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Introduction

Quantum scimus – gutta est, ignoramus mare.
What we know is a drop, what we do not know is a sea.

(Latin sentence)

We and the Universe: A Potent Interaction

Here are a few ways that photons play a part in my life: Crocuses first appear after winter and
look breathtaking on the snow, then ultramarine of the violets. Later, magnolia flowers seem
like proud queens–a bright white with a subtle rosy tint. A week later, the lilacs, the ecru of
acacia, and finally the rich, extraordinary kingdom of roses all make their debuts. The buds of
the hydrangea (the beloved flowers of this author) are white, but when they first open, the white
reacts with light quanta, and the flowers acquire vibrant, clean colors, ranging from light to
dark blue. Why does all this happen? Not only do colors create a sense of wonder, but unusual
shapes, textures, and hues do as well. What is in our brain that can use photons to translate our
interactions with the Universe into an unimaginable variety of complex phenomena, already in
our body, that can affect our decisions and actions? Sight represents the most powerful (highly
directional and long-range) and, at the same time, the most subtle information channel to our
brain.

Hearing. What could compete with the fantasy of the thrush, which sings different master-
pieces every spring in my three pine trees? Why does a finch sing completely differently from
the thrush, and why does it repeat its melody with amazing regularity? Why do all finches sing
similar songs? What kind of internal programming compels them to do so? The program must
be quite robust, being insensitive to thousands of details of the neighborhood, but not to some
particular signals of danger. Birdsong is still less interesting than human verbal communication,
though. A person pronounces a particular word, which may have the strength of a tornado for
others. How is it possible that a local sequence of tiny air pressure amplitudes (sound) can
change our world in the global scale?

Spring also provides fantastic fragrances: Just after winter, one can smell the heavenly aroma
of violets and hyacinths, sometimes the subtle scent of bird cherry is brought by the wind from far
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away, then a variety of other exciting fragrances follow. What is the mechanism of recognizing
and remembering smells, admiring some of them and being repelled by others?

The taste of fresh bread is unforgettable and is linked to a feeling of happiness, not only
for me, but for many people. There must be a program imprinted in us with some chemical
hardware that lets us appreciate the way things taste. What does this hardware look like?

Touching, which is based on the Pauli exclusion principle, has changed the history of the
world many times ( just think about kissing etc.). Such giant consequences from such a small
cause?

What Do We Know?

Our senses connect us to what we think of as the Universe. Using them, we are aware of its
presence, while at the same time we become a part of it. Sensory operations are the direct result
of interactions between molecules, as well as between light and matter. All of these phenomena
deal first with information processing, but at the same time with chemistry, physics, biology,
and even psychology. In these complex events, it is impossible to discern precisely where the
disciplines of chemistry, physics, biology, and psychology begin and end. Any separation of
these domains is artificial. The only reason for making such separations is to focus our attention
on some aspects of one indivisible phenomenon. Touch, taste, smell, sight, and hearing–are
these our only links and information channels to the Universe? How little we know about it!
To realize that, just look up at the sky. A myriad of stars around us point to new worlds, which
will remain unknown forever. On the other hand, imagine how incredibly complicated must be
the chemistry of friendship. Science cannot answer all legitimate questions that a human being
may ask. Science is able to discover laws of nature, but is unable to answer a question like “Why
does our world conform to any laws at all1?” This goes beyond science.

We try to understand what is around us by constructing in our minds pictures representing a
“reality,” which we call models. Any model relies on the perception of reality (on the appropriate
scale of mass and time) emanating from our experience, and, on the other hand, on our ability
to abstract by creating ideal beings. Many such models will be described in this book.

It is fascinating that humans are able to magnify the realm of the senses by using sophisticated
tools (e.g., to see quarks sitting in a proton2), to discover an amazingly simple equation of
motion3 that describes cosmic catastrophes, with intensity beyond our imagination, and the
delicate flight of a butterfly equally well. A water molecule has exactly the same properties in
the Pacific Ocean as it does on Mars, or in another galaxy. The conditions in those environments

1 “The most incomprehensible thing about the world is that it is at all comprehensible.” (Albert Einstein).
2 A proton is 1015 times smaller than a human being.
3 Acceleration is directly proportional to force. Higher derivatives of the trajectory with respect to time do not enter

this equation, and neither does the nature or cause of the force. The equation is also invariant with respect to any
possible starting point (position, velocity, and mass). What remarkable simplicity and generality there is (within
limits, see Chapter 3).
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may sometimes be quite different from those in the laboratory, but we assume that if these
conditions could be imposed in the lab, the molecule would behave in exactly the same way.
We hold out hope that a set of physical laws apply to the entire Universe.

The model for these basic laws is not yet complete or unified. However, given the progress
and important generalizations of physics, much is currently understood. For example, forces
with seemingly disparate sources have been reduced to only three kinds:

• Those attributed to strong interactions (acting in nuclear matter)
• Those attributed to electroweak interactions (the domains of chemistry, biology, and

β-decay)
• Those attributed to gravitational interaction (showing up mainly in astrophysics)

Many scientists believe that other reductions are possible, perhaps up to a single fundamental
interaction, one that explains everything. This assertion is based on the conviction (which seems
to be supported by developments in modern physics) that the laws of nature are not only universal,
but simple.

Which of the three basic interactions is the most important? This is an ill-conceived question.
The answer depends on the external conditions imposed (pressure, temperature) and the magni-
tude of the energy exchanged among the interacting objects. A measure of the energy exchanged
(�E)may be taken to be the percentage of the accompanying mass deficiency (�m) according
to Einstein’s relation �E = �mc2. At a given magnitude of exchanged energies, some parti-
cles are stable. Strong interactions produce the huge pressures that accompany the gravitational
collapse of a star and lead to the formation of neutron stars, where the mass deficiency �m
approaches 40%. At smaller pressures, where individual nuclei may exist and undergo nuclear
reactions (strong interactions4), the mass deficiency is of the order of 1%. At much smaller pres-
sures, the electroweak forces dominate, nuclei are stable and atomic, and molecular structures
emerge. Life (as we know it) becomes possible. The energies exchanged are much smaller and
correspond to a mass deficiency of the order of only about 10−7%. The weakest of the basic
forces is gravitation. Paradoxically, this force is the most important on the macro scale (galaxies,
stars, planets, etc.). There are two reasons for this. Gravitational interactions share with electric
interactions the longest range known (both decay as 1/r ). However, unlike electric interactions5,
those due to gravitation are not shielded. For this reason, the Earth and Moon attract each other
by a huge gravitational force6, while their electric interaction is negligible. This is how David
conquers Goliath, since at any distance, electrons and protons attract each other by electrostatic
forces that are about 40 orders of magnitude stronger than their gravitational attraction.

4 With a corresponding large energy output, the energy coming from the fusion D + D→He taking place on the
Sun makes our existence possible.

5 In electrostatic interactions, charges of opposite sign attract each other, while charges of the same sign repel each
other (Coulomb’s law). This results in the fact that large bodies (built of a huge number of charged particles) are
nearly electrically neutral and interact electrically only very weakly. This dramatically reduces the range of their
electrical interactions.

6 Huge tides and deformations of the whole Earth are witness to that.
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Gravitation does not have any measurable influence on the collisions of molecules leading
to chemical reactions, since reactions are due to much stronger electric interactions7.

Narrow Temperature Range

Due to strong interactions, protons overcome mutual electrostatic repulsion and form (together
with neutrons) stable nuclei, leading to the variety of chemical elements. Therefore, strong inter-
actions are the prerequisite of any chemistry (except hydrogen chemistry). However, chemists
deal with already prepared stable nuclei8, and these strong interactions have a very small range
(of about 10−13 cm) as compared to interatomic distances (of the order of 10−8 cm). This is
why a chemist may treat nuclei as stable point charges that create an electrostatic field. Test-tube
conditions allow for the presence of electrons and photons, thus completing the set of particles
that one might expect to see (some exceptions are covered in this book). This has to do with the
order of magnitude of energies exchanged, under the conditions where we carry out chemical
reactions, the energies exchanged exclude practically all nuclear reactions.

On the vast scale of attainable temperatures9, chemical structures may exist in the narrow
temperature range of 0 K to thousands of degrees Kelvin. Above this range, one has plasma,
which represents a soup made of electrons and nuclei. Nature, in its vibrant living form, requires
a temperature range of about 200 − 320 K, a margin of only 120 K. One does not require a
chemist for chemical structures to exist. However, to develop a chemical science, one has to
have a chemist. This chemist can survive a temperature range of 273 K ±50 K; i.e., a range
of only 100 K. The reader has to admit that a chemist may think of the job only in the narrow
range of 290− 300 K (i.e., only 10 K).

An Unusual Mission of Chemistry

Suppose our dream comes true and the grand unification of the three remaining basic forces is
accomplished one day. We would then know the first principles of constructing everything. One
of the consequences of such a feat is a catalogue of all the elementary particles. Perhaps the
catalogue will be finite10, it also might be simple. We might have a catalogue of the conserved

7 This does not mean that gravitation has no influence on reactants’ concentration. Gravitation controls the convection
flow in liquids and gases (and even solids), and therefore, a chemical reaction or even crystallization may proceed
in a different manner on the Earth’s surface, in the stratosphere, in a centrifuge, or in space.

8 At least, this is true in the time scale of chemical experiments. Instability of some nuclei is used by nuclear
chemistry and radiation chemistry.

9 Think of this in millions of degrees.
10 None of this is certain. Much of elementary particle research relies on large particle accelerators. This process

resembles discerning the components of a car by dropping it from increasing heights from a large building.
Dropping it from the first floor yields five tires and a jack. Dropping it from the second floor reveals an engine
and 11 screws of similar appearance. Eventually, though, a problem emerges: after landing from a very high floor,
new components appear (which have … exactly nothing to do with the car) and reveal that some of the collision
energy has been converted to new particles!
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symmetries (which seem to be more elementary than the particles). Of course, knowing such
first principles would have an enormous impact on all the physical sciences. It could create an
impression that everything is clear and that physics is complete. Even though such structures and
processes are governed by first principles, it would still be very difficult to predict their existence
by such principles alone. The resulting structures would depend not only on the principles, but
also on the initial conditions, complexity, self-organization, etc.11 Therefore, if it does happen,
the Grand Unification will not change the goals of chemistry.

The author of this book is convinced that chemistry currently faces the enormous challenge
of information processing, which is done in a very different way than it is performed now by
computers. This unusual perspective is discussed in the last chapter of this book, which differs
significantly from other chapters. It shows some exciting possibilities of chemistry, including
theoretical chemistry, and it also poses some general questions about what limits are to be
imposed on science.

Book Guidelines

TREE

Any book has a linear appearance; i.e., the text goes page after page, and the page numbers
remind us of that. However, the logic of virtually any book is nonlinear, and in many cases,
it can be visualized by a diagram connecting the chapters that (logically) follow one another.
Such a diagram allows for multiple branches emanating from a given chapter, particularly if the
branches are placed on an equal footing. Such logical connections are illustrated in this book
as a TREE diagram (cover’s reverse). This TREE diagram plays a very important role in this
book and is intended to be a study guide. An author leads the reader in a certain direction, and
the reader expects to know what this direction is, why he or she needs this direction, what will
follow, and what benefits will be gained after such study. If studying were easy and did not
require time, a TREE diagram might be of little importance. However, the opposite is usually
true. In addition, knowledge represents much more than a registry of facts. Any understanding
gained from seeing relationships among those facts and methods plays a key role12. The primary
function of the TREE diagram is to make these relationships clear.

The use of hypertext in information science is superior to a traditional linear presentation. It
relies on a tree structure. However, it has a serious drawback. Looking at a branch, we have no
idea what it represents in the whole diagram, whether it is an important branch or a remote tiny
one; does it lead further to important parts of the book or it is just a dead end, and so on. At the
same time, a glimpse at the TREE shows us that the thick trunk is the most important structure.
But what do we mean by important? At least two criteria may be used: it is important for the

11 The fact that Uncle John likes to drink coffee with cream at 5 p.m. possibly follows from first principles, but it
would be very difficult to trace that dependence.

12 This advice comes from Antiquity: “Knowledge is more precious than facts, understanding is more precious than
knowledge, wisdom is more precious than understanding.”
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majority of readers, or important because the material is fundamental for an understanding of
the laws of nature. I have chosen the first criterion13. Thus, the trunk of the TREE corresponds
to the pragmatic way to study this book.

The trunk is the backbone of this book:

• It begins by presenting postulates, which play a vital role in formulating the foundation of
quantum mechanics.

• It goes through the Schrödinger equation for stationary states, thus far the most important
equation in quantum chemical applications.

• It covers the separation of nuclear and electronic motion.
• It then develops the mean-field theory of electronic structure.
• Finally, it develops and describes methods that take into account electronic correlation.

The trunk thus corresponds to a traditional course in quantum chemistry for undergradu-
ates. This material represents the necessary basis for further extensions into other parts of the
TREE (which are appropriate rather for graduate students). In particular, it makes it possible
to reach the crown of the TREE, where the reader may find tasty fruit. Examples include the
theory of molecule-electric field interactions, as well as the theory of intermolecular interactions
(including chemical reactions), which form the very essence of chemistry. We also see that our
TREE has an important branch concerned with nuclear motion, including molecular mechanics
and several variants of molecular dynamics. At its base, the trunk has two thin branches: one
pertains to relativity mechanics and the other to the time-dependent Schrödinger equation. The
motivation for this presentation is different in each case. I do not highlight relativity theory; its
role in chemistry is significant14, but not crucial. The time-dependent Schrödinger equation is
not highlighted because, for the time being, quantum chemistry accentuates stationary states. I
am confident, however, that the 21st century will see significant developments in the methods
designed for time-dependent phenomena.

The TREE Helps Readers Tailor Their Own Book

The TREE serves not only as a diagram of logical chapter connections, but also enables the
reader to make important decisions, to wit:

• The choice of a logical path of study (“itinerary”) leading to topics of interest
• Elimination of chapters that are irrelevant to the goal of study15.

This means that each reader can tailor the book to his or her own needs.

13 For example, relativity theory plays a pivotal role as a foundation of the physical sciences, but for the vast majority
of chemists, its practical importance and impact are much smaller. Therefore, should relativity be represented as
the base of the trunk, or as a minor branch? I have decided to make the second choice, not to create the impression
that this topic is absolutely necessary for the student.

14 Contemporary inorganic chemistry and metallo-organic chemistry concentrate currently on heavy elements, where
relativity effects are important.

15 It is, therefore, possible to prune some of the branches.
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Of course, all readers are welcome to find their own itineraries when traversing the TREE;
i.e., to create their own customized books. Some readers might wish to take into account our
suggestions of how the book can be shaped.

Minimum Minimorum and Minimum

First, we can follow two basic paths:

• Minimum minimorum for those who want to proceed as quickly as possible to get an idea of
what quantum chemistry is all about by following the chapters designated by (�). I picture
someone studying material science, biology, biochemistry, or a similar subject, who has
heard that quantum chemistry explains chemistry, and want to get the flavor of it and grasp
the most important information. Following � signs they should read only 47 pages.

• Minimum for those who seek basic information about quantum chemistry; e.g., in order to use
popular computer packages for the study of molecular electronic structure, they may follow
the chapters designated by the symbols � and �. Here, I picture a student of chemistry,
specializing in, say, analytical or organic chemistry (not quantum chemistry). This path
involves reading something like 300 pages + the appropriate appendices (if necessary).

Other paths proposed consist of the minimum itinerary (i.e., � and�), plus special excursions,
which we call “additional itineraries.”

Those who want to use the existing computer packages in a knowledgeable fashion or just
want to know more about the chosen subject may follow the chapters designated by the following
special symbols:

• Large molecules (�)
• Molecular mechanics and molecular dynamics (♠)
• Solid-state chemistry/physics (�)
• Chemical reactions (�)
• Spectroscopy (�)
• Exact calculations on atoms or small molecules16 (�)
• Relativistic and quantum electrodynamics effects (�)
• Most important computational methods of quantum chemistry (♦)

For readers interested in particular aspects of this book rather than any systematic study, the
following itineraries are proposed.

• Just before an exam, read these sections of each chapter: “Where Are We?” “An Example,”
“What Is It All About?” “Why Is This Important?” “Summary,” “Questions,” and “Answers.”

• For those interested in recent progress in quantum chemistry, we suggest reading the section
“From the Research Front” in each chapter.

16 Suppose that readers are interested in an accurate theoretical description of small molecules. (I picture a Ph.D.
student working in quantum chemistry.) Following their itinerary, they should read, in addition to the minimum
program (300 pages), an additional 230 pages, which gives about 530 pages plus the appropriate appendices,
totaling about 700 pages.
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• For those interested in the future of quantum chemistry, we propose the “Ad Futurum”
sections in each chapter, and the chapters designated by (�)

• For people interested in the “magical” aspects of quantum physics (e.g., bilocation, reality
of the world, teleportation, creation of matter, or tunneling) we suggest reading sections
labeled with �

The Target Audience

I hope that the TREE structure presented above will be useful for those with varying levels of
knowledge in quantum chemistry, as well as for those whose goals and interests differ from
those of traditional quantum chemistry.

This book is a direct result of my lectures at the Department of Chemistry, University of
Warsaw, for students specializing in theoretical rather than experimental chemistry. Is that the
target audience of this book? Yes, but not exclusively. At the beginning, I assumed that the
reader would have completed a basic quantum chemistry course17 and, therefore, in the first
version of the book, I omitted the basic material. However, that version became inconsistent
and devoid of several fundamental problems. This is why I have decided to explain, mainly very
briefly18, these problems as well in this edition. Therefore, a student who chooses the minimum
path along the TREE diagram (mainly along the TREE trunk) will essentially be taking an
introductory course in quantum chemistry. On the other hand, the complete collection of chapters
provides students with a set of advanced topics in quantum chemistry, appropriate for graduate
students. For example, a number of chapters on subjects such as relativity mechanics, global
molecular mechanics, solid-state physics and chemistry, electron correlation, density function
theory, intermolecular interactions, and the theory of chemical reactions present material that
is usually accessible in monographs or review articles.

My Goal

In writing this book, I imagined students sitting in front of me. In discussions with students,
I often saw their enthusiasm, their eyes giving me a glimpse of their curiosity. First of all, this
book is an acknowledgment of my young friends, my students, and an expression of the joy of
being with them. Working with them formulated and influenced the way I decided to write this
book. When reading textbooks, one often gets the impression that all the outstanding problems
in a particular field have been solved, that everything is complete and clear, and that students are
just supposed to learn and absorb the material at hand. But in science, the opposite is true. All
areas can benefit from careful probing and investigation. Your insight, your different perspective
or point of view may open new doors for others, even on a fundamental question.

17 Such a course might be, at the level of P.W. Atkins, “Physical Chemistry”, 6th ed. (Oxford University Press,
Oxford, 1998), Chapters 11–14.

18 This is true except where I wanted to stress some particular topics.
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Fostering this kind of new insight is one of my main goals. I have tried, whenever possible, to
present the reasoning behind a particular method and to avoid rote citation of discoveries. I have
tried to avoid writing too much about details because I know how easy it is for a new student to
miss the forest for the trees. I wanted to focus on the main ideas of quantum chemistry.

I have tried to stress this integral point of view, which is why the book sometimes deviates from
what is normally considered as quantum chemistry. I sacrificed “quantum cleanness” in favor
of exposing the interrelationships of problems. In this respect, any division between physics
and chemistry, organic chemistry and quantum chemistry, quantum chemistry for chemists and
quantum chemistry for biologists, or intermolecular interactions for chemists, for physicists, or
for biologists is completely artificial, and sometimes even absurd19. I tried to cross these borders
by supplying examples and comparisons from the various disciplines, as well as from everyday
life, by incorporating into intermolecular interactions not only supramolecular chemistry, but
also molecular computers, and particularly the latter, by writing a “holistic” chapter (the last
chapter of this book) about the mission of chemistry.

My experience tells me that talented students who love mathematics but are new to the subject
of quantum chemistry courts danger. They like complex derivations of formulas so much that
it seems that the more complex the formalism, the happier the students. However, all these
formulas represent no more than an approximation of reality, and sometimes it would be better
to have a simple formula instead. The simple formula, even if less accurate, may tell us more
and bring more understanding than a very complicated one. Behind complex formulas usually
hide some very simple concepts; e.g., that two molecules do not occupy the same space, or
that in a tedious iteration process, we approach the final ideal wave function in a way similar
to a sculptor shaping a masterpiece. All the time, in everyday life, we unconsciously use these
variational and perturbational methods–the most important tools in quantum chemistry. This
book may be considered by some students as too easy. However, I prize easy explanations very
highly. In later years, the student will not remember long derivations, but will know exactly why
something must happen. Also, when deriving formulas, I try to avoid presenting the final result
right away, but instead proceed with the derivation step by step20. The reason is psychological.
Students have much stronger motivation knowing that they control everything, even by simply
accepting every step of derivation. It gives them a kind of psychological integrity that is very
important in any study. Some formulas may be judged to be correct just by inspection. This is
especially valuable for students, and I always try to stress this.

In the course of study, students should master material that is both simple and complex. Much
of this involves familiarity with the set of mathematical tools repeatedly used throughout this
book. The appendices provide ample reference to such a toolbox. These include matrix algebra,
determinants, vector spaces, vector orthogonalization, secular equations, matrix diagonalization,

19 The abovementioned itineraries cross these borders.
20 Sometimes this is not possible. Some formulas require painstaking effort to be derived. This was the case, for

example, in the coupled cluster method on p. 636.
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point group theory, delta functions, finding conditional extrema (Lagrange multipliers, penalty
function methods), and Slater-Condon rules, as well as secondary quantization. I would suggest
that the reader review (before reading this book) the elementary introduction to matrix algebra
(Appendix A) and to vector spaces and operators (Appendix B). The material in these appendices
is often used throughout this book.

The book contains numerical examples in many places. Their function is always a semi-
quantitative description of a phenomenon, not so much the description of a particular system.
This is because I prefer to get a trend of changes and an order of magnitude of the things to
be illustrated, rather than highly accurate numbers. My private conviction behind this approach
is quite strange and unusual: nature is so rich (think of all elements as possible substitutions,
influence of neighboring atoms that could modify the properties, using pressure, etc.), that
there is a good probability of finding a system exhibiting the phenomenon we found in our
calculations…well, at least we hope there is.

As I have said, I imagined students sitting in a lecture hall as I wrote. The tone of this book
should make you think of a lecture in interactive mode. To some, this is not the way books are
supposed to be. I apologize to any readers who may not feel comfortable with this approach.

Computations Are Easy

On the webpage www.webmo.net (webMO is a free world wide web-based interface to com-
putational chemistry packages), the reader will find a way to carry out quantum mechanical
calculations (up to 60 seconds CPU time). Nowadays, this is a sufficiently long time to perform
computations for molecules, even for those that have several dozens of atoms. This webpage
offers several powerful professional computer programs. Using this tool is straightforward and
instructive. I suggest that the reader check this as soon as possible.

Web Annex booksite.elsevier.com/978-0-444-59436-5

The role of the Web Annex is to expand the readers’ knowledge after they read a given chapter.
At the heart of the Web Annex are links to other people’s websites. The Annex will be updated
every several months. The Annex adds at least four new dimensions to my book: color, motion,
an interactive mode of learning, and connection to the web (with a plethora of possibilities to
go even further). When on the web, the reader may choose to come back (automatically) to the
Annex at any time.

How to Begin

It is suggested that the reader starts reading this book by doing the following:

• Study the TREE diagram.
• Read the table of contents and compare it with the TREE.
• Address the question of what is your goal–i.e., why you would like to read such a book?

http://booksite.elsevier.com/978-0-444-59436-5
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• Choose your own personal path on the TREE (the suggested itineraries may be of some
help21).

• Become acquainted with the organization of a chapter before you read it.

