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Question 1
In Kohn–Sham density-functional theory, the single-particle equations are of the form(

−1
2
∇2 + vS(r)

)
χi = εiχi ,

where, for an atom, the effective potential is defined as

vS(r) = vJ(r) + vext(r) + vxc(r)

=
∫

ρ(r′)
|r− r′|

dr′ − Z
|r− R|

+
δExc[ρ]
δρ(r)

.

(a) Show that the exact exchange-correlation potential for a neutral atom behaves as
vxc → −1/r as r →∞. [7 marks]

(b) The exchange-correlation potential for the LB94 density functional is defined as

vLB94
xc (r) = −βn1/3(r)

x2

1 + 3βx sinh−1(x)
,

where β = 0.05, n(r) is the electronic density, and the reduced-gradient is defined as
x = |∇n|/n4/3. As r →∞, n → e−αr , where α is a constant. Show that in this limit
vLB94

xc → −1/r .

You may find one or both of these results useful:

sinh−1(x)→ x as x → 0.

sinh−1(x)→ − ln(x−1) as x →∞.

[10 marks]

(c) The exchange-correlation potential from local and semi-local functionals does not
possess the−1/r long-range behaviour, but decays to zero exponentially with r . What
are the consequences of this on excitation energies?

Using a diagram, explain how the LB94 functional may be used to asymptotically
correct local and semi-local functionals.

[8 marks]
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Question 2
The Hellmann–Feynman theorem states that for an exact eigenstate |ψ〉, the first-order
change in the energy due to a perturbation may be calculated as the expectation value of
the perturbation operator. That is, if H(α) = H + αV and if H(α)|ψα〉 = E(α)|ψα〉, then

∂E(α)
∂α

∣∣∣∣
α=0

= 〈ψ|V |ψ〉,

where |ψ〉 = |ψα=0〉.

(a) Prove this theorem. [7 marks]

(b) Show that this theorem also holds for variational wavefunctions of the form ψ̃ =
ψ̃(c1, c2, · · · , cn) where ci are variational parameters. [10 marks]

(c) Demonstrate how this theorem may be used to evaluate molecular properties such as
the dipole moment µz through the method of finite differences. Explain how such a
calculation might be performed in practice. [8 marks]

Turn over



Page 4 SPA7008U-P (2016)

Question 3

(a) Using the variational principle, prove that a linear expansion of the form

|C〉 =
m∑

i=1

ci |i〉,

where the |i〉 are a set of orthonormal basis functions, can be optimized to lead to the
following set of linear equations:

Hc = E(c)c,

where Hij = 〈i|H|j〉. Under what condition does this set of linear equations have
non-trivial solutions? [8 marks]

(b) In the Hückel approximation with a single basis function |i〉 per atomic site, the
Hamiltonian matrix is defined as

Hij =


α if i = j ,

β if i and j neighbours,

0 otherwise.

(i) For which class of systems is the approximation valid, and why? What are the
physical effects that this approximation is able to account for? [4 marks]

(ii) Consider the cyclopropenyl cation (C3H3)+ which is the simplest example of an
aromatic molecule. This cation has a carbon backbone that may be represented
as

Taking the pz orbitals of the three carbon atoms as your basis (here z is nor-
mal to the plane of the carbon ring), solve the secular equations in the Hückel
approximation to find the energy eigenvalues. Represent these energy levels
diagrammatically and indicate the ground state electron occupancy. [8 marks]

(iii) Solve for the normalized molecular orbital coefficients of the lowest energy state
and sketch this state. [5 marks]
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Question 4

(a) Define what is meant by the electron correlation energy Ecorr. Explain why it is
expected to have a negative sign. For which class of systems will Ecorr = 0? Explain
why this will be the case.

[5 marks]

(b) The configuration interaction (CI) wavefunction in intermediate normalised form may
be written as

|Ψ〉 = |Ψ0〉 +
∑

ia

ca
i |Ψa

i 〉 +
∑

i<j ,a<b

cab
ij |Ψab

ij 〉 + · · · ,

where |Ψ0〉 is the Hartree–Fock wavefunction to which is included a linear combination
of excited-state determinants.

