(t)

⇒ Ψ(t) = e−iH(t−t0)Ψ(0)

but how can we make this more tractable?
Nuclei are much heavier than electrons (e.g. MH/me = 1840, MSi/me = 25760 and
MAg/me = 86480) and therefore react significantly slower to external perturbations than
the electrons. As a first approximation electrons will therefore react instantaneously to
nuclear motions and we can decouple the electronic and nuclear motion. Then we can
treat the nuclei as clamped and solve the electronic problem from Equation 1.4.

1.1.1 Formally Exact Decomposition

The electronic Hamiltonian He = T e + V ee + V ne has the following eigenfunctions

He({RI})Φν({RI}, {rj}) = Ee
νΦν({RI}, {rj}) (1.5)

which parametrically depend on the nuclear coordinates. These basis functions can be
used to expand the full wave function.

Ψ({RI}, {rj}) =
∑
ν

Λ({RI})Ψ({RI}, {rj}) (1.6)

If we now insert this expansion into the full Schrödinger equation HΨ = EΨ and make
use of the commutation rules, we find

HeΛνΦν = ΛνHeΦν = ΛνE
e
νΦν (1.7)

V nnΛνΦν = ΛνV
nnΦν (1.8)

Tn(ΛνΦν) = −
Nn∑
I=1

1

2MI

[
Λν∇2

RI
Φν + 2∇RI

Λν∇RI
Φν + (∇2

RI
Λν)Φν

]
(1.9)
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1 The Schrödinger Equation

By multiplying with an electronic state Φµ from the left and integrate over all electronic
coordinates, we then obtain for each state Φµ the equation

〈Φµ|H|Ψ〉 = E

〈
Φµ

∣∣∣∣∣∑
ν

ΛνΦν

〉
= EΛµ

=
(
Ee

µ + T e + V nn
)
Λµ

−
∑
ν

Nn∑
I=1

1

MI

[ 〈
Φµ

∣∣∇2
RI

∣∣Φν

〉︸ ︷︷ ︸
coupling of different electronic states

Λν + 2 〈Φµ|∇RI
|Φν〉︸ ︷︷ ︸∇RI

Λν

]

The coupling term in the above equation arises from e.g. electron-lattice, electron-
phonon or electron-vibron interactions. It is difficult to treat, but is of importance for a
variety of interesting effects:

• Jahn-Teller and Peiers distortions

• superconductivity

• thermal conductivity

• phonon sidebands in spectroscopy

• polarons

• zero-point renormalizations

• …

1.1.2 The adiabatic approximation

For each nuclear configuration {RI} the electrons are in an eigenstate of He, i.e. they
react instantly and therefore do not “feel” the nuclear motion. As a consequence, the
motion of the nuclei does not induce transitions between electronic states:〈

Φµ

∣∣∇2
RI

∣∣Φν

〉
= 〈Φµ|∇RI

|Φν〉 = 0 ∀µ 6= ν

To judge the validity of this approximation and show that the diagonal elements can
be neglected as well one can utilize first order perturbation theory to show that the
first term gives no first-order contribution to the total energy. The second term has a
non-vanishing contribution, but it scales with the mass ratio of the electrons and nuclei
and is therefore several orders of magnitude smaller than the other terms and can be
safely neglected. A detailed proof can be found in [1]. Neglecting the coupling terms,
we arrive at (

Ee
µ + T e + V nn

)
Λµ = EΛµ (1.10)
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1.2 What the electronic ground state energy reveals

which is the nuclear Schrödinger equation. Combining T e + V nn = V BO
µ gives us the

Born-Oppenheimer potential energy surface (PES) that the nuclei move in. To obtain
the motion of the nuclei, we should solve their time-dependent Schrödinger equation

−i∂Λµ

∂t

(
T e + V BO

µ

)
Λµ

but often it is sufficient to treat the nuclei classically and use Newton’s equation of
motion instead. In this approximation, the nuclei are always in their “ground state”.
Combining the nuclear ground state with the electronic one, we have

Ψ = ΨBO = Λ0({RI})Φ0({RI}, {ri})

which yields the ground state energy:

E0 =
〈
ΨBO

∣∣H∣∣ΨBO
〉
= Ee

0 + 〈Λ0|Tn + V nn|Λ0〉

In general, the nuclear wave function is sharply peaked around the equilibrium position
of the nuclei R0

I and can be approximated by point charges.

E0 = Ee
0 +

Nn∑
I=1

Nn∑
J>I

ZIZJ∣∣R0
I − R0

J

∣∣︸ ︷︷ ︸
classical electrostatic energy

+
〈
Λ0

∣∣Tn + V nn({R0
I − R0

J})
∣∣Λ0

〉︸ ︷︷ ︸
quantum corrections

(1.11)

The main aim of this lecture will be to find ways to calculate Ee
0.

1.2 What the electronic ground state energy reveals

Let us assume for a moment that we would know a reliable way to obtain Ee
0 in Equa-

tion 1.11, then what could we do with it?

1.2.1 Structure, lattice constant and elastic properties of perfect crystals

By computing Ee
0 for different polymorphs we can rank their stability by the energy per

atom. By plotting the energy per atom as a function of the lattice constant (or volume
for more complex structures), as done in Figure 1.1, we can determine several interesting
properties of the crystal. First of all, we can determine the equilibrium lattice constant
from the minimum of the so called equation of state. Another interesting property is the
cohesive energy which is the difference between the equilibrium state and the dissociation
limit and therefore measures how much energy can be released by the crystal formation.
Also accessible from this curve is the bulk modulus B0 which describes the dependence
of the total energy as a function of the pressure.

B0 = V
∂2E(V )

∂V 2

∣∣∣∣
a=a0

=
1

κ
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1 The Schrödinger Equation

a

E(a)

a0

∆a

nuclear quantum ground state

a0

cohesive energy

Figure 1.1: Equation of state for a simple cubic crystal

where V is the volume and κ denotes the compressibility. The quantum correction from
Equation 1.11 gives rise to the zero point energy, which will correct the equilibrium
lattice constant by an amount ∆a, as shown in the inlay of the figure.

1.2.2 Forces, Equilibrium Geometries and Vibrations

Also if our system of interest is a molecule, small cluster or a more complicated crys-
tal, we can determine its equilibrium geometry from electronic structure. Assuming a
reasonable starting geometry, we can calculate the forces acting on the atoms as the
negative gradient of the total energy with respect to the nuclear coordinates.

FI = − ∂

∂RI
E0

∂

∂RI
E0 =

∂

∂RI
Ee

0 +
∂

∂RI

Nn∑
I=1

Nn∑
J>I

ZIZj∣∣RI − R′
J

∣∣ (1.12)

The second term in Equation 1.12 can be solved analytically, but for the first term
we in principle need gradients of the electronic structure. In practice, we can also
approximate it using finite differences if analytic gradients are not available. By moving
the atoms along their forces vectors and evaluating the new forces until they finally
vanish and the structure converged to a stable state. From the equilibrium geometry we
can also determine the (harmonic) vibrational frequencies by displacing the atoms by a
small distance and computing the energy differences. These displacements correspond
to snapshots of excited vibrational modes (or phonons in solids) and their energy follows
from the energy difference relative to the starting point.
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1.3 The Hydrogen Atom

1.3 The Hydrogen Atom

The hydrogen atom is a special case of interest because it contains only one electron and
has an analytic solution for the electronic problem. Since the solution of this problem is
of relevance for us later on and we can use it to establish some notations, we will briefly
review the problem here. The electronic Hamiltonian for the hydrogen atom is given in
Equation 1.13, where we shifted the coordinate origin to the position of the nucleus and
slightly generalized the problem by not fixing the nuclear charge Z to 1.

H = −∇2
r
2

− Z

|r| (1.13)

Since this problem is spherically symmetric, we transform our coordinate system to
spherical coordinates x, y, z → r, ϕ, θ. Under this transformation the Laplace operator
transforms into

∇2
r =

∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

1

tan θ
∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
︸ ︷︷ ︸

L2

(1.14)

In Equation 1.14 L2 denotes the angular momentum operator, whose eigenfunctions are
the well-known spherical harmonics Ylm(ϕ, θ). Since the radial and the angular part in
our Hamiltonian obviously separate under this transformation, we can now make the
product ansatz Ψ(r, ϕ, θ) = R(r)Ylm(ϕ, θ) for our wave function. With L2Ylm(ϕ, θ) =

l(l + 1)Ylm(ϕ, θ) our Schröedinger equation then has the form[
∂2

∂r2
+

2

r

∂

∂r
+
l(l + 1)

2r2
+
Z

r

]
R(r) = ER(r) (1.15)

To get rid of the linear derivative in Equation 1.15 we write R(r) = 1
ru(r) and obtain[

∂2

∂r2
+
l(l + 1)

2r2
+
Z

r

]
u(r) = Eu(r) (1.16)

The solution to Equation 1.16 can be found in any basic textbook on quantum mechanics
and because the derivation is rather tedious, we skip it here and simply present the result

Rnl(r) = −

√(
2Z

n

)3 (n− l − 1)!

2n[(n+ l)!]3
e−

Zr
n

(
2Zr

n

)l

L2l+1
n+l

(
2Zr

n

)
(1.17)

Lq
p(x) =

dq

dxq
Lp(x) Lp(x) = ex

dp

dxp
e−xxp

where Lp(x) are the Laguerre Polynomials and Lq
p(x) are the associated Laguerre Poly-

nomials. The energy eigenvalue is then given by En = − Z
2n2 . In Table 1.1 the functional

shape of the radial component are shown for the lowest eigenstates of the hydrogen
atom. Figure 1.2 shows the shape of the related spherical harmonics. In the case of the
hydrogen atom, the total energy does not depend on the angular momentum quantum
number l,m and is therefore degenerate.
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1 The Schrödinger Equation

n l Rnl(r)

1
“K-shell”

0
“s-orbital”

r

1.0
R10(r) = 2Z

3
2 e−ZrR10(r)

r2R2
10(r)

2
“L-shell”

0
“s-orbital”

r

0.5
R20(r) = 2

(
Z
2

) 3
2
(
1− Zr

2

)
e−

Zr
2

R20(r)

r2R2
20(r)

2
“L-shell”

1
“p-orbital”

r

0.5
R21(r) =

1√
3

(
Z
2

) 3
2 Zre−ZrR21(r)

r2R21(r)

3
“M-shell”

0
“s-orbital”

r

0.2
R30(r) = 2

(
Z
3

) 3
2

(
1− 2Zr

3 + 2(Zr)2

27

)
e−

Zr
2

R30(r)

r2R2
30(r)

3
“M-shell”

1
“p-orbital”

r

0.2
R31(r) =

4
√
2

3

(
Z
3

) 3
2 Zr

(
1− Zr

6

)
e−

Zr
3

R31(r)

r2R2
31(r)

3
“M-shell”

2
“d-orbital”

r

0.2
R32(r) =

2
√
2

27
√
5

(
Z
3

) 3
2 (Zr)2 e−

Zr
3

R32(r)

r2R2
32(r)

Table 1.1: Radial functions of hydrogen atom eigenstates
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1.3 The Hydrogen Atom

Figure 1.2: Shape of the spherical harmonics Ylm, l increases towards the bottom, and
m goes from −l to l from left to right. [2]

continuum (not bound)

l = 0
E1 1s

E2 2s

E3 3s
E4 4s

l = 1

2p

3p
4p

l = 2

3d
4d

l = 3

4f

-

Figure 1.3: Energy hierarchy of the hydrogen eigenstates. The blue lines are examples
for allowed dipole transitions into excited states.
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1 The Schrödinger Equation

Figure 1.3 shows the energy hierarchy of the different eigenstates in the hydrogen
atom. At T = 0 and the absence of external fields our electron will always be in the
1s, which is the electronic ground state. All other eigenvalues refer to states that are
not occupied by any electrons, they are called excited states. With excited states we
have to be careful, because they depend on how the system is excited. In the present
example the Hamiltonian conserves the particle number and so do our excitations, which
are therefore called neutral excitations. The neutral transitions in the hydrogen atom
can be induced by an electric field, such as light and lift the electron into a higher
state, leaving a hole in the original state. Since the absorption of a photon involves the
absorption of its angular momentum, vertical transitions are not allowed. Furthermore,
we can also directly extract the energy the photon must have to stimulate a transition
as

ωnm = Em − En = 1Ry

(
− 1

m2
+

1

n2

)

1.4 Pauli Exclusion Principle and Antisymmetry

Electrons are fermions and therefore carry a spin σ = ±1
2 , to fully describe an electron

we need its position R and σ. The Schrödinger Equation itself does not contain any
spin-dependency. To include the spin, we therefore define spin functions for up and down
spins.

