
M. Sci./M. Sc. Examination by Course Unit

Thursday 1st May 2014 14:30–17:00

PHY7016U/P Electronic Structure Methods Duration: 2 hours 30 minutes

You are not permitted to read the contents of this question paper until instructed to do so by an
invigilator.

Instructions:
This paper contains five questions. Answer any three questions.
If you answer more questions than specified, only the first answers (up to the specified number)
will be marked. Cross out any answers that you do not wish to be marked.

Only non-programmable calculators are permitted in this examination. Please state on your
answer book the name and type of machine used.

Complete all rough working in the answer book and cross through any work which is not to be
assessed.

Important note: The Academic Regulations state that possession of unauthorised material at
any time when a student is under examination conditions is an assessment offence and can
lead to expulsion from QMUL.

Please check now to ensure you do not have any notes, mobile phones or unathorised electronic
devices on your person. If you have any then please raise your hand and give them to an
invigilator immediately. Please be aware that if you are found to have hidden unauthorised
material elsewhere, including toilets and cloakrooms, it will be treated as being found in your
possession. Unauthorised material found on your mobile phone or other electronic device will
be considered the same as being in possession of paper notes. A mobile phone that causes a
disruption is also an assessment offence.

Exam papers must not be removed from the exam room.

Examiners: Dr A. J. Misquitta & Prof. M. T. Dove

c© Queen Mary University of London (2014)



Page 2 PHY7016U/P (2014)

Question 1

(a) Using the variational principle, prove that a linear expansion of the form

|C〉 =
m∑

i=1

ci |i〉

where the |i〉 are a set of non-orthogonal basis functions, can be optimized to lead to
the following set of linear equations:

Hc = E(c)Sc,

where Hij = 〈i|H|j〉 and Sij = 〈i|j〉. Under what condition does this set of linear
equations have non-trivial solutions? [5 marks]

(b) The Schrödinger equation (in atomic units) for a hydrogen atom in a uniform electric
field F in the z direction is(

−1
2
∇2 − 1

r
+ Fr cos(θ)

)
|φ〉 = (H0 + Fr cos(θ))|φ〉 = E(F )|φ〉.

Use the trial wavefunction |φ̃〉 = c1|1s〉 + c2|2pz〉 where |1s〉 and |2pz〉 are normalized
eigenfunctions of H0:

|1s〉 =

√
1
π

e−r

|2pz〉 =

√
1

32π
re−r/2 cos(θ),

to find an upper bound to E(F).

You may wish to use ∫ ∞
0

r ne−r/adr = an+1Γ(n + 1).

[15 marks]

(c) Assuming the field F is sufficiently small, expand the ground state in powers of F .
Compare this with E(F ) = E(0)− 1

2αF 2 + · · · to identify the polarizability α. The exact
value of this polarizability if 4.5 a.u. Can we improve the variational expansion by
including the |2px〉 and |2py〉 states? Justify your answer. [5 marks]
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Question 2

(a) The Hellmann–Feynman theorem states that for an exact eigenstate |ψ〉, the first-order
change in the energy due to a perturbation may be calculated as the expectation value
of the perturbation operator. That is, if H(α) = H + αV and if H(α)|ψα〉 = E(α)|ψα〉,
then

∂E(α)
∂α

∣∣∣∣
α=0

= 〈ψ|V |ψ〉.

Prove that this theorem also holds for variational wavefunctions of the form ψ̃ =
ψ̃(c1, c2, · · · , cn) where ci are variational parameters. [15 marks]

(b) Now consider a Hamiltonian of the form

H(RI) = −1
2

∑
i

∇2
i +
∑
j>i

1
|ri − rj |

−
∑

i ,I

ZI

|ri − RI|
+
∑
J>I

ZIZJ

|RI − RJ |

(i) By considering a Hamiltonian with displaced nuclear coordinates H(RI + αI) use
the Hellmann–Feynman theorem to derive an expression for the forces on the
nuclei.

(ii) Comment on the applicability of this expression for a variational wavefunction with
basis functions that are centered on the nuclei.

[10 marks]

Turn over
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Question 3

(a) Consider a minimal-basis description of the H2 molecule using as basis functions the
1sA(r) and 1sB(r) atomic orbitals of the interacting atoms located at positions A and
B. Here 1sA(r) = π−1/2 exp(−rA) and 1sB(r) = π−1/2 exp(−rB), where rA = |r− A| and
rB = |r− B|.
(i) Construct normalized symmetry-adapted atomic orbitals for H2 and sketch them.

(ii) Use these orbitals to construct all possible 2-electron molecular wavefunctions for
H2. Label these 2-electron wavefunctions according to whether they are of gerade
or ungerade symmetry. Which of these is the restricted Hartree–Fock (RHF) spin
singlet ground state wavefunction?

(iii) The energy of a single determinant 2-electron state |Ψ〉 = |χ1χ2〉 ≡ |12〉 is given
by

E = 〈Ψ|H|Ψ〉 = 〈1|h|1〉 + 〈2|h|2〉 + 〈12|12〉 − 〈12|21〉.

where h is the one-electron Hamiltonian and 〈ij|kl〉 are two-electron integrals. Use
this result to work out the energy of the RHF ground-state wavefunction for H2.