Chapter Organization

Once an itinerary is chosen, students will cover different chapters. All the chapters have the
same structure and are divided into sections as follows:

• Where Are We?
In this section, readers are made aware of their current position on the TREE diagram. In
this way, they know the relationship of the current chapter to other chapters, what chapters
they are expected to have covered already, and the remaining chapters for which the current
chapter provides a preparation. The position shows whether they should invest time and
effort in studying the current chapter. In this section, a mini-TREE is also shown, indicating
the current position.

• An Example
Here, the reader is confronted with a practical problem that the current chapter addresses.

• What Is It All About?
In this section, the essence of the chapter is presented and a detailed exposition follows.
The recommended paths are also provided.

• Why Is This Important?
Not all chapters are of equal importance for the reader. At this point, he or she has the
opportunity to judge whether the arguments presented about the importance of a current
chapter are convincing.

• What Is Needed?
This section lists the prerequisites necessary for the successful completion of the current
chapter. Material required for understanding the text is provided in the appendices. The
reader is asked not to take this section too literally, since a tool may be needed only for a
minor part of the material covered and is of secondary importance.

• Classical Works
Every field of science has a founding parent or parents, who have identified the seminal
problems, introduced basic ideas and selected the necessary tools. Wherever appropriate,
we mention these classical investigators and their most important contributions.

21 This choice may still be tentative and may become clear in the course of reading this book. The index at the end
may serve as a significant help. For example, readers interested in drug design, which is based in particular on
enzymatic receptors, should cover the chapters with � (those considered most important) and then those with
� (at the very least, intermolecular interactions). They will gain the requisite familiarity with the energy that is
minimized in computer programs. Readers should then proceed to those branches of the TREE diagram labeled
with �. Initially, they may be interested in force fields (where the abovementioned energy is approximated), and
then in molecular mechanics and molecular dynamics (♠). Students may begin this course with only the♠ labels,
but such a course would leave them without any link to quantum mechanics.
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• The Chapter’s Body
The main body of each chapter is presented in this section.

• Summary
The main body of a chapter is still a big thing to digest, and a student may be lost when
reviewing the logical structure of each chapter22. A short summary communicates to the
student the motivation for presenting the material at hand, why one should expend the effort
to understand it, what the main benefits are, and why the author has attached importance to
this subject. This is a useful point for reflection and consideration. What we have learned,
where we are heading, and where this knowledge will be used and applied are covered here.

• Main Concepts, New Terms
New terms, definitions, concepts, relationships introduced in the chapter are listed here.

• From the Research Front
It is often ill advised to present state-of-the-art results to students. For example, what is the
value of presenting a wave function consisting of thousands of terms for the helium atom?
The logistics of such a presentation are difficult to contemplate. There is significant didactic
value in presenting a wave function with one term or only a few terms where significant
concepts are communicated. On the other hand, the student should be made aware of recent
progress in generating new results and how well these results agree with experimental
observations.

• Ad Futurum
The reader deserves to have a learned assessment of the subject matter covered in a given
chapter. For example, is this field stale or new? What is the prognosis for future developments
in this area? These are often perplexing questions, and the reader deserves an honest answer
(the present author is trying to give in this section).

• Additional Literature
The present text offers only a general panorama of quantum chemistry. In most cases, there
exists an extensive literature, where the reader will find more detailed information. Some
of the best sources are given here.

• Questions
In this section, the reader will find 10 topics, each containing four yes-or-no questions
related to the current chapter.

• Answers
Here, the answers to the problems in the “Questions” section are provided.

22 This is most dangerous. A student at any stage of study has to be able to answer easily what the purpose of each
stage is.
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CHAPTER 1

The Magic of Quantum Mechanics

“Imagination is more important than knowledge. Knowledge is limited.
Imagination encircles the world.”

Albert Einstein

Where Are We?
We are at the beginning of all the paths, at the base of the TREE.

An Example

Since 1911, we have known that atoms and
molecules are built of two kinds of particles:
electrons and nuclei. Experiments show the
particles may be treated as pointlike objects
of a certain mass and electric charge. The elec-
tronic charge is equal to −e, while the nuclear
charge amounts to Ze, where e = 1.6·10−19 C
and Z is a natural number. Electrons and nuclei
interact according to Coulomb’s law, and clas-
sical mechanics and electrodynamics predict
that any atom or molecule is bound to col-
lapse in just a femtosecond, emitting an infinite
amount of energy. Hence, according to the clas-
sical laws, the complex matter we see around
us should simply not exist at all.

Charles Augustin de Coulomb
(1736–1806), French military
engineer and one of the founders
of quantitative physics. In 1777,
he constructed a torsion bal-
ance for measuring very weak
forces, with which he was able
to demonstrate the inverse
square (of the distance) law for
electric and magnetic forces.

He also studied charge dis-
tribution on the surfaces of
dielectrics.

However, atoms and molecules do exist, and their existence may be described in detail by quantum mechanics
using what is known as the wave function. The postulates of quantum mechanics provide the rules for finding this
function and for the calculation of all the observable properties of atoms and molecules.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00001-5
© 2014 Elsevier B.V. All rights reserved. 1

http://dx.doi.org/10.1016/B978-0-444-59436-5.00001-5
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What Is It All About?
History of a Revolution (�) p. 3
Postulates of Quantum Mechanics (�) p. 15
The Heisenberg Uncertainty Principle (�) p. 35
The Copenhagen Interpretation of the World (�) p. 40
Disproving the Heisenberg Principle–Einstein-Podolsky-Rosen’s Recipe (�) p. 40
Schrödinger’s Cat (�) p. 42
Bilocation (�) p. 43
The Magic of Erasing the Past (�) p. 46
A Test for a Common Sense: The Bell Inequality (�) p. 47
Photons Violate the Bell Inequality (�) p. 50
Teleportation (�) p. 51
Quantum Computing (�) p. 53

Any branch of science has a list of postulates, on which the entire construction is built.1 For quantum mechanics,
six such postulates have been established in the process of reconciling theory and experiment, they may sometimes
be viewed as non-intuitive. They stand behind any tool of quantum mechanics used in practical applications. They
also lead to some striking conclusions concerning the reality of our world, such as the possibilities of bilocation,
teleportation, etc. These unexpected conclusions have recently been experimentally confirmed.

Why Is This Important?

The postulates given in this chapter represent the foundation of quantum mechanics and justify all that follows in
this book. In addition, our ideas of what the world is really like will acquire a new and unexpected dimension.

What Is Needed?

• Complex numbers
• Operator algebra and vector spaces, p. e7
• Angular momentum, p. e73
• Some background in experimental physics: Black body radiation, photoelectric effect (recommended, but not

absolutely necessary)

Classical Works

The beginning of quantum theory was the discovery by Max Planck of the electromagnetic energy quanta emitted by

a black body. His work was “Über das Gesetz der Energieverteilung im Normalspektrum”2 in Annalen der Physik, 4,
553 (1901). � Four years later, Albert Einstein published a paper called “Über die Erzeugung und Verwandlung des

1 These postulates are not expected to be proved.
2 This title translates as “On the energy distribution law in the normal spectrum.” It was published with a note

saying that the material had already been presented (in another form) at the meetings of the German Physical
Society on October 19 and December 14,1900.

On p. 556, one can find the following historical sentence on the total energy denoted as UN which translates
as: “Therefore, it is necessary to assume that UN does not represent any continuous quantity that can be divided
without any restriction. Instead, one has to understand that it as a discrete quantity composed of a finite number
of equal parts.”
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Lichtes betreffenden heuristischen Gesichtspunkt” in Annalen der Physik, 27, 132 (1905), in which he explained the
photoelectric effect by assuming that the energy is absorbed by a metal as quanta of energy. � In 1911, Ernest Ruther-
ford discovered that atoms are composed of a massive nucleus and electrons: “The Scattering of the α and β Rays and
the Structure of the Atom,” in Proceedings of the Manchester Literary and Philosophical Society, IV, 55, 18 (1911).
� Two years later, Niels Bohr introduced a planetary model of the hydrogen atom in “On the Constitution of Atoms
and Molecules” in Philosophical Magazine, Series 6, vol.26 (1913). � Louis de Broglie generalized the corpuscular
and wave character of any particle in his Ph.D. thesis “Recherches sur la théorie des quanta,” at the Sorbonne,
1924. � The first mathematical formulation of quantum mechanics was developed by Werner Heisenberg in “Über
quantentheoretischen Umdeutung kinematischer und mechanischer Beziehungen,” Zeitschrift für Physik, 33, 879
(1925). � Max Born and Pascual Jordan recognized matrix algebra in the formulation [in “Zur Quantenmechanik,”
Zeitschrift für Physik, 34, 858 (1925)] and then all three [the famous “Dreimännerarbeit” entitled “Zur Quanten-
mechanik. II.” and published in Zeitschrift für Physik, 35, 557 (1925)] expounded a coherent mathematical basis for
quantum mechanics. � Wolfgang Pauli introduced his “two-valuedness” for the non-classical electron coordinate
in “Über den Einfluss der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt,” published in
Zeitschrift für Physik, 31, 373 (1925), and the next year, George Uhlenbeck and Samuel Goudsmit described their
concept of particle spin in “Spinning Electrons and the Structure of Spectra,” Nature, 117, 264 (1926). � Wolfgang
Pauli published his famous exclusion principle in “Über den Zusammenhang des Abschlusses der Elektronengruppen
im Atom mit der Komplexstruktur der Spektren,” which appeared in Zeitschrift für Physik B, 31, 765 (1925). � The
series of papers by Erwin Schrödinger, called “Quantisierung als Eigenwertproblem,” in Annalen der Physik, 79,
361 (1926). (also see other references in Chapter 2) was a major advance. He proposed a different mathematical
formulation (from Heisenberg’s) and introduced the notion of the wave function. � In the same year, Max Born,
in “Quantenmechanik der Stossvorgänge,” which appeared in Zeitschrift für Physik, 37, 863 (1926), gave an inter-
pretation of the wave function. � The uncertainty principle was discovered by Werner Heisenberg and described in
“Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,” Zeitschrift für Physik, 43, 172
(1927). � Paul Adrien Maurice Dirac reported an attempt to reconcile quantum and relativity theories in a series of
papers from 1926 to 1928 (also see the references in Chapter 3). � Albert Einstein, Boris Podolsky, and Natan Rosen
proposed a (then a Gedanken or thinking - experiment, now a real one) test of quantum mechanics “Can quantum-
mechanical description of physical reality be considered complete?” published in Physical Review, 47, 777 (1935).
� Richard Feynman, Julian Schwinger, and Shinichiro Tomonaga developed quantum electrodynamics in the late
forties. � John Bell, in “On the Einstein-Podolsky-Rosen Paradox,” Physics, 1, 195 (1964). reported inequalities that
were able to verify the very foundations of quantum mechanics. � Alain Aspect, Jean Dalibard, and Gérard Roger, in
“Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers,” Physical Review Letters, 49, 1804 (1982),
reported measurements that violated the Bell inequality and proved the non-locality or/and (in a sense) non-reality
of our world. � The first two-slit interference experiments proving the wave nature of electrons were performed in
1961 by Claus Jönsson from Tübingen Universität in Germany [publication “ Elektroneninterferenzen an mehreren
künstlich hergestellter Feinspalten” in Zeitschrift für Physik, 161, 454 (1961)], while the experimental proof for
interference of a single electron was presented by Pier Giorgio Merli, Gianfranco Missiroli, and Gulio Pozzi from the
University of Milan in the article “On the Statistical Aspect of electron interference phenomena”, American Journal
of Physics, 44, 306 (1976). � Charles H. Bennett, Gilles Brassart, Claude Crépeau, Richard Jozsa, Asher Peres, and
William K. Wootters, in “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen
channels” in Physical Review Letters, 70, 1895 (1993), designed a teleportation experiment which subsequently was
successfully performed by Dik Bouwmeester, Jan-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter, and
Anton Zeilinger [“Experimental Quantum Teleportation,” in Nature, 390, 575 (1997).]

1.1 History of a Revolution

The end of the nineteenth century was a proud period for physics, which seemed to finally achieve
a state of coherence and clarity. At that time, physicists believed that the world consisted of
two kingdoms: a kingdom of particles and a kingdom of electromagnetic waves. The motion of
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James Clerk Maxwell (1831–
1879), British physicist, professor
at the University of Aberdeen,
Kings College, London, and
Cavendish Professor at the uni-
versity of Cambridge, Cambridge.
His main contributions are several
famous equations for electro-
magnetism (1864) and the disco-
very of velocity distribution in
gases (1860).

particles had been described
by Isaac Newton’s equation,
with its striking simplicity,
universality, and beauty.
Similarly, electromagnetic
waves had been described
accurately by James Clerk
Maxwell’s simple and beau-
tiful equations.

Young Max Planck was
advised to abandon the idea
of studying physics because

everything had already been discovered. This beautiful idyll was only slightly incomplete,
because of a few annoying details: the strange black body radiation, the photoelectric effect,
and the mystery of atomic spectra. These were just a few rather exotic problems to be fixed in
the near future…

As it turned out, these problems opened a whole new world. The history of quantum theory,
one of most revolutionary and successful theories ever designed by man, will briefly be given
below. Many of these facts are discussed further in this textbook.

1900–Max Planck

Max Karl Ernst Ludwig Planck (1858–1947),
German physicist, professor at the universities in
Munich, Kiel and Berlin, first director of the Institute
of Theoretical Physics in Berlin. Planck was born in
Kiel, where his father was a university professor of
law. He was a universally talented student in grade
school, and then an outstanding physics student at
the University of Berlin, where he was supervised
by Gustaw Kirchhoff and Hermann Helmholz.
Music was his passion throughout his life, and
he used to play piano duets with Einstein (who
played the violin). This hard-working, middle-aged,
old-fashioned professor of thermodynamics made
a major breakthrough as if in an act of scientific
desperation. In 1918 Planck received the Nobel
Prize “for services rendered to the advancement
of Physics by his discovery of energy quanta”.
Einstein recalls jokingly Planck’s reported lack of
full confidence in general relativity theory: “Planck
was one of the most outstanding people I have
ever known, ( . . . ) In reality, however, he did not

understand physics. During the solar eclipse in
1919 he stayed awake all night, to see whether
light bending in the gravitational field will be
confirmed. If he understood the very essence of
the general relativity theory, he would quietly go to
bed, as I did.” (cited by Ernst Straus in “Einstein: A
Centenary Volume,” p. 31).



The Magic of Quantum Mechanics 5

Black Body Radiation

Planck wanted to understand black body radiation. The black body may be modeled by a box,
with a small hole (shown in Fig. 1.1). We heat the box up, wait for the system to reach a stationary
state (at a fixed temperature),
and see what kind of electro-
magnetic radiation (intensity as
a function of frequency) comes
out of the hole. In 1900, Rayleigh
and Jeans3 tried to apply classi-
cal mechanics to this problem, and
they calculated correctly that the
black body would emit the elec-
tromagnetic radiation with a dis-
tribution of frequencies. However,

John William Strutt, Lord Rayleigh
(1842–1919), British physicist and
Cavendish Professor at the University
of Cambridge, contributed greatly to
physics (wave propagation, light scat-
tering theory - Rayleigh scattering). In
1904 Rayleigh received the Nobel Prize
“for his investigations of the densities of
the most important gases and for his
discovery of argon in connection with
these studies.”

the larger the frequency, the larger its intensity - an absurd conclusion, what is known as an
ultraviolet catastrophe. Experiments contradicted theory (as shown in Fig. 1.1).

At a given temperature T , the intensity distribution has a single maximum (at a given fre-
quency ν, as shown in Fig. 1.1b). As the temperature increases, the maximum should shift
toward higher frequencies (a piece of iron appears red at 500 ◦C, but bluish at 1000 ◦C).
Just as Rayleigh and Jeans did, Planck was unable to derive this simple qualitative picture
from classical theory–clearly, something had to be done. On December 14, 1900, the gen-
erally accepted date for the birth of quantum theory, Planck presented his theoretical results
for the black body treated as an ensemble of harmonic oscillators. With considerable reluc-
tance, he postulated4 that matter cannot emit radiation except by equal portions (“quanta”) of
energy hν, proportional to the frequency ν of vibrations of a single oscillator of the black body.

(a) (b)

Fig. 1.1. Black body radiation. (a) As one heats a box to temperature T, the hole emits electromagnetic radiation with a wide
range of frequencies. The distribution of intensity as a function of frequency ν is given in panel (b). There is a serious discrepancy
between the results of classical theory and the experiment, especially for large frequencies. Only after assuming the existence of
energy quanta can theory and experiment be reconciled.

3 James Hopwood Jeans (1877–1946) was a British physicist and professor at the University of Cambridge and at
the Institute for Advanced Study in Princeton. Jeans also made important discoveries in astrophysics (e.g., the
theory of double stars).

4 However, note that Planck felt uncomfortable with this idea for many years.
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The famous Planck constant h followed soon after. (The actual equation for the Planck constant
is h = 6.62607 · 10−34 J s, but in this book, we will use a more convenient constant5 � = h

2π .)
This hypothesis about energy quanta led to the agreement of theory with experiment and the
elimination of the ultraviolet catastrophe.

1905–Albert Einstein

The Photoelectric Effect

The second worrying problem, apart from the black body, was the photoelectric effect.6 Light
knocks electrons7 out of metals, but only when its frequency exceeds a certain threshold.
In classical theory, light energy should be stored in the metal in a continuous way and indepen-
dent of the frequency used, after a sufficient period of time, the electrons should be ejected from
the metal. Nothing like that was observed, however, and classical physics was unable to explain
this. Einstein introduced the idea of electromagnetic radiation quanta as particles, which later
were dubbed photons by Gilbert Lewis. Note that Planck’s idea of a quantum concerned energy
transfer from the black body to the electromagnetic field, while Einstein introduced it for the
opposite direction, with the energy corresponding to Planck’s quantum. Planck considered the
quantum to be a portion of energy, while for Einstein, the quantum meant a particle.8 Everything
became clear: energy goes to electrons by quanta, and this is why only quanta exceeding some
threshold (the binding energy of an electron in the metal) are able to eject electrons from a metal.

5 This constant is known as “h bar.”
6 Experimental work on this effect had been done by Philipp Eduard Anton Lenard (1862–1947), German physicist

and professor at Breslau (now Wrocław), Köln, and Heidelberg. Lenard discovered that the number of photoelec-
trons is proportional to the intensity of light, and that their kinetic energy does not depend at all on the intensity,
depending instead on the frequency of light. Lenard received the Nobel Prize in 1905 “for his work on cathode
rays.” A faithful follower of Adolf Hitler, and devoted to the barbarous Nazi ideas, Lenard terrorized German
science. He demonstrates that scientific achievement and decency are two separate human characteristics.

7 The electron was already known, having been predicted as early as 1868 by the Irish physicist George Johnstone
Stoney (1826–1911), and finally discovered in 1897 by the British physicist Joseph John Thomson (1856–1940).
Thomson also discovered a strange pattern: the number of electrons in light elements was equal to about half
of their atomic mass. Free electrons were obtained much later (1906). The very existence of atoms was still a
hypothesis. The atomic nucleus was discovered only later, in 1911. Physicists were also anxious about the spectra
of even the simplest substances, such as hydrogen. Johann Jacob Balmer, a teacher from Basel, was able to design
an astonishingly simple formula which fitted perfectly some of the observed lines in the hydrogen spectrum
(“Balmer series”). All that seemed mysterious and intriguing.

8 It is true that Einstein wrote about “point-like quanta” four years later, in a careful approach identifying the
quantum with the particle. Modern equipment enables us to count photons, the individual particles of light, but
the human eye is also capable of detecting 6 to 8 photons striking a neuron.

In 1905, the accuracy of experimental data was too poor to confirm Einstein’s theory as the only one which could
account for the experimental results. Besides, the wave nature of light was supported by thousands of crystal clear
experiments. Einstein’s argument was so breathtaking (…particles???), that Robert Millikan decided to disprove
experimentally Einstein’s hypothesis. However, after ten years of investigations, Millikan acknowledged that he
is forced to support Einstein’s explanation, “however absurd it may look” (Rev. Modern Phys., 21, 343 (1949)).
This conversion of a skeptic inclined the Nobel Committee to award Einstein the Nobel Prize in 1923 “for his
work on the elementary charge of electricity and on the photo-electric effect”.
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Gilbert Newton Lewis (1875–1946) was the greatest American chemist,
who advanced American chemistry internationally through his research and
teaching. In a 1926 article in Nature, Lewis introduced the word “photon.”
He also developed an early theory of chemical bonding (“Lewis structures”)
based on counting the valence electrons and forming “octets” from them.
The idea that atoms in molecules tend to form octets in order to complete
their electron shells turned out to be surprisingly useful in predicting bond
patterns in molecules. A drawback for this concept is that it was not closely
connected to the ideas of theoretical physics. It is an example of an extremely
clever concept rather than a coherent theory. Lewis also introduced a new
definition of acids and bases, which is still in use.

1911–Ernest Rutherford

Rutherford proved experimentally that atoms have a massive nucleus, but the nucleus is very
small compared to the size of the atom. The positive charge is concentrated in the nucleus,
which is about 10−13 cm in size. The density of the nuclear matter boggles the imagination:
1 cm3 has a mass of about 300 million tons. This is how researchers found out that an atom is
composed of a massive nucleus and electrons.

1913–Niels Bohr

Niels Hendrik Bohr (1885–1962), Danish physicist
and professor at Copenhagen University, played a
key role in the creation and interpretation of quan-
tum mechanics. Bohr was born in Copenhagen, the
son of a professor of physiology. He graduated from
Copenhagen University and in 1911, he obtained
his doctorate there. Then he went to Cambridge to
work under the supervision of J. J. Thomson, the
discoverer of the electron. The collaboration did not
work out, and in 1912, Bohr began to collaborate
with Ernest Rutherford at the University of Manch-
ester. At Manchester, Bohr made a breakthrough
by introducing a planetary model of hydrogen atom.
Bohr reproduced the experimental spectrum of the
hydrogen atom with high accuracy. In 1922, Bohr
received the Nobel Prize “for his investigation of the
structure of atoms.” That same year, he became
the father of Aage Niels Bohr, a future winner of
the Nobel Prize (1975, for his studies of the struc-
ture of nuclei). In October 1943, Bohr and his family
fled from Denmark to Sweden, and then to Great
Britain and the United States, where he worked on
the Manhattan Project.
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The Model of the Hydrogen Atom

Atomic spectra were the third great mystery of early twentieth-century physics. Even interpreting
the spectrum of the hydrogen atom represented a challenge. In 1913, at the age of 28, Bohr
proposed a simple planetary model of this atom in which the electron, contrary to classical
mechanics, did not fall onto the nucleus. Instead, it changed its orbit, with accompanying
absorption or emission of energy quanta. Bohr assumed that angular orbital momentum is
quantized and that the centrifugal force is compensated by the Coulomb attraction between the
electron and the nucleus. He was able to reproduce part of the spectrum of the hydrogen atom
very accurately. Bohr then began work on the helium atom (which turned out to be a disaster),
but he was successful again with the helium cation9 He+.

Niels Bohr played an inspiring role in the development and popularization of quantum
mechanics. The Copenhagen Institute for Theoretical Physics, which he founded in 1921, was
the leading world center in the 1920s and 1930s, where many young theoreticians from all over
the world worked on problems in quantum mechanics.10 Bohr, with Werner Heisenberg, Max
Born, and John von Neumann, contributed greatly to the elaboration of the philosophical foun-
dations of quantum mechanics. According to this, quantum mechanics represents a coherent
and complete model of reality (“the world”), and the discrepancies with classical mechanics
have a profound and fundamental character.11 Both theories coincide in the limit h → 0

Arnold Sommerfeld (1868–1951),
German physicist and professor at
the Mining Academy in Clausthal,
then at the Technical University of
Aachen, in the key period 1906–
1938, was professor at Munich Uni-
versity. Sommerfeld considered not
only circular (Bohr-like) orbits, but
also elliptical ones, and introduced
the angular quantum number. He
also investigated X-rays and the the-
ory of metals. The scientific father of
many Nobel Prize winners, he did not
earn this distinction himself.