↑: α(σ) ↓: β(σ)

For convience we make these spin orbitals orthonormal:∫
α∗(σ)α(σ) dσ =

∫
β∗(σ)β(σ) dσ = 1∫

α∗(σ)β(σ) dσ =

∫
β∗(σ)α(σ) dσ = 0

We can now combine the position of the electron and its spin into a generalized coordinate
x = (r, σ) and introduce the Pauli Principle “No two fermions can occupy the same
quantum state” in more general way, the antisymmetry of the wave function:
A many-electron wave function must be antisymmetric with respect to the interchange of
the coordinates x of any two electrons.

Φe(x1, . . . ,xi, . . . ,xj , . . . ,xNe) = −Φe(x1, . . . ,xj , . . . ,xi, . . . ,xNe) (1.18)

A proper many-electron wave function must satisfy both the Schrödinger Equation and
the Antisymmetry principle.
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2 Wave Function based approaches

In this chapter we will introduce wave-function based approaches to solve the electronic
Schrödinger equation discussed in the previous chapter. Let us start with our electronic
Hamiltonian1 H from Equation 1.4 and split it into several contributions.

H = −
N∑
i=1

∇2
ri
2

+

=
∑N

i vext(ri)︷ ︸︸ ︷
N∑
i=1

Nn∑
J=1

−ZJ

|ri − RJ |︸ ︷︷ ︸∑N
i h(ri)

+

N∑
i=1

N∑
j>i

1

|ri − rj |
(2.1)

First of all, we realize that the sum over nuclei in the second term is identical for all atoms
and we can treat it as an external potential. The first two terms of the Hamiltonian then
constitute a sum over single-particle Hamiltonians. Only the last term, which couples
all electrons with each other, remains to make our live difficult.

2.1 Hartree Theory

If the coupling term in Equation 2.1 would not be present, we could solve the N single-
particle problems right away. Although it is obviously a bad approximation to neglect
this term, let us assume for the moment that we have a non-interacting (NI) system.

HNI =
N∑
i=1

h(ri) (2.2)

For each electron we define the spin orbitalϕ(x) to be an eigenstate of the single-particle
Hamiltonian h(r) and orthonormal to all other orbitals.

ϕ(x) =


ψ(r)α(σ) Since the spin states are orthonormal,

we can use the same spatial orbital for
two states.

or
ψ(r)β(σ)

h(r)ϕj(x) = εjϕj(x)

1Since we are interested in the electronic problem only, we will drop the electronic indexes from now
on to simplify the notation.
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2 Wave Function based approaches

δij =

∫
ϕi(x)ϕj(x) dx

Since all the h(xi) in HNI act on the single orbital dependent on xi only, the eigenfunc-
tion of H is the product of all the single-particle spin orbitals and the corresponding
eigenvalue is just the sum of their eigenvalues.

ΦHP ({xi}) = ϕi(x1)ϕj(x2) . . . ϕk(xN )

EHP = εi + εj + . . .+ εk

The wave function ΦHP is also called the Hartree product and is an example for an
uncorrelated wave function, because the probability of finding electron 1 in a volume
element dx1 and electron 2 in dx2 is simply the product of the individual probabilities.

|ϕi(x1)|2 dx1 |ϕj(x2)|2 dx2 . . . |ϕk(xN )|2 dxN

In other words, we have factorized our wave function.
ΦHPviolates the antisymmetry principle, because it is obviously symmetric when we
interchange any two electronic coordinates. For now, we will ignore this fact and use the
Hartree product ansatz to solve the full electronic Schrödinger equation.

HΦHP = EΦHP

As we will see, ΦHP is also an eigenstate of H. We can now ask which functions ϕi(x)
minimize our energy E and thus give us the ground state. Since we not only want to
find the orbitals ϕi(x) that minimize the energy, but also preserve their orthonormality,
we need to perform a constrained minimization with a Lagrangian:

L[Φ] = E[Φ]−
N∑
i=1

N∑
j=1

λij

[∫
ϕ∗
i (x)ϕj(x) dx − δij

]
(2.3)

=
〈Φ|H|Φ〉
〈Φ|Φ〉

−
N∑
i=1

N∑
j=1

λij

[∫
ϕ∗
i (x)ϕj(x) dx − δij

]
(2.4)

where λij are the Lagrange multipliers. Since our orbitals are orthonormal by condition,
we can also further simplify the energy term to 〈Φ|H|Φ〉. We also know already that〈

ΦHP
∣∣h(ri)∣∣ΦHP

〉
= 〈ϕi|h(ri)|ϕi〉 (2.5)

and for the coulomb potential we find〈
ΦHP

∣∣∣∣ 1

|ri − rj |

∣∣∣∣ΦHP

〉
=

∫
. . .

∫
ϕ∗
n(x1) . . . ϕ

∗
k(xN )

× 1

|ri − rj |
ϕn(x1) . . . ϕk(xN ) dx1 . . . dxN

12



2.1 Hartree Theory

=

∫∫
ϕ∗
l (xi)ϕ

∗
m(xj)ϕl(xi)ϕm(xj)

|ri − rj |
dxi dxj

where integrated out all other electronic coordinates and only the orbitals l and m

occupied by the ith and jth atom remain. With this knowledge, we can now rewrite our
Lagrangian as

L[Φ] =
N∑
i=1

∫
ϕ∗
i (x)h(x)ϕi(x) dx +

N∑
i=1

N∑
j>i

∫∫
ϕ∗
i (x)ϕ∗

j (x′)ϕi(x)ϕj(x′)

|r − r′| dx dx′

−
N∑
i=1

N∑
j=1

λij

[∫
ϕ∗
i (x)ϕj(x) dx − δij

]
(2.6)

where we changed the notation such, that ϕi(x) now denotes the orbital of the ith
electron. In the next step, we can now perform the variation with respect to ϕ∗

i . In
principle, we also need to vary with respect to the Lagrange multipliers λij , but we will
skip this part.

δL
δϕ∗

i

= 0 ∀i ∈ [1 . . . N ]

= h(x)ϕi(x) +
N∑
j 6=i

∫
ϕ∗
j (x′)ϕj(x′)

|r − r′|
dx ϕi(x)︸ ︷︷ ︸

=

−
N∑
j=1

λijϕj(x)

N∑
j=1

∫
ϕ∗
j (x′)ϕj(x′)

|r − r′| dx ϕi(x)−
∫
ϕ∗
i (x′)ϕi(x′)

|r − r′| dx ϕi(x)

By introducing the density of non-interacting electrons n(r) =
∑N

i=1 |ϕ(r)|
2 and inte-

grating out the spin variables, we can rewrite the integral term as∫
n(r′)
|r − r′| dr︸ ︷︷ ︸
=VH(r)

ϕi(r)−
∫
ϕ∗
i (r′)ϕi(r′)
|r − r′| dr ϕi(r) (2.7)

where VH(r) denotes the Hartree potential, which is simply the electrostatic potential
generated by a charge distribution. Putting all together, the minimization of the La-
grangian finally yields the following set of equations

[h(r) + VH(r)]ϕi(x)−
∫

|ϕi(r′)|2

|r − r′| dr ϕi(r) =
N∑
j=1

λijϕj(x) (2.8)

which are known as the Hartree equations. It should be noted that although we included
the spin in our considerations, nothing in the equation depends on the spin. Since each
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2 Wave Function based approaches

r

VH(r)

VH(r) = 1

r

(
1− (1 + r)e( − 2r)

)

Figure 2.1: Hartree potential for the hydrogen 1s orbital

ϕi(r) holds one electron, these equations are also called single particle equations. In the
presented form all equations are directly coupled, but this problem can be solved by
a suitable orbital transformation which diagonalizes the matrix defined by the λij, as
shown in [3].
One important thing to note is that the Hartree potential appearing in the equations
depends on the orbitals via the electron density. Therefore, the Hartree equations need
to be solved self-consistently. Also, the Hartree-term induces a self-interaction error
because it includes a sum over all electrons. This error is canceled exactly by the orbital
dependent term.
The Hartree potential is the classic electrostatic potential of a charge distribution. It
is positive and therefore repulsive, keeping the electrons apart from each other, as one
would expect. For the hydrogen ϕ1s(r) orbital, the Hartree potential is depicted in
Figure 2.1. The Hartree potential largely counteracts the external potential:

−
N∑
i=1

Nn∑
J=1

ZJ

|ri − RJ |
= −

N∑
i=1

∫
nn(R)

|ri − R|
dR (2.9)

If we now relabel the integration variable, we can merge the external and the Hartree-
potential into one term, denoting the total charge density as ∆n(r).

Vext(r) + VH(r) =
∫
n(r)− nn(r)

|ri − r| dr =

∫
∆n(r)
|ri − r| dr (2.10)

Finally, we can compute the total energy of the Hartree-Product.

EHP =
〈
ΦHP

∣∣H∣∣ΦHP
〉

=

N∑
i=1

∫
ϕ∗
i (x)h(x)ϕi(x) dx +

1

2

N∑
i,j=1

∫∫
ϕ∗
i (x′)ϕ∗

j (x′)ϕi(x)ϕj(x′)

|r − r′| dx dx′

=
N∑
i=1

∫
ϕ∗
i (x)∇2

iϕi(x) dx︸ ︷︷ ︸
kinetic energy of the electrons

+
1

2

∫∫
∆n(r)∆n(r′)

|r − r′| dr dr′︸ ︷︷ ︸
electrostatic energy of charge distribution

(2.11)
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2.2 Hartree-Fock Theory

As it can be seen from the total energy given in Equation 2.11, the only quantum contri-
bution is the kinetic energy of the electrons, more complex electron-electron interactions
are not included.

2.2 Hartree-Fock Theory

In the previous section we showed that the Hartree-product ΦHP is not a good approx-
imation to the real wave function because it violates the antisymmetry principle. We
will now show how we can construct a wave function which obeys this principle based
on the Hartree-product.
Consider (for simplicity) a two electron system, like the hydrogen molecule, where we
have two possible ΦHP :

ΦHP
12 (x1,x2) = ϕi(x1)ϕj(x2)

ΦHP
21 (x1,x2) = ϕi(x2)ϕj(x1)

These two products can be combined into a new wave function, which obeys the anti-
symmetry principle.

Φ =
1√
2

[
ΦHP
12 − ΦHP

21

]
=

1√
2
[ϕi(x1)ϕj(x2)− ϕi(x2)ϕj(x1)] (2.12)

This wave function can also be written as a determinant:

Φ(x1,x2) =
1√
2

∣∣∣∣∣ ϕi(x1) ϕj(x1)

ϕi(x2) ϕj(x2)

∣∣∣∣∣
−→ orbitals

↓ electrons (2.13)

The determinant Equation 2.13 is called “Slater determinant” ΦSDand can be generalized
to an arbitrary number of electrons.

ΦSD(x1,x2, . . .xN ) =
1√
N

∣∣∣∣∣∣∣∣∣∣
ϕi(x1) ϕj(x1) · · · ϕk(x1)

ϕi(x2) ϕj(x2) · · · ϕk(x2)
...