(iv) Derive the dissociation limit of this energy.

[10 marks]

(b) The configuration interaction (CI) wavefunction for H2 takes the form

|1Σ+
g(τ )〉 = cos(τ )|1σ2

g〉 + sin(τ )|1σ2
u〉,

where τ is a variational parameter.

(i) Explain why only these two configurations can mix.

(ii) Determine the energy of the CI state and, using the variational principle, determine
the value of τ at which this energy attains its extrema.

(iii) Show that, in the dissociation limit, the ground state of the CI wavefunction is
found using τ0 = −π/4, hence find the corresponding energy.

(iv) By expressing this energy in the basis of 1sA(r) and 1sB(r) show that the CI energy
correctly dissociates into the energy of two isolated hydrogen atoms.

[15 marks]
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Question 4

(a) Under uniform scaling of the electronic coordinates ri → αri we have, for the N-
electron wavefunction Ψ(ri ):

Ψ(ri )→ Ψα(ri ) = α3N/2Ψ(αri ).

(i) If V̂ee = +
∑

i>j r−1
ij is the electron–electron interaction operator and Vee[Ψ] =

〈Ψ|V̂ee|Ψ〉 show that Vee[Ψα] = αVee[Ψ].

(ii) Show that ρα(r) = α3ρ(αr).

[5 marks]

(b) The scaling relation derived above also holds for density functionals. Consequently
we can write it as Vee[ρα] = αVee[ρ]. Since the exchange energy functional Ex [ρ] is
part of Vee[ρ] it must also satisfy a similar scaling relation, that is, Ex [ρα] = αEx [ρ].

(i) Assuming that Ex [ρ] is a local functional of the density, that is

Ex [ρ] =
∫

k (ρ(r))dr,

where k (ρ) is a function of ρ, use the scaling relation to show that k (ρ) = −Cxρ
4/3,

where Cx is a positive constant. This is called the Slater exchange functional.
Why do we define k (ρ) to be negative?

(ii) Hence derive the Slater exchange potential vx (r).

(iii) The asymptotic form of the density of a finite system is ρ→ e−βr , where β is a
constant. Use this result to show that in the (local) Slater approximation, vx (r)
decays exponentially with distance.

[10 marks]

(c) (i) Use an asymptotic analysis to show that the exact asymptotic form of the Kohn–
Sham exchange-correlation potential is vxc → −1/r .

(ii) The correlation potential vc is known to be short-ranged, hence the above asymp-
totic form results from the exchange potential. I.e., vx → −1/r . Use this result
and the one derived in the previous part to show that local exchange density func-
tionals such as the Slater functional will contain a self interaction error. Explain in
detail the nature of this error and its consequences.

(iii) How might we correct the self-interaction error? Briefly describe possible tech-
niques and their shortcomings.

[10 marks]

Turn over
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Question 5
A semi-classical model for the dispersion (or van der Waals) interaction between two atoms
is the coupled Drude oscillator system. Here, we model each atom as a harmonic oscillator
with a central, fixed, positive charge Q about which a negative charge −Q oscillates on a
spring with spring constant k . The Hamiltonian for one such Drude atom is

H(osc) = − h̄2

2m
∇2 +

1
2

kr 2,

where r = (x , y , z) is the distance vector of charge −Q from the fixed nucleus. In this
picture, a diatomic system is modelled with the Hamiltonian

H = Ha + Hb + V ,

where Ha and Hb are the Drude oscillators of the form H(osc) and separated by distance
R, and V is the dipole–dipole interaction term given by

V = − Q2

4πε0R3
(2zazb − xaxb − yayb).

(a) (i) Use separation of variables to show that the Hamiltonian H can be split into
contributions from the x , y and z coordinates and hence find the eigenvalues of
this coupled oscillator system. Identify the ground state energy of this system.

(ii) The dispersion energy is defined as the energy of stabilization due to the corre-
lation of dipolar fluctuations that arises from the interaction operator V . Expand
the ground state energy of the coupled system and show that the leading order
energy of stabilization decays as −C6/R6. What is the coefficient C6?

[15 marks]

(b) By relating the charge Q and spring constant k to the atomic polarizability α and by
settingh̄ω = EI , the atomic ionization energy, show that C6 can be written in terms of
physically relevant parameters.

[5 marks]

(c) Using the above model for the dispersion interaction, explain why local and semi-local
density functionals are unable to describe this interaction at long-range. State a
possible way in which this deficiency of local and semi-local density functionals can
be fixed. What are the limitations (if any) of this fix.

[5 marks]
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End of questions
An appendix of one page follows

Turn over
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Appendix: physical constants

Speed of light in vacuum c = 2.9979× 108 m s−1

Permittivity of free space ε0 = 8.854× 10−12 F m−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Electronic charge e = 1.6022× 10−19 C

Planck constant h = 6.626× 10−34 J s

h̄ = h/2π = 1.055× 10−34 J s

Boltzmann constant kB = 1.3807× 10−23 J K−1

Electron mass m = 9.109× 10−31 kg

Avogadro number NA = 6.022× 1023 mol−1

Bohr magneton µB = 9.274× 10−24 A m2 (or J T−1)