(where h is the Planck constant),
and thus, the predictions of quan-
tum mechanics reduce to those
of classical mechanics (known as
Bohr’s correspondence principle).

1916–Arnold Sommerfeld

Old Quantum Theory

In 1916, Arnold Sommerfeld gen-
eralized the Bohr quantization rule

9 Bohr did not want to publish without good results for all other atoms, something he would never achieve. Rutherford
argued: “Bohr, you explained hydrogen, you explained helium, people will believe you for other atoms.”

10 John Archibald Wheeler recalls that when he first came to the institute, he met a man working in the garden and
asked him where he could find Professor Bohr. The gardener answered: “That’s me.”

11 The center of the controversy was that quantum mechanics is indeterministic, while classical mechanics is deter-
ministic, although this indeterminism is not all that it seems. As will be shown later in this chapter, quantum
mechanics is a fully deterministic theory in the Hilbert space (the space of all possible wave functions of the
system), its indeterminism pertains to the physical space in which we live.



The Magic of Quantum Mechanics 9

beyond the problem of the one-electron atom. Known as “old quantum theory,” it did not
represent any coherent theory of general applicability. As a matter of fact, this quantization was
achieved by assuming that for every periodic variable (like an angle), an integral is equal to an
integer times the Planck constant.12 Sommerfeld also tried to apply the Bohr model to atoms
with a single valence electron (he had to modify the Bohr formula by introducing the quantum
defect; i.e., a small change in the principal quantum number, see p. 204).

1923–Louis de Broglie

Louis-Victor Pierre Raymond de Broglie (1892–1987) was studying history at the
Sorbonne, carefully preparing himself for a diplomatic career, which was a very natu-
ral pursuit for someone from a princely family, as he was. His older brother Maurice, a
radiographer, aroused his interest in physics. World War I (Louis did military service
in a radio communications unit) and the study of history delayed his start in physics.

He was 32 when he presented his doctoral dissertation, which embarrassed his
supervisor, Paul Langevin. The thesis, on the wave nature of all particles, was so
revolutionary that only a positive opinion from Einstein, who was asked by Langevin
to take a look of the dissertation, convinced the doctoral committee. Only five years
later (in 1929), Louis de Broglie received the Nobel Prize “for his discovery of the
wave nature of electrons.”

Waves of Matter

In his doctoral dissertation, stuffed with mathematics, Louis de Broglie introduced the concept
of “waves of matter.” He postulated that not only photons, but also any other particle, has,
besides its corpuscular characteristics, some wave properties (those corresponding to light had
been known for a long, long time). According to de Broglie, the wave length corresponds to
momentum p:

p = h

λ

where h is again the Planck constant! What kind of momentum can this be, in view of the fact
that momentum depends on the laboratory coordinate system chosen? Well, it is the momentum
measured in the same laboratory coordinate system as that used to measure the corresponding
wave length.

12 Similar periodic integrals were used earlier by Bohr.
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1923–Arthur Compton13

Electron-Photon Scattering

It turned out that an electron-photon collision obeys the same laws of dynamics as those describ-
ing the collision of two particles: the energy conservation law and the momentum conservation
law. This result confirmed the wave-corpuscular picture emerging from experiments.

1925–George E. Uhlenbeck and Samuel A. Goudsmit

Discovery of Spin

These two Dutch students explained an experiment, in which a beam of silver atoms passing
through a magnetic field splits into two beams. In a short paper, they suggested that the silver
atoms have (besides their orbital angular momentum) an additional internal angular momentum
(spin), which was similar to a macroscopic body, which besides its center-of-mass motion, also
has a rotational (spinning) motion.14 Moreover, the students demonstrated that the atomic spin
follows from the spin of the electrons: among the 47 electrons of the silver atom, 46 have their
spin compensated (23 “down” and 23 “up”), while the last “unpaired” electron gives the net
spin of the atom.

1925–Wolfgang Pauli15

Pauli Exclusion Principle

Pauli postulated that in any system, two electrons cannot be in the same state (including their
spins). This “Pauli exclusion principle” was deduced from spectroscopic data (some states were
not allowed).

13 Arthur Holly Compton (1892–1962) was an American physicist and professor at the universities of Saint Louis
and Chicago. He obtained the Nobel Prize in 1927 “for the discovery of the effect named after him”; i.e., for
investigations of electron-photon scattering.

14 Caution: Identifying the spin with the rotation of a rigid body leads to physical inconsistencies.
15 Pauli also introduced the idea of spin when interpreting spectra of atoms with a single valence electron. He was

inspired by Sommerfeld, who interpreted the spectra by introducing the quantum number j = l ± 1
2 , where the

quantum number l quantized the orbital angular momentum of the electron. Pauli described spin as a bivalent
non-classical characteristic of the electron [W.Pauli, Zeit.Phys.B, 3, 765 (1925)].
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1925–Werner Heisenberg

Matrix Quantum Mechanics

A paper by 24-year-old Werner Heisenberg turned out to be a breakthrough in quantum theory.16

He wrote in a letter: “My whole effort is to destroy without a trace the idea of orbits.” Max Born
recognized matrix algebra in Heisenberg’s formulation (who, himself, had not yet realized it),
and in the same year, a more solid formulation of the new mechanics (“matrix mechanics”) was
proposed by Werner Heisenberg, Max Born, and Pascual Jordan.17

1926–Erwin Schrödinger

Schrödinger Equation

In November 1925, Erwin Schrödinger delivered a lecture at the Technical University in Zurich
(ETH), in which he presented de Broglie’s results. Professor Peter Debye stood up and asked
the speaker:

Peter Josephus Wilhelmus Debye (1884–1966),
Dutch physicist and chemist and professor in the
Technical University (ETH) of Zurich (1911, 1920–
1937), as well as at Göttingen, Leipzig, and Berlin,
won the Nobel Prize in chemistry in 1936 “for his
contribution to our knowledge of molecular structure
through his investigations on dipole moments and
on the diffraction of X-rays and electrons in gases.”
Debye emigrated to the United States in 1940, where
he obtained a professorship at Cornell University
in Ithaca, NY (and remained in this beautiful town
to the end of his life). His memory is still alive there.

16 On June 7, 1925, Heisenberg was so tired after a bad attack of hay fever that he decided to go relax on the North
Sea island of Helgoland. Here, he divided his time between climbing the mountains, learning Goethe’s poems
by heart, and (despite his intention to rest) hard work on the spectrum of the hydrogen atom, with which he was
obsessed. It was at night on June 7 or 8 that he saw something–the beginning of the new mechanics. In later years,
he wrote in his book Der Teil and das Ganze: “ It was about three o’ clock in the morning when the final result
of the calculation lay before me. At first I was deeply shaken. I was so excited that I could not think of sleep. So
I left the house and awaited the sunrise on the top of a rock.” The first man with whom Heisenberg shared his
excitement a few days later was his schoolmate Wolfgang Pauli, and, after another few days, with Max Born.

17 Jordan, despite his talents and achievements, felt underestimated and even humiliated in his native Germany. For
example, he had to accept a position at Rostock University, which the German scientific elite used to call the
“Outer Mongolia of Germany.” The best positions seemed to be reserved. When Hitler came to power, Jordan
became a fervent follower.
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“You are telling us about waves, but where is the wave equation in your talk?” Indeed, there
wasn’t any! Schrödinger began to work on this problem, and the next year formulated what is
now called wave mechanics based on the wave equation. Both formulations, Heisenberg’s and
Schrödinger’s,18 turned out to be equivalent and are now known as (non-relativistic) quantum
mechanics.

1926–Max Born

Statistical Interpretation of Wave Function

Max Born (1882–1970) German physicist and pro-
fessor at the universities of Göttingen, Berlin, Cam-
bridge, and Edinburgh, was born in Breslau (now
Wrocław) to the family of a professor of anatomy.
Born studied first in Wrocław, then at Heidelberg and
Zurich. He received his Ph.D. in physics and astron-
omy in 1907 at Göttingen, where he began his swift
academic career. Born obtained a chair at the Uni-
versity of Berlin in 1914 and returned to Göttingen
in 1921, where he founded an outstanding school
of theoretical physics, which competed with the
famous institute of Niels Bohr in Copenhagen. Born
supervised Werner Heisenberg, Pascual Jordan, and
Wolfgang Pauli. It was Born who recognized, in
1925, that Heisenberg’s quantum mechanics could
be formulated in terms of matrix algebra. Together
with Heisenberg and Jordan, he created the first
consistent quantum theory (the famous “drei Männer
Arbeit” ). After Schrödinger’s formulation of quantum
mechanics, Born proposed the probabilistic interpre-

tation of the wave function. Despite such seminal
achievements, the Nobel Prizes in the 1930s were
received by his colleagues, not him. Finally, when
Born obtained the Nobel Prize “for his fundamental
research in quantum mechanics, especially for his
statistical interpretation of the wave-function,” in
1954 there was a great relief among his famous
friends.

Born proposed interpreting the square of the complex modulus of Schrödinger’s wave func-
tion as the probability density for finding the particle.

1927–Werner Heisenberg

Uncertainty Principle

Heisenberg concluded that it is not possible to measure simultaneously the position (x) and
momentum of a particle (px ) with any desired accuracy. The more exactly we measure the
position (small �x), the larger the error we make in measuring the momentum (large �px ),
and vice versa.

18 The formulation proposed by Paul A.M. Dirac was another important finding.
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1927–Clinton Davisson, Lester H.Germer, and George Thomson19

Electron Diffraction

Davisson and Germer, and Thomson demonstrated in separate ingenious experiments that elec-
trons indeed exhibit wave properties (using crystals as diffraction gratings).

1927–Walter Heitler and Fritz Wolfgang London

The Birth of Quantum Chemistry

Walter Heitler and Fritz Wolfgang London convincingly explained why two neutral atoms (like
hydrogen) attract each other with a force so strong as to be comparable to the Coulomb forces
between ions. Applying the Pauli exclusion principle when solving the Schrödinger equation
is of key importance. Their paper was received on June 30,1927, by Zeitschrift für Physik, and
this may be counted as the birth date of quantum chemistry.20

1928–Paul Dirac

Dirac Equation for the Electron and Positron

Paul Dirac’s main achievements are the foundations of quantum electrodynamics and construc-
tion of the relativistic wave equation (1926–1928) that now bears his name. This equation
described not only the electron, but also its antimatter counterpart, the positron (predicting
antimatter). Spin was also inherently present in the equation.

1929–Werner Heisenberg and Wolfgang Pauli

Quantum Field Theory

Two classmates developed a theory of matter, and the main features still survive. In this theory,
the elementary particles (the electron, photon, and so on) were viewed as excited states of the
corresponding fields (the electron field, electromagnetic field, and so on).

19 Clinton Joseph Davisson (1881–1958) was an American physicist at Bell Telephone Laboratories. He discovered
the diffraction of electrons with L.H. Germer, and together they received the Nobel Prize in 1937 “for their
experimental discovery of the diffraction of electrons by crystals.” The prize was shared with G.P. Thomson, who
used a different diffraction method. George Paget Thomson (1892–1975), son of the discoverer of the electron,
Joseph John Thomson, and professor at Aberdeen, London, and Cambridge Universities.

20 The term “quantum chemistry” was first used by Arthur Haas in his lectures to the Physicochemical Society of
Vienna in 1929 (A. Haas, “Die Grundlagen der Quantenchemie. Eine Einleitung in vier Vortragen,” Akademische
Verlagsgesellschaft, Leipzig, 1929).
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1932–Carl Anderson21

Discovery of Antimatter (the Positron)

One of Dirac’s important results was the observation that his relativistic wave equation is satisfied
not only by the electron, but also by a mysterious unknown particle, the positive electron (which
become known as the positron). This antimatter hypothesis was confirmed by Carl Anderson,
who found the positron experimentally.

1948–Richard Feynman, Julian Schwinger, and Shinichiro Tomonaga22

Quantum Electrodynamics

The Dirac equation did not take all the physical effects into account. For example, the strong
electric field of the nucleus polarizes a vacuum so much that electron-positron pairs emerge
from the vacuum and screen the electron-nucleus interaction. The quantum electrodynamics
(QED) developed by Feynman, Schwinger, and Tomonaga accounts for this and similar effects
and brings theory and experiment to an agreement of unprecedented accuracy.

1964–John Bell

Bell Inequalities

The mathematician John Bell proved that if particles had certain properties before measurement
(so that they were small but classical objects), then the measurement results would have to
satisfy some inequalities that contradict the predictions of quantum mechanics (further details
at the end of this chapter).

1982–Alain Aspect

Is the World Non-Local?

Experiments with photons showed that the Bell inequalities are not satisfied. This means that
either there is instantaneous communication even between extremely distant particles (“entan-
gled states”), or that the particles do not have some definite properties before the measurement
is performed (more details about this are given at the end of this chapter).

21 More details of this topic are given in Chapter 3.
22 Feynman, Schwinger, and Tomonaga received the Nobel Prize in 1965 “for their fundamental work in quantum

electrodynamics, with fundamental implications for the physics of elementary particles.”
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1997–Anton Zeilinger

Teleportation of the Photon State

A research group at the University of Innsbruck used entangled quantum states to perform
teleportation of a photon state23; that is, to prepare at a distance any state of a photon with
simultaneous disappearance of this state from the teleportation site (details are given at the end
of this chapter).

1.2 Postulates of Quantum Mechanics

All science is based on a number of postulates. Quantum mechanics has also elaborated a system
of postulates that have been formulated to be as simple as possible and yet to be consistent with
experimental results. Postulates are not supposed to be proved–their justification is efficiency.
Quantum mechanics, the foundations of which date from 1925 and 1926, still represents the
basic theory of phenomena within atoms and molecules. This is the domain of chemistry,
biochemistry, and atomic and nuclear physics. Further progress (quantum electrodynamics,
quantum field theory, and elementary particle theory) permitted deeper insights into the structure
of the atomic nucleus but did not produce any fundamental revision of our understanding of
atoms and molecules. Matter as described by non-relativistic24 quantum mechanics represents
a system of electrons and nuclei, treated as pointlike particles with a definite mass and electric

Fig. 1.2. An atom (molecule) in non-relativistic quantum mechanics. (a) A Cartesian (“laboratory”) coordinate system is intro-
duced in three-dimensional space. We assume (see panel b) that all the particles (electrons and nuclei) are pointlike (their instan-
taneous positions are shown here) and interact only by electrostatic (Coulomb) forces.

23 M. Eibl, H. Weinfurter, and A. Zeilinger, Nature, 390, 575 (1997).
24 This assumes that the speed of light is infinite.
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charge and moving in three-dimensional space and interacting by electrostatic forces.25 This
model of matter (shown in Fig. 1.2) is at the core of quantum chemistry.

The assumptions on which quantum mechanics is based may be given in the form of postulates
I–VI, which are described next. For simplicity, we will restrict ourselves to a single particle
moving along a single coordinate axis x (the mathematical foundations of quantum mechanics
are given in Appendix B available at booksite.elsevier.com/978-0-444-59436-5 on p. e7).

Postulate I (on the quantum mechanical state):

The state of the system is described by the wave function� = �(x, t), which depends on
the coordinate of particle x at time t . Wave functions in general are complex functions of
real variables. The symbol�∗(x, t) denotes the complex conjugate of�(x, t). The quantity

p(x, t) = �∗(x, t)�(x, t) dx (1.1)

gives the probability that at time t the x coordinate of the particle lies in the small interval
[x, x + dx] (see Fig. 1.3a). The probability of the particle being in the interval (a, b) on
the x-axis is given by Fig. 1.3b:

Fig. 1.3. A particle moves along the x-axis and is in the state described by the wave function�(x, t). (a) shows how the probability
of finding particle in an infinitesimally small section of the length dx at x0 (at time t = t0) is calculated. It is not important where
exactly in section [x, x + dx] the number x0 really is because the length of the section is infinitesimally small. Here, the number is
positioned in the middle of the section. (b) shows how to calculate the probability of finding the particle at t = t0 in a section (a, b).

25 Yes, we are taking only electrostatics–that is, Coulomb interactions. It is true that a moving charged particle creates
a magnetic field, which influences its own and other particles’ motion. However, the Lorentz force is taken into
account in the relativistic approach to quantum mechanics.

http://booksite.elsevier.com/978-0-444-59436-5
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The probabilistic interpretation of the wave function was proposed by Max Born.26 Analogous
with the formula mass = density×volume, the quantity�∗(x, t)�(x, t) is called the probability
density that a particle at time t has position x .

In order to treat the quantity p(x, t) as a probability, at any instant t , the wave function must
satisfy the normalization condition:∫ ∞

−∞
�∗(x, t)�(x, t) dx = 1. (1.2)

All this may be generalized for more complex situations. For example, in three-dimensional
space, the wave function of a single particle depends on position r = (x, y, z) and time�(r, t),
and the normalization condition takes the form∫ ∞

−∞
dx

∫ ∞
−∞

dy
∫ ∞
−∞

dz�∗(x, y, z, t)�(x, y, z, t) ≡
∫
�∗(r, t)�(r, t) dV

≡
∫
�∗(r, t)�(r, t)dr = 1. (1.3)

For simplicity, the last two integrals are given without the integration limits, but they are there
implicitly, and this convention will be used throughout the book unless stated otherwise.

For n particles (see Fig. 1.4), shown by vectors r1, r2, . . . rn in three-dimensional space, the
interpretation of the wave function is as follows. The probability P that at a given time t = t0,

Fig. 1.4. Interpretation of a many-particle wave function, an example for two particles. The number |ψ(r1, r2, t0)|2dV1dV2
represents the probability that at t = t0, particle 1 is in its box of volume dV1 shown by vector r1 and particle 2 is in its box of
volume dV2 indicated by vector r2.

26 M. Born, Zeitschrift fur̈ Physik, 37, 863 (1926).
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particle 1 is in the domain V1, particle 2 is in the domain V2, etc., is computed as

P =
∫

V1

dV1

∫
V2

dV2 · · ·
∫

Vn

dVn�
∗(r1, r2, . . . ,rn, t0)�(r1, r2, . . . ,rn, t0)

≡
∫

V1

dr1

∫
V2

dr2 · · ·
∫

Vn

drn�
∗(r1, r2, . . . ,rn, t0)�(r1, r2, . . . ,rn, t0).

Often in this book, we will perform what is called normalization of a function, which is
required if a probability is to be calculated. Suppose that we have a unnormalized function27

ψ ; that is, ∫ ∞
−∞

ψ(x, t)∗ ψ(x, t) dx = A, (1.4)

with 0 < A �= 1. To compute the probability ψ , it must be normalized; i.e., multiplied by
a normalization constant N , such that the new function � = Nψ satisfies the normalization
condition: 1 = ∫∞

−∞�
∗(x, t)�(x, t) dx = N∗N

∫∞
−∞ ψ

∗(x, t)ψ(x, t) dx = A|N |2. Hence,

|N | = 1√
A

. How is N computed? One person may choose it as equal to N = 1√
A

, another

might select N = − 1√
A

, and yet a third might select N = e1989i 1√
A

. There are, therefore, an

infinite number of legitimate choices of the phase φ of the wave function �(x, t) = eiφ 1√
A
ψ .

Yet, when�∗(x, t)�(x, t), is calculated, everyone will obtain the same result, 1
Aψ
∗ψ , because

the phase disappears. In most applications, this is what will happen, so the computed physical
properties will not depend on the choice of phase. There are cases, however, where the phase
will be important.

Postulate II (on operator representation of mechanical quantities)

The mechanical quantities that describe the particle (energy, the components of vectors of
position, momentum, angular momentum, etc.) are represented by linear operators acting in
the Hilbert space (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5).
There are two important examples of the operators: the operator of the particle’s position
x̂ = x (i.e., multiplication by x , or x̂ = x · ; see Fig. 1.5), as well as the operator of the
(x-component) momentum p̂x = −i� d

dx , where i stands for the imaginary unit.

Note that the mathematical form of the operators is always defined with respect to a Cartesian
coordinate system.28 From the given operators (Fig. 1.5), the operators of some other quantities
may be constructed. The potential energy operator V̂ = V (x), where V (x) [the multiplication
operator by the function V̂ f = V (x) f ] represents a function of x called a potential. The kinetic

27 In this example, Eq. (1.3) has not been satisfied.
28 Nevertheless, they may then be transformed to other coordinate systems.

http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 1.5. Mechanical quantities and the corresponding operators.

energy operator of a single particle (in one dimension) is T̂ = p̂x
2

2m = − �
2

2m
d2

dx2 , and in three
dimensions, it is as follows:

T̂ = p̂2

2m
= p̂x

2 + p̂y
2 + p̂z

2

2m
= − �

2

2m
�, (1.5)

where the Laplacian � is

� ≡ ∂2

∂x2 +
∂2

∂ y2 +
∂2

∂z2 (1.6)

and m denotes the particle’s mass. The total energy operator, or Hamiltonian is the most fre-
quently used:

Ĥ = T̂ + V̂ . (1.7)

An important feature of operators is that they may not commute29; i.e., for two particular
operators Â and B̂, one may have Â B̂ − B̂ Â �= 0. This property has important physical
consequences (see the upcoming discussion of Postulate IV and the Heisenberg uncertainty
principle). Because of the possible non-commutation of the operators, transformation of the
classical formula (in which the commutation or non-commutation did not matter) may not
be unique. In such a case, from all the possibilities, one has to choose an operator, which is
Hermitian. The operator Â is Hermitian if for any functions ψ and φ from its domain, one has

∫ ∞
−∞

ψ∗(x) Âφ(x) dx =
∫ ∞
−∞
[ Âψ(x)]∗φ(x) dx . (1.8)

29 Commutation means Â B̂ = B̂ Â.
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Fig. 1.6. Dirac notation.

Using what is known as Dirac notation (see Fig. 1.6), the above equality may be written
in a concise form:

〈ψ | Âφ〉 = 〈 Âψ | φ〉. (1.9)

In Dirac notation,30 the key role is played by vectors bra: 〈 | and ket: | 〉 denoting respectively
ψ∗ ≡ 〈ψ | and φ ≡ |φ〉. Writing the bra and ket as 〈ψ | |φ〉 denotes 〈ψ |φ〉, or the scalar product
of ψ and φ in a unitary space (see Appendix B available at booksite.elsevier.com/978-0-444-
59436-5), while writing it as |ψ〉 〈φ| means the operator Q̂ = |ψ〉 〈φ|, because of its action on
function ξ = |ξ〉 shown as Q̂ξ = |ψ〉 〈φ| ξ = |ψ〉 〈φ|ξ〉 = cψ , where c = 〈φ|ξ〉:
• 〈ψ | φ〉 denotes a scalar product of two functions (i.e., vectors of the Hilbert space) ψ and

φ, also known as the overlap integral of ψ and φ.

•
〈
ψ | Âφ

〉
or

〈
ψ | Â | φ

〉
stands for the scalar product of two functions: ψ and Âφ, or the

matrix element of operator Â.
• Q̂ = |ψ〉 〈ψ | means the projection operator on the vector ψ (in the Hilbert space).
• The last formula (with {ψk} representing the complete set of functions) represents what is

known as “spectral resolution of identity,” best demonstrated when acting on an arbitrary
function χ :

χ =
∑

k

|ψk〉 〈ψk | χ〉 =
∑

k

|ψk〉 ck .

We have obtained the decomposition of the function (i.e., a vector of the Hilbert space) χ on
its components |ψk〉 ck along the basis vectors |ψk〉 of the Hilbert space. The coefficient ck =
〈ψk | χ〉 is the corresponding scalar product, and the basis vectors ψk are normalized. This for-
mula says something trivial: any vector can be retrieved when adding all its components together.