... . . . ...
ϕi(xN ) ϕj(xN ) · · · ϕk(xN )

∣∣∣∣∣∣∣∣∣∣
−→ orbitals

↓ electrons

We can now approximate our real wave function by a single Slater determinant and use
the variational principle to determine the spin orbitals that minimize the ground state
energy. For the construction of the Lagrangian we first need the energy of a ΦSD:

ESD =

〈
ΦSD

∣∣H∣∣ΦSD
〉

〈ΦSD|ΦSD〉
(2.14)
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2 Wave Function based approaches

which reduces to
〈
ΦSD

∣∣H∣∣ΦSD
〉

because we normalize our wave function. Again we can
split the energy in two contributions T e+V en and V ee. The following derivation can be
generalized to an arbitrary number of electrons, but for simplicity we will consider only
two electrons.〈

ΦSD
∣∣h(r1)∣∣ΦSD

〉
=

∫∫ [
ϕ∗
i (x1)ϕ

∗
j (x2)− ϕ∗

i (x2)ϕ
∗
j (x1)

]
h(r1)

×
[
ϕi(x1)ϕj(x2)− ϕi(x2)ϕj(x1)

]
dx1 dx2 (2.15)

=
1

2

∫∫ [
ϕ∗
i (x1)ϕ

∗
j (x2)h(r1)ϕi(x1)ϕj(x2)

− ϕ∗
i (x1)ϕ

∗
j (x2)h(r1)ϕi(x2)ϕj(x1)

− ϕ∗
i (x2)ϕ

∗
j (x1)h(r1)ϕi(x1)ϕj(x2)

+ ϕ∗
i (x2)ϕ

∗
j (x1)h(r1)ϕi(x2)ϕj(x1)

]
dx1 dx2 (2.16)

In Equation 2.16 we have the single-particle Hamiltonian h(r1) which only depends on the
first electron’s position. Therefore, we can directly integrate over the second electronic
coordinate x2. If we impose orthonormality as we did before for the Hartree-theory, the
negative terms in the equation reduce to zero.〈

ΦSD
∣∣h(r1)∣∣ΦSD

〉
=

1

2

∫ [
ϕ∗
i (x1)h(r1)ϕi(x1) + ϕ∗

j (x1)h(r1)ϕj(x1)
]

dx1 (2.17)

For h(r2) we obtain an identical result and therefore we can write the final result as
(generalized to N particles):〈

ΦSD

∣∣∣∣∣
N∑
i=1

h(ri)

∣∣∣∣∣ΦSD

〉
=

N∑
i=1

〈ϕi|h(r)|ϕi〉 (2.18)

This is the same result as we obtained in the Hartree theory, as can be seen from a
comparison with Equation 2.6. Let us continue with the evaluation of the Coulomb
operator in the two-electron case:〈

ΦSD

∣∣∣∣ 1

|r1 − r2|

∣∣∣∣ΦSD

〉
=

1

2

∫∫ [
ϕ∗
i (x1)ϕ

∗
j (x2)

1

|r1 − r2|
ϕi(x1)ϕj(x2)

− ϕ∗
i (x1)ϕ

∗
j (x2)

1

|r1 − r2|
ϕi(x2)ϕj(x1)

− ϕ∗
i (x2)ϕ

∗
j (x1)

1

|r1 − r2|
ϕi(x1)ϕj(x2)

+ ϕ∗
i (x2)ϕ

∗
j (x1)

1

|r1 − r2|
ϕi(x2)ϕj(x1)

]
dx1 dx2 (2.19)

Equation 2.19 has the same structure as the single-particle contribution, but because
the Coulomb operator depends on both electronic coordinates we cannot integrate out
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2.2 Hartree-Fock Theory

anything in this case. To shorten the notation, we now introduce the two-electron or
Coulomb integrals:

〈ij|kl〉 =
∫∫

ϕ∗
i (x)ϕ∗

j (x)
1

|r − r′|ϕk(x)ϕl(x′) (2.20)

With Equation 2.20 we can rewrite the Coulomb matrix element as〈
ΦSD

∣∣∣∣ 1

|r1 − r2|

∣∣∣∣ΦSD

〉
=

1

2

[
〈ij|ij〉+ 〈ij|ji〉

]
− 1

2

[
〈ji|ji〉+ 〈ji|ij〉

]
= 〈ij|ij〉 − 〈ij|ji〉 (2.21)

For the general N-electron case we have:

V ee =

N∑
i=1

N∑
j>i

1

|ri − rj |
=

1

2

N∑
i=1

N∑
j 6=i

1

|ri − rj |
(2.22)

Each term in this sum will pick out the two orbitals that these two electrons are occu-
pying, let us call them m and n.

〈
ΦSD

∣∣V ee
∣∣ΦSD

〉
=

1

2

N∑
m

N∑
n6=m

〈mn|mn〉 − 〈mn|nm〉 (2.23)

As we will see, the first term in Equation 2.23 will again give rise to the Hartree potential
energy. The second term however is new. We can now write down the total energy of a
single Slater determinant:

〈
ΦSD

∣∣H∣∣ΦSD
〉
=

N∑
n

〈n|h|n〉+ 1

2

N∑
n

N∑
m6=n

〈mn|mn〉 − 〈mn|nm〉 (2.24)

From Equation 2.24 we can make an important observation: Although we have a many-
electron wave function and a many-electron Hamiltonian, we can write the energy of
ΦSDin terms of one- and two-electrons integrals only! This is of course a consequence of
the fact that the Hamiltonian is composed from one- and two-electron operators. The
fact that such a “complicated” wave function gives a relatively simple energy expression
is one of the foundations of Quantum chemistry.
Now we can finally write down our Lagrangian and minimize it to obtain the ground
state orbitals.

L[ΦSD] = E[ΦSD]−
N∑
n

N∑
m

λnm

[∫
ϕ∗
n(x)ϕm(x) dx − δnm

]
(2.25)

=

N∑
n

∫
ϕ∗
n(x)h(r)ϕn(x)−

N∑
n

N∑
m

λnm

[∫
ϕ∗
n(x)ϕm(x) dx − δnm

]
(2.26)
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2 Wave Function based approaches

+
1

2

N∑
n

N∑
m6=n

∫∫ [
ϕ∗
m(x)ϕ∗

n(x)ϕm(x)ϕn(x′)

|r − r′|

− ϕ∗
m(x)ϕ∗

n(x)ϕn(x)ϕm(x′)

|r − r′|

]
dx dx′ (2.27)

In analogy to the Hartree theory, we now require δL
δϕ∗

n
= 0 ∀m and find:

N∑
m

λnmϕm(x) = h(r)ϕn(x) +
N∑

m6=n

∫ [
ϕ∗
m(x′)ϕm(x′)

|r − r′| ϕn(x)−
ϕ∗
m(x′)ϕm(x)
|r − r′| ϕn(x′)

]
dx′

The first term in the right hand side sum is exactly equal to the one from Hartree
theory (see Equation 2.7), so we can rewrite it in terms of the Hartree potential and the
self-interaction correction.

N∑
m

λnmϕm(x) =
[
h(r) + VH(r)

]
ϕn(x)−

N∑
m

∫
ϕ∗
m(x′)ϕm(x)
|r − r′| ϕn(x′) dx′

By defining the density matrix as Equation 2.28, we can rewrite the last sum as a
nonlocal potential ΣHF (x,x′).

n(x,x′) =
N∑
n

ϕn(x)ϕ∗
n(x′) (2.28)

ΣHF (x,x′) =
n(x,x′)

|r − r′| (2.29)

Now, we can finally write the obtained set of equations as

[
h(r) + VH(r)

]
ϕn(x)−

∫
ΣHF (x,x′)ϕn(x′) dx′ =

N∑
m

λnmϕm(x)

h(r)ϕn(x)−
∫
V HF (x,x′)︸ ︷︷ ︸
=VH(r)+ΣHF

ϕn(x′) dx′ =

N∑
m

λnmϕm(x)

By transforming the orbitals, as described in [3], we reach the canonical form:

h(r)ϕn(x)−
∫
V HF (x,x′)︸ ︷︷ ︸
=VH(r)+ΣHF

ϕn(x′) dx′ = λnϕn(x) (2.30)

In Equation 2.30, h(r) is the orbital-independent part, while V HF depends on the
orbitals. As for the Hartree theory, we therefore need to solve these equations self-
consistently.
f̂ = ĥ+ V̂ HF is then called the Fock operator and is an effective one-particle operator.
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Figure 2.2: schematic representation of the mean-field approach

It replaces the many-body Schrödinger equation by a set of one-particle equations, in
which each electron moves in an effective field, often also called mean-field. The mean-
field is the same for all electrons. It is an important concept, because it allows us to
separate the many-body problem into one-electron problems, as depicted in Figure 2.2.
The mean-field also introduces the concept of one-electron wave functions or orbitals
ϕn(x). In the many-body wave function Φ({xi}) we cannot identify a single electron.
In the mean-field formulation the wave function of a given electron has no explicit de-
pendence on the position of all other electrons. The dependence is only implicit via
the V HF and the complexity of the problem therefore reduces to finding the mean-field
potential.

2.3 Closed-Shell Hartree-Fock and the meaning of exchange

Let us consider a system with an even number of electrons and the following scenario:
εN/2 ΨN/2...
εi Ψi...
ε2 Ψ2

ε1 Ψ1

The spatial orbitals Ψi are restricted to be
the same same for spin ↑ and ↓. This is called
“Restricted Hartree-Fock”. As a consequence
of this assumption we can pair up orbitals:

ϕ1(x) = Ψ1(r)α(σ) = Ψ1(x)
ϕ2(x) = Ψ1(r)β(σ) = Ψ̄1(x)

Our Slater determinant, initially a function of ϕ1, ϕ2, . . . ϕN , now is a Slater determi-
nant of the functions Ψ1, Ψ̄1,Ψ2, Ψ̄2, . . . ,ΨN/2, Ψ̄N/2 and the energy expression (Equa-
tion 2.24) becomes:

E[ΦSD] =

N/2∑
n

〈n|h|n〉+
N/2∑
n

〈n̄|h|n̄〉+ 1

2

N∑
n

N∑
m

〈mn|mn〉 − 〈mn|nm〉 (2.31)
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2 Wave Function based approaches

If we write out the summands in the two single-particle sums, we find that the spin
variable integrates out and they are equal.

〈n|h|n〉 ?
= 〈n̄|h|n̄〉∫∫

Ψ∗
n(r)α(σ)h(r)Ψn(r)α(σ) dr dσ ?

=

∫∫
Ψ∗

n(r)β(σ)h(r)Ψn(r)β(σ) dr dσ∫
Ψ∗

n(r)h(r)Ψn(r) dr =

∫
Ψ∗

n(r)h(r)Ψn(r) dr = (n|h|n)

To rewrite the double sum in terms of these orbitals as well, we first need to rewrite the
orbital products.

N∑
nm

= ϕnϕm =

N/2∑
n

(ϕn + ϕ̄n)

N/2∑
m

(ϕm + ϕ̄m)

=

N/2∑
nm

(ϕnϕm + ϕnϕ̄m + ϕ̄nϕm + ϕ̄nϕ̄m)

This will yield a total of 16 different terms in the two-electron integrals. Fortunately, we
know that the coulomb-operator is spin-independent and we can integrate out the spin.
As a consequence, only those product terms will be non-zero where the spin functions
for x and x′ are the same.

⇒ E[ΦSD] = 2

N/2∑
n

(n|h|n) + 1

2

N/2∑
nm

[
〈mn|mn〉 − 〈nm|mn〉

+ 〈nm̄|nm̄〉+ 〈n̄m|n̄m〉+ 〈n̄m̄|n̄m̄〉 − 〈n̄m̄|m̄n̄〉
]

= 2

N/2∑
n

(n|h|n) +
N/2∑
nm

[
2 (mn|mn)︸ ︷︷ ︸

=Jnm

− (nm|mn)︸ ︷︷ ︸
=Knm

]
(2.32)

(mn|kl) =
∫∫

Ψ∗
m(r)Ψ∗

n(r′)Ψk(r)Ψl(r′)
|r − r′|

As one can see from the definition of the spatial two-electron integrals (mn|mn), the
Jnm in Equation 2.32 is nothing else than the classic coulomb repulsion between the two
charge distributions |Ψn(r)|2 and |Ψm(r)|2. The exchange integral Knm on the other
hand has no classical analog! It arises from the antisymmetry principle requirement on
the wave function, the fact that we can exchange two particles in the wave function and
only change the sign. That is why this term is called exchange.
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2.4 Hartree-Fock in a basis

2.4 Hartree-Fock in a basis

If we consider a closed-shell system and integrate out the spin dependence in Equa-
tion 2.30, we obtain

f̂(r)Ψm(r) = εmΨm(r)

f̂ = h(r) + VH(r) +
∫

dr′ΣHF (r, r′)

where we relabeled our λm as εm. The kinetic energy operator can be written as a high
order finite difference expansion on a grid.

y ↑

x→

h

∇2
xΨ =

M∑
j=−M

cjΨ(xi + jh, yl, zk) + O(h2M+2)

see for example Reference [4]

For the other terms a suitable quadrature can be found. This ansatz then allows to solve
the HF equations on a grid. However, the problem are the core states, as depicted in
Figure 2.3. To represent these states and their rapid decay/oscillations accurately we

R10(r)

R30(r)

nucleus

Figure 2.3: Wave function shape near the nucleus.

need a high grid point density close to the nuclei. To describe a molecule, we cannot
afford the density of points near the nuclei throughout all space. There are several
possible solutions to this problem:

Adaptive Grids : These grids have different spacings in different regions. While this
approach is in principle feasible, it is quite cumbersome to implement.

Pseudopotentials : For many applications the valence electrons are the important part
of the system, while the core electrons only have a minor impact on the property
of interest. The core electrons are then no longer considered explicitly, but instead
they form a pseudo-core with the nucleus, which gives rise to the pseudopotential.
This potential is smooth and finite at the nuclues and thefore generates a smooth
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2 Wave Function based approaches

pseudo-wavefunction. This approach is very popular, but more often than not the
core region is important.

Basis Sets : Introduce a basis that builds rapid oscillations into the basis functions, e.g.
orbitals of free atoms.