(i) Show that the correlation energy for the CI expansion may be written as

Ecorr = 〈Ψ0|(H − E0)|Ψ〉 =
∑

i<j ,a<b

cab
ij 〈Ψ0|H|Ψab

ij 〉,

where E0 is the HF energy.

(ii) This expression depends on the CI expansion coefficients for the doubly excited
determinants only. Does this imply that the other determinants are not needed?
Explain.

[10 marks]

(c) A method is said to be size-extensive if for a system containing non-interacting sub-
systems, the total energy is equal to the sum of energies of the individual subsystems.

(i) Explain why a truncated CI expansion such as CID (CI with double excitations
only) is not size-extensive.

(ii) Hence explain how this problem is alleviated using a coupled-cluster model such
as CCD (coupled-cluster with doubles).

[10 marks]

Turn over
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Question 5
In Kohn–Sham density-functional theory, the single-particle equations are of the form(

−1
2
∇2 + vS(r)

)
χi = εiχi ,

where the effective potential is defined as

vS(r) = vJ(r) + vext(r) + vxc(r)

=
∫

ρ(r′)
|r− r′|

dr′ −
∑
α

Zα
|r− Rα|

+
δExc[ρ]
δρ

.

(a) Show that for the hydrogen atom vxc(r) = −vJ(r). Hence find the large r behaviour of
vxc(r). [5 marks]

(b) The Slater exchange functional is defined as

Ex [ρ] = −Cx

∫
ρ4/3(r)dr,

where Cx is a positive constant. Explain why Ex [ρ] is defined to be negative and derive
the corresponding exchange potential vX(r) in this approximation. [5 marks]

(c) Use these two results to show that local exchange density functionals such as the
Slater functional will contain a self interaction error. Explain in detail the nature of
this error and its consequences on the energetics (ground state and excited state
energies) of the system and on properties such as the polarizability. [8 marks]

(d) Explain in detail how this error is reduced in hybrid functionals such as PBE0 which
include a fraction of Hartree–Fock exchange. And explain how this error is potentially
removed in range-separated functionals. [7 marks]

End of questions
An appendix of two pages follows
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Appendix: Slater–Condon Rules

O1 =
∑

i

h(i)

O2 =
∑
i>j

r−1
ij

H = O1 +O2

〈Ψ|O1|Ψ〉 =
∑

i

hii

〈Ψ|O2|Ψ〉 =
∑
i>j

[〈ij|ij〉 − 〈ij|ji〉]

〈Ψ|H|Ψ〉 =
∑

i

〈i|h|i〉 +
∑
i>j

[〈ij|ij〉 − 〈ij|ji〉]

〈Ψa
i |O1|Ψ〉 = 〈a|h|i〉 = hai

〈Ψa
i |O2|Ψ〉 =

∑
j

[〈aj|ij〉 − 〈aj|ji〉]

〈Ψa
i |H|Ψ〉 = 〈a|h|i〉 +

∑
j

[〈aj|ij〉 − 〈aj|ji〉]

〈Ψab
ij |O2|Ψ〉 = 〈ab|ij〉 − 〈ab|ji〉
〈Ψab

ij |H|Ψ〉 = 〈ab|ij〉 − 〈ab|ji〉

Turn over
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Appendix: physical constants

Speed of light in vacuum c = 2.9979× 108 ms−1

Permittivity of free space ε0 = 8.854× 10−12 Fm−1

Permeability of free space µ0 = 4π × 10−7 Hm−1

Electronic charge e = 1.6022× 10−19 C

Planck constant h = 6.626× 10−34 Js

h̄ = h/2π = 1.055× 10−34 Js

Boltzmann constant kB = 1.3807× 10−23 JK−1

Electron mass m = 9.109× 10−31 kg

Avogadro number NA = 6.022× 1023 mol−1

Bohr magneton µB = 9.274× 10−24 A m2 (or J T−1)