30 The deeper meaning of this notation is discussed in many textbooks about quantum mechanics; e.g., A. Messiah,
Quantum Mechanics, vol. I, Amsterdam (1961), p. 245. Here, we treat the Dirac notation as a convenient tool.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Postulate III (on time evolution of the state)

Time-Dependent Schrödinger Equation
The time-evolution of the wave function � is given by the equation

i�
∂�(x, t)

∂t
= Ĥ�(x, t), (1.10)

where Ĥ is the system Hamiltonian; see Eq. (1.7).
Ĥ may depend on time (energy changes in time, interacting system) or may be time-

independent (energy conserved, isolated system). Equation (1.10) is called the time-dependent
Schrödinger equation (Fig. 1.7).

When Ĥ is time independent, the general solution to Eq. (1.10) can be written as

�(x, t) =
∞∑

n=1

cn�n(x, t), (1.11)

where �n(x, t) represent special solutions to Eq. (1.10), that have the form

�n(x, t) = ψn(x) e−i En
�

t , (1.12)

and cn stands for some constants. Substituting the special solution to Eq. (1.10) leads to31 what
is known as the time-independent Schrödinger equation:

Fig. 1.7. Time evolution of a wave function. Knowing �(x, t) at a certain t = t0 makes it possible to compute Ĥ�(x, t0), and

from this [using Eq. (1.10)] one can calculate the time derivative ∂�(x,t0)
∂t = − i Ĥ�(x,t0)

�
. Knowledge of the wave function at time

t = t0 and of its time derivative is sufficient to calculate the function a little later (t = t0 + dt).

31 i� ∂�n(x,t)
∂t = i� ∂ψn(x) e−i En

�
t

∂t = i�ψn(x)
∂e−i En

�
t

∂t = i�ψn(x)
(
−i En

�

)
∂e−i En

�
t

∂t = Enψne−i En
�

t . However,

Ĥ�n(x, t) = Ĥψn(x) e−i En
�

t = e−i En
�

t Ĥψn(x), because the Hamiltonian does not depend on t . Hence, after

dividing both sides of the equation by e−i En
�

t , one obtains the time-independent Schrödinger equation. Therefore,
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Time-independent Schrödinger Equation for Stationary States

Ĥψn = Enψn n = 1, 2, . . . ,∞. (1.13)

The equation represents an example of an eigenvalue equation of the operator; the functions
ψn are called the eigenfunctions, and En are the eigenvalues of the operator Ĥ (we have assumed
here that their number is equal to∞). It can be shown that En is real (see Appendix B available
at booksite.elsevier.com/978-0-444-59436-5, p. e7). The eigenvalues are the permitted energies
of the system, and the corresponding eigenfunctions �n are defined in Eqs. (1.12) and (1.13).
These states have a special character because the probability given by Eq. (1.1) does not change
in time32 (Fig. 1.8):

pn(x, t) = �∗n (x, t)�n(x, t) dx = ψ∗n (x)ψn(x) dx = pn(x). (1.14)

Therefore, in determining these states, known as stationary states, one can apply the time–
independent formalism based on the Schrödinger equation (1.13).

Postulate IV (on interpretation of experimental measurements)

This postulate pertains to ideal measurements, such that no error is introduced through imper-
fections in the measurement apparatus. We assume the measurement of the physical quantity A,

the stationary state ψn(x) exp
(
−i En

�
t
)

is time-dependent, but this time dependence comes only from the

factor exp
(
−i En

�
t
)

. When, in the future, we calculate the probability density�∗n�n , we would not need the factor

exp
(
−i En

�
t
)

, only its modulus whereas
∣∣∣exp

(
−i En

�
t
)∣∣∣ = 1 for any value of t . The time dependence through

exp
(
−i En

�
t
)

means that as time goes by, function ψn is multiplied by an oscillating complex number, which

never attains zero. The number oscillates on a circle of radius 1 within the complex plane. For example, limiting
ourselves to the angles m ·90◦,m = 0, 1, 2, 3, . . . in the time evolution of a stationary state, functionψn(x) is mul-
tiplied by: 1, i,−1,−i, . . ., respectively. It is a bit frustrating though, that the frequency of this rotation ω = En

�

depends on En because this number depends on you (you may add an arbitrary constant to the potential energy and
the world will be functioning exactly as before). This is true, but whatever you compare with experimental results,
you calculate �∗m �n , which annihilates the arbitrary constant and we get as time dependence: exp (−iωt) with

ω = En−Em
�

. Already at this point, one can see that such oscillations might be damped by something, preferably
of frequency just equal toω. We will show this in detail in Chapter 2, and indeed it will turn out that such a damping
by oscillating external electric field represents the condition to change the state �n to �m (and vice versa).

32 There is a problem though. Experiments show that this is true only for the ground state, not for the excited
states, which turn out to be quasi-stationary only. These experiments prove that in excited states, the system emits
photons until it achieves the ground state. This excited state instability (which goes beyond the non-relativistic
approximation that this book is focused on) comes from coupling with the electromagnetic field of the vacuum,
the phenomenon ignored in presenting the postulates of quantum mechanics. The coupling is a real thing because
there are convincing experiments showing that the vacuum is not just nothing. It is true that the vacuum’s mean
electric field is zero, but the electromagnetic field fluctuates even in the absence of photons (the mean square of
the electric field does not equal zero).

http://booksite.elsevier.com/978-0-444-59436-5
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(b)

(c)

(d)

Fig. 1.8. Evolution of several starting wave functions� (rows a-d) for a system shown as |�(x, t)|2 for three snapshots t = 0, 1, 2
(columns). In all cases, the area under |�(x, t)|2 equals 1 (normalization of �(x, t)). Cases (a) and (b) show |�(x, t)|2 as
time-independent; these are stationary states satisfying the time-independent Schrödinger equation. Contrary to this, in cases (c) and
(d), function |�(x, t)|2 changes very much as time passes: in a translational motion with shape preserving in case (c) and irregularly
in case (d). These are non-stationary states. The non-stationary states always represent linear combinations of stationary ones.

represented by its time-independent operator Â and, for the sake of simplicity, that the system
is composed of a single particle (with one variable only).

The result of a single measurement of a mechanical quantity A can be only an eigenvalue
ak of the operator Â.
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The eigenvalue equation for operator Â reads

Âφk = akφk, k = 1, 2, . . . ,M . (1.15)

The eigenfunctions φk are orthogonal33. When the eigenvalues do not form a continuum,
they are quantized, and then the corresponding eigenfunctions φk, k = 1, 2, . . . ,∞ satisfy the
orthonormality relations34:

∫ ∞
−∞

φ∗k (x)φl(x) dx ≡ 〈φk | φl〉 ≡ 〈k | l〉 = δkl ≡
{

1 when k = l,
0 when k �= l,

(1.16)

where we have given several equivalent notations of the scalar product, which will be used in
the present book, δkl is known as the Kronecker delta.

Since eigenfunctions {φk}form the complete set, then the wave function of the system may
be expanded as (M is quite often equal to∞)

ψ =
M∑

k=1

ckφk, (1.17)

where the ck are in general complex coefficients. From the normalization condition for ψ we
have35

M∑
k=1

c∗k ck = 1. (1.18)

According to the axiom, the probability that the result of the measurement is ak is equal
to c∗k ck .

If the wave function that describes the state of the system has the form given by Eq. (1.17)
and does not reduce to a single term ψ = φk , then the result of the measurement of the quantity
A cannot be foreseen. We will measure some eigenvalue of the operator Â, but cannot predict
which one. After the measurement is completed, the wave function of the system represents
the eigenstate that corresponds to the measured eigenvalue (known as the collapse of the wave
function). According to the postulate, the only thing to say about the measurements is that the

33 If two eigenfunctions correspond to the same eigenvalue, they are not necessarily orthogonal, but they can
still be orthogonalized (if they are linearly independent, as discussed in the Appendix J available at book-
site.elsevier.com/978-0-444-59436-5, p. e99). Such orthogonal functions still remain the eigenfunctions of Â.
Therefore, one can always construct the orthonormal set of the eigenfunctions of a Hermitian operator.

34 If φk belongs to a continuum, they cannot be normalized, but they still can be made mutually orthogonal.
35 〈ψ | ψ〉 = 1 =∑M

k=1
∑M

l=1 c∗k cl 〈φk | φl 〉 =
∑

k,l=1 c∗k clδkl =
∑M

k=1 c∗k ck .

http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 1.9. The results of measurements of a quantity A are the eigenvalues of the operator Â.

mean value a of the quantity A (from many measurements) is to be compared with the following
theoretical result36 (Fig. 1.9).

a =
M∑

k=1

c∗k ckak =
〈
ψ | Âψ

〉
〈ψ | ψ〉 . (1.19)

If we have a special case, ψ = φk (all coefficients cl = 0, except ck = 1), the measured
quantity is exactly equal to ak . From this, it follows that, if the wave function is an eigen-
function of operators of several quantities (this happens when the operators commute;
see Appendix B available at booksite.elsevier.com/978-0-444-59436-5), then all these
quantities when measured produce with certainty the eigenvalues corresponding to the
eigenfunction.

36
〈
ψ | Âψ

〉
=

〈∑M
l=1 clφl | Â

∑M
k=1 ckφk

〉
= ∑M

k=1
∑M

l=1 c∗k cl

〈
φl | Âφk

〉
= ∑M

k=1
∑M

l=1 c∗k clak 〈φl | φk〉 =∑M
k=1

∑M
l=1 c∗k clakδkl =

∑M
k=1 c∗k ckak (here we assume that 〈ψ | ψ〉 = l). In case of degeneracy (ak = al =

· · · ), the probability is c∗k ck + c∗l cl + · · · This is how one computes the mean value of anything. Just take all
possible distinct results of measurements, multiply each by its probability, and sum up all resulting numbers.

http://booksite.elsevier.com/978-0-444-59436-5
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The coefficients c can be calculated from Eq. (1.17). After multiplying by φ∗l and integration,
one has cl = 〈φl | ψ〉; i.e., cl is identical to the overlap integral of the function ψ describing
the state of the system and the function φl that corresponds to the eigenvalue al of the operator
Â. In other words, the more the eigenfunction corresponding to al resembles the wave function
ψ , the more frequently al will be measured.

Postulate V (spin angular momentum)

Spin of elementary particles. As will be shown in Chapter 3 (about relativistic effects), spin
angular momentum will appear in a natural way. However, in nonrelativistic theory the existence
of spin is postulated.37

Besides its orbital angular momentum r×p, an elementary particle has an internal angular
momentum (analogous to that associated with the rotation of a body about its own axis)
called spin S = (Sx , Sy, Sz). Two quantities are measurable: the square of the spin length:
(|S|2 = S2

x + S2
y + S2

z ) and one of its components, by convention, Sz . These quantities
only take some particular values: |S|2 = s(s + 1)�2, Sz = ms�, where the spin magnetic
quantum number ms = −s,−s + 1, . . . , s . The spin quantum number s, characteristic of
the type of particle (often called simply its spin), can be written as: s = n/2, where n may
be zero or a natural number (“an integer or half-integer” number).

Enrico Fermi (1901–1954), Italian physicist and pro-
fessor at universities in Florence, Rome, New York,
and Chicago. Fermi introduced the notion of statis-
tics for the particles with a half-integer spin num-
ber (called fermions) during the Florence period.
Dirac made the same discovery independently, so
this property is called the Fermi-Dirac statistics.

Young Fermi was notorious for being able to derive
a formula from any domain of physics faster than
someone using textbooks. His main topic was nuclear
physics. He played an important role in the A bomb
construction at Los Alamos, and in 1942 he built the
world’s first nuclear reactor on a tennis court at the
University of Chicago. Fermi was awarded the Nobel

Prize in 1938 “for his demonstration of the existence
of new radioactive elements and for results obtained
with them, especially with regard to artificial radioac-
tive elements.”

37 This has been forced by experimental facts; e.g., the energy level splitting in a magnetic field suggested two
possible electron states connected to the internal angular momentum.
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The particles with a half-integer38 s
(e.g., s = 1

2 for electrons, protons,
neutrons, and neutrinos) are called
fermions, and the particles with an
integer s (e.g., s = 1 for deuteron,
photon39; s = 0 for meson π and
meson K) are called bosons.

The magnetic40 spin quantum num-
ber ms quantizes the z component of
the spin angular momentum.

Satyendra Nath Bose (1894–
1974), Indian physicist and pro-
fessor at Dakka and Calcutta, a
polyglot and a self-taught expert
in many fields; first recognized
that particles with integer spin
number have different statistical
properties. Einstein contributed
to a more detailed description of
this statistic.

Thus,

a particle with spin quantum number s has an additional (spin) degree of freedom, or
an additional coordinate–spin coordinate σ . The spin coordinate differs widely from a
spatial coordinate because it takes only 2s + 1 discrete values (Fig. 1.10) associated to
−s,−s + 1, . . . , 0, . . .+ s.

Fig. 1.10. The main differences between the spatial coordinate (x) and spin coordinate (σ ) of an electron. (a) The spatial coordinate
is continuous: it may take any value of a real number. (b) The spin coordinate σ has a granular character ( discrete values): for
s = 1

2 , it can take only one of two values. One of the values is represented by σ = − 1
2 , the other one by σ = 1

2 . Panel (c) shows
two widely used basis functions in the spin space: α

(
σ

)
and β

(
σ

)
, respectively.

38 Note that the length of the spin vector for an elementary particle is given by nature once and for all. Thus, if there
is any relation between the spin and the rotation of the particle about its own axis, it has to be a special relation.
One cannot change the angular momentum of such a rotation.

39 The photon represents a particle of zero mass. One can show that instead of three possible ms there are only two:
ms = 1,−1. We call these two possibilities polarizations (“parallel” and “perpendicular”).

40 This name is related to the energy level splitting in a magnetic field, from which the number is deduced. A
nonzero s value is associated with the magnetic dipole, which in a magnetic field acquires 2s + 1 energetically
non-equivalent positions.
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Fig. 1.11. Diagram of the spin angular momentum vector for a particle with spin quantum number s = 1
2 . The only measurable

quantities are the spin length
√

s(s + 1)� =
√

3
2 � and the projection of the spin on the quantization axis (chosen as coincident

with the perpendicular axis z), which takes only the values −s,−s + 1, . . . + s in units � i.e., Sz = − 1
2 �, 1

2 �. Since the x and y
components of the spin remain indefinite, one may visualize the same by locating the spin vector (of constant length

√
s(s + 1)�)

anywhere on a cone surface that assures a given z component. Thus, one has 2s + 1 = 2 such cones.

Most often, one will have to deal with electrons. For electrons, the spin coordinate σ takes
two values, often called “up” and “down.” We will (arbitrarily) choose σ = −1

2 and σ = +1
2

Fig. (1.11).
According to the postulate (p. 26), the square of the spin length is always the same and

equal to s(s + 1)�2 = 3
4�

2. The maximum projection of a vector on a chosen axis is equal

to 1
2�, while the length of the vector is larger, equal to

√
s(s + 1)� =

√
3

2 �. We conclude that
the vector of the spin angular momentum makes an angle θ with the quantization axis, with

cos θ = 1
2/
√

3
2 = 1√

3
. From this, one obtains41 θ = arccos 1√

3
≈ 54◦44′. Fig. 1.11 shows that

the spin angular momentum has indefinite x and y components, while always preserving its
length and projection on the z-axis.

Spin basis functions for s = 1
2

One may define (see Fig. 1.10c) the complete set of orthonormal basis functions of the spin
space of an electron:

α(σ) =
{

1 dla σ = 1
2

0 dla σ = −1
2

and β(σ) =
{

0 dla σ = 1
2

1 dla σ = −1
2

41 In the general case, the spin of a particle may take the following angles with the quantization axis: arccos ms√
s(s+1)

for ms = −s,−s + 1, . . .+ s,.
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or, in a slightly different notation, as orthogonal unit vectors42:

|α〉 =
(

1
0

)
; |β〉 =

(
0
1

)
.

Orthogonality follows from 〈α | β〉 ≡∑
σ α(σ )

∗β(σ) = 0.1+ 1.0 = 0. Similarly, normal-
ization means that 〈α | α〉 ≡∑

σ α(σ )
∗α(σ) = α (−1

2

)∗
α

(−1
2

)+α (1
2

)∗
α

(1
2

) = 0.0+1.1 =
1, etc.

We shall now construct operators of the spin angular momentum.

The following definition of spin operators is consistent with the postulate about spin:

Ŝx = 1

2
�σx

Ŝy = 1

2
�σy

Ŝz = 1

2
�σz,

where the Pauli matrices of rank 2 are defined as

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

Indeed, after applying Ŝz to the spin basis functions, one obtains:

Ŝz |α〉 ≡ Ŝz

(
1
0

)
= 1

2
�

(
1 0
0 −1

) (
1
0

)
= 1

2
�

(
1
0

)
= 1

2
� |α〉 ,

Ŝz |β〉 ≡ Ŝz

(
0
1

)
= 1

2
�

(
1 0
0 −1

) (
0
1

)
= 1

2
�

(
0
−1

)
= −1

2
� |β〉 .

Therefore, functions α and β represent the eigenfunctions of the Ŝz operator with corre-

sponding eigenvalues 1
2� and −1

2�. How to construct the operator Ŝ
2
? From the Pythagorean

theorem, after applying Pauli matrices,

42 This is in the same spirit as wave functions represent vectors: vector components are values of the function for
various values of the variable.
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Wolfgang Pauli (1900–1958), German physicist and professor in
Hamburg, Technical University of Zurich, Institute for Advanced Studies
in Princeton, New Jersey, the son of a physical chemistry professor
at Vienna and a classmate of Werner Heisenberg. At the age of
20, he wrote a famous article on relativity theory for Mathematical
Encyclopedia, which was published later as a book. A year later, Pauli
defended his doctoral dissertation under the supervision of Arnold
Sommerfeld in Munich. The renowned Pauli exclusion principle was
proposed in 1924. Pauli received the Nobel Prize in 1945 “for the
discovery of the Exclusion Principle, also called the Pauli Principle.”
Pauli was famous for his harsh opinions exclaimed during seminars (“it
is not even wrong”, “I did not understand a single word ”, etc.).

one obtains:

Ŝ2 |α〉 = Ŝ2
(

1
0

)
=

(
Ŝ2

x + Ŝ2
y + Ŝ2

z

) (
1
0

)

= 1

4
�

2

⎧⎪⎪⎨
⎪⎪⎩

(
0 1
1 0

) (
0 1
1 0

)
+

(
0 −i
i 0

) (
0 −i
i 0

)

+
(

1 0
0 −1

) (
1 0
0 −1

)
⎫⎪⎪⎬
⎪⎪⎭

(
1
0

)

= 1

4
�

2
(

1+ 1+ 1 0+ 0+ 0
0+ 0+ 0 1+ 1+ 1

) (
1
0

)
= 3

4
�

2
(

1 0
0 1

) (
1
0

)

= 3

4
�

2
(

1
0

)
=

[
1

2

(
1

2
+ 1

)
�

2
]
|α〉 .

The function |β〉 gives an identical result. These are, therefore, the pure states. However, one
should remember that a particle also can be prepared in a mixed spin state, which is a common
procedure in the modern nuclear magnetic resonance technique.

Therefore, both basis functions α and β represent the eigenfunctions of Ŝ2 and correspond to
the same eigenvalue. Thus, the definition of spin operators through Pauli matrices gives results
identical to those postulated for S2 and Sz , and the two formulations are equivalent. From Pauli
matrices, it follows that the functions α and β are not eigenfunctions of Ŝx and Ŝy and that the
following relations are satisfied43:

[Ŝ2, Ŝz] = 0,

[Ŝx , Ŝy] = i�Ŝz,

[Ŝy, Ŝz] = i�Ŝx ,

43 The last three formulae are easy to memorize, since the sequence of the indices is always “rotational”; i.e.,
x, y, z, x, y, z, . . .



The Magic of Quantum Mechanics 31

[Ŝz, Ŝx ] = i�Ŝy,

which is in agreement with the general properties of angular momenta44 (Appendix on p. e73).
Spin of non-elementary particles. The postulate on spin pertains to an elementary particle.

What about a system composed of such particles? Do such systems have spin? Spin represents
angular momentum (a vector), and therefore, the angular momentum vectors of the elementary
particles have to be added. A system composed of a number of elementary particles (each with
its spin si ) has as an observable (a measurable quantity) the square

|S|2 = S(S + 1)�2

of the total spin vector
S = s1 + s2 + · · · sN

and one of the components of S (denoted by Sz):

Sz = MS�, for MS = −S,−S + 1, . . . , S,

whereas the number S stands, just as for a single particle, for an integer or half-integer non-
negative number. Particular values of S (often called simply spin) and of the spin magnetic
number MS depend on the directions of vectors si . It follows that no excitation of a non-
elementary boson (that causes another summing of the individual spin vectors) can change the
particle to a fermion and vice versa. Systems with an even number of fermions are always
bosons, while those with an odd number of fermions are always fermions.

Nuclei. The ground states of the important nuclei 12C and 16O correspond to S = 0, while
those of 13C, 15N, and 19F have S = 1

2 .
Atoms and molecules. Does an atom as a whole represent a fermion or a boson? This

depends on which atom and which molecule are involved. Consider the hydrogen atom, which
is composed of two fermions

(
proton and electron, both with spin number 1

2

)
. This is sufficient

to deduce that one is dealing with a boson. For similar reasons, the sodium atom, with 23 nucleons(
each of spin 1

2

)
in the nucleus and 11 electrons moving around it, also represents a boson.

When one adds together two electron spin vectors s1 + s2, then the maximum z component
of the spin angular momentum will be (in � units): |MS| = ms1 + ms2 = 1

2 + 1
2 = 1.

This corresponds to the vectors s1, s2, called “parallel” to each other, while the minimum
|MS| = ms1 + ms2 = 1

2 − 1
2 = 0 is an “antiparallel” configuration of s1 and s2 (Fig. 1.12).

44 Also, note that the mean values of Sx and Sy are both equal to zero in the α and β states; e.g., for the

α state, one has
〈
α | Ŝxα

〉
=

〈(
1
0

)
| Ŝx

(
1
0

)〉
= 1

2 �

〈(
1
0

)
|

(
0 1
1 0

) (
1
0

)〉
= 1

2 �

〈(
1
0

)
|

(
0
1

)〉
= 0.

This means that in an external vector field (of direction z), when the space is no longer isotropic, only the
projection of the total angular momentum on the field direction is conserved. A way to satisfy this is to recall the
behavior of a top in a gravitational field. The top rotates about its own axis, but the axis precesses about the field
axis. This means that the total electron spin momentum moves on the cone surface, making an angle of 54◦44′
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(a)

(b)

Fig. 1.12. Spin angular momentum for a system with two electrons (in general, particles with s = 1
2 ). The quantization axis

is arbitrarily chosen as the vertical axis z. Then, the spin vectors of individual electrons (see Fig. 1.11) may be thought to reside
somewhere on the upper cone that corresponds to ms1 = 1

2 , or on the lower cone corresponding to ms1 = − 1
2 . For two electrons,

there are two spin eigenstates of Ŝ
2
. One has total spin quantum number S = 0 (singlet state); the other is triply degenerate (triplet

state), and the three components of the state have S = 1 and Sz = 1, 0,−1 in � units. In the singlet state, (a) the vectors s1 and
s2 remain on the cones of different orientation and have the opposite (antiparallel) orientations, so that s1 + s2 = 0. Although
their exact positions on the cones are undetermined (and moreover, the cones themselves follow from the arbitrary choice of the
quantization axis in space), they are always pointing in opposite directions. The three triplet components (b) differ by the direction

of the total spin angular momentum (of constant length
√

S
(
S + 1

)
� = √2�). The three directions correspond to three projections

MS� of spin momentum. In each of the three cases, the angle between the two spins equals ω = 70.520 (although in many
textbooks–including this one–they are said to be parallel, but in fact, they are not, as is discussed in the text).