We will only discuss the third approach in detail. Without specifying the type of basis
functions yet, we introduce a set of K-many basis functions {φmu(r),mu = 1, . . .K}.
The Hartree-Fock can then be expanded in this basis:

Ψi(r) =
K∑

µ=1

Cµiφµ(r) (2.33)

If we would use a complete basis for this expansion, this expression would be exact.
However, in practice the basis is usually not complete. By inserting the expansion into
the HF equations, we obtain:∫

F (r, r′)
K∑

µ=1

Cµiφµ(r′) dr′ = εi

K∑
µ=1

Cµiφµ(r) (2.34)

Now we multiply this equation with φν(r) from the left and integrate over r.

K∑
µ=1

Cµi

∫∫
φν(r)F (r, r′)φµ(r′) dr dr′︸ ︷︷ ︸

=Fν,µ

= εi

K∑
µ=1

Cµi

∫
φν(r)φµ(r) dr︸ ︷︷ ︸

=Sν,µ

(2.35)

Fν,µ here denotes a matrix element of the “Fock matrix” and Sν,µ are the elements of the
of the “overlap matrix”. With this expansion in a basis set we have transformed the HF
equation for a single particle state into a set of equations for the expansions coefficients.
This can be written in a compact matrix form

FC = SCE (2.36)

where all matrices have dimension K×K and and E is a diagonal matrix containing the
HF eigenvalues. Note that this equation will only gives us as many eigenvalues as we
have basis functions in our expansion. Therefore, K-many basis functions can expand at
most K-many single particle states. Equation 2.36 is called the Roothaan-equation and
a central quantity for quantum chemistry. To solve it, all that is left to do is to express
Fν,µ explicitly in our basis.

F (r, r′) =
[
h(r) + VH(r)

]
δ(r − r′) + Σ(r, r′)
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2.4 Hartree-Fock in a basis

We do not want to set up F (r, r′) on a grid first to obtain the matrix elements from
integration. To express the Fock matrix elements in terms of the basis functions, let us
start with the electronic density:

n(r) = 2

N/2∑
i=1

|Ψi(r)|2 = 2

N/2∑
i=1

Ψi(r)∗Ψi(r)

= 2

N/2∑
i=1

(
K∑
ν=1

C∗
νiφ

∗
ν(r)

) K∑
µ=1

Cµiφµ(r)


=

K∑
ν,µ=1

2

N/2∑
i=1

C∗
νiCµi︸ ︷︷ ︸

=Pµ,ν

φ∗ν(r)φ∗µ(r)

=

K∑
ν,µ=1

2Pµ,νφ
∗
ν(r)φ∗µ(r) (2.37)

With the expansion in Equation 2.37 and the density matrix elements Pµ,ν we can easily
determine the matrix elements of the Hartree-potential.

V H
ν,µ =

∫
φ∗ν(r)VH(r)φµ(r) dr =

∫∫
φ∗ν(r)

n(r′)
|r − r′|φµ(r) dr dr′

=
∑
λ,τ

Pλ,τ

∫∫
φ∗ν(r)φ∗τ (r′)φλ(r′)φµ(r)

|r − r′|
dr dr′

=
∑
λ,τ

Pλ,τ (ντ |µλ)

The representation of the exchange operator follows analogously:

Σν,µ =

∫∫
φ∗ν(r)Σ(r, r′)φµ(r′) dr dr′ = −

∫∫
φ∗ν(r)

N/2∑
i=1

Ψi(r)Ψ∗
i (r′)

|r − r′| φµ(r′) dr dr′

= −
∫∫

φ∗ν(r)
N/2∑
i=1

∑
λ,τ

CλiC
∗
τi

φλ(r)φ∗τ (r′)
|r − r′| φµ(r′) dr dr′

= −1

2

∑
λ,τ

Pλ,τ (ντ |λµ)

⇒ Fν,µ = hν,µ +
∑
λ,τ

Pλ,τ

[
(ντ |µλ)− 1

2
(ντ |λµ)

]
Since the density matrix elements depend on the expansion coefficients, the Fock matrix
is also dependent on them and the Roothaan equations are nonlinear. To solve them,
we again need a self-consistent approach:
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2 Wave Function based approaches

1. choose the basis to expand in

2. calculate the integrals Sµ,ν , hµ,ν and (νλ|τµ)

3. initialize Pµ,ν

4. compute Fµ,ν

5. solve the Roothan equations to obtain new expansion coefficients

6. restart from step 3 until the density matrix no longer changes

For the case of an atom-centered basis set it is easy to see that the size of the basis
{φµ} grows linearly with the number of atoms NA. Therefore, we have to compute
N4

A four-center integrals (νλ|τµ). Calculating the fock matrix Fµ,ν therefore requires
N4

A operations, if no further tricks are applied. The formal scaling of the Hartree-Fock
method is therefore N4

A.

2.4.1 Conditioning

For an atom-centered basis we generally have Sµ,ν 6= δµ,ν , i.e. basis functions are not
orthogonal to each other, if they are centered on different atoms, as depicted in Fig-
ure 2.4. If the size of the basis or the extend of the basis functions grows, different linear
combinations of basis functions can give the same expansion. Eventually, we end up
with linear dependencies in the basis functions:

φν(r) =
∑
µ

Cνµφµ(r)

If a new basis function can be expressed as a linear combination of the already present
ones, it obviously adds nothing new to the basis set. In a Gram-Schmidt sense this basis
function would be associated with an eigenvalue that is close to zero. As a consequence
the overlap matrix becomes “ill-conditioned”2 and the inversion is no longer numerically
stable. To solve this issue, one can apply a “Singular Value Decomposition”, which
diagonalizes the matrix and filters out all eigenvalues below a given threshold. The
inversion is then carried out for the resulting submatrix.

2.4.2 Performance of Hartree-Fock

One advantage of the Hartree-Fock approach are that it gives a “chemical” picture of
electron orbitals and bonds. It also gives a total energy and allows us to compute ground
state properties. However, HF typically underestimates the total energy by a few percent.

2The condition number of a matrix is the ratio between the largest and the smallest eigenvalue of a
matrix. If this number becomes large, the matrix it is ill-conditioned.
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2.5 Form of the exact wave function and configuration interaction

O

H H

many basis func-
tions overlap in
this region

Figure 2.4: Basis set superposition between the atoms at the schematic example of a
water molecule. The different circles symbolize the radial extend of different
basis functions centered on each atom.

These errors become significant when we have to deal with energy differences.
In quantum chemistry, HF often underbinds by about 4eV per bond. This error is too
large for thermochemistry, where an error of about 0.05eV in the transition state energy
of the reaction already results in a factor of 5 error in the reaction rate. In solid state
physics, Hartree-Fock is not often applied and usually overestimates lattice constants,
while cohesive energies are underestimated, as in quantum chemistry.

2.5 Form of the exact wave function and configuration
interaction

So far we have obtained the following wave function approximations from the variational
principle by minimizing the energy:
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2 Wave Function based approaches

Hartree-product ΦHP = φi(x1)φj(x2) . . . φk(xN )

HF Slater Determinant ΦHF = ΦSD ({φi(x)})

In HF we fixed the form of the wave function a priori to be a single slater determinant.
This is a constraint on the shape of the wavefunction and therefore does not necessarily
yield the true ground state of a system. How can we construct a better wave funtion?
Let us assume that we have a complete basis {fi}. Any function of a single variable can
then be expanded exactly as

Φ(x1) =
∑
i

aifi(x1) (2.38)

Similarly, a function of two variables can be expanded in stages.

Φ(x1,x2) =
∑
i

ai(x2)fi(x1) (2.39)

Now we can expand the coefficient functions ai(x2) in Equation 2.39 by inserting 2.38.

Φ(x1,x2) =
∑
i,j

bijfj(x2)fi(x1) (2.40)

For the special case of Φ being an fermionic wave function, we can derive further con-
straints on the expansion from the antisymmetry principle Φ(x1,x2) = −Φ(x2,x1):

⇒ bij = −bji bii = 0

Φ(x1,x2) =
∑
i

∑
j>i

bij

[
fi(x1)fj(x2)− fi(x2)fj(x1)

]
=
∑
i

∑
j>i

bij
√
2ΦSD(x1,x2) (2.41)

This shows us, that the exact wave function is not a single Slater determinant, but an
infinite sum over different determinants. Let us restrict, for simplicity, again to the
two-electron case and consider the determinants which contribute to the true ground
state. As basis functions we choose the Hartree-Fock orbitals and order them by their
eigenvalues.
In the following we will denote the Hartree-Fock groundstate as ΦSD

0 and all other Slater
determinants will be labeled as:

Φr
a

indexes of orbitals where the excited electrons go to

indexes of orbitals where the excited electrons come from
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2.5 Form of the exact wave function and configuration interaction

...
f4

f3

f2

f1

HF
ground
state

...
f4

f3

f2

f1

...
f4

f3

f2

f1

singly excited
(one electron is pro-

moted to a higher orbital)

…

...
f4

f3

f2

f1

...
f4

f3

f2

f1

doubly excited
(two electrons are pro-

moted to higher orbitals)

With these definitions we can rewrite Equation 2.41 as:

Φ(x1,x2) = C0Φ
SD
0 +

∑
ra

Cr
aΦ

r
a +

∑
r<s,a<b

Crs
abΦ

rs
ab (2.42)

While a and b are always 1 in our two-electron example, this scheme can be general-
ized to an arbitrary number of electrons. Therefore, we can have arbitrarily complex
determinants:

...
f6

f5

f4

f3

f2

f1

HF
ground
state

...
f6

f5

f4

f3

f2

f1

...
f6

f5

f4

f3

f2

f1

singles

…

...
f6

f5

f4

f3

f2

f1

...
f6

f5

f4

f3

f2

f1

doubles

…

...
f6

f5

f4

f3

f2

f1

triples

…

etc.

And the general form of the wave function given in Equation 2.42 then becomes:

ΦCI({xi}) = C0Φ
SD
0 +

∑
ra

Cr
aΦ

r
a +

∑
r<s,a<b

Crs
abΦ

rs
ab +

∑
r<s<t,a<b<c

Crs
abΦ

rst
abc + . . . (2.43)
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2 Wave Function based approaches

The coefficients in Equation 2.43 can be obtained from the Schrödinger equation. For
a finite basis set with K orbitals and N is the number of electrons in the system, the
number of possible configuration is

(
2K
N

)
= (2K)!

N !(2K−N)! .
Let us again consider a simple example, the hydrogen dimer in a minimal basis as shown
in Figure 2.5. A minimal basis means in this case that we only consider the hydrogen
1s orbitals φ1(r) and φ2(r) located at the respective atoms.
We will denote spin down states with a bar, i.e. Ψ1(r, ↑) = Ψ1(r) and Ψ1(r, ↓) = Ψ̄1(r),

H1 H2

bonding Ψ1(r) =
1√

2(1 + S12)
[φ1(r) + φ2(r)]

antibonding Ψ2(r) =
1√

2(1− S12)
[φ1(r)− φ2(r)]

Figure 2.5: H2 with a minimal basis, i.e. the 1s hydrogen orbitals φ1(r) and φ2(r)
located at their respective atoms. S12 denotes the overlap between the two
basis functions.

the HF ground state of the molecule is the Slater determinant of the “binding state”:

Φ0(r1, r2) =
1√
2

[
Ψ1(r1)Ψ̄1(r2)−Ψ1(r2)Ψ̄1(r1)

]
(2.44)

|Φ0〉 =
∣∣Ψ1Ψ̄1

〉
= |11̄〉 (2.45)

Our determinants are then:
Ψ2

Ψ1

Ψ̄2

Ψ̄1

|11̄〉 |12̄〉 |21̄〉 |12〉 |1̄2̄〉 |22̄〉

And we can write the full wavefunction as:∣∣ΦCI
〉
= C0 |Φ0〉︸ ︷︷ ︸

ground state

+C2
1 |21̄〉+ C 2̄

1̄ |12̄〉+ C2
1̄ |12〉+ C 2̄

1 |2̄1̄〉︸ ︷︷ ︸
singles

+C22̄
11̄ |22̄〉︸ ︷︷ ︸
double

(2.46)
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2.5 Form of the exact wave function and configuration interaction

Given this genereal shape of the wave function, the variational method tells us that
the corresponding ground state can be is the lowest eigenvalue of

〈
ΦCI

∣∣H∣∣ΦCI
〉
= E.

