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Question 1

(a) The 1-electron Hamiltonian in a central potential is given by

H = −1
2
∇2 + V (r)

= −1
2
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∂2

∂r 2
+

2
r
∂
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+
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)− Z

r
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Use this Hamiltonian to show that the exact, spherically symmetric wavefunction Ψ

satisfies the electron–nuclear cusp condition

∂Ψ

∂r

∣∣∣∣
r=0

= −ZΨ(r = 0),

where r is the electron–nuclear separation and Z is the nuclear charge.

Without proof, state how this condition is modified for the general (possibly non-
spherically symmetric) wavefunction.

[8 marks]

(b) Show that for the general 1-electron wavefunction Ψ1 with energy eigenvalue E1 < 0
(i.e., a bound state), as r →∞

Ψ1 → e−
√
−2E1r .

Extend this proof to the N-electron wavefunction ΨN to show that

ΨN → ΨN−1e−
√

2EI r ,

where ΨN−1 is an N − 1 electron state and EI is the vertical ionisation energy defined
as EI = EN−1 − EN .

[12 marks]

(c) Gaussian basis sets commonly used as an expansion bases for the wavefunction
consist of functions of the form:

Gn(r; i , j , k ,αn, An) = Nx iy jzke−αn(r−An)2
,

where i , j , and k are suitable integers, αn is a constant, N is the normalization constant,
and An is the centre (usually the nuclear position) on which the function is located.
Explain how, though these basis functions do not satisfy either of the above conditions,
yet they can still be used as expansion basis functions to model the wavefunction.
You may simplify your discussion by considering the special case of i = j = k = 0 and
An = (0, 0, 0).

[5 marks]
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Question 2

(a) Show that the exact exchange-correlation potential behaves as vXC → −1/r as
r →∞. State two properties that depend strongly on this property of vXC.

[7 marks]

(b) The exchange-correlation potential for the LB94 potential is defined as

vLB94
XC (r) = −βn1/3(r)

x2

1 + 3βx sinh−1(x)
,

where β = 0.05, n(r) is the electronic density, and the reduced-gradient is defined as
x = |∇n|/n4/3. As r →∞, n → e−αr , where α is a constant. Show that in this limit
vLB94

XC → −1/r .

You may find one or both of these results useful:

sinh−1(x)→ x as x → 0

sinh−1(x)→ − ln(x−1) as x →∞

[10 marks]

(c) Explain why excitation energies (particularly Rydberg excitations) are well described
by LB94 but not by functionals like PBE. Explain why the converse is true for properties
that depend on the core electronic density (such as bond-lengths and dipole moments):
these are significantly better described using PBE than the LB94 functional.

[8 marks]

Turn over
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Question 3

(a) Consider a minimal-basis description of the H2 molecule using as basis functions the
1sA(r) and 1sB(r) atomic orbitals of the interacting atoms located at positions A and
B. Here 1sA(r) = π−1/2 exp(−rA) and 1sB(r) = π−1/2 exp(−rB), where rA = |r− A| and
rB = |r− B|.
(i) Construct and sketch the normalized symmetry-adapted atomic orbitals for H2.

(ii) Use these orbitals to construct all possible 2-electron molecular wavefunctions for
H2. Label these 2-electron wavefunctions according to whether they are of gerade
or ungerade symmetry. Which of these is the restricted Hartree–Fock (RHF) spin
singlet ground state wavefunction?

[8 marks]

(b) The configuration interaction (CI) wavefunction for H2 takes the form

|1Σ+
g(τ )〉 = cos(τ )|1σ2

g〉 + sin(τ )|1σ2
u〉,

where τ is a variational parameter.

(i) Explain why only these two configurations can mix.

(ii) Determine the energy of the CI state and, using the variational principle, determine
the value of τ at which this energy attains its extrema.

(iii) Show that, in the dissociation limit, the ground state of the CI wavefunction is
found using τ0 = −π/4, hence find the corresponding energy.

(iv) By expressing this energy in the basis of 1sA(r) and 1sB(r) show that the CI energy
correctly dissociates into the energy of two isolated hydrogen atoms.

[17 marks]

You will find the following result useful:
The energy of a single determinant 2-electron state |Ψ〉 = |χ1χ2〉 ≡ |12〉 is given by

E = 〈Ψ|H|Ψ〉 = 〈1|h|1〉 + 〈2|h|2〉 + 〈12|12〉 − 〈12|21〉.

where h is the one-electron Hamiltonian and 〈ij|kl〉 are two-electron integrals.
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Question 4
Under uniform scaling of the electronic coordinates ri → αri we have, for the N-electron
wavefunction Ψ(ri ):

Ψ(ri )→ Ψα(ri ) = α3N/2Ψ(αri ).

and hence ρα(r) = α3ρ(αr).