The first situation indicates that, for the state with parallel spins S = 1, and for this S, the
possible MS = 1, 0,−1. This means there are three states: (S,MS) = (1, 1), (1, 0), (1,−1). If
no direction in space is privileged, then all the three states correspond to the same energy (triple
degeneracy). This is why such a set of three states is called a triplet state. The second situation
witnesses the existence of a state with S = 0, which obviously corresponds to MS = 0. This
state is called a singlet state.

with the external field axis in α state and an angle 180◦ − 54◦44′ in the β state. Whatever the motion, it must

satisfy
〈
α | Ŝxα

〉
=

〈
α | Ŝyα

〉
= 0 and

〈
β | Ŝxβ

〉
=

〈
β | Ŝyβ

〉
= 0. No more information is available, but one

may imagine the motion as a precession just like that of the top.
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Let us calculate the angle ω between the individual electronic spins:

|S|2 = (
s1 + s2

)2 = s2
1 + s2

2 + 2s1 · s2 = s2
1 + s2

2 + 2s1 · s2 cosω

= 1

2

(
1

2
+ 1

)
�

2 · 2+ 2

√
1

2

(
1

2
+ 1

)√
1

2

(
1

2
+ 1

)
�

2 cosω

=
(

3

2
+ 3

2
cosω

)
�

2 = 3

2

(
1+ cosω

)
�

2.

Singlet and Triplet States:
For the singlet state, |S|2 = S

(
S + 1

)
�

2 = 0, so 1 + cosω = 0 and ω = 180◦. This
means that the two electronic spins in the singlet state are antiparallel. For the triplet state,
|S|2 = S

(
S + 1

)
�

2 = 2�
2, and so 3

2

(
1+ cosω

)
�

2 = 2�
2 i.e., cosω = 1

3 , orω = 70.52◦,
see Fig. 1.12. Despite forming the angle ω = 70.52◦ the two spins in the triplet state are
said to be parallel.

The two electrons that we have considered may, for example, be part of a hydrogen molecule.
Therefore, when considering electronic states, we may have to deal with singlets or triplets.
However, in the same hydrogen molecule, we have two protons, whose spins may also be
parallel (orthohydrogen) or antiparallel (parahydrogen). In parahydrogen the nuclear spin is
S = 0, while in orthohydrogen S = 1. In consequence, there is only one state for parahydrogen
(MS = 0), and three states for orthohydrogen (MS = 1, 0,−1).45

Postulate VI (on the permutational symmetry)

Unlike classical mechanics, quantum mechanics is radical: it requires that two particles of
the same kind (two electrons, two protons, etc.) should play the same role in the system,
and therefore also in their description enshrined in the wave function.46 Quantum mechan-
ics guarantees that the roles played in the Hamiltonian by two identical particles are identical.
By this philosophy, exchange of the labels of two identical particles [i.e., the exchange of
their coordinates x1, y1, z1, σ1 ↔ x2, y2, z2, σ2, in short, 1 ↔ 2] leads, at most, to a change
of the phaseφ of the wave function:ψ

(
2, 1

)→ eiφψ
(
1, 2

)
, because in such a case, |ψ(2, 1)| =

|ψ(1, 2)| (and this guarantees equal probabilities of both situations). However, when we
exchange the two labels once more, we have to return to the initial situation: ψ

(
1, 2

) =
45 Since all the states have very similar energy (and therefore at high temperatures, the Boltzmann factors are

practically the same), there are three times as many molecules of orthohydrogen as of parahydrogen. Both states
(ortho and para) differ slightly in their physicochemical characteristics.

46 Everyday experience tells us the opposite; e.g., a car accident involving a Mercedes does not cause all editions of
that particular model to have identical crash traces.
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eiφψ
(
2, 1

) = eiφeiφψ
(
1, 2

) = (
eiφ

)2
ψ

(
1, 2

)
. Hence,

(
eiφ

)2 = 1, i.e., eiφ = ±1. Postu-
late VI says that eiφ = +1 refers to bosons, while eiφ = −1 refers to fermions.

The wave function ψ which describes identical bosons i and j has to be symmetric with
respect to the exchange of coordinates xi , yi , zi , σi and x j , y j , z j , σ j ; i.e., if xi ↔ x j , yi ↔
y j , zi ↔ z j , σi ↔ σ j , then ψ(1, 2, . . . , i, . . . j, . . . , N ) = ψ(1, 2, . . . , j, . . . i, . . . , N ).
If particles i and j denote identical fermions, the wave function must be antisymmetric;
i.e., ψ(1, 2, . . . , i, . . . j, . . . , N ) = −ψ(1, 2, . . . , j, . . . i, . . . , N ).

Let us see the probability density that two fermions (particles 1 and 2) occupy the same
position in space, and additionally, that they have the same spin coordinate

(
x1, y1, z1, σ1

) =(
x2, y2, z2, σ2

)
. We have ψ(1, 1, 3, 4, . . . , N ) = −ψ(1, 1, 3, 4, . . . , N ); hence

ψ(1, 1, 3, 4, . . . , N ) = 0 and, of course, |ψ(1, 1, 3, 4, . . . , N )|2 = 0. Conclusion: two elec-
trons of the same spin coordinate (we will sometimes say: “of the same spin”) avoid each other.
This is called the exchange or Fermi hole around each electron.47 The reason for the hole is the
antisymmetry of the electronic wave function, or in other words, the Pauli exclusion principle.48

47 Electrons represent fermions
(

s = 1
2 , σ = + 1

2 ,− 1
2

)
and therefore, there are two forms of repulsion among them:

a Coulomb one because of their electric charge, and that one between same spin electrons only, which follows from
the Pauli exclusion principle. As it will be shown in Chapter 11, the Coulomb repulsion is much less important
than the effect of the Pauli exclusion principle.

Positions of the nuclei determine those parts of the space, which are preferred by electrons (just because
of the Coulomb attraction electron-nucleus): the vicinity of the nuclei. However, considering one such part (a
particular nucleus), the probability of finding electrons of the same spin coordinate is negligible (from the Pauli
exclusion principle together with the continuity condition for the wave function). However, the Pauli exclu-
sion principle does not pertain to the electrons of opposite spin coordinates, therefore two such electrons can
occupy the same small volume even despite the energy increase because of their Coulomb repulsion. Hence,
we have a compromise of two opposite effects: the electronic pair is attracted by a nucleus (proportionally to
the nuclear charge), but the interelectronic distance should not be too small, because of the electron-electron
Coulomb repulsion. A third electron seeking its low energy in the vicinity of this nucleus has no chance: because
its spin coordinate is necessarily the same as that of one of the electrons. The third electron has therefore
to quit this area even at the expense of a large increase in energy, and find another low-energy (Coulomb)
region, maybe together with his colleague of the opposite spin (thus forming another electron pair). This pic-
ture does not mean that one is able to discern the electrons–they play the same role in the system, this is
guaranteed by the antisymmetry of the wave function. Therefore, we will not know which electrons form a
particular electronic pair, but only that there are two of them in it and they have the opposite spin coordinates.

Now let us turn to molecules. For electrons, which are very weakly bound (valence electrons) a space with
Coulomb attraction of two nuclei might be a good choice (we will see this in Chapter 8). This space may also be
shared by two electrons of the opposite spins, since this is still better than to send the partner elsewhere in space.

Thus, already at this stage, we foresee a fundamental role of electronic pairs (the opposite spin coordinates
within the pair) leading to the electronic shell structure in atoms and molecules and to chemical bonds in molecules.

48 The Pauli exclusion principle is sometimes formulated in another way: two electrons cannot be in the same state
(including spin). The connection of this strange phrasing (what does “electron state” mean?) with the above will
become clear in Chapter 8.
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Thus, the probability density of finding two identical fermions in the same position and
with the same spin coordinate is equal to zero. There is no such restriction for two identical
bosons or two identical fermions with different spin coordinates. They can be at the same
point in space.

This is related to what is known as Bose condensation.49

***
Among the above postulates, the strongest controversy has always been associated with

postulate IV, which says that, except for some special cases, one cannot predict the result of a
particular single measurement, but only its probability. More advanced considerations devoted
to postulate IV lead to the conclusion that there is no way (neither experimental protocol nor
theoretical reasoning), to predict when and in which direction an excited atom will emit a photon.
This means that quantum mechanics is not a deterministic theory.

The indeterminism appears, however, only in the physical space, while in the space of all
states (Hilbert space), everything is perfectly deterministic. The wave function evolves in
a deterministic way according to the time-dependent Schrödinger Eq. (1.10).

The puzzling way in which indeterminism operates will be shown below.

1.3 The Heisenberg Uncertainty Principle

Consider two mechanical quantities A and B, for which the corresponding Hermitian operators

(constructed according to Postulate II), Â and B̂, give the commutator [ Â, B̂] = Â B̂− B̂ Â = i Ĉ ,
where Ĉ is a Hermitian operator.50 This is what happens, for example, for A = x and B = px .
Indeed, for any differentiable function φ, one has [x̂, p̂x ]φ = −xi�φ′ + i�(xφ)′ = i�φ, and
therefore, the operator Ĉ in this case means simply multiplication by �.

49 This was carried out by Eric A. Cornell, Carl E. Wieman, and Wolfgang Ketterle (who received the Nobel Prize
in 2001 “for discovering a new state of matter”). In the Bose condensate, the bosons (alkali metal atoms) are in
the same place in a peculiar sense. The total wave function for the bosons was, to a first approximation, a product
of identical nodeless wave functions for the particular bosons (this ensures proper symmetry). Each of the wave
functions extends considerably in space (the Bose condensate is as large as a fraction of a millimetre), but all have
been centered in the same point in space.

50 This is guaranteed. Indeed, Ĉ = −i
[

Â, B̂
]

and then the Hermitian character of Ĉ is shown by the following

chain of transformations:
〈

f | Ĉg
〉
= −i

〈
f |

[
Â, B̂

]
g

〉
= −i

〈
f | ( Â B̂ − B̂ Â)g

〉
= −i

〈
(B̂ Â − Â B̂) f | g

〉
=〈

−i( Â B̂ − B̂ Â) f | g
〉
=

〈
Ĉ f | g

〉
.
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From axioms of quantum mechanics, one can prove that a product of errors (in the sense
of standard deviation) of measurements of two mechanical quantities is greater or equal to
1
2

〈
[ Â, B̂]

〉
, where

〈
[ Â, B̂]

〉
is the mean value of the commutatator [ Â, B̂].

This is known as the Heisenberg uncertainty principle.

Werner Karl Heisenberg (1901–1976) was born
in Würzburg (Germany), attended high school in
Munich, and then (with his friend Wolfgang Pauli)
studied physics at the University of Munich under
Arnold Sommerfeld’s supervision. In 1923, he
defended his doctoral thesis on turbulence in liquids.
Reportedly, during the doctoral examination, he
had problems writing down the chemical reaction
in lead batteries. He joined the laboratory of Max
Born at Göttingen (following his friend Pauli) and in
1924, he joined the Institute of Theoretical Physics
in Copenhagen, working under the supervision
of Niels Bohr. A lecture delivered by Niels Bohr
decided the future direction of his work. Heisenberg
later wrote: “I was taught optimism by Sommerfeld,
mathematics in Göttingen, physics by Bohr.” In
1925 (only a year after being convinced by Bohr),
Heisenberg developed a formalism that became
the first successful quantum theory. Then, in 1926,
Heisenberg, Born, and Jordan elaborated the for-
malism, which resulted in a coherent theory (“matrix
mechanics”). In 1927, Heisenberg obtained a chair
at Leipzig University, which he held until 1941 (when
he became director of the Kaiser Wilhelm Physics
Institute in Berlin). Heisenberg received the Nobel
Prize in 1932 “for the creation of quantum mechan-
ics, the application of which has, inter alia, led to
the discovery of the allotropic forms of hydrogen.”

In 1937, Werner Heisenberg was at the height
of his powers. He became a professor and got
married. However, just after returning from his
honeymoon, the president of the university called
him, saying that there was a problem. In Der
Stürmer, an article by Professor Johannes Stark
(a Nobel Prize winner and faithful Nazi) was
about to appear, claiming that Professor Heisen-
berg is not such a good patriot as he pretended
because he socialized in the past with Jewish
physicists. Soon Professor Heisenberg was invited
to SS headquarters at Prinz Albert Strasse in Berlin.

The interrogation took place in the basement. On
the raw concrete wall, there was the scoffing slogan
“Breathe deeply and quietly.” One of the questioners
was a Ph.D. student from Leipzig, who had once
been examined by Heisenberg. The terrified Heisen-
berg told his mother about the problem. She recalled
that in her youth, she had made the acquaintance
of Heinrich Himmler’s mother. Frau Heisenberg paid
a visit to Frau Himmler and asked her to pass a
letter from her son to Himmler. At the beginning,
Himmler’s mother tried to separate her maternal
feelings for her beloved son from politics. She was
finally convinced after Frau Heisenberg said “We
mothers should care about our boys.” After a certain
time, Heisenberg received a letter from Himmler
saying that his letter “coming through unusual
channels” has been examined especially carefully.
He promised to stop the attack. In the post scriptum
there was a precisely tailored phrase: “I think it best
for your future, if for the benefit of your students,
you would carefully separate scientific achievements
from the personal and political beliefs of those who
carried them out. Your faithfully, Heinrich Himm-
ler” (after D. Bodanis, “E = mc2”, Fakty, Warsaw,
2001, p. 130).
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Werner Heisenberg did not carry out any formal proof. Instead, he analyzed a Gedankenex-
periment (an imaginary ideal experiment) with an electron interacting with an electromagnetic
wave (“Heisenberg’s microscope”).

The formal proof goes as follows.
Recall the definition of the variance, or the square of the standard deviation (�A)2, of

measurements of the quantity A:

(�A)2 = 〈 Â2〉 − 〈 Â〉2, (1.20)

where 〈X̂〉 means the mean value of many measurements of the quantity X . The standard
deviation �A represents the width of the distribution of A; i.e., the error made. Eq. (1.20) is
equivalent to51

(�A)2 = 〈( Â − 〈 Â〉)2〉. (1.21)

Consider the product of the standard deviations for the operators Â and B̂, taking into account
that 〈û〉 denotes (Postulate IV) the integral 〈� | û | �〉 according to Eq. (1.19). One obtains
(denoting Â = Â − 〈 Â〉 and B̂ = B̂ − 〈B̂〉; and [Â, B̂] = [ Â, B̂]):

(�A)2 · (�B)2 = 〈� | Â2�〉〈� | B̂2�〉 = 〈Â� | Â�〉〈B̂� | B̂�〉,
where the Hermitian character of the operators Â and B̂ is used. Now, let us use the
Schwartz inequality (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5)
〈 f1 | f1〉〈 f2 | f2〉 ≥ |〈 f1 | f2〉|2 :

(�A)2 · (�B)2 = 〈Â� | Â�〉〈B̂� | B̂�〉 ≥ |〈Â� | B̂�〉|2.
Next,

〈Â� | B̂�〉 = 〈� | ÂB̂�〉 = 〈�|{[Â, B̂] + B̂Â}�〉 = i〈� | Ĉ�〉 + 〈� | B̂Â�〉
= i〈� | Ĉ�〉 + 〈B̂� | Â�〉 = i〈� | Ĉ�〉 + 〈Â� | B̂�〉∗.

Hence, i〈� | Ĉ�〉 = 2iIm{〈Â� | B̂�〉}.

This means that Im{〈Â� | B̂�〉} = 〈�|Ĉ�〉2 , which gives |〈Â� | B̂�〉| ≥
∣∣∣〈�|Ĉ�〉∣∣∣

2 . Hence,

(�A)2 · (�B)2 ≥ |〈Â� | B̂�〉|2 ≥ |〈� | Ĉ�〉|
2

4
, (1.22)

or, taking into account that |〈� | Ĉ�〉| = |〈�|[ Â, B̂]�〉|, we have

�A ·�B ≥ 1

2
|〈� | [ Â, B̂]�〉|. (1.23)

51 This is because 〈( Â − 〈 Â〉)2〉 = 〈 Â2 − 2 Â〈 Â〉 + 〈 Â〉2〉 = 〈 Â2〉 − 2〈 Â〉2 + 〈 Â〉2 = 〈 Â2〉 − 〈 Â〉2.

http://booksite.elsevier.com/978-0-444-59436-5
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There are two important special cases:

(a) Ĉ = 0; i.e., the operators Â and B̂ commute. We have�A ·�B ≥ 0; i.e., the errors can
be arbitrarily small. Both quantities therefore can be measured simultaneously without
error.

(b) Ĉ = �, as in the case of x̂ and p̂x .

Then, (�A) · (�B) ≥ �

2 .

In particular, for Â = x̂ and B̂ = p̂x , if quantum mechanics is valid, one cannot measure the
exact position and the exact momentum of a particle. When precision with which x is measured
increases, the particle’s momentum has so wide a distribution that the error of determining px

is huge (see Fig. 1.13).52

The power of the Heisenberg uncertainty principle is seen, when it is used for estimation,
just from scratch, of the size of some systems.53

Example: Size of the Hydrogen Atom
How on earth can this be estimated from virtually no information? Let us see.
We assume that the electron moves, while the nucleus does not.54 Whatever the electron does

in the hydrogen atom, it has to conform to the uncertainty principle:
�x ·�px ≥ �

2 ; i.e., in the most compact state, we may expect the equality �x ·�px = �

2 .

We may estimate�x as the radius r of the atom, while�px =
√〈

p2
x

〉− 〈px 〉2 =
√〈

p2
x

〉− 0 =√〈
p2

x

〉
. Therefore, we have an estimation

r ·
√〈

p2
x

〉 = �

2 , or
√〈

p2
x

〉 = �

2r . The total energy may be estimated as the sum of the kinetic

and potential energies: E =
〈
p2

〉
2m − e2

r =
〈
p2

x+p2
y+p2

z

〉
2m − e2

r = 3�
2

8mr2 − e2

r . Now, let us find the

minimum of E(r) as its probable value: dE
dr = 0 = −2 3�

2

8mr3 + e2

r2 , or e2 = 3
4

�
2

mr . Hence, we

have an estimation: r = 3
4

�
2

me2 = 0.75 · a0, where a0 = 0.529 Å (as will be shown in Chapter 4,
Eq. (4.41), p. 202) is known as the “Bohr first orbit radius of the hydrogen atom.” Thus, just from
the Heisenberg uncertainty principle, we got a value, which has the correct order of magnitude!

Example: Size of Nucleus
How large is an atomic nucleus? Well, again, we may estimate its size from the Heisenberg

uncertainty principle knowing only one thing: that the binding energy per nucleon is of the

52 There is an apocryphal story about a Polizei patrol stopping Professor Heisenberg for speeding. The very serious
man asks: “Do you know how fast you were going when I stopped you?” Professor Heisenberg answered: “I have
absolutely no idea, Herr Oberleutnant, but I can tell you precisely where you stopped me.”

53 Energy and mass are also included here.
54 Note that from the momentum conservation law, we have that the nucleus moves 1840 times slower than the

electron. This practically means that the electron moves in the electric field of the immobilized nucleus.
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(a)

(b)

Fig. 1.13. Illustration of the Heisenberg uncertainty principle in the case of a single particle moving on the x axis. (a1) |�(x)|2
(i.e., the probability density distribution of finding the particle) as a function of coordinate x . The width of this distribution is related
to the expected error of determining x . The curve is narrow, which means that the error in determining the particle’s position is
expected to be small. Wave function �(x) can be expanded in the infinite series �(x) = ∑

p cp exp (i px), where p denotes the
momentum. Note that each individual function exp (i px) is an eigenfunction of momentum, and therefore, if �(x) = exp (i px),
a measurement of momentum would give exactly p. If, however, �(x) = ∑

p cp exp (i px), then such a measurement yields a

given p with the probability |cp |2. Panel (a2) shows cp as function of p. As one can see, a broad range of p (large uncertainty
of momentum) ensures a sharp |�(x)|2 distribution (small uncertainty of position). Simply, the waves exp (i px) to obtain a sharp
peak of �(x) should exhibit a perfect constructive interference in a small region and a perfect destructive interference elsewhere.
This requires a lot of different p’s i.e., a broad momentum distribution. Panels (b1-b2) show the same, but this time, a narrow p
distribution gives a broad x distribution. This means that a small error in determining the particle’s position is necessarily associated
with a large error in determining the particle’s momentum (Heisenberg uncertainty principle). The principle has nothing mysterious
in it and does not represent a unique feature of quantum mechanics. If one wanted to construct from the ocean waves (of various
directions and wavelengths) a tall water pole in the middle of the ocean, one would be forced to use many wavelengths to get the
constructive interference in one spot and destructive in all the others.

order of 8 MeV. We are now in the realm of nuclear forces acting among nucleons. It seems,
therefore, that our task is extremely difficult… We just ignore all these extremely complex
forces, considering instead a single nucleon moving in a mean potential, and bound with the
energy E = 8 MeV, and therefore has to be of the same order that its kinetic energy. We

focus on this kinetic energy55 of the nucleon, assuming simply that E =
〈
p2

〉
2m N
=

〈
(�p)2

〉
2m N

.

From this, we calculate
√〈
(�p)2

〉 = �p = √2m N E and, using the Heisenberg uncertainty

principle, we have the uncertainty of the nucleon’s position as a = �

2�p = �

2
√

2m N E
. Calculating

this in atomic units, we get (� = 1, e = 1,m = 1, where m is the electron mass: a =
�

2
√

2m N E
= 1

2
√

2·1840·8·106·3.67516·10−2
= 0.0000152 a.u.≈ 10−13 cm, 100000 times smaller than

55 We are interested in the order of its magnitude only.
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the hydrogen atom. Experiments confirm our number: this is indeed the order of magnitude of
the sizes of atomic nuclei.

1.4 The Copenhagen Interpretation of the World 56

The picture of the world that emerged from quantum mechanics was “diffuse” (Heisenberg
uncertainty principle) with respect to classical mechanics. In classical mechanics one could
measure a particle’s position and momentum with a desired accuracy,57 whereas the Heisenberg
uncertainty principle states that this is simply impossible.

Bohr presented a philosophical interpretation of the world, which at its foundation had in a
sense a non-reality of the world.

According to Bohr, before a measurement on a particle is made, nothing can be said
about the value of a given mechanical quantity, unless the wave function represents an
eigenfunction of the operator of this mechanical quantity. Moreover, except this case, the
particle does not have any fixed value of mechanical quantity at all.

A measurement gives a value of the mechanical property (A). Then, according to Bohr, after
the measurement is completed, the state of the system changes (the called wave function collapse
or decoherence) to the state described by an eigenfunction of the corresponding operator Â,
and as the measured value one obtains the eigenvalue corresponding to the wave function.
According to Bohr, there is no way to foresee which eigenvalue one will get as the result of
the measurement. However, one can calculate the probabilityof getting a particular eigenvalue.
This probability may be computed as the square of the overlap integral (cf., p. 26) of the initial
wave function and the eigenfunction of Â.

1.5 Disproving the Heisenberg Principle–Einstein-Podolsky-Rosen’s Recipe

The Heisenberg uncertainty principle came as a shock, many scientists felt a strong impulse
to prove that it was false. One of them was Albert Einstein, who used to play with ideas by
performing some imaginary ideal experiments (in German, Gedankenexperiment) in order to
demonstrate internal contradictions in theories. Einstein believed in the reality of our world.
With his colleagues Podolsky and Rosen (the “EPR team”), he designed a special Gedanken
experiment.58 It represented an attempt to disprove the Heisenberg uncertainty principle and

56 Schrödinger did not like the Copenhagen interpretation. Once Bohr and Heisenberg invited him for a Baltic Sea
cruise, they indoctrinated him so strongly that he became ill and stopped participating in their discussions.

57 This is an exaggeration. Classical mechanics also has its own problems with uncertainty. For example, obtaining
the same results for a game of dice would require a perfect reproduction of the initial conditions, which is never
feasible.

58 A. Einstein, B. Podolsky, and N. Rosen, Phys.Rev., 47, 777 (1935).
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to show that one can measure the position and momentum of a particle without any error. To
achieve this, they invoked the help of a second particle.