Writing the coefficients as a vector C, we can write the energy of the wave function as:

E = C



〈Φ0|H|Φ0〉 〈Φ0|H|12̄〉 〈Φ0|H|21̄〉 〈Φ0|H|21〉 〈Φ0|H|2̄1̄〉 〈Φ0|H|22̄〉
〈12̄|H|Φ0〉 〈12̄|H|12̄〉 〈12̄|H|21̄〉 〈12̄|H|21〉 〈12̄|H|2̄1̄〉 〈12̄|H|22̄〉
〈21̄|H|Φ0〉 〈21̄|H|12̄〉 〈21̄|H|21̄〉 〈21̄|H|21〉 〈21̄|H|2̄1̄〉 〈21̄|H|22̄〉
〈21|H|Φ0〉 〈21|H|12̄〉 〈21|H|21̄〉 〈21|H|21〉 〈21|H|2̄1̄〉 〈21|H|22̄〉
〈2̄1̄|H|Φ0〉 〈2̄1̄|H|12̄〉 〈2̄1̄|H|21̄〉 〈2̄1̄|H|21〉 〈2̄1̄|H|2̄1̄〉 〈2̄1̄|H|22̄〉
〈22̄|H|Φ0〉 〈22̄|H|12̄〉 〈22̄|H|21̄〉 〈22̄|H|21〉 〈22̄|H|2̄1̄〉 〈22̄|H|22̄〉


C

(2.47)
What is most noticeable about Equation 2.47 is the block structure of the matrix. We
have a blocks which contains only expectation values between configuration with the
same number of excitations (marked red, green and blue in the matrix) on the diagonal
and offdiagonal blocks, which contains Hamiltonian matrix elements between configura-
tions with different numbers of excitations (highlighted with mixed colors in the matrix).
In general, the matrix has the shape of Equation 2.48, where S denotes the blocks for
singles, D for doubles and T for triples.

〈
ΦCI

∣∣H∣∣ΦCI
〉
= C


〈Φ0|H|Φ0〉 〈Φ0|H|S〉 〈Φ0|H|D〉 〈Φ0|H|T 〉 . . .

〈S|H|Φ0〉 〈S|H|S〉 〈S|H|D〉 〈S|H|T 〉 . . .

〈D|H|Φ0〉 〈D|H|S〉 〈D|H|D〉 〈D|H|T 〉 . . .

〈T |H|Φ0〉 〈T |H|S〉 〈T |H|D〉 〈T |H|T 〉 . . .
...

...
...

... . . .

C (2.48)

In this matrix, different configurations interact via the Hamiltonian, therefore the name
of the method “Configuration interaction” (CI). To solve this problem, all we need to
know are the matrix elements.3

O1 =
∑
i

h(ri) O2 =
∑
i

∑
j>i

1

|ri − rj |

Case1 :

|K〉 = |. . .mn . . .〉
|L〉 = |. . .mn . . .〉

〈K|O1|L〉 =
∑
i

〈i|h|i〉 〈K|O2|L〉 =
∑
i,j

〈ij|ij〉 − 〈ij|ji〉

Case2 :

|K〉 = |. . .mn . . .〉
|L〉 = |. . . pn . . .〉

〈K|O1|L〉 = 〈m|h|p〉 〈K|O2|L〉 =
∑
i

〈mi|pi〉 − 〈mi|ip〉

Case3 :

|K〉 = |. . .mn . . .〉
|L〉 = |. . . pq . . .〉

〈K|O1|L〉 = 0 〈K|O2|L〉 = 〈mn|pq〉 − 〈mn|qp〉

3For a general derivation see [3, Chapter 4].
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2 Wave Function based approaches

For all configurations which differ by three or more occupied orbitals, the matrix elements
are zero. The matrix elements are quite simply and involve at most the Coulomb integral
of four states. Since only determinants with at most two different states couple, the
general matrix from Equation 2.48 simplifies to:

〈Φ0|H|Φ0〉 〈Φ0|H|S〉 〈Φ0|H|D〉 0 0 . . .

〈S|H|Φ0〉 〈S|H|S〉 〈S|H|D〉 〈S|H|T 〉 0 . . .

〈D|H|Φ0〉 〈D|H|S〉 〈D|H|D〉 〈D|H|T 〉 〈D|H|Q〉 . . .

0 〈T |H|S〉 〈T |H|D〉 〈T |H|T 〉 〈T |H|Q〉 . . .

0 0 〈Q|H|D〉 〈Q|H|T 〉 〈Q|H|Q〉 . . .
...

...
...

...
... . . .


This simplifies the matrix considerably, leaving only the diagonal blocks and two off-
diagonal blocks above and below the main diagonal, but still the matrix is enormously
large. For a complete basis the configuration interaction approach would be exact.
However, in practice our basis sets are never complete. Due to the

(
2K
N

)
scaling of the

available configurations, CI is applicable only to small systems. In general, one has al-
ways to make a trade-off between the basis set size and the number of used determinants,
as depicted in Figure 2.6. The energy different between the exact CI-solution (i.e. the
exact non-relativistic wave function) and the Hartree-Fock ground state is known as the
“correlation energy”.
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# of Slater determinants

full CI limit

HF limit exact answer

computationally feasible

Figure 2.6: The trade-off between the number of used Slater determinants and the size
of employed basis set.
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2.5 Form of the exact wave function and configuration interaction

Now let us return to our minimal H2 example:∣∣Φ2e
〉
= C0 |Φ0〉+ C2

1 |21̄〉+ C 2̄
1̄ |22̄〉+ C2

1̄ |12〉+ C 2̄
1 |2̄1̄〉+ C22̄

11̄ |22̄〉 (2.49)

We can further simplify Equation 2.49 by spin-adaption. Since we already that the exact
ground state has to be a singlet, i.e. one electron with spin up and one with spin down,
only spin singlet states need to be included. |Φ0〉 and |2̄1̄〉 are singlets, and the four
single excitations can be rewritten as linear combinations, giving rise to one singlet state∣∣1Φ2

1

〉
= 1√

2
(|12̄〉+ |21̄〉) and three triplet states. Our wave function then reduces to:∣∣Φ2e

〉
= C0 |Φ0〉+ C2

1

∣∣1Φ2
1

〉
+ C22̄

11̄ |22̄〉 (2.50)

A further simplification can be achieved by taking spatial symmetry into account. Both
|Φ0〉 and

∣∣∣Φ22̄
11̄

〉
are “gerade”.

∣∣1Φ2
1

〉
on the other hand is “ungerade” because it contains

one orbital with gerade and one with ungerade symmetry. Therefore, this ungerade state
will not couple to the gerade states. Equation 2.50 therefore reduces further to:∣∣Φ2e

〉
= C0 |Φ0〉+ C22̄

11̄ |2̄1̄〉 (2.51)

The CI-matrix H obtained from Equation 2.51 there is a simple 2× 2 matrix:

H =

(
〈Φ0|H|Φ0〉 〈Φ0|H|22̄〉
〈22̄|H|Φ0〉 〈22̄|H|22̄〉

)

=

(
E0 K12

K12 E2

)

where E0 = E1 denotes the energy of the Hartree-Fock ground state. Our matrix
equation to solve then is:(

E0 K12

K12 E2

)(
C0

C22̄
11̄

)
= E

(
C0

C22̄
11̄

)

The eigenvalues of a 2× 2 matrix are:(
a b

c d

)
→ E1/2 =

a+ d

2
±
√

(a+ d)2

4
− (ad− bc)

⇒ E1/2 =
E0 + E2

2
±
√

(E0 + E2)2

4
− (E0E2 −K2

12)

=
E0 + E2

2
±
√

(E2
0 + 2E0E2 + E2

2)

4
− (E0E2 −K2

12)

= E0 +
E2 − E0

2
±
√

(E2 − E0)2

4
+K2

12
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2 Wave Function based approaches

If we now define ∆ = 1
2(E2 − E0), we then have for the CI ground state:

ECI
0 = E0 +∆−

√
∆2 +K2

12

= EHF
0 + Ecorr

where Ecorr is the previously defined correlation-energy, i.e. “everything that goes be-
yond Hartree-Fock”.
Now let us consider the dissociation limit of the hydrogen molecule, i.e. the R → ∞
limit with R being the interatomic distance. Since we essentially have two independent
hydrogen atoms at the dissociation limit, the single particle Hamiltonian yields the en-
ergy of a hydrogen atom for both orbitals h11 = h22 = E(H). All molecular two-electron
integrals tend to 1

2 (φ1φ1|φ1φ1) where φ1 is a hydrogenic orbital.

EHF (R→ ∞) = 2h11 + J11

∆ =
1

2
(E2 − E0) =

1

2
(2h22 + J22 − 2h11 − J11) = 0

ECI(R→ ∞) = 2h11 + J11 −K12 = 2h11 + J11 − J11 = 2h11

While the CI yields the correct energy in the dissociation energy, Hartree-Fock leads
to a qualitatively wrong result, Figure 2.7 shows the resulting dissociation curves. Of
course our minimal basis model is too simplistic for a real system, but full CI will always
be correct and dissociate correctly. Can we understand why HF fails and CI is correct?
Let us consider our Hartree-Fock wave function: At the dissociation limit, we have the
bonding and antibonding wave functions are Ψ1/2 = 1√

2
(φ1(r) ± φ2(r)). Our ground

R

E(R)

CI

HF

Figure 2.7: Dissociation curve of the hydrogen atom for Hartree-Fock and configuration
interaction as a function of the inter-nuclear distanc R.
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2.5 Form of the exact wave function and configuration interaction

state determinant is thus:

|Φ0〉 = |11̄〉

=
1√
2

[
Ψ1(r1)Ψ̄1(r2)−Ψ1(r2)Ψ̄1(r1)

]
=

1√
2
Ψ1(r1)Ψ1(r2)

[
α(r1)β(r2)− α(r2)β(r1)

]
=

1

2
√
2

(
φ1(r1) + φ2(r1)

)(
φ1(r2) + φ2(r2)

)[
α(r1)β(r2)− α(r2)β(r1)

]
=

1

2
√
2

(
φ1(r1)φ1(r2) + φ1(r1)φ2(r2) + φ2(r1)φ1(r2) + φ2(r1)φ2(r2)

)[
. . .

]

As it can be seen the first and last term in the paranthesis are configurations which
correspond to a double occupancy of one of the hydrogen atoms. When the atoms
are very far away from each other, the double occupancy costs Coulomb energy and is
therefore unfavorable. Now consider the exited state

∣∣∣Φ22̄
11̄

〉
:∣∣∣Φ22̄

11̄

〉
=

1√
2
Ψ2(r1)Ψ2(r2)

[
α(r1)β(r2)− α(r2)β(r1)

]
=

1

2
√
2

(
φ2(r1)φ2(r2)− φ1(r1)φ2(r2)− φ2(r1)φ1(r2) + φ2(r1)φ2(r2)

)[
. . .

]

The structure is similar to the ground state determinant, but the single occupancy terms
have the opposite sign. At dissociation both determinants have the same energy and
become degenerate. Therefore, the exact wave-function should be a linear combination
of them. It turns out that in full CI at dissociation we obtain C0 = 1 and C22̄

11̄
= −1.∣∣ΦCI

〉
= |Φ0〉 −

∣∣∣Φ22̄
11̄

〉
=

1√
2

(
φ1(r1)φ2(r2) + φ2(r1)φ1(r2)

)[
α(r1)β(r2)− α(r2)β(r1)

]

This is what we expected and would have drawn intuitively. The wave function is
a singlet and antisymmetric and the electrons are indistinguishable. Also in atomic
orbitals, the exact wave function is a sum of determinants:

∣∣ΦCI
〉
= 1√

2
(|φ1φ2〉+ |φ2φ1〉).

For H2 dissociation, and nearly all degenerate cases in general, the exact wave function
is a sum of Slater determinants. The Hartree-Fock mean filed is then not enough. This
situation is often referred to as “multi reference”, because more than one HF determinant
could be taken as reference energy in E = EHF = Ecorr. The correlation that brings
the correct result in this case is often called “static correlation”.
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3 Density Functional Theory

In the previous chapter we have considered theories that work with the many-body wave
function to solve the electronic Schrödinger equation. However, the many-body wave
function Ψ = Ψ({xi}) is quite an unwieldy object with its 3N -many coordinates. Would
it not be nicer to work with objects that just depend on one variable, like the density
n = n(r)?
This is not unreasonable, because knowing the the wave function implies we also know
the density:

n(r) = N

∫
. . .

∫
|Ψ({xi})|2 dσ dx2 . . . dxN (3.1)∫

n(r) dr = N

Which electronic coordinates we integrate out, does not matter for a properly antisym-
metrized wave function.