(a) It can be shown that under coordinate scaling, the electron-electron interaction energy
Vee[ρα] = αVee[ρ]. Since the exchange energy functional Ex [ρ] is part of Vee[ρ] it must
also satisfy a similar scaling relation, that is, Ex [ρα] = αEx [ρ].

(i) Assuming that Ex [ρ] is a local functional of the density, that is

Ex [ρ] =
∫

k (ρ(r))dr,

where k (ρ) is a function of ρ, use the scaling relation to show that k (ρ) = −Cxρ
4/3,

where Cx is a positive constant. This is called the Slater exchange functional.
Why do we define k (ρ) to be negative?

(ii) Derive the Slater exchange potential vx (r).

(iii) The asymptotic form of the density of a finite system is ρ→ e−βr , where β is a
constant. Use this result to show that in the (local) Slater approximation, vx (r)
decays exponentially with distance.

[15 marks]

(b) (i) Use an asymptotic analysis to show that the exact asymptotic form of the Kohn–
Sham exchange-correlation potential is vxc → −1/r .

(ii) The correlation potential vc is known to be short-ranged, hence the above asymp-
totic form results from the exchange potential: i.e., vx → −1/r . Use this result
and the one derived in the previous part to show that local exchange density func-
tionals such as the Slater functional will contain a self interaction error. Explain in
detail the nature of this error and its consequences.

[10 marks]

Turn over
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Question 5
The many-body Hamiltonian H may be partitioned as

H = H0 + V ,

whereH0 =
∑

i f (i) is the Hartree–Fock (HF) Hamiltonian and the operator V is defined as

V = H−H0

=
∑
i>j

r−1
ij −

∑
i

vHF(i).

Here i and j label electronic variables and vHF is the Hartree–Fock effective potential that
is defined by its action on spin-orbital |i〉 as follows:

vHF|i〉 =
∑

j

〈j|r−1
12 |j〉|i〉 −

∑
j

〈j|r−1
12 |i〉|j〉.

The many-body perturbation theory (MBPT) expansion is developed by treating V as a
perturbation and using Raleigh–Schrödinger perturbation theory to evaluate the energy
corrections, the first three of which are:

E (0)
0 = 〈Ψ(0)

0 |H0|Ψ(0)
0 〉

E (1)
0 = 〈Ψ(0)

0 |V|Ψ
(0)
0 〉

E (2)
0 = 〈Ψ(0)

0 |V|Ψ
(1)
0 〉

=
∑

n

′ |〈0|V|n〉|2

E (0)
0 − E (0)

n

where |Ψ(0)
0 〉 = |0〉 is the HF ground state and |n〉 are the excited states.

Solve the two parts to this question using the following results:
For a Hamiltonian H =

∑
i h(i) +

∑
i>j r−1

ij

〈Ψ|H|Ψ〉 =
∑

i

〈i|h|i〉 +
∑
i>j

〈ij||ij〉

〈Ψab
ij |H|Ψ〉 = 〈Ψab

ij |
∑

kl

r−1
kl |Ψ〉 = 〈ij||ab〉

(a) Show that the terms E (0)
0 and E (1)

0 are included in the HF ground state energy. That is

E (0)
0 + E (1)

0 = EHF
0 =

∑
i

εi −
1
2

∑
ij

〈ij||ij〉.

[10 marks]

(b) Hence the first term in the MBPT expansion that contributes beyond HF is E (2)
0 . Show

that the only excited states |n〉 that contribute to E (2)
0 are double excitations from the
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HF ground state |0〉. Hence show that the second-order MBPT energy correction can
be written as

E (2)
0 =

∑
i>j ,a>b

|〈ij||ab〉|2

εi + εj − εa − εb

where i and j label occupied states and a and b label virtual states, εn is the orbital
energy of the one-electron state χn and 〈ij||ab〉 = 〈ij|ij〉 − 〈ij|ji〉.

[15 marks]

Turn over
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End of questions
An appendix of one page follows
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Appendix: physical constants

Speed of light in vacuum c = 2.9979× 108 m s−1

Permittivity of free space ε0 = 8.854× 10−12 F m−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Electronic charge e = 1.6022× 10−19 C

Planck constant h = 6.626× 10−34 J s

h̄ = h/2π = 1.055× 10−34 J s

Boltzmann constant kB = 1.3807× 10−23 J K−1

Electron mass m = 9.109× 10−31 kg

Avogadro number NA = 6.022× 1023 mol−1

Bohr magneton µB = 9.274× 10−24 A m2 (or J T−1)