The key statement of the whole reasoning, given in the EPR paper, was the following: “If,
without in any way disturbing a system, we can predict with certainty (i.e., with probability
equal to unity) the value of a physical quantity, then there exists an element of physical reality
corresponding to this physical quantity.” EPR considered a coordinate system fixed in space and
two particles: 1 with coordinate x1 and momentum px1 and 2 with coordinate x2 and momentum
px2, the total system being in a state with well-defined total momentum: P = px1+ px2 and
well-defined relative position x = x1 − x2. The meaning of the words well-defined is that,
according to quantum mechanics, there is a possibility of the exact measurement of the two
quantities (x and P), because the two operators x̂ and P̂ do commute.59 At this point, Einstein
and his colleagues and the great interpreters of quantum theory agreed.

We now come to the crux of the real controversy.
The particles interact, then separate and fly far away (at any time, we are able to measure

exactly both x and P). When they are extremely far from each other (e.g., one close to us, the
other one millions of light years away), we begin to suspect that each of the particles may be
treated as free. Then, we decide to measure px1. However, after we do it, we know with absolute
certainty the momentum of the second particle px2 = P − px1, and this knowledge has been
acquired without any perturbation of particle 2. According to the above cited statement, one
has to admit that px2 represents an element of physical reality. So far, so good. However, we
might have decided with respect to particle 1 to measure its coordinate x1. If this happened,
then we would know with absolute certainty the position of the second particle, x2 = x − x1,
without disturbing particle 2 at all. Therefore, x2, as px2, is an element of physical reality.
The Heisenberg uncertainty principle says that it is impossible for x2 and px2 to be exactly
measurable quantities. The conclusion was that the Heisenberg uncertainty principle is wrong,
and quantum mechanics is at least incomplete.

A way to support the Heisenberg principle was to treat the two particles as an indivisible total
system and reject the supposition that the particles are independent, even if they are millions
of light years apart. This is how Niels Bohr defended himself against Einstein (and his two
colleagues). He said that the state of the total system in fact never fell apart into particles 1 and 2,
and still is in what is known as an entangled quantum state60 of the system of particles 1 and 2, and

any measurement influences the state of the system as a whole, independently of the distance
of particles A and B.

59 Indeed, x̂ P̂− P̂ x̂ = (x̂1−x̂2)( p̂x1+ p̂x2)−( p̂x1+ p̂x2)(x̂1−x̂2) = [x̂1, p̂x1]−[x̂2, p̂x2]+[x̂1, p̂x2]−[x̂2, p̂x1] =
−i�+ i�+ 0− 0 = 0.

60 In honour of Einstein, Podolsky, and Rosen, the entanglement of states is sometimes called the EPR effect.
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This reduces to the statement that measurement manipulations on particle 1 influence the
results of measurements on particle 2. This correlation between measurements on particles 1
and 2 has to take place immediately, regardless of the space that separates them.61 This is a
shocking and non-intuitive feature of quantum mechanics. This is why it is often said, also by
specialists, that quantum mechanics cannot be understood. One can apply it successfully and
obtain an excellent agreement with experiment, but there is something strange in its foundations.
This represents a challenge: an excellent theory, but based on some unclear foundations.

In the following, some precise experiments will be described, in which it is shown that
quantum mechanics is right, however absurd it looks.

1.6 Schrödinger’s Cat

The above mentioned paper by Einstein, Podolsky, and Rosen represented a severe critique of
quantum mechanics in the form that has been presented by its fathers. After its publication,
Erwin Schrödinger published a series of works62 showing some other problematic issues in
quantum mechanics. In particular, he described a Gedanken experiment, later known as the
Schrödinger’s cat paradox. According to Schrödinger, this paradox shows some absurd conse-
quences of quantum mechanics.

Here is the paradox. There is a cat closed in an isolated steel box (filled with air). Together
with the cat (but protected from it), there is a Geiger counter in the box. We put in the counter
a bit of a radioactive substance, carefully prepared in such a way that every hour, two events
happen with the same probability: either a radioactive nucleus decays or no radioactive nucleus
decays. If a nucleus decays, it causes ionization and electric discharge in the counter tube, which
in turn results in a hammer hitting a glass capsule with the hydrocyanic acid (HCN) gas, which
kills the cat. If one puts the cat in for an hour, then before opening the box, one cannot say the
cat is dead or alive. According to the Copenhagen interpretation, this is reflected by a proper
wave function � (for the box with everything in it), which is a superposition of two states with
equal probability amplitudes: one state corresponds to the cat being alive, the other to it being
dead. Therefore, function � describes a cat in an intermediate state, neither alive nor dead,
just in the middle between life and death, which, according to Schrödinger, would represent a
totally absurd description. Einstein joined Schrödinger enthusiastically in this mockery from
the Copenhagen interpretation, adding in his style an “even better” idea about how to kill the cat
(using gunpowder instead of the cyanide). All in all, in this way an atomic scale phenomenon

61 Nevertheless, the correlation is not quite clear. One may pose some questions. The statement about the instanta-
neous correlation between particles 1 and 2 in the EPR effect cannot be correct, because the measurements are
separated in the space-time manifold and the simultaneity is problematic (see Chapter 13). What is the laboratory
fixed coordinate system? How is information about particle 2 transferred to where we carry out the measurement
on particle 1? This takes time. After that time, particle 1 is elsewhere. Is there anything to say about the separation
time? In which coordinate system is the separation time measured?

62 E. Schrödinger, Naturwissenschaften 23, 807, 823, 844 (1935).
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(decay of a nucleus) can result in some drastic events in the macroscopic world. If, after an hour,
an observer opens the box (“measurement” of the state of the content of the box), then according
to the Copenhagen interpretation, this will result in the collapse of the corresponding wave
function, and the observer will find the cat either alive or dead. This is the crux of the paradox.

Since the early days of quantum mechanics, many scholars were trying to rationalize the para-
dox, always relying on some particular interpretation of quantum mechanics. In one of the inter-
pretations, quantum mechanics does not describe a single system, but rather an infinite set of sys-
tems. We have therefore plenty of cats and the same number of boxes, each of them with the same
macabre gear inside. Then, the paradox disappears, because, after the boxes are open, in 50% of
cases, the cats will be alive, and in 50%, they will be dead. In another interpretation, it is criticized
that Schrödinger treats the box as a quantum system, while the observer is treated classically. In
this interpretation, not only Schrödinger plays the role of the observer, but also the cat, and even
the box itself (since it may contain a camera). What happened may be described differently by
each of the observers, depending on what information they have about the whole system. For
example, in the cat (alive or dead), there is information about what has happened even before the
box is open. The human observer does not have this information. Therefore, the collapse of the
wave function happened earlier for the cat and later for the observer! Only after the box is open,
it will turn out for both the cat and the observer that the collapse happened to the same state.

Hugh Evereth stepped out with another, truly courageous, interpretation. According to Evereth,
we do not have a single universe, as most of us might think naively, but a plethora of coexisting
universes, and in each of them, some other things happen! When the box is opened, the state
of the box is entangled with the state of the observer, but then a collapse of the wave function
happens, and in one of the universes the cat is alive, but in the other one, it is dead (bifurcation).
These two universes evolve independently (“parallel universes”), and they do not know about
each other. Similar bifurcations happen massively in other events; hence, according to Evereth,
the number of parallel universes is astronomic.

The quantity of possible interpretations, with large differences among them and some of them
with a desperate character, indicate that the problem of understanding quantum mechanics is
still unsolved.

1.7 Bilocation

Assume that the world and everything in it (stars, Earth, Moon, … me, table, proton, electron,
etc.) exist objectively. One may suspect from everyday observations that this is the case. For
example, the Moon is seen by many people, who describe it in a similar way.63 Instead of the

63 This may indicate that the Moon exists independently of our observations and overcome importunate suspicions
that the Moon ceases to exist when we do not look at it. Besides, there are people who claim to have seen the
Moon from very close and even touched it (admittedly through a glove) and this slightly strengthens our belief in
the Moon’s existence. First of all, one has to be cautious. For example, some chemical substances, hypnosis, or
an ingenious set of mirrors may cause some people to be convinced about the reality of some phenomena, while
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Moon, let us begin with something simpler: how does this idea apply to electrons, protons,
or other elementary particles? This is an important question because the world as we know
it–including the Moon–is mainly composed of protons.64 Here, one encounters a mysterious
problem. I will try to describe it by reporting the results of several experiments.

Following Richard Feynman,65 imagine two slits in a wall. Every second (the time interval
has to be large enough to be sure that we deal with properties of a single particle), we send an
electron towards the slits. There is a screen behind the two slits, and when an electron hits the
screen, there is a flash (fluorescence) at the point of collision. Nothing special happens. Some
electrons will not reach the screen at all, but traces of others form a pattern, which seems quite
chaotic. The experiment looks monotonous and boring–just a flash here, and another there. One
cannot predict where a particular electron will hit the screen. But suddenly we begin to suspect
that there is some regularity in the traces (see Fig. 1.14).

A strange pattern appears on the screen: a number of high concentrations of traces are
separated by regions of low concentration. This resembles the interference of waves; e.g., a
stone thrown into water causes interference behind two slits: an alternation of high and low
amplitudes of water level. Well, but what does an electron have in common with a wave on the
water surface? The interference on water was possible because there were two sources of waves
(the Huygens principle) — that is, two slits.

Common sense tells us that nothing like this could happen with the electron, because first,
the electron could not pass through both slits, and, second, unlike the waves, the electron has
hit a tiny spot on the screen (transferring its energy). Let us repeat the experiment with a single
slit. The electrons go through the slit and make flashes on the screen here and there, but there is
only a single major concentration region (just facing the slit) fading away from the center (with
some minor minima).

This result should make you feel faint. Why? You would like the Moon, a proton, or an electron
to be solid objects, wouldn’t you? All investigations made so far indicate that the electron is a
pointlike elementary particle. If, in the experiments we have considered, the electrons were to be
divided into two classes (those that went through slit 1 and those that passed through slit 2), then
the electron patterns would be different. The pattern with the two slits had to be the sum of the
patterns corresponding to only one open slit (facing slit 1 and slit 2). We do not have that picture.

others do not see them. Yet, would it help if even everybody saw something? We should not verify serious things
by voting. The example of the Moon also intrigued others; cf., D. Mermin, “Is the Moon there, when nobody
looks?” Phys. Today, 38, 38 (1985).

64 In the darkest Communist times, a colleague of mine came to my office. Conspiratorially, very excitedly, he
whispered: “The proton decays!!!” He just read in a government newspaper that the lifetime of protons turned out
to be finite. When asked about the lifetime, he gave an astronomical number, something like 1030 years or so.
I said: “Why do you look so excited then and why all this conspiracy?” He answered: “The Soviet Union is built
of protons, and therefore is bound to decay as well!”

65 This is after Richard Feynman, The Character of Physical Law, MIT Press, Cambridge, MA, 1967.
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Fig. 1.14. Two-slit electron interference pattern registered by Akiro Tonomura. (a) 10 electrons; (b) 100 electrons; (c) 3000
electrons (one begins to suspect something); (d) 20000 electrons (no doubt, we will have a surprise); (e) 70000 electrons (here it
is!). The conclusion is that there is only one possibility–each electron went through the two slits (according to J. Gribbin, Q is for
Quantum: An Encyclopedia of Particle Physics, Weidenfeld and Nicolson, 1998).

The only explanation for this interference of the electron with itself is that with the two
slits open, it went through both.

Clearly, the two parts of the electron united somehow and caused the flash at a single point on
the screen. The quantum world is really puzzling. Despite the fact that the wave function is delo-
calized, the measurement gives its single point position (decoherence). How could an electron
pass simultaneously through two slits? We do not understand why, but this is what has happened.

Maybe it is possible to pinpoint the electron passing through two slits. Indeed, one may think
of the Compton effect: a photon collides with an electron and changes its direction, and this
can be detected (“a flash on the electron”). When one prepares two such ambushes at the two
open slits, it turns out that the flash is always on a single slit, not on both. This cannot be true!
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If it were true, then the pattern would be of a non-interference character (and had to be the sum
of the two one-slit patterns), but we have the interference: No, there is no interference. Now,
the pattern does not show the interference. The interference was when the electrons were not
observed. When we observe them, there is no interference. Somehow we have disturbed the
electron’s momentum (the Heisenberg principle), and the interference disappears.

We have to accept that the electron passes through two slits. Maybe it only pertains to the
electron, or maybe the Moon is something completely different. But this is a weak hope. The
same thing happens to protons. Sodium atoms were also found to interfere.66 A sodium atom,
of a few Å in diameter, looks like an ocean liner compared to a child’s toy boat of a tiny electron
(which is 42000 times less massive). And this ocean liner passed through two slits separated by
thousands of Å. At the end of 1999, similar interference was observed for the fullerene,67 a giant
C60 molecule that is about a million times more massive than the electron. It is worth noting
that after this adventure, the fullerene molecule remained intact. Somehow all its atoms, with
the details of their chemical bonds, preserved their nature. There is something intriguing in this.

1.8 The Magic of Erasing the Past

John Archibald Wheeler was not completely satisfied with the description of the hypothetical
two-slit experiment, if it were performed in an astronomically large distance scale. Indeed, there
was something puzzling about it. Suppose that the two slits are far away from us. A photon
goes through the slit region, and then flies toward us for a long time, and finally, it arrives
to our screen. With a large number of such photons, we obtain an interference picture on the
screen that witnesses each photon went through two slits. However, when a photon passed the
slit region, leaving the slits behind and heading toward us, we had plenty of time to think. In
particular, we might have an idea to replace the screen by two telescopes, each directed on one
slit. In similar situations, we never observed half of the photon in one telescope and half in the
other one: a photon was always seen in one telescope only. The telescopes allow us to identify
unambiguously the slit that the particular photon went through. Therefore, we may divide all
such photons into two classes (depending on the slit they went through) and their distribution
cannot be interference-like. Rather, it has to be bullet-like (it is a sum of distributions of both
classes). And now we have a paradox:

Quantum Eraser
Our decision (taken after the electrons passed the slits) to replace the screen by the tele-
scopes visibly changed the way the electrons have been passing through the slits. This
means our action changed the past!

66 To observe such phenomena, the slit distance has to be of the order of the de Broglie wavelength, λ = h/p, where
h is the Planck constant and p is the momentum. Cohen–Tannoudji lowered the temperature to such an extent that
the momentum was close to 0, and λ could be of the order of thousands of Å.

67 M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger, Nature, 401, 680 (1999).
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This strange behavior was confirmed experimentally in 2007.68 Note that we have changed the
past only in a very special sense, since we are speaking here about two separate experiments:
one with the telescopes and then the other one with the screen. This is not like undoing an
airplane catastrophe that has already taken place, but rather like changing something before the
catastrophe takes place in order not to have it happen.

1.9 A Test for a Common Sense: The Bell Inequality

John Bell proved a theorem in 1964 that pertains to the results of measurements carried out
on particles and some of the inequalities they have to fulfill. The theorem pertains to the basic
logic of the measurements and is valid independently of the kind of particles and of the nature
of their interaction. The theorem soon became very famous because it turned out to be a useful
tool allowing us to verify some fundamental features of our knowledge about the world.69

Imagine a launching gun (Fig. 1.15), which ejects a series of pairs of identical rectangular
bars flying along a straight line (no gravitation) in opposite directions (opposite velocities). The
axes of the bars are always parallel to each other and always perpendicular to a straight line.

Fig. 1.15. Bell inequalities. A bar launching gun adopts stochastic positions (of equal probability) when rotating about the axis.
Each time, the full magazine of bars is loaded. The slits also may be rotated about the axis. The bars arrive at slits A and B. Some
will go through and be detected behind the slits.

68 V. Jacques, E. Wu, F. Grosshans, F. Treussart, Ph. Grangier, A. Aspect, and J.-F. Roch, Science, 315, 966 (2007).
69 W. Kołos, Proceedings of the IV Castel Gandolfo Symposium of John Paul II, 1986.
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John Stuart Bell (1928–1990),
Irish mathematician at Cen-
tre Européen de la Recherche
Nucleaire (CERN) in Geneva.
In the 1960s, Bell attacked
an old controversion of local-
ity versus non-locality, hidden
variables, etc., apparently dis-
appointed after an exchange
of ideas between Einstein and
Bohr.

The launching machine is constructed
in such a way that the probabilities of
all orientations of the bars are equal,
and that any two launching series
are absolutely identical. At a certain
distance from the launching machine,
there are two rectangular slits A and B
(which are the same on both sides). If
the bar’s longer axis coincides with the
longer dimension of the slit, then the
bar will go through for sure and will be

registered as “1”; i.e., “it has arrived” by the detector. If the bar’s longer axis coincides with
the shorter axis of the slit, then the bar will not go through for sure, and will be detected as “0.”
For other angles between the bar and slit axes, the bar will sometimes go through (when it fits
the slit), sometimes not (when it does not).70

Having prepared the launching gun (our magazine contains 16 pairs of bars), we begin our
experiments. Four experiments will be performed. Each experiment will need the full magazine
of bars. In the first experiment, the two slits will be parallel. This means that the fate of both
bars in any pair will be exactly the same: if they go through, then both will; and if they are
stopped by the slits, both will be stopped. Our detectors have registered (we group the 16 pairs
in clusters of 4 to make the sequence more transparent):

Experiment I (angle 0)
Detector A: 1001 0111 0010 1001
Detector B: 1001 0111 0010 1001

Now, we repeat Experiment I, but this time, slit A will be rotated by a small angle α (Exper-
iment II). At slit B, nothing has changed, so we must obtain there exactly the same sequence
of zeros and ones as in Experiment I. At slit A, however, the results may be different. Since the
rotation angle is small, the difference list will be short. We might get the following result:

Experiment II (angle α)
Detector A: 1011 0111 0010 0001
Detector B: 1001 0111 0010 1001

There are two differences (highlighted in bold) between the lists for the two detectors.

70 Simple reasoning shows that for a bar of length L , two possibilities: “to go through” and “not to go through” are

equally probable (for a bar of zero width) if the slit width is equal to L√
2

.
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Now, we move on to Experiment III. This time, slit A comes back to its initial position, but slit
B is rotated by−α. Because of our perfect gun, we must obtain at detector A the same result as in
Experiment I. However, at slit B, we find some difference with respect to Experiments I and II:

Experiment III (angle −α)
Detector A: 1001 0111 0010 1001
Detector B: 1001 0011 0110 1001

There are two differences (shown in bold) between the two detectors.
We now carry out Experiment IV. We rotate slit A by angle α, and slit B by angle −α.

Therefore, at detector A, we obtain the same results as in Experiment II, while at detector B, it
is the same as in Experiment III. Therefore, we detect the following:

Experiment IV (angle 2α)
Detector A: 1011 0111 0010 0001
Detector B: 1001 0011 0110 1001

Now there are four differences between Detector A and Detector B (shown in bold). In
Experiment IV, the number of differences could not be larger (Bell inequality). In our case, it
could be four or fewer. When would it be fewer? That would happen when accidentally the bold
figures (i.e., the differences of Experiments II and III with respect to those of Experiment I)
coincide. In this case, this would be counted as a difference in Experiments II and III, while in
Experiment IV, it would not be counted as a difference.

Thus, we have demonstrated

Bell Inequality:
N (2α) ≤ 2N (α), (1.24)

where N stands for the number of measurement differences. The Bell inequality was derived
under the assumption that whatever happens at slit A, it does not influence what happens
at slit B (this is how we constructed the counting tables) and that the two flying bars have
(perhaps unknown by the observer) only a real (definite) direction in space, the same for
both bars.

It would be interesting to perform a real experiment similar to Bell’s to confirm the Bell
inequality, as discussed in the next section. This opens the door for deciding in a physical
experiment whether:

• Elementary particles are classical (though extremely small) objects that have some well-
defined attributes regardless of whether we observe them (Einstein’s view)

• Elementary particles do not have such attributes, and only measurements themselves make
them acquire measured values (Bohr’s view).
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1.10 Photons Violate the Bell Inequality

French scientists from the Institute of Theoretical and Applied Optics in Orsay published the
results of their experiments with photons.71 The excited calcium atom emitted pairs of photons
(analogs of our bars), which moved in opposite directions and had the same polarization. After
flying about 6 m, they both met the polarizers — analogs of slits A and B in the Bell procedure.
A polarizer allows a photon with polarization state |0〉, or parallel (to the polarizer axis), always
pass through, and always rejects any photon in the polarization state |1〉, or perpendicular (indeed
perpendicular to the above parallel setting). When the polarizer is rotated about the optical axis
by an angle, it will pass through a percentage of the photons in state |0〉 and a percentage of the
photons in state |1〉. When both polarizers are in the parallel setting, there is perfect correlation
between the two photons of each pair; i.e., exactly as in Bell’s Experiment I. In the photon experi-
ment, this correlation was checked for 50 million photons every second for about 12000 seconds.

Bell’s experiments II–IV have been carried out. Common sense indicates that, even if the two
photons in a pair have random polarizations (perfectly correlated though always the same, like
the bars), they still have some polarizations; i.e., it may be unknown but definite (as in the case
of the bars; i.e., what E,P, and R believed happens). Hence, the results of the photon experiments
would have to fulfil the Bell inequality. However, the photon experiments have shown that the
Bell inequality is violated, but the results remain in accordance with the prediction of quantum
mechanics.

There are therefore only two possibilities (compare the two points at the end of the previous
section):

(a) either the measurement on a photon carried out at polarizer A(B) results in some instanta-
neous interaction with the photon at polarizer B(A)

(b) or/and, the polarization of any of these photons is completely indefinite (even if the polar-
izations of the two photons are fully correlated i.e., the same) and only the measurement
on one of the photons at A (B) determines its polarization, which results in the automatic
determination of the polarization of the second photon at B(A), even if they are separated
by millions of light years.

Both possibilities are sensational. The first assumes a strange form of communication between
the photons or the polarizers. This communication must be propagated with a velocity exceeding
the speed of light because an experiment was performed in which the polarizers were switched
(this took something like 10 nanoseconds) after the photons started (their flight took about 40
nanoseconds). Despite this, communication between the photons did exist.72 Possibility b) as a
matter of fact represents Bohr’s interpretation of quantum mechanics: elementary particles do
not have definite attributes (e.g., polarization).

71 A. Aspect, J. Dalibard, and G. Roger, Phys.Rev.Lett. 49, 1804 (1982).
72 This again is the problem of delayed choice. It seems that when starting, the photons have a knowledge of the

future setting of the apparatus (the two polarizers).
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As a result, there is a dilemma: either the world is “non-real” (in the sense that the properties
of particles are not determined before measurement) or/and there is instantaneous (i.e.,
faster than light) communication between particles which operates independently of how
far apart they are (“non-locality”).

This dilemma may make everybody’s metaphysical shiver.

1.11 Teleportation

The idea of teleportation comes from science fiction. In general, it refers to the following:

• Acquisition of full information about an object located at A,
• Its transmissionto B,
• Creation (materialization) of an identical object at B,
• At the same time, the disappearance of the object at A.

At first sight, it seems that this contradicts quantum mechanics. The Heisenberg uncertainty
principle says that it is not possible to prepare a perfect copy of the object, because in the case
of mechanical quantities with non-commuting operators (like positions and momenta), there is
no way to have them measured exactly, in order to rebuild the system elsewhere with the same
values of the quantities.

The trick is, however, that the quantum teleportation we are going to describe, will not violate
the Heisenberg principle because the mechanical quantities needed will not be measured and
the copy made based on their values.

The teleportation protocol was proposed by Bennett and coworkers,73 and applied by Anton
Zeilinger’s group.74 The latter used the entangled states (EPR effect) of two photons described
above.75

Assume that photon A (number 1) from the entangled state belongs to Alice, and photon B
(number 2) to Bob. Alice and Bob introduce a common fixed coordinate system. Both photons
have identical polarizations in this coordinate system, but neither Alice nor Bob knows which.
Alice may measure the polarization of her photon and send this information to Bob, who may
prepare his photon in that state. This, however, does not amount to teleportation because the
original state could be a linear combination of the |0〉 (parallel) and |1〉 (perpendicular) states.