3.1 Kohn-Sham equations

Let us assume for now, that we can build an exact theory based on the density and
worry about the proofs later. Let us also assume that we have an auxiliary system
of non-interacting electrons that has the same ground state density as the real inter-
acting system. The auxiliary system is another manifestation of a mean-field. The
non-interacting electrons move in an effective potential V = Vaux(x) = Veff(x), which we

-

- -

-
-

H

-

- -

-
-

haux = −∇2

2 + V (x)

Figure 3.1: The mapping from the interacting system to a non-interacting auxiliary
system.
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3 Density Functional Theory

assume to be representable as a multiplicative potential (“v-representable”). Veff does
not have to be a physically meaningful potential, nor does the total wave function have
to be physical. As we will see later, we can still obtain the exact ground-state total
energy using Veff.
The advantage of the auxiliary system is that we know how to deal with it:

H →
N∑
i=1

haux(xi) = Haux({xi}) (3.2)

The full many-body Hamiltonian becomes a sum of single particle ones. This we know
how to deal with from Hartree-Fock:

haux(xi)ϕi(xi) = εiϕi(xi)

Therefore, the many-body wave function is a single Slater determinant, but it will be
different from the Hartree-Fock solution because the orbitals φi are different.
Our electronic density is then:

n(r) =
N∑
i=1

∫
|ϕi(r, σ)|2 dσ (3.3)

which can be easily verified for the two-electron case:

n(r) = 2

∫∫
1

2
|ϕi(x1)ϕj(x2)− ϕi(x2)ϕj(x1)|2 dσ1 dx2

=
1

2

∫∫
|Ψi(r1)α(σ1)Ψj(r2)β(σ2)−Ψi(r2)α(σ2)Ψj(r1)β(σ1)|2 dσ1 dx2

=

∫∫
dσ1 dx2

[
Ψ∗

i (r1)Ψi(r1)Ψ∗
j (r2)Ψj(r2)α∗(σ1)α(σ1)β

∗(σ2)β(σ2)

+ Ψ∗
j (r1)Ψj(r1)Ψ∗

i (r2)Ψi(r2)β∗(σ1)β(σ1)α∗(σ2)α(σ2)

−Ψ∗
i (r1)Ψj(r1)Ψ∗

j (r2)Ψi(r2)α∗(σ1)β(σ1)β
∗(σ2)α(σ2)

−Ψ∗
j (r1)Ψi(r1)Ψ∗

i (r2)Ψj(r2)β∗(σ1)α(σ1)α∗(σ2)β(σ2)

]
=

∫ [
|Ψi(r1)α(σ1)|2 + |Ψj(r1)β(σ1)|2

]
dσ1

=

N∑
i=1

|ϕi(x)|2

In terms of the density and the orbitals, we can then write down the Coulomb energy
EH [n] and the kinetic energy Ts[n]:

EH [n] =
1

2

∫∫
n(r)n(r′)
|r − r′| dr dr′ (3.4)
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3.2 Hohenberg-Kohn Theorems

Ts[n] = −1

2

N∑
i=1

∫ 〈
ϕi

∣∣∇2
∣∣ϕi

〉
dσ (3.5)

⇒ Eaux[n] = Ts[n] +

∫
Veff(r)n(r)︸ ︷︷ ︸

Eext

+EH + Exc (3.6)

In Equation 3.6, Exc is the only term that contains interactions beyond Hartree and
therefore we call it “exchange-correlation”.
We now apply the same procedure as in the derivation of the Hartree and HF equations:

L[n] = Eaux[n]−
N∑
i=1

N∑
j=1

λij

[∫
ϕ∗
i (x)ϕj(x) dx − δij

]
δL
δϕ∗

i

= 0 ∀i

⇒
N∑
j=1

λijϕj =
δTs
δϕ∗

i

+

[
δEaux
δn

+
δEH

δn
+
δExc

δn

]
δn

δϕ∗
i

N∑
j=1

λijϕj =
1

2
∇2ϕi(x) + [Vaux(r) + VH(r) + Vxc(r)]ϕi(x)

As before, we can bring these equations into canonical form by applying a unitary
transformation. Furthermore, we can simplify the expression by noting that the equation
is spin-independent.

⇒
[
−1

2
∇2 + Veff(r)

]
ϕi(r) = λiϕi(r) (3.7)

Veff(r) = Vaux(r) + VH(r) + Vxc(r) (3.8)

Veffis the exact effective potential that the electrons move in. The auxiliary system of
non-interacting particles was first proposed by Kohn and Sham in 1965. That is why we
call the framework Kohn-Sham (KS) density functional theory. The full complexity of the
real system and all the many-body interactions have been wrapped into Vxc(r) = δExc

δn(r) .

3.2 Hohenberg-Kohn Theorems

Let us now proof that the density is sufficient for an exact ground state theory. We have
just discussed one way to recast

HΨ = EΨ

H = −
N∑
i=1

∇2
i

2︸ ︷︷ ︸
T

+
N∑
i=1

Veff(ri)︸ ︷︷ ︸
V ne

+
1

2

N∑
i 6=j

1

|ri − rj |︸ ︷︷ ︸
V ee
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3 Density Functional Theory

in terms of the density. It is in principle self-evident that the external potential, i.e. the
positions of the nuclei, determines the properties of the system, but is this also true for
the density?

3.2.1 Hohenberg-Kohn Theorem I

The ground state density n(r) uniquely determines the potential up to an arbitrary
constant.
For the proof of this theorem let us assume non-degenerate ground states. Suppose we
have two external potentials V 1

eff(r) and V 2
eff(r) that differ by more than a constant, but

lead to the same density n(r).

V 1
ext(r) 6= V 2

ext(r) + const
↓ ↓
H1 H2 two different Hamiltonians
↓ ↓
Φ1 Φ2 two different wave functions

Then by the variational principle we wave

〈Φ2|H1|Φ2〉 > 〈Φ1|H1|Φ1〉 = E1 (3.9)

but also

〈Φ2|H1|Φ2〉 = 〈Φ1|H2|Φ1〉+
T and V eeare the same︷ ︸︸ ︷
〈Φ1|H1 −H2|Φ1〉

= E2 +

∫ [
V 1

eff(r)− V 2
eff(r)]n(r) dr

(3.10)

⇒ E1 < E2 +

∫ [
V 1

eff(r)− V 2
eff(r)]n(r) dr

(3.11)

The same relations of course hold true if we swap the indexes in Equation 3.9 and 3.10.
Thereby we obtain

E2 < E1 +

∫ [
V 2

eff(r)− V 1
eff(r)]n(r) dr (3.12)

Adding Equation 3.11 and 3.12, we obtain

E1 + E2 < E1 + E2 (3.13)

which is obviously a contradiction. Our initial assumption therefore must be wrong and
there cannot be two different potentials yielding the same ground state density.
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3.2 Hohenberg-Kohn Theorems

As a corollary we also know that the many-body wave functions for ground and excited
states are fully determined by the ground state density, because the Hamiltonian is fully
determined by the external potential. Therefore, all properties of the system are fully
determined by the ground state density.

3.2.2 Hohenberg-Kohn Theorem II

A universal functional for the energy E[n] in terms of the density n(r) can be defined,
valid for any external potential Vext(r). For any given Vext(r), the exact ground state
energy of the system is the global minimum of this functional and the density that
minimizes the functional is the exact ground state density.
For simplicity, we will restrict our proof to v-representable densities, i.e. those ones
that can be represented by a potential.1 First we need to define the functional from the
Hamiltonian:

EHK [n] = T [n] + Vee[n] +

∫
Vext(r)n(r) dr = F [n]︸︷︷︸

universal

+

∫
Vext(r)n(r) dr︸ ︷︷ ︸

specific

Since T [n] and Vee[n] are determined only the density, this part of the functional is
universal and only the Vextcontribution is system-specific due to its dependence on the
nuclear coordinates. Suppose now that n1(r) is the ground state density of V 1

ext(r).

E1 = EHK [n1] = 〈Φ1|H|Φ1〉

Let us now consider a different density n2(r) that corresponds to a different Φ2.

E1 = EHK [n1] = 〈Φ1|H|Φ1〉 < 〈Φ2|H|Φ2〉 = EHK [n2] = E2

The Hohenberg-Kohn functional evaluated at the ground state density therefore gives
the lowest energy. If the functional of the density is known, than the total energy of the
system can be obtained by variational minimization with respect to the density. The
Hohenberg-Kohn functional therefore only provides access to the ground state, unlike
Configuration Interaction which also gives the excited states.
With these two theorems we established a one-to-one correspondence between Vextand
n, as drawn schematically in Figure 3.2. However, our proofs have the problem that they
went back to the many-body wave functions. The proofs offer neither a prescription to
determine the kinetic energy from the density, nor for generating the density. This is
where the Kohn-Sham equations (see section 3.1) comes in as a practical scheme. Our
next step is therefore to find suitable approximations for the exchange-correlation energy
Exc[n].

1A general proof without this constraint can be found in [5].
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3 Density Functional Theory

Vext(r)

Φi Φ0

n(r)

determines H and
gives all many-body
wave functions

pick the ground state

determines the
ground state density

Figure 3.2: schematic representation of DFT

3.3 Exchange-Correlation Functionals

Going back to the definition of the Kohn-Sham functional EKS [n] (initially defined as
Eaux[n] in Equation 3.6), we need to approximate Exc[n], but what exactly does it have
to incorporate? Let us compare EKS [n] and EHK [n]:

EHK [n] = F [n]−
∫
Vext(r)n(r) dr

= T [n] + V ee[n]−
∫
Vext(r)n(r) dr

EKS [n] = Ts[n]−
∫
Vext(r)n(r) dr + EH [n] + Exc[n]

⇒ Exc[n] = T [n]− Ts[n]︸ ︷︷ ︸
kinetic energy

+V ee[n]− EH [n]︸ ︷︷ ︸
electron-interaction

The first term is the difference between the kinetic of the interacting and non-interacting
electrons, and the second term is the difference between the full electron-electron inter-
action energy and the classic Coulomb energy. In general, Exc[n] will be small compared
to the other terms, because Ts[n] and EH [n] capture a lart part of T [n] and V ee[n].
Therefore, simple approximations might already be successful.

3.3.1 The local density approximation

For inhomogeneous systems with a slowly varying density, the system locally looks like
it has a constant density. Therefore the external potential will also be constant and the
system is similar to the homogeneous electron gas, as shown in Figure 3.3. Let us use
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3.3 Exchange-Correlation Functionals

this to construct a local approximation to Exc

Exc[n] =

∫
n(r)εxc

(
n(r)

)
dr

where εxc
(
n(r)

)
denotes the energy density (i.e. energy per electron) at point r in space,

that depends only on the density at this point.
εxc
(
n(r)

)
for the homogeneous electron gas is known accurately from Quantum Monte

Carlo calculations. The exchange contribution is even known analytically.

εx
(
n(r)

)
=

3kF
4π

kF =
(
3π2n(r)

)2
εxc
(
n(r)

)
=

3

4

(
3

π
n(r)

)1/3

⇒ Ex[n] =

∫
n(r)εx

(
n(r)

)
dr

=

∫
n(r)3

4

(
3

π
n(r)

)1/3

dr

=
3

4

(
3

π

)1/3 ∫
n(r)4/3 dr (3.14)

Equation 3.14 is a very simple expression: All we need to know is the density at any given
point in space and the exchange energy is then simply the integral over the density to
the power 4/3. The exchange contribution to Vxc(r) can be calculated straight forwardly
as the functional derivative:

Vx(r) =
δEx[n]

δn(r) = εx
(
n(r)

)
+ n(r)

δεx
(
n(r)

)
δn(r)

r

n(r)

r

n(r)

Figure 3.3: Local densities in an inhomogeneous system
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⇒ Vx(r) =
3

4

(
3

π

)1/3

n1/3(r) + n(r)3
4

(
3

π

)1/3

n−2/3(r)

=

(
3

π

)1/3

n1/3(r) (3.15)

Equation 3.15 is the final and very simple expression for the exchange contribution to
the exchange-correlation potential in the local density approximation.
The correlation energy density for the homogeneous electron gas is not known ana-
lytically, but can be computed to very high precision using Quantum Monte Carlo2

techniques, as shown in Figure 3.4.
An analytic expression for this behavior was first estimated by Wigner in 1938:

rs

εc

Figure 3.4: Exchange energy density in the homogeneous electron gas as a function of
the density parameter rs.

εc[n] = − 0.44

rs + 7.8

rs =

(
3

4πn

)1/3

=
1.919

kF

Later, better approximations became available, e.g. by Perdew and Zunger (based on
work by Gell-Mann and Brückner for the rs ≤ 1 case):

εc[n] =

 A ln rs +B + Crs ln rs +Drs rs ≤ 1
γ

1 + β1
√
rs + β2rs

rs > 1

The numerical values for the parameters can be found in Ref [6]. The local density
approximation can also be extended to the spin polarized case:

ELSDA
xc [n↑, n↓] =

∫
n(r)εxc

(
n↑(r), n↓(r)

)
dr

2Like CI, QMC is a method that works directly with the many body wave function.
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3.3 Exchange-Correlation Functionals

or, written in terms of the spin polarization η(r):

η(r) = n↑(r)− n↓(r)
n(r)

ELSDA
xc [n, η] =

∫
n(r)εxc

(
n(r), η(r)

)
dr

Now we need reference data for the spin polarized homogeneous electron gas and appro-
priate parametrizations, which can also be found in Ref [6].

LDA summary

The local density approximation is by construction exact or at least very accurate for
the homogeneous electron gas and thus is expected to perform well for systems with
slowly varying density, e.g. simple metals. Typically, it gives dissociation energies of
molecules and cohesive energies of solids to within 10-20%. Bond lengths and lattice
constants are typically too small by 1-2%. The evaluation of the exchange-correlation
term is very efficient, because Exc and vxc are simple, analytic expressions of the density
and therefore scale linearly with the system size. The orthonormalization of the Kohn-
Sham orbitals in the solution of the KS-equations then formally requires /mathcalO(N3)

operations. LDA therefore has a formal scaling one order better than Hartree-Fock and
also a lower prefactor because ELDA

xc is cheaper to evaluate than EHF
x . However, LDA

has problems with self-interaction and systems with rapidly varying densities, e.g atoms
and is therefore not suited for thermochemisty.

3.3.2 Generalized Gradient Approximations

LDA is based on the assumption of a homogeneous, but the radial density of e.g. an
Argon (see Figure 3.5) atom is far from this assumption and has a clearly visible shell

Figure 3.5: Radial density of an isolated Argon atom (taken from Ref [7])
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structure. The idea to overcome the shortcomings of LDA is to include the gradients of
the electron density in Exc:

EGGA
xc [n↑, n↓] =

∫
n(r)εxc

(
n↑(r), n↓(r),

∣∣∣∇n↑(r)∣∣∣ , ∣∣∣∇n↓(r)∣∣∣ ) dr

=

∫
εHEG
x [n]Fxc

(
n↑(r), n↓(r),

∣∣∣∇n↑(r)∣∣∣ , ∣∣∣∇n↓(r)∣∣∣ )︸ ︷︷ ︸
Fxc scales exchange through correlation

dr

where GGA denotes the “Generalized Gradient Approximation”. Instead of using the
gradient directly, it makes sense with a scaled gradient:

S(r) = |∇n(r)|
2kF (r)n(r)

which measures the gradient on the scale of the density itself. A major advantage of this
rescaling is that the gradient remains well-behaved even close to the nucleus, as shown
in Figure 3.6.

Figure 3.6: Rescaled density gradient of an isolated Argon atom (taken from Ref [7])

EGGA
xc [n↑, n↓] =

∫
εHEG
x [n]Fxc

(
n↑(r), n↓(r), S↑(r), S↓(r)

)
dr

There exists no unique form or parametrization for Fxc and therefore many different
parametrizations have been proposed. Most of them fall into two categories:

• satisfy a certain number of exact constraints

• fitted to a benchmark data set

In general, GGAs work best in the regime for which they were designed for.
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3.3 Exchange-Correlation Functionals

3.3.3 Coupling Constant integration, exchange correlation-hole or “Why is
LDA so successful also in inhomogeneous systems?”

Let us look at a coupling constant integration, where we rescale the electronic interaction:

Hλ = T + λV ee

∫
n(r)Vλ(r) dr

where we adjust the external potential Vλ(r) such that the density is fixed to n(r) for
all coupling strengths λ. For λ = 1 we recover the full Hamiltonian of the interacting
system and thus the full many-body wave function. For λ = 0 on the other hand, we
obtain the Hamiltonian of the non-interacting Kohn-Sham system.

Hλ Φλ Vλ(r)
λ = 1 He Ψ V (r)
λ = 0 HKS ΦSD

KS V KS
eff (r)

Exc = T − Ts + V ee − EH

= T + V ee
λ=1 −

[
Ts + V ee

λ=0

]
− EH

= 〈Φλ|T + λV ee|Φλ〉
∣∣∣∣
λ=1

− 〈Φλ|T + λV ee|Φλ〉
∣∣∣∣
λ=0

− EH

=

∫ 1

0

d
dλ

〈Φλ|T + λV ee|Φλ〉 dλ− EH (3.16)

Since Eλ = 〈Φλ|T + λV ee|Φλ〉, we now can use the Hellmann-Feynman theorem. The
derivative is then:

dEλ

dλ
=

d
dλ′

〈Φλ|T + λV ee|Φλ〉
∣∣∣∣
λ′=λ︸ ︷︷ ︸

=0 due to variational principle

+

〈
Φλ

∣∣∣∣ dHλ

dλ

∣∣∣∣Φλ

〉

⇒ dEλ

dλ
=

〈
Φλ

∣∣∣∣ dHλ

dλ

∣∣∣∣Φλ

〉
(3.17)

Inserting Equation 3.17 into 3.16 then yields

Exc =

∫ 1

0
〈Φλ|V ee|Φλ〉 − EH (3.18)

This equation implies that we can obtain the exchange-correlation energy by a coupling-
constant integration over the electronic interaction. This coupling constant integration
incorporates the difference between T and Ts in Exc.
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To compute the integrals of T and V ee over the wave function we introduce the 1- and
2-electron density matrices.

%1(rσ, r′σ) := N

∫
. . .

∫
Φ∗(r′σ,x2 . . .xN )Φ∗(rσ,x2 . . .xN ) dx2 . . . dxN

%2(r, r′) := N(N − 1)
∑
σ,σ2

∫
. . .

∫ ∣∣Φ(rσ, r′σ2, . . .xN )
∣∣ dx3 . . . dxN

The density is then simply n(r) =
∑

sigma %1(rσ, rσ) and we have

〈Φ|T |Φ〉 = −1

2

∑
σ

∫
∇2%1(rσ, r′σ)

∣∣∣∣
r′=r

dr (3.19)

〈Φ|V ee|Φ〉 = 1

2

∫∫
%2(r, r′)
|r − r′| dr′ dr (3.20)

In other words, if we knew the 1- and 2-electron density, we could calculate the ground-
state exactly. This is the reason, why some effort is devoted to density-matrix functional
theory.
%2(r, r′) dr′ dr is the joint probability of finding an electron in volume dr at r and
a second electron in dr′ at r′. By standard probability theory, this is the product of
the probability of finding an electron in dr and the conditional probability n2(r, r′) of
finding an electron in dr given there was one in dr′:

%2(r, r′) = n(r)n2(r, r′)

Since
∫
%2(r, r′) dx′ = (N − 1)n(r) holds, we obtain:∫

%2(r, r′) dr′ = N − 1

which is indicative of a hole, i.e. one electron less. For Φλ we now define the exchange-
correlation hole n2(r|r′):

n2(r, r′) = n(r) + nλxc(r, r′) (3.21)∫
n2(r, r′) dr′︸ ︷︷ ︸

=N−1

=

∫
n(r) dr′︸ ︷︷ ︸
=N

+

∫
nλxc(r, r′) dr′︸ ︷︷ ︸

=−1

(3.22)

This tells us that if an electron is definitely at position r, it is missing from the rest of
the system. The exchange-correlation energy can now be written as [8]:

Exc[n] =
1

2

∫∫
n(r)n̄xc(r, r′)

|r − r′| dr dr′ (3.23)

n̄xc(r, r′) =
∫ 1

0
nλxc(r, r′) dλ
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Figure 3.7: spherical average of the XC-hole in H2 and He for LSDA [9]

The exchange-correlation energy is just the electrostatic interaction between each elec-
tron and the coupling constant averaged exchange-correlation-hole that surrounds it.
The hole is created by three different effects:

Pauli Principle: electrons with equal spin are kept apart in space

Self-interaction: an electron cannot interact with itself

Coulomb repulsion: keeps two electrons apart in space

We now can make the variable transformation R = r′ − r in Equation 3.23:

Exc[n] =
1

2

∫
n(r)

∫
R2 1

R

∫
n̄xc(r,R) dΩ︸ ︷︷ ︸

spherical average

dR dr

This means that the exchange-correlation energy only depends on the spherical average
of the XC-hole. This is of course much easier to approximate than the full hole. In
LSDA the XC-hole is spherically symmetric:

nLSDA
xc (r, r′) = nHEG

xc

(
n↑(r), n↓(r′),

∣∣r − r′
∣∣)

In practice, this spherical symmetry deviates considerably from the shape of the actual
hole, but the spherical average is well reproduced as shown in Figure 3.7.

3.4 Self-interaction

Our DFT energy expression is

Etot = Ts[n] + Eext[n] + EH [n] + Exc[n]
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Let us recall that in EH we summed over all occupied single particle states of the system
for convenience:

EH =
1

2

∫
n(r)n(r′)
|r − r′| dr dr′ = 1

2

∑
i,j

∫
ψ∗
i (r)ψi(r)ψ∗

j (r′)ψj(r′)
|r − r′| dr dr′

=
1

2

∑
i,j

∫ |ψi(r)|2 |ψj(r′)|2

|r − r′| dr dr′

So when i = j an electron interacts with itself and we have “self-interaction”. In Hartree-
Fock, this term is exactly cancelled by the exchange energy:

Ex = −1

2

∑
i,j

∫
ψ∗
i (r)ψj(r)ψ∗

i (r′)ψj(r′)
|r − r′| dr dr′

For i = j these terms exactly cancel the self-interaction in the Hartree energy. However,
for LDAs and GGAs, these terms do not cancel:

ELDA/GGA
xc =

∫
n(r)εxc

(
n(r), r, |∇n(r)| , . . .

)
dr

=
∑
i

∫
|ψi(r)|2 εxc

(
n(r), r, |∇n(r)| , . . .

)
dr

Perdew and Zunger defined a 1-electron self-interaction error on this basis:[6]

δi =
1

2

∫
|ψi(r)|2 |ψi(r′)|2

|r − r′| dr dr′ + Exc

[
|ψi(r)|2

]
In general, δi is not zero. As we have seen earlier in the Hartree-Fock chapter, the
self-interaction error has a tendency to delocalize, it is therefore largest for localized
states.

3.5 Hybrid functionals

As we have seen, Hartree-Fock contains too much exact exchange, while LDA/GGA
suffer from the self-interaction error. A pragmatic solution to this problem is the “hybrid
functional”, as it was first adopted in Quantum Chemistry:

Ehyb
xc = EDFT

xc + α
(
EHF

x − EDFT
x

)
In this simplest form a portion of the DFT exchange is replaced by the exact exchange,
while correlation remains on the DFT level. A popular choice is the PBE functional with
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α = 0.25, the result is known as PBE0. There also exist more complex parametrizations
like the popular B3LYP functional.
Another option is the range-seperation of the exact exchange:

1

r
=

1

r
erf(r)︸ ︷︷ ︸

short range

+
1

r
erfc(r)︸ ︷︷ ︸

long range

Now one can either replace the long- or the short-range with DFT exchange.
In the hybrid functionl formalism, the single particle equations are usually derived like
in Hartree-Fock with δE

δφ∗ and not like in DFT by δE
δn :

V hyb
xc (r, r′) = [Vxc(r)− αVx(r)] δ(r − r′) + αΣHF

x (r, r′)

So we end up with a non-local potential.

3.6 Excitations in DFT and HF

ground state

optical
electron addition

electron removal

neutral excitation charged excitations

Figure 3.8: Excitation processes

The excitation energy is generally defined as εs = Etot
final − Etot

initial. In the case of
neutral excitations (see Figure 3.8) the excitation energies are εs = E(N, s)−E(N). In
the case of wave function based approaches the E(N, s) are the higher eigenvalues of the
Schrödinger equation. Charged excitations that remove electrons yield the ionization
energies εs = E(N −1, s)−E(N) and those that add electrons yield the electron affinity

49



3 Density Functional Theory

εs = E(N) − E(N + 1, s). These energies cannot be derived from the spectrum of the
Hamiltonian.

3.6.1 Koopmans’ theorem and the meaning of Hartree-Fock eigenvalues

Let us reconsider the HF eigenvalue equation (Equation 2.30):

εnϕn(x) = h(r)ϕn(x)−
∫
VH(r) + ΣHFϕn(x′) dx′

⇒ εmδmn =

∫∫
ϕ∗
m(x)

[
h(x) +

N∑
i

φ∗i (x′)φi(x′)

|r − r′|

]
ϕn(x) dx′ dx

+

∫∫
ϕ∗
m(x)

[
N∑
i

φ∗i (x′)φi(x)
|r − r′|

]
ϕn(x′) dx′ dx

⇒ εm = hmm +

N∑
i

〈mi|mi〉 − 〈mi|im〉 (3.24)

Now let us consider an occupied state “a”:

εa = haa +
N∑
i

〈ai|ai〉 − 〈ai|ia〉

Equation 3.24 shows that the eigenvalue belonging to this state is its kinetic and external
energy plus Coulomb and exchange from all remaining electrons, because the i = a term
vanishes. This suggests that εa is the removal energy of electron a or the ionization
energy (or “ionization potential” IP ) if “a” is the highest occupied state.