73 C.H. Benneth, G. Brassard, C. Crépeau, R. Josza, A. Peres, and W.K. Wootters, Phys.Rev.Letters, 70, 1895 (1993).
74 At the time, this group was working at the University of Innsbruck (Austria).
75 An ultraviolet (UV) laser beam hits a barium borate crystal (known for its birefringence). Photons with parallel

polarization move along the surface of a cone (with the origin at the beam-surface collision point), and the photons
with perpendicular polarization move on another cone, with the two cones intersecting. From time to time, a single
UV photon splits into two photons of equal energies and different polarizations. Two such photons when running
along the intersection lines of the two cones, and therefore not having a definite polarization (i.e., being in a
superposition state composed of both polarizations), represent the two entangled photons.
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In such a case, Alice’s measurement would “falsify” the state due to wave function collapse (it
would give either |0〉 or |1〉; cf. p. 24).

Since Alice and Bob have two entangled photons of the same polarization, let us assume that
the state of the two photons is the following superposition76: |00 > +|11 >, where the first
position in every ket pertains to Alice’s photon, and the second one pertains to Bob’s.

Now, Alice wants to carry out teleportation of her additional photon (number 3) in an unknown
quantum stateφ = a|0〉+b|1〉 (known as qubit), where a and b stand for unknown coefficients77

satisfying the normalization condition a2+b2 = 1. Therefore, the state of three photons (Alice’s:
the first and the third position in the three-photon ket; and, Bob’s: the second position) will be[|00〉 + |11〉] [

a|0〉 + b|1〉] = a|000〉 + b|001〉 + a|110〉 + b|111〉.
Alice prepares herself for teleportation of the qubit φ corresponding to her second photon.

She first prepares a device called the XOR gate.78

What is the XOR gate? The device manipulates two photons. One is treated as the steering
photon, the second as the steered photon (see Table 1.1). The device operates thus: if the steering
photon is in state |0〉, then no change is introduced for the state of the steered photon. If, however,
the steering photon is in the state |1〉, the steered photon will be switched over; i.e., it will be
changed from 0 to 1 or from 1 to 0. Alice chooses the photon in the state φ as her steering
photon 3, and photon 1 as her steered photon.

After the XOR gate is applied, the state of the three photons will be as follows: a|000〉 +
b|101〉 + a|110〉 + b|011〉.

Alice continues her preparation by using another device called the Hadamard gate, which
operates on a single photon and does the following:

|0〉 → 1√
2

(|0〉 + |1〉) ,
|1〉 → 1√

2

(|0〉 − |1〉) .

Table 1.1. The XOR gate changes the state of the steered photon, only when the
steering photon is on.

Steering Steered before XOR Steered after XOR

|0〉 |0〉 |0〉
|0〉 |1〉 |1〉
|1〉 |0〉 |1〉
|1〉 |1〉 |0〉

76 The teleportation result does not depend on the state.
77 Neither Alice nor Bob will know these coefficients up to the end of the teleportation procedure, but Alice still will

be able to send her qubit to Bob!
78 In the expression, XOR is the abbreviation of “eXclusive OR.”
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Alice applies this operation to her photon 3, and after that, the three-photon state is changed
to the following:

1√
2
[a|000〉 + a|001〉 + b|100〉 − b|101〉 + a|110〉 + a|111〉 + b|010〉 − b|011〉]

= 1√
2
[|0 (

a|0〉 + b|1〉) 0〉 + |0 (
a|0〉 − b|1〉) 1〉 − |1 (

a|1〉 + b|0〉) 0〉 + |1 (
a|1〉 − b|0〉) 1〉].

(1.25)

There is a superposition of four three-photon states in the last row. Each state shows the state
of Bob’s photon (number 2 in the ket), at any given state of Alice’s two photons. Finally, Alice
carries out the measurement of the polarization states of her photons (1 and 3). This inevitably
causes her to get (for each of the photons) either |0〉 or |1〉. This causes her to know the state of
Bob’s photon from the three-photon superposition [Eq. (1.25)]:

• Alice’s photons 00; i.e., Bob has his photon in state
(
a|0〉 + b|1〉) = φ.

• Alice’s photons 01; i.e., Bob has his photon in state
(
a|0〉 − b|1〉).

• Alice’s photons 10; i.e., Bob has his photon in state
(
a|1〉 + b|0〉).

• Alice’s photons 11; i.e., Bob has his photon in state
(
a|1〉 − b|0〉).

Then Alice calls Bob and tells him the result of her measurements of the polarization of her
two photons.

Bob knows therefore, that if Alice sends him |00〉, this means that the teleportation is over:
he already has his photon in state φ! If Alice sends him one of the remaining possibilities,
he would know exactly what to do with his photon to prepare it in state φ, and he does this
with his equipment. The teleportation is over: Bob has the teleported state φ, Alice has lost
her photon state φ when performing her measurement (wave function collapse).

Note that to carry out the successful teleportation of a photon state, Alice had to communicate
something to Bob by a classical channel (like a telephone).

1.12 Quantum Computing

Richard Feynman pointed out that contemporary computers are based on the “all-or-nothing”
philosophy (two bits: |0〉 or |1〉), while in quantum mechanics, one may also use a linear
combination (superposition) of these two states with arbitrary coefficients a and b: a|0〉 +
b|1〉. Would a quantum computer based on such superpositions be better than the traditional
one? The hope associated with quantum computers relies on a multitude of the quantum states
(those obtained using variable coefficients a, b, c, . . .) and possibility of working with many of
them using a single processor. It was (theoretically) proved in 1994 that quantum computers
could factorize natural numbers much faster than traditional computers. This sparked intensive
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research on the concept of quantum computation, which uses the idea of entangled states.
According to many researchers, any entangled state (a superposition) is extremely sensitive
to the slightest interaction with the environment, and as a result, decoherence takes place very
easily, which is devastating for quantum computing.79 The first attempts at constructing quantum
computers were based on protecting the entangled states, but, after a few simple operations,
decoherence took place.

In 1997, Neil Gershenfeld and Isaac Chuang discovered that any routine nuclear magnetic
resonance (NMR) measurement represents nothing but a simple quantum computation. The
breakthrough was recognizing that a qubit may be also represented by the huge number of
molecules in a liquid.80 The nuclear spin angular momentum

(
say, corresponding to s = 1

2

)
is

associated with a magnetic dipole moment (Chapter 12), and those magnetic dipole moments
interact with an external magnetic field and with themselves. An isolated magnetic dipole
moment has two states in a magnetic field: a lower energy state corresponding to the antiparallel
configuration (state |0〉) and a higher energy state related to the parallel configuration (state
|1〉). By exposing a sample to a carefully tailored nanosecond radiowave impulse, one obtains a
rotation of the nuclear magnetic dipoles, which corresponds to their state being a superposition
a|0〉 + b|1〉.

Here is a prototype of the XOR gate. Take chloroform81
[

13CHCl3
]

as our example. Due to
the interaction of the magnetic dipoles of the proton and of the carbon nucleus (both either in
parallel or antiparallel configurations with respect to the external magnetic field), a radiowave
impulse of a certain frequency causes the carbon nuclear spin magnetic dipole to rotate by
180 degrees, provided that the proton spin dipole moment is parallel to that of the carbon. 82

Similarly, one may conceive other logical gates. The spins change their orientations according to
a sequence of impulses, which play the role of a computer program. There are many technical
problems to overcome in the quantum computers “in liquid” : the magnetic interaction of
distant nuclei is very weak, decoherence remains a worry, and for the time being, the number of
operations is limited to several hundred. However, this is only the beginning of a new computer
technology. It is most important that chemists know the future computers well–they are simply
molecules.

79 It pertains to an entangled state of (already) distant particles. When the particles interact strongly, the state is more
stable. The wave function for H2 also represents an entangled state of two electrons with opposite spins, yet the
decoherence does not take place even at short internuclear distances. As we will see, entangled states can also be
obtained in liquids.

80 Interaction of the molecules with the environment does not necessarily result in decoherence.
81 The NMR operations on spins pertain in practice to a tiny fraction of the nuclei of the sample (of the order of

1 : 1000000)
82 This is indeed consistent with the XOR gate logical table because for the parallel spins (entries: 00 and 11), the

output is 0 (meaning transition), while for the opposite spins (entries: 01 and 10) the output is 1 (meaning no
transition).
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Summary

Classical mechanics was unable to explain certain phenomena: black body radiation, the photoelectric effect, and the
stability of atoms and molecules, as well as their spectra. Quantum mechanics, created mainly by Werner Heisenberg
and Erwin Schrödinger, explained these effects. The new mechanics was based on six postulates:

• Postulate I says that all information about the system follows from the wave function ψ . The quantity |ψ |2
represents the probability density of finding particular values of the coordinates of the particles that the system
is composed of.

• Postulate II allows mechanical quantities (e.g., energy) to be ascribed to operators. One obtains the operators
by writing down the classical expression for the corresponding quantity and replacing momenta (e.g., px ) by

momenta operators
(

here, p̂x = −i� ∂
∂x

)
.

• Postulate III gives the time evolution equation for the wave function ψ (time-dependent Schrödinger equation

Ĥψ = i� ∂ψ
∂t ), using the energy operator (Hamiltonian Ĥ ). For time-independent Ĥ one obtains the time-

independent Schrödinger equation Ĥψ = Eψ for the stationary states.
• Postulate IV pertains to ideal measurements. When making a measurement of a quantity A, one can obtain only

an eigenvalue of the corresponding operator Â. If the wave function ψ represents an eigenfunction of Â [i.e.,
( Âψ = aψ)], then one obtains always the eigenvalue corresponding toψ (i.e., a) as a result of the measurement.
If, however, the system is described by a wave function, which does not represent any eigenfunction of Â, then
one obtains also an eigenvalue of Â, but there is no way to predict which eigenvalue. The only thing one can

predict is the mean value of many measurements, which may be computed as ā =
〈
ψ | Âψ

〉
〈ψ |ψ〉 .

• Postulate V says that an elementary particle has an internal angular momentum (spin). One can measure only

two quantities: the square of the spin length s
(
s + 1

)
�

2 and one of its components ms�, where ms = −s,−s+
1, . . . ,+s, with spin quantum number s ≥ 0 that is characteristic of the type of particle (integers for bosons,
half-integers for fermions). The spin magnetic quantum number ms takes 2s + 1 values, related to the 2s + 1
values of the (granular) spin coordinate σ .

• Postulate VI has to do with the symmetry of the wave function with respect to different labeling identical
particles. If one exchanges the labels of two identical particles (the exchange of all the coordinates of the two
particles), then for two identical fermions, the wave function has to change its sign (antisymmetric), while for
two identical bosons, the function does not change (symmetry). As a consequence, two identical fermions with
the same spin coordinate cannot occupy the same point in space.

Quantum mechanics is one of the most peculiar theories. It gives numerical results that agree extremely well
with experiments, but on the other hand, the relation of these results to our everyday experience sometimes seems
shocking. For example, it turned out that a particle or even a molecule may somehow exist in two locations (it passes
through two slits simultaneously), but when one verifies this, it is always in one place. It also turned out that

• Either a particle has no definite properties (“the world is unreal”), and the measurement fixes them somehow
• Or/and, there is instantaneous communication between particles, however distant they are from each other

(“non-locality of interactions”).

It turned out that in the Bohr-Einstein controversy, Bohr was right. The Einstein-Podolsky-Rosen paradox resulted
(in agreement with Bohr’s view) in the concept of entangled states. These states have been used experimentally teleport
a photon state without violating the Heisenberg uncertainty principle. Also, the entangled states stand behind the idea
of quantum computing: with a superposition (qubit) of two states a|0〉 + b|1〉 instead of |0〉 and |1〉 as information
states.
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Main Concepts, New Terms

antisymmetric function (p. 34)
axis of quantization (p. 24)
Bell inequality (p. 47)
bilocation (p. 43)
decoherence (p. 40)
delayed choice (p. 50)
Dirac notation (p. 20)
eigenfunction (p. 22)
eigenvalue problem (p. 22)
entangled states (p. 41)
EPR effect (p. 40)
experiment of Aspect (p. 50)
Gedankenexperiment (p. 40)
Heisenberg uncertainty principle (p. 12)
Hilbert space (p. 8)
interference of particles (p. 44)
locality of the world (p. 49)
logical gate (p. 54)
mean value of an operator (p. 25)
measurement (p. 22)

normalization (p. 18)
operator of a quantity (p. 18)
Pauli exclusion principle (p. 34)
Pauli matrices (p. 29)
quantum eraser (p. 46)
qubit (p. 52)
“reality of the world” (p. 40)
Schrödinger’s cat (p. 42)
singlet state (p. 32)
spin angular momentum (p. 26)
spin coordinate (p. 27)
stationary state (p. 22)
symmetric function (p. 34)
symmetry of wave function (p. 34)
teleportation (p. 51)
time evolution equation (p. 21)
triplet state (p. 32)
wave function (p. 16)
wave function collapse (p. 24)

From the Research Front

Until recently, the puzzling foundations of quantum mechanics could not be verified directly by experimentation. As
a result of enormous technological advances in quantum electronics and quantum optics, it became possible to carry
out experiments on single atoms, molecules, photons, etc. In 2004 a group of researchers has teleported for the first
time an atomic state83, while another group84 has successfully performed teleportation of a photon state across the
Danube river (at a distance of 600 m). Even molecules such as fullerene were subjected to successful interference
experiments. Quantum computer science is just beginning to prove that its principles are correct.

Ad Futurum

Quantum mechanics has been shown in the past to give excellent results, but its foundations are still unclear.85 There
is no successful theory of decoherence that would explain why and how a delocalized state becomes localized after
the measurement. It is possible to make fullerene interfere, and it may be that in the near future, we will be able to
do this with a virus.86 It is interesting that fullerene passes instantaneously through two slits with its whole complex
electronic structure, as well as a nuclear framework, although the de Broglie wavelength is quite different for the
electrons and for the nuclei. Visibly, the “overweighted” electrons interfere differently than free ones. After fullerene
passes the slits, one sees it in a single spot on the screen (decoherence). It seems that there are cases when even strong

83 M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, M. Ruth, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher,
F. Schmidt-Kaler, D. F. V. James, and R. Blatt, Nature 429, 734 (2004).

84 R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther and A. Zeilinger, Nature 430,
849 (2004).

85 A pragmatic viewpoint is shared by the vast majority: “Do not wiseacre, just compute!”
86 A similar statement has been made by Anton Zeilinger.
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interaction does not make decoherence necessary. Sławomir Szymański presented his theoretical and experimental
results87 and showed that the functional group –CD3 exhibits a delocalized state (which corresponds to its rotation
instantaneously in both directions; i.e., coherence) and, which makes the thing more peculiar, interaction with the
environment not only does not destroy the coherence, but makes it more robust. This type of phenomenon might fuel
investigations towards future quantum computer architecture.

Additional Literature
The Ghost in the Atom: A Discussion of the Mysteries of Quantum Physics, P.C.W. Davies and J.R. Brown, eds,
Cambridge University Press, Cambridge, UK, (1986).

Two BBC journalists interviewed eight outstanding physicists: Alain Aspect (photon experiments), John Bell
(Bell inequalities), John Wheeler (Feynman’s Ph.D. supervisor), Rudolf Peierls (“Peierls metal-semiconductor tran-
sition”), John Taylor (“black holes”), David Bohm (“hidden parameters”), and Basil Hiley (“mathematical founda-
tions of quantum physics”). It is most striking that all these physicists give very different theoretical interpretations
of quantum mechanics (summarized in Chapter 1).

R. Feynman, QED–The Strange Theory of Light and Matter, Princeton University Press, Princeton, NJ (1985).
Excellent popular presentation of quantum electrodynamics written by one of the outstanding physicists of the

20th century.

A. Zeilinger, “Quantum teleportation,” Scientific American, 282, 50 (2000).
The leader in teleportation describes this new field of study.

N. Gershenfeld, and I.L. Chuang “Quantum computing with molecules,” Scientific American, 278, 66 (1998).
First-hand information about NMR computing.

Ch.H. Bennett “Quantum information and computation,” Physics Today, 48, 24 (1995).
Another first-hand description of NMR computing.

Questions

1. When we insert into ψ some particular values of the variables, we obtain a number c. Which of the following
statements about c is correct?

a. c = 1 for a normalized ψ
b. c may be a complex number and c∗c means the probability density for the system having the variables at

these particular values
c. |c|2 means the probability for having the system with variables equal to these particular values
d. c is either positive or zero

2. For a Hermitian operator Â and all functions ψi from its domain, one has:

a. Âψi = Âψ j

b.
〈
Âψi | ψ j

〉
=

〈
ψ j | Âψi

〉
c.

〈
Âψi | ψ j

〉
=

〈
ψi | Âψ j

〉
d.

〈
Âψi | Âψ j

〉
= 〈
ψi | ψ j

〉
3. If operators Â and B̂ commute:

a. any eigenfunction of Â represents also an eigenfunction of B̂

87 S. Szymański, J. Chem. Phys. 111, 288 (1999).
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b. one can choose such a set of functions, that any eigenfunction of Â is also an eigenfunction of B̂
c. the quantities A and B are both exactly measurable (without making any error)

d. Â B̂ − B̂ Â = 0

4. For a Hermitian operator Â : Âψ1 = a1ψ1 and Âψ2 = a2ψ2.

a. then ψ1 = ψ2 and a1 = a2

b. function ψ = c1ψ1 + c2ψ2 (c1 and c2 are complex numbers) also represents an eigenfunction of Â
c. If a1 = a2, function ψ = c1ψ1 + c2ψ2 (c1 and c2 are complex numbers) represents an eigenfunction of

Â
d. a∗1 = a1 and a∗2 = a2

5. For functions ψ1 and ψ2 satisfying Âψ1 = a1ψ1 and Âψ2 = a2ψ2 ( Â is a Hermitian operator), one has:

a. 〈ψ1 | ψ1〉 = 1, 〈ψ2 | ψ2〉 = 1 and 〈ψ1 | ψ2〉 = 0
b. 〈ψ1 | ψ2〉 = 0
c. 〈ψ1 | ψ1〉 > 0 and 〈ψ2 | ψ2〉 > 0
d. 〈ψ1 | ψ2〉 = 0, if a1 �= a2.

6. Hamiltonian Ĥ for a particle of mass m and with the potential energy − 1
r6 , where r stands for the distance of

the particle from the center of the coordinate system, has which of the following forms:

a.
�

2

2m
�− 1

r6

b. − �
2

2m

(
∂2

∂x2 +
∂2

∂ y2 +
∂2

∂z2

)
− 1

r6

c. − �
2

2m
�

1

r6

d. − �
2

2m
�− 1

r6

7. The angle between spins of two electrons in the singlet state is equal γ , while in their triplet state ω. These
angles are:

a. γ = 180◦ ω = 0◦
b. γ = 180◦ ω is different in any of the three triplet states
c. γ and ω are undetermined

d. γ = 0◦ ω = arccos 1
3

8. The mean value of quantity A from measurements should be compared to ā (wave function ψ normalized)
expressed in which of the following ways?

a. ā =
〈
ψ | Âψ

〉
〈ψ | ψ〉

b. ā =
〈
ψ | Âψ

〉
c. ā = 1

N
∑k=N

k=1 ak , where N stands for the number of the eigenvalues ak

d. ā = ∫
ψ∗ Âψdτ , where the integration is over the whole range of the variables

9. The error�A of measurement of the physical quantity A, which the Heisenberg uncertainty principle is talking
about, means (wave function ψ is normalized):

a. �A =
√〈
ψ | Â2ψ

〉
−

〈
ψ | Âψ

〉2

b. �A =
√〈
ψ | � Â2ψ

〉
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c. �A =
√(〈

ψ | Â −
〈
ψ | Âψ

〉
| ψ

〉)2

d. �A =
√〈
ψ | ( Â −

〈
ψ | Âψ

〉
)2 | ψ

〉
10. The teleportation experiments carried out so far:

a. pertain to sending a photon from place A to B without violation of the Heisenberg uncertainty principle
b. the teleported state of the photon disappears from spot A and appears in spot B
c. require a classical communication channel between the sender and the receiver
d. pertain to exchange of the entangled particles between the sender and the receiver

Answers

1b, 2c, 3b,c,d, 4c,d, 5c,d, 6b,d, 7d, 8a,b,d, 9a,d, 10b,c





CHAPTER 2

The Schrödinger Equation

Litterarum radices amarae sunt, fructus iucundiores.
The roots of science are bitter, while sweet are the fruits.

(Latin maxim)

Where Are We?
The postulates constitute the foundation of quantum mechanics (the base of the TREE trunk). One of their conse-
quences is the Schrödinger equation for stationary states. Thus, we begin our itinerary with the TREE. The second
part of this chapter is devoted to the time-dependent Schrödinger equation, which, from the pragmatic point of view,
is outside the scope of this book (which is why it is a side branch on the left side of the TREE).

An Example

A friend asked us to predict what the UV spectrum of anthracene1 (see Fig. 2.1 ) looks like. One can predict any
UV spectrum if one knows the electronic stationary states of the molecule. The only way to obtain such states and
their energies is to solve the time-independent Schrödinger equation. Thus, one has to solve the equation for the
Hamiltonian for anthracene, then find the ground (the lowest) and the excited stationary states. The energy differences
of these states will tell us where (in the energy scale) to expect light absorption, then the wave functions will enable
us to compute the intensity of this absorption.

What Is It All About?

Symmetry of the Hamiltonian and Its Consequences (��) p. 63

• The Non-Relativistic Hamiltonian and Conservation Laws
• Invariance with Respect to Translation
• Invariance with Respect to Rotation
• Invariance with Respect to Permutation of Identical Particles (Fermions and Bosons)
• Invariance of the Total Charge
• Fundamental and Less Fundamental Invariances

1 Anthracene consists of three condensed benzene rings ( ).

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00002-7
© 2014 Elsevier B.V. All rights reserved. 61

http://dx.doi.org/10.1016/B978-0-444-59436-5.00002-7
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Fig. 2.1. The UV-VIS spectrum of anthracene.

• Invariance with Respect to Inversion–Parity
• Invariance with Respect to Charge Conjugation
• Invariance with Respect to the Symmetry of the Nuclear Framework
• Conservation of Total Spin
• Indices of Spectroscopic States

Schrödinger Equation for Stationary States (�) p. 77

• Wave Functions of Class Q
• Boundary Conditions
• An Analogy
• Mathematical and Physical Solutions

The Time-Dependent Schrödinger Equation (�) p. 84

• Evolution in Time
• Time Dependence of Mechanical Quantities
• Energy is Conserved
• Symmetry is Conserved
• Meditations at a Spring
• Linearity

Evolution After Switching a Perturbation (�) p. 90

• The Two-State Model–Time-Independent Perturbation
• Two States–Degeneracy
• Short-Time Perturbation–The First-Order approach
• Time-Independent Perturbation and the Fermi Golden Rule
• The Most Important Case: Periodic Perturbation

The time-independent Schrödinger equation is the one place where stationary states can be produced as solutions
of the equation. The time-dependent Schrödinger equation is the equation of motion, describing the evolution of
a given wave function as time passes. As always with an equation of motion, one has to provide an initial state
(starting point); i.e., the wave function for t = 0. Both the stationary states and the evolution of the non-stationary
states depend on the energy operator (the Hamiltonian). If one finds some symmetry with the Hamiltonian, this will
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influence the symmetry of the wave functions. At the end of this chapter, we will be interested in the evolution of a
wave function after applying a perturbation.

Why Is This Important?

The wave function is a central notion in quantum mechanics and is obtained as a solution of the Schrödinger equation.
Hence, this chapter is necessary for understanding quantum chemistry.