IP = E(N − 1)− E(N)

in HF: E(N − 1) =
〈
ΦSD
N−1

∣∣H∣∣ΦSD
N−1

〉
E(N) =

〈
ΦSD
N

∣∣H∣∣ΦSD
N

〉
In general, the two slater determinants are not composed of the same orbitals! But let
us assume for a moment that they are and we removed electron c:

E(N) =

N∑
a

[
haa +

1

2

N∑
i

〈ai|ai〉 − 〈ai|ia〉

]

Ec(N − 1) =
N∑
a6=c

haa + 1

2

N∑
i 6=c

〈ai|ai〉 − 〈ai|ia〉


⇒ IPc = Ec(N − 1)− E(N)

= −〈c|h|c〉 −
N∑
i

〈ci|ci〉 − 〈ci|ic〉 = −εc
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The eigenvalues of occupied Hartree-Fock orbitals are the negative ionization energies,
provided the orbitals are not allowed to relax. For the unoccupied states we can derive
an analogue expression for the electron affinity EA:

EAr = E(N)− Er(N + 1) = −εr

Koopmans’ theorem

Given an N-electron Hartree-Fock single determinant ΦSD
N with occupied and unoccupied

(virtual) spin orbital energies εa and εr, then the ionization potential to produce an (N−
1)-electron single determinant ΦSD

a,N−1 with identical spin orbitals, obtained by removing
an electron from spin orbital ϕa and the electron affinity to produce an(N + 1)-electron
Slater determinant ΦSD

r,N−1 with identical spin orbitals, obtained by adding an electron
to spin orbital ϕr, are just −εa and −εr, respectively.

3.6.2 Excitation Energies in DFT

DFT is a ground state theory and as such only the ionization potential I = E(N − 1)−
E(N), the electron affinity A = E(N) − E(N + 1) and the gab Egap = I − A can be
computed exactly. All quantities involing an “s” are excited states of the system that
cannot be expressed as differences of two ground states. When one tries to prepare an
excited state E(N, s), there are several problems:

• Finding a suitable constraint to keep the system in the state “s” may not be possible
or it may not survive the self-consistent cycle.

• Excited state densities are not unique (unlike ground state densities), i.e. there is
no Hohenberg-Kohn theorem for excited states.

What about the DFT eigenvalues? In Hartree-Fock we have Koopmans’ Theorem, but
there is no counterpart in DFT. But it can be proven that the highest Kohn-Sham
eigenvalue of a finite system equals the negative of the ionization potential I = −εKS

N (N).
A hand-waving argument is: The asymptotic long-range density of a bound system is
governed by the occupied state with the highest eigenvalue. Since the density is supposed
to be exact, so must the eigenvalue be. A more rigorous proof can be found in [10, 11].
For approximate functionals, this relation will in general not be true.

Janak’s Theorem

Janak’s Theorem[12] establishes a relation between the Kohn-Sham eigenvalues and the
derivative of the total energy:

∂E

∂fi
= εi (3.25)
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where fi is the occupation number of a given state.
Proof: Let ϕi be the KS state that solves[

−∇2

2
+ VKS(r)

]
ϕi(r) = εiϕi(r)

The corresponding density is build according to n(r) =
∑

i fi |ϕ(r)|
2. Then we have:

∂E[n]

∂fi
=

∂

∂fi

[
−1

2
fi

∫
ϕ∗
i (r)∇2ϕi(r) dr + Eext[n] + EH [n] + Exc[n]

]
= −1

2

∫
ϕ∗
i (r)∇2ϕi(r) dr +

∫
δ

δn(r) [Eext[n] + EH [n] + Exc[n]]
∂n(r)
∂fi

dr

=

∫
ϕ∗
i (r)

[
−1

2
∇2 + VKS(r)

]
ϕi(r) = εi

If we now integrate Janak’s Theorem over df and use the midpoint approximation, we
obtain:

E(N + 1, i)− E(N) =

∫ 1

0
εi(f) df ≈ εi(0.5)

Excitation energies are therefore approximately given by the value of the eigenvalue
at half occupation. This is also known as a Slater or Slater-Janak’s transition state.
The problem remains that for all but the highest (lowest) occupied (unoccupied) state,
occupations need to be suitably constrained.

Derivative Discontinuity

Let us consider the gap of a large, but finite system (so large that it could be a solid).
The gap is given by:

Egap = I −A = E(N + 1)− 2E(N) + E(N − 1)

We also know that the highest occupied state in exact DFT is exact:

Egap = εKS
N+1(N + 1)− εKS

N (N)

= εKS
N+1(N + 1)− εKS

N+1(N)︸ ︷︷ ︸
∆xc

+ εKS
N+1(N)− εKS

N (N)︸ ︷︷ ︸
EKS

gap

The KS-gap is therefore not the real gap of the system, but what is ∆xc? Because
our system is very large, we have N � 1 → ∆n(r) → 0 for N → N + 1, i.e. the
density change is infinitesimal. The Hartree and external potential therefore will not
change. The kinetic energy will only change when the orbitals change, but we consider
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3.6 Excitations in DFT and HF

cases where they do not change. Therefore, ∆xc can only come from changes in the
exchange-correlation potential:

∆xc =

(
δExc[n]

δn(r)

∣∣∣∣
N

+ 1− δExc[n]

δn(r)

∣∣∣∣
N

)
+O

(
1

N

)
The derivative of Exc with respect to the particle number changes discontinuously and
Vxc therefore changes by a constant ∆xc. Even exact KS calculations will not capture
the gap, if only the KS-eigenvalues are considered. For the latest news about derivative
discontinuities see reference [13].
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4 Green’s Function Theory

In this chapter we will briefly review methods based on Green’s function, in particular
the GW approach. For Green’s function theory it is convenient to work with second
quantization, therefore we will start this chapter with a brief review of what you should
remember from your advanced quantum mechanics courses.

4.1 Second Quantization

The many-body wave function ΦN = |k1, k2 . . . kN 〉 we used so far can also be expressed
in terms of the fermionic creation and annihilation operators.
The creation operator a†k creates a particle in the state k and the annihilation operator
ak annihilates one (creates a hole) in state k.

a†k |k1, k2 . . . kN 〉 = |k, k1, k2 . . . kN 〉
ak |k, k1, k2 . . . kN 〉 = |k1, k2 . . . kN 〉

These operators have a set of anti-commutation relations.{
ak, a

†
k′

}
= δk,k′

{ak, ak′} =
{
a†k, a

†
k′

}
= 0

Based on these operators, which act on states, we can also define operators which act in
real-space, the so called field-operators with the same anti-commutators:

ψ†(x) =
∑
k

a†kϕ
∗
k(x)

ψ(x) =
∑
k

akϕk(x){
ψ(x), ψ†(x′)

}
= δ(x,x′){

ψ(x), ψ(x′)
}
=
{
ψ†(x), ψ†(x′)

}
= 0

The Hamiltonian in terms of these operators is then given as:

H =
∑
ij

〈i|h|j〉 a†iaj +
1

2

∑
ijkl

(ij|kl) a†ia
†
jakal
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4 Green’s Function Theory

For the following discussion, it is convenient to switch to the Heisenberg notation for
the field operators:

ψ(x, t) = eiHtψ(x)e−iHt

If we now apply the field operator to the many-body states:

〈N |ψ(x, t)|N + 1, s〉 =
〈
N
∣∣eiHtψ(x)e−iHt

∣∣N + 1, s
〉

=
〈
N
∣∣∣eiE(N)tψ(x)e−iE(N+1,s)t

∣∣∣N + 1, s
〉

= e−εstfs(x)
εs = E(N)− E(N + 1, s)

fs(x) =
〈
N

∣∣∣∣∣∑
k

akϕk(x)

∣∣∣∣∣N + 1, s

〉
= 〈N |ϕs(x)|N〉 = ϕs(x)

4.2 The single-particle Green’s Function

The single-particle Green’s function is defined as:

G(xt,x′t′) = −i
〈
N
∣∣∣T̂ {ψ(x, t)ψ†(x′, t′)

}∣∣∣N〉
= −i

〈
N
∣∣∣ψ(x, t)ψ†(x′, t′)

∣∣∣N〉Θ(t− t′)

+ i
〈
N
∣∣∣ψ†(x′, t′)ψ(x, t)

∣∣∣N〉Θ(t′ − t)

where T̂ denotes the time ordering operator. In a physical picture, the Green’s function
for t > t′ creates an electron to the system at x′and t′ and propagates it to x, where it is
removed at time t. For t < t′ the same thing happens for a hole. The Green’s function
is therefore an electron and hole propagator.
Making use of the Heisenberg notation, we can rewrite the Green’s function as:

G(xt,x′t′) = −i
〈
N
∣∣∣eiHtψ(x)e−iHteiHt′ψ†(x′)e−iHt′

∣∣∣N〉Θ(t− t′)

+ i
〈
N
∣∣∣eiHt′ψ†(x′)e−iHt′eiHtψ(x)e−iHt

∣∣∣N〉Θ(t′ − t)

= −i
〈
N
∣∣∣ψ(x)e−i(H−E(N))(t−t′)ψ†(x′)

∣∣∣N〉Θ(t− t′)

+ i
〈
N
∣∣∣ψ†(x′)e−i(H−E(N))(t′−t)ψ(x)

∣∣∣N〉Θ(t′ − t)

56



4.2 The single-particle Green’s Function

Now we insert the completeness relation for the Fock-space:

1 = |vac〉 〈vac|+
∑
s

∣∣Φ1
s

〉 〈
Φ1
s

∣∣+ . . .+
∑
s

∣∣ΦN
s

〉 〈
ΦN
s

∣∣+ . . .

⇒ G(xt,x′t′) = −i
∑
s

〈
N
∣∣∣ψ(x)∣∣∣N + 1, s

〉
e−i(E(N+1,s)−E(N))(t−t′)

×
〈
N + 1, s

∣∣∣ψ†(x′)
∣∣∣N〉Θ(t− t′)

+ i
∑
s

〈
N
∣∣∣ψ(x)∣∣∣N − 1, s

〉
e−i(E(N−1,s)−E(N))(t′−t)

×
〈
N − 1, s

∣∣∣ψ†(x′)
∣∣∣N〉Θ(t′ − t)

In a more compact notation, we can write:

G(xt,x′t′) = −i
∑
s

fs(x)f∗s (x′)e−iεs(t−t′)
[
Θ(t− t′)Θ(εs − µ)−Θ(t′ − t)Θ(µ− εs)

]
where µ denotes the chemical potential or Fermi-level and

εs = E(N + 1, s)− E(N) fs(x) = 〈N |ψ(x)|N + 1, s〉 for εs > µ

εs = E(N)− E(N − 1, s) fs(x) = 〈N − 1, s|ψ(x)|N〉 for εs < µ

The energies εs correspond to the true many-body excitation energies!
For explicitly time-independent Hamiltonians, G only depends on t− t′ = τ . Therefore
we can switch to the frequency axis:

Θ(±τ) = lim
η→0

± 1

2π

∫ ∞

−∞

eiωτ

ω ± iη
dω

⇒ G(x,x′, ω) = lim
η→0+

∑
s

fs(x)f∗s (x′)

[
Θ(εs − µ)

ω − (εs − iη)
+

Θ(µ− εs)

ω − (εs + iη)

]
The true many-body excitation energies are the poles of the Green’s function! The total
energy is also accessible through the Green’s function by means of the Galitskii-Migdal
formula: [14]

E0 = − i

2

∫
lim

x′→x
lim

t′→t+

[
∂

∂t
− h(x)

]
G(xt,x′t′)

We now have a quantity that gives us both the total energy, as well as charged one-
particle excitations. But how can we compute it? The solution is Hedin’s GW formalism
(presented without proof [15]), which is Dyson’s equation starting from an initial Green’s
function G0 (e.g from DFT/HF):

G = G0 +G0ΣG
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4 Green’s Function Theory

Σ(r, r′, t) = iG(r, r′, t)W (r, r′, t) self-energy

W (r, r′, t) =
∫
ε−1(r, r′′, ω) 1

|r′′ − r′| dr′′ screened Coulomb interaction

ε(r, r′′, ω) = δ(r − r′)−
∫

1

|r − r′′|P (r
′′, r′, ω) dr′′ dielectric funtion

P (r′′, r′, ω) = −iG(r, r′, t)G(r′, r,−t) polarizability

We now work with the screened rather than the bare Coulomb-interaction!. Dyson’s
equation can be rewritten as:

[h(r) + VH(r)]ϕs(r) +
∫

Σ(r, r′, εs)ϕs(r′) dr′ = εsϕs(r)

which is reminiscent of the HF equation.
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