What Is Needed?
• Postulates of quantum mechanics; Chapter 1 (necessary)
• Matrix algebra; see Appendix A available at booksite.elsevier.com/978-0-444-59436-5, on p. e1 (advised)
• Center-of-mass separation; see Appendix I available at booksite.elsevier.com/978-0-444-59436-5, on p. e93

(necessary)
• Translation vs momentum and rotation vs angular momentum; see Appendix F available at booksite.elsevier.com/

978-0-444-59436-5, on p. e73 (necessary)
• Dirac notation; p. 20 (necessary)
• Two-state model; see Appendix D available at booksite.elsevier.com/978-0-444-59436-5, on p. e65 (necessary)
• Dirac delta; see Appendix E available at booksite.elsevier.com/978-0-444-59436-5, on p. e69 (necessary)

Classical Works

A paper by the mathematician Emmy Noether “Invariante Variationsprobleme,” published in Nachrichten von
der Gesellschaft der Wissenschaften zu Göttingen, (1918), pp. 235–257, was the first to follow the conservation
laws of certain physical quantities with the symmetry of theoretical descriptions of the system. � Four papers
by Erwin Schrödinger, which turned out to cause an “earthquake” in science: Annalen der Physik, 79(1926)361;
ibid., 79(1926)489; ibid. 80(1926)437; ibid. 81(1926)109, all under the title “Quantisierung als Eigenwertproblem,”
presented quantum mechanics as an eigenvalue problem (known from the developed differential equation theory),
instead of an abstract Heisenberg algebra. Schrödinger proved the equivalence of both theories, gave the solution for
the hydrogen atom, and introduced the variational principle. � The time-dependent perturbation theory described
in this chapter was developed by Paul Dirac in 1926. Twenty years later, Enrico Fermi, lecturing at the University
of Chicago, coined the term “the Golden Rule” for these results. From then on, they became known as the “Fermi
Golden Rule.”

2.1 Symmetry of the Hamiltonian and Its Consequences

2.1.1 The Non-Relativistic Hamiltonian and Conservation Laws

From classical mechanics, it follows that for an isolated system (and assuming the forces to
be central and obeying the action-reaction principle), its energy, momentum, and angular
momentum, are conserved.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Emmy Noether (1882–1935), German
mathematician, informally professor,
formally only the assistant of David
Hilbert at the University of Göttin-
gen (in the first quarter of the 20th
century, women were not allowed
to be professors in Germany). Her
outstanding achievements in mathe-
matics meant nothing to the Nazis,
because Noether was Jewish, and in
1933, Noether was forced to emigrate
to the United States and join the Insti-
tute for Advanced Study at Princeton
University.

Imagine a well-isolated space-
ship observed in a space-fixed
coordinate system. Its energy
is preserved, its center of mass
moves along a straight line with
constant velocity (the total, or
center-of-mass, momentum vector
is preserved), and it preserves
the total angular momentum2. The
same is true for a molecule or atom,
but the conservation laws have to
be formulated in the language of
quantum mechanics.

Where did the conservation laws come from? Emmy Noether proved that they follow from
the symmetry operations, with respect to which the equation of motion is invariant.3

Thus, it turns out that invariance of the equation of motion with respect to an arbitrary
translation in time (time homogeneity) results in the energy conservation principle; with
respect to translation in space (space homogeneity) gives the total momentum conservation
principle; and with respect to rotation in space (space isotropy) implies the total angular
momentum conservation principle.

2 That is, its length and direction are key. Think of a skater performing a spin: extending the arms sideways slows
down the rotation, while stretching them along the axis of rotation results in faster rotation. But all the time,
the total angular momentum vector is the same. Well, what happens to the angular momentum when the dancer
finally stops rotating due to friction? The angular momentum attains zero? No–that is simply impossible. When
the dancer increases her angular velocity, the Earth’s axis changes its direction a bit to preserve the previous
angular momentum of the total system (the earth + the dancer). When the dancer stops, the Earth’s axis comes
back to its previous position, but not completely, because a part of the angular momentum is hidden in the rotation
of molecules caused by the friction. Whatever happens, the total angular momentum must be preserved! If the
spaceship captain wanted to stop the rotation of the ship, which is making the crew sick, he could either throw
something (e.g., gas from a steering jet) away from the ship, or spin a well-oriented body fast inside the ship. But
even the captain is unable to change the total angular momentum.

3 In the case of a one-parameter family of operations, Ŝα Ŝβ = Ŝα+β ; e.g., translation (α, β stand for the translation
vectors), rotation (α, β are rotational angles), etc. Some other operations may not form such families, and then
the Noether theorem is no longer valid. This was an important discovery. Symmetry of a theory is much more
fundamental than the symmetry of an object. The symmetry of a theory means that phenomena are described by
the same equations no matter what laboratory coordinate system is chosen.
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These principles may be regarded as the foundations of science.4 The homogeneity of time
allows the expectation that repeating experiments will give the same results. The homogeneity
of space makes it possible to compare the results of the same experiments carried out in two
different laboratories. Finally, the isotropy of space allows one to reject any suspicion that a
different orientation of our laboratory bench changes the result.

Conservation laws represent most precious information about our system. It is not important
what happens to the isolated system, what it is composed of, how complex the processes taking
place in it are, whether they are slow or violent, whether there are people in the system or not, or
whether they think how to cheat the conservation laws or not. Nothing can happen if it violates
the conservation of energy, momentum, or angular momentum.

Now, let us incorporate this into quantum mechanics.
All symmetry operations (e.g., translation, rotation, reflection in a plane) are isometric; i.e.,

Û † = Û−1 and Û does not change the distance between points of the transformed object
(Figs. 2.2 and 2.3).

(a) (b) 

Fig. 2.2. (a) A function f (x, y) treated as an object is rotated by angle α. (b) the coordinate system is rotated by angle −α. The
new position of the object in the old coordinate system (a) is the same as the initial position of the object in the new coordinate
system (b).

4 Well, this is true to some extent. For example, the Universe does not show an exact isotropy because the matter there
does not show spherical symmetry. Moreover, even if only one object were in the Universe, this very object would
itself destroy the anisotropy of the Universe. We should rather think of this as a kind of idealization (approximation
of reality).
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Fig. 2.3. A schematic view from the Hilbert space of functions f (x, y). The f and Ĥ f represent different functions. Rotation (by
α) of function Ĥ f gives function Û(Ĥ f ) and, in consequence, is bound to denote the rotation of f (i.e., Û f ) and the transformation
Û ĤÛ−1 of the operator Ĥ . Indeed, only then Û Ĥ Û−1 acting on the rotated function (i.e., Û f ) gives Û Ĥ Û−1(Û f ) = Û(Ĥ f );
i.e., the rotation of the result. Because of Û(Ĥ f ) = (Û Ĥ)(Û f ), when verifying the invariance of Ĥ with respect to transformation
Û , it is sufficient to check whether Û Ĥ has the same formula as Ĥ , but expressed in the new coordinates. Only this Û Ĥ will fit f
expressed in the new coordinates; i.e., to Û f . This is how we will proceed shortly.

The operator Û acting in 3D Cartesian space corresponds to the operator Û acting in the
Hilbert space, cf., Eq. (C.2), p. e20. Thus, the function f (r) transforms to f ′ = Û f =
f (Û−1r), while the operator Â transforms to Â′ = Û ÂÛ−1 (Fig. 2.3). The formula for Â′
differs in general from Â, but when it does not (i.e., Â′ = Â), then Û commutes with Â.

Indeed, then Â = Û ÂÛ−1 (i.e., one has the commutation relation ÂÛ = Û Â), which means
that Û and Â share their eigenfunctions (see Appendix B available at booksite.elsevier.com/978-
0-444-59436-5, on p. e7).

Let us take the Hamiltonian Ĥ as the operator Â. Before writing it down, let us introduce
atomic units. Their justification comes from something similar to laziness. The quantities one
calculates in quantum mechanics are stuffed up by some constants: � = h

2π , where h is the
Planck constant; electron charge −e; its (rest) mass m0; etc. These constants appear in clumsy
formulas with various powers, in the numerator and denominator (see Table of Units, end of
this book). One always knows, however, that the quantity one computes is energy, length, time,
etc. and knows how the unit energy, the unit length, etc. are expressed by �, e,m0.

Atomic Units
If one inserts � = 1, e = 1,m0 = 1, this gives a dramatic simplification of the formulas.
One has to remember, though, that these units have been introduced and, whenever needed,
one can evaluate the result in other units (see Table of conversion coefficients, end of this
book).

The Hamiltonian for a system of M nuclei (with charges Z I and mass m I , I = 1, . . .,M)
and N electrons, in the non-relativistic approximation and assuming point-like particles without

http://booksite.elsevier.com/978-0-444-59436-5
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any internal structure5, takes in atomic units (a.u.) the following form (see p. 18)

Ĥ = T̂n + T̂e + V̂ , (2.1)

where the kinetic energy operators for the nuclei and electrons (in a.u.) read as

T̂n = −1

2

M∑
I=1

1

m I
�I (2.2)

T̂e = −1

2

N∑
i=1

�i , (2.3)

where the Laplacians are

�I = ∂2

∂X2
I

+ ∂2

∂Y 2
I

+ ∂2

∂Z2
I

,

�i = ∂2

∂x2
i

+ ∂2

∂ y2
i

+ ∂2

∂z2
i

,

and the Cartesian coordinates of the nuclei and electrons are indicated by vectors RI =
(X I , YI , Z I ) and ri = (xi , yi , zi ), respectively.

5 No internal structure of the electron has yet been discovered. The electron is treated as a point-like particle. Con-
trary to this, nuclei have a rich internal structure and nonzero dimensions.

A clear multi-level-like structure appears (which has to a large extent forced a similar structure on the corre-
sponding scientific methodologies):

• Level I. A nucleon (neutron, proton) consists of three (valence) quarks, clearly seen on the scattering image
obtained for the proton. Nobody has yet observed a free quark.

• Level II. The strong forces acting among nucleons have a range of about 1 − 2 fm(1 fm = 10−15 m). Above
0.4− 0.5 fm, they are attractive, while at shorter distances they correspond to repulsion. One need not consider
their quark structure when computing the forces among nucleons, but they may be treated as particles without
internal structure. The attractive forces between nucleons practically do not depend on the nucleon’s charge
and are so strong that they may overcome the Coulomb repulsion of protons. Thus, the nuclei composed of
many nucleons (various chemical elements) may be formed, which in mean field theory exhibit a shell structure
(analogous to electronic structure, cf., Chapter 8) related to the packing of the nucleons. The motion of the
nucleons is strongly correlated. A nucleus may have various energy states (ground and excited), may be distorted,
may undergo splitting, etc. About 2000 nuclei are known, of which only 270 are stable. The smallest nucleus is
the proton, and the largest known so far is 209Bi (209 nucleons). The largest observed number of protons in a
nucleus is 118. Even the largest nuclei have diameters about 100000 times smaller than the electronic shells of
the atom. Even for an atom with atomic number 118, the first Bohr radius is equal to 1

118 a.u. or 5 · 10−13 m,
which is still about 100 times larger than the nucleus.

• Level III. Chemists can neglect the internal structure of nuclei. A nucleus can be treated as a structureless point-
like particle, and using the theory described in this book, one is able to predict extremely precisely virtually all the
chemical properties of atoms and molecules. Some interesting exceptions will be given at the end of Chapter 6.
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The operator V̂ corresponds to the electrostatic interaction of all the particles (nucleus-
nucleus, nucleus-electron, electron-electron)6:

V̂ =
M∑

I=1

M∑
J>I

Z I Z J

|RI − RJ | −
M∑

I=1

N∑
i=1

Z I

|ri − RI | +
N∑

i=1

N∑
j>i

1

|ri − r j | , (2.4)

or, in a simplified form,

V̂ =
M∑

I=1

M∑
J>I

Z I Z J

RI J
−

M∑
I=1

N∑
i=1

Z I

ri I
+

N∑
i=1

N∑
j>i

1

ri j
. (2.5)

If the Hamiltonian turned out to be invariant with respect to a symmetry operation Û (trans-
lation, rotation, etc.), this would imply the commutation of Û and Ĥ . We will check this in
more detail below.

Note that the distances RI J , ri I and ri j in the Coulombic potential energy (2.5) witness about
assumption of instantaneous interactions in non-relativistic theory (infinite speed of traveling
the interaction through space).

2.1.2 Invariance with Respect to Translation

Translation by vector T of function f (r) in space means that the function Û f (r) = f (Û−1r) =
f (r− T) i.e., an opposite (by vector −T) translation of the coordinate system (Fig. 2.4).

Transformation r′ = r+T does not change the Hamiltonian. This is evident for the potential
energy V̂ , because the translations T cancel out, leaving the interparticle distances unchanged.
For the kinetic energy, one obtains ∂

∂x ′ =
∑
σ=x,y,z

∂σ
∂x ′

∂
∂σ
= ∂x

∂x ′
∂
∂x = ∂

∂x , and all the kinetic
energy operators (Eqs. (2.2) and (2.3)) are composed of the operators having this form.

The Hamiltonian is therefore invariant with respect to any translation of the coordinate
system.

There are two main consequences of translational symmetry:

• Whether the coordinate system used is fixed in Trafalgar Square or in the center of mass of
the system, one has to solve the same mathematical problem.

• The solution to the Schrödinger equation corresponding to the space-fixed coordinate system
(SFS) located in Trafalgar Square is �pN , whereas �0N is calculated in the body-fixed
coordinate system (see Appendix I available at booksite.elsevier.com/978-0-444-59436-5)

6 We do not include in this Hamiltonian tiny magnetic interactions of electrons and nuclei coming from their spin
and orbital angular momenta, because they are of relativistic nature (see Chapter 3). In Chapter 12, we will be
interested just in such small magnetic effects and the Hamiltonian will have to be generalized to include these
interactions.

http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 2.4. A function f shifted by vector T (symmetry operation T̂ ); i.e., T̂ f
(
x, y

)
in the coordinate system (x, y) is the same as

function f
(
x ′, y′

)
, in the coordinate system (x ′, y′) shifted by −T.

located in the center of mass at RC M , which moves in the SFS with the total momentum
pC M . These two solutions are related by7 �pN = �0N exp (ipC M · RC M). The number
N = 0, 1, 2, . . . counts the energy states after the center-of-mass motion is separated.

This means that the energy spectrum represents a continuum, because the center of mass
may have any non-negative kinetic energy p2

C M/(2m). If, however, one assumes that
pC M = 0, then the energy spectrum is discrete for low-energy eigenvalues (see Eq. 1.13).

This spectrum corresponds to the bound states; i.e., those states that do not correspond to
any kind of dissociation (including ionization). Higher-energy states lead to dissociation of
the molecule, and the fragments may have any kinetic energy. Therefore, above the discrete
spectrum, one has a continuum of states. The states �0N will be called spectroscopic states.
The bound states �0N are square-integrable, as opposed to �pN , which are not because of
function exp(ipC M · RC M), which describes the free motion of the center of mass.

2.1.3 Invariance with Respect to Rotation

The Hamiltonian is also invariant with respect to any rotation in space Û of the coordinate system
about a fixed axis. The rotation is carried out by applying an orthogonal matrix transformation8

U of vector r = (x, y, z)T that describes any particle of coordinates x, y, z. Therefore, all the

7 This follows from the separation of the center-of-mass motion (see Appendix I available at book-
site.elsevier.com/978-0-444-59436-5) and noting that exp (ipC M · RC M ) represents a solution for the motion
of a free particle (Chapter 4).

8 UT = U−1.

http://booksite.elsevier.com/978-0-444-59436-5
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particles undergo the same rotation and the new coordinates are r′ = Ûr = Ur. Again, there
is no problem with the potential energy because a rotation does not change the interparticle
distances. What about the Laplacians in the kinetic energy operators? Let us see:

� =
3∑

k=1

∂2

∂x2
k

=
3∑

k=1

∂

∂xk

∂

∂xk
=

3∑
k=1

(
3∑

i=1

∂

∂x ′i

∂x ′i
∂xk

)(
3∑

i=1

∂

∂x ′i

∂x ′i
∂xk

)

=
3∑

i=1

3∑
j=1

3∑
k=1

(
∂

∂x ′i

∂x ′i
∂xk

)(
∂

∂x ′j

∂x ′j
∂xk

)

=
3∑

i=1

3∑
j=1

3∑
k=1

(
∂

∂x ′i
Uik

)(
∂

∂x ′j
U jk

)
=

3∑
i=1

3∑
j=1

3∑
k=1

(
∂

∂x ′i
Uik

)(
∂

∂x ′j
U †

k j

)

=
3∑

i=1

3∑
j=1

(
∂

∂x ′i

)(
∂

∂x ′j

)
3∑

k=1

UikU †
k j

=
3∑

i=1

3∑
j=1

(
∂

∂x ′i

)(
∂

∂x ′j

)
δi j =

3∑
k=1

∂2

∂
(
x ′k
)2 = �′.

Thus, one has invariance of the Hamiltonian with respect to any rotation about the origin
of the coordinate system. This means (see p. e73) that the Hamiltonian and the operator of
the square of the total angular momentum Ĵ 2 (as well as of one of its components, denoted
by Ĵz) commute. One is able, therefore, to measure simultaneously the energy, the square
of total angular momentum, and one of the components of total angular momentum, and
(as will be shown in Chapter 4) one has (r and R denote the electronic and the nuclear
coordinates, respectively)

Ĵ 2�0N
(
r,R

) = J (J + 1)�2�0N
(
r,R

)
(2.6)

Ĵz�0N
(
r,R

) = MJ ��0N
(
r,R

)
, (2.7)

where J = 0, 1, 2, . . . and MJ = −J ,−J + 1, . . .+ J .

Any rotation matrix may be shown as a product of “elementary” rotations, each about
axes x, y, or z. For instance, rotation about the y axis by angle θ corresponds to the matrix⎛
⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠. The pattern of such matrices is simple: one has to put in some places
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sines, cosines, zeros, and 1s with the proper signs.9 This matrix is orthogonal10; i.e., UT = U−1,
which the reader may easily check. The product of two orthogonal matrices represents an orthog-
onal matrix; therefore, any rotation corresponds to an orthogonal matrix.

2.1.4 Invariance with Respect to Permutation of Identical Particles
(Fermions and Bosons)

The Hamiltonian also has permutational symmetry. This means that if one exchanged labels
numbering the identical particles, independently of how it was done, one would always obtain
the identical mathematical expression for the Hamiltonian. This implies that any wave function
has to be either symmetric (for bosons) or antisymmetric (for fermions) with respect to the
exchange of labels between two identical particles (cf., p. 34).

2.1.5 Invariance of the Total Charge

In addition to energy, momentum, and angular momentum, strict conservation laws are obeyed
exclusively for the total electric charge and the baryon and lepton numbers (a given particle
contributes +1, the corresponding antiparticle −1).11 The charge conservation follows from
the gauge symmetry. Total electric charge conservation follows from the fact that description of
the system has to be invariant with respect to the mixing of the particle and antiparticle states,
which is analogous to rotation.

2.1.6 Fundamental and Less Fundamental Invariances

The conservation laws described are of a fundamental character because they are related to the
homogeneity of space and time, the isotropy of space, and the non-distinguishability of identical
particles.

Besides these strict conservation laws (energy, momentum, angular momentum, permutation
of identical particles, charge, and baryon and lepton numbers), there are also some approximate
laws. Two of these: parity and charge conjugation, will be discussed below. They are rooted
in these strict laws, but are valid only in some conditions. For example, in most experiments,
not only the baryon number, but also the number of nuclei of each kind, are conserved. Despite
the importance of this law in chemical reaction equations, this does not represent any strict
conservation law, as shown by radioactive transmutations of elements.

9 Clockwise and anticlockwise rotations and two possible signs at sines make memorizing the right combination
difficult. In order to choose the correct one, one may use the following trick. First, decide that what moves is an
object (e.g., a function, not the coordinate system). Then, you have to have in pocket my book. With Fig. 2.2a,
one sees that the rotation of the point with coordinates (1, 0) by angle θ = 90◦ should give the point (0, 1), and

this is assured only by the rotation matrix:

(
cos θ − sin θ
sin θ cos θ

)
.

10 Therefore, it is also unitary (see Appendix A available at booksite.elsevier.com/978-0-444-59436-5, on p. e1).
11 For instance, in the Hamiltonian 2.1, it is assumed that whatever might happen to our system, the numbers of the

nucleons and electrons will remain constant.

http://booksite.elsevier.com/978-0-444-59436-5
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Some other approximate conservation laws will soon be discussed.

2.1.7 Invariance with Respect to Inversion–Parity

There are orthogonal transformations that are not equivalent to any rotation; e.g., the matrix of
inversion ⎛

⎝−1 0 0
0 −1 0
0 0 −1

⎞
⎠ ,

which corresponds to changing r to−r for all the particles, does not represent any rotation. If one
performs such a symmetry operation, the Hamiltonian remains invariant and |�0N (−r,−R)|2 =
|�0N (r,R)|2. This is evident both for V̂ (the interparticle distances do not change), and for
the Laplacian (single differentiation changes sign, while double does not). Two consecutive
inversions indicate an identity operation: �0N (r,R) = exp (iα)�0N (−r,−R) = [exp(iα)]2
�0N (r,R). Hence, [exp (iα)]2 = 1, exp (iα) = ±1, and one has

�0N
(−r,−R

) = ��0N
(
r,R

)
, where � ∈ {1,−1} .

Therefore,

the wave function of a stationary state represents an eigenfunction of the inversion operator,
and the eigenvalue can be either� = 1 or� = −1. This property is known as parity (P).

Now the reader will be taken by surprise. From what we have said, it follows that no molecule
has a nonzero dipole moment. Indeed, the dipole moment is calculated as the mean value of
the dipole moment operator [i.e., µ = 〈�0N | µ̂�0N

〉 = 〈�0N |
(∑

i qi ri
)
�0N

〉
]. This integral

will be calculated very easily: the integrand is antisymmetric with respect to inversion,12 and
therefore, µ = 0.

So, is the very meaning of the dipole moment, a quantity often used in chemistry and physics,
a fantasy? If HCl has no dipole moment, then it is more understandable that H2 does not either.
All this seems absurd, though. What about this dipole moment?

Let us stress that our conclusion pertains to the total wave function, which has to reflect the
space isotropy leading to the zero dipole moment, because all orientations in space are equally
probable. If one applied the transformation r→−r only to some particles in the molecule (e.g.,
electrons), and not to others (e.g., the nuclei), the wave function will show no parity (it would be
neither symmetric nor antisymmetric). We will introduce the Hamiltonian in Chapter 6, which
corresponds to immobilizing the nuclei (the adiabatic or Born-Oppenheimer approximation)
in certain positions in space, and in such a case, the wave function depends on the electronic

12 �0N may be symmetric or antisymmetric, but |�0N |2 is bound to be symmetric. Therefore, since
∑

i qi ri is
antisymmetric, then indeed, the integrand is antisymmetric (while the integration limits are symmetric).
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coordinates only. This wave function may be neither symmetric nor antisymmetric with respect
to the partial inversion transformation r →−r (for the electrons only). To give an example, let
us imagine the HF molecule in a coordinate system, with its origin in the middle between the H
and F nuclei. Consider a particular configuration of the 10 electrons of the molecule, all close
to the fluorine nucleus in some well-defined points. One may compute the value of the wave
function for this configuration of electrons. Its square gives us the probability density of finding
this particular configuration of electrons. Now, imagine the (partial) inversion r →−r applied
to all the electrons. Now they will all be close to the proton. If one computes the probability
density for the new situation, one would obtain a completely different value (which is much,
much smaller because the electrons prefer fluorine, not hydrogen). There is neither symmetry
nor antisymmetry. No wonder, therefore, that if one computed µ = 〈�0N | µ̂�0N

〉
with such a

function (integration is over the electronic coordinates only), the result would differ from zero.
This is why chemists believe the HF molecule has a nonzero dipole moment.13 On the other
hand, if the molecule taken as the example were B2 (also 10 electrons), then the two values have
had to be equal because they describe the same physical situation. This corresponds, therefore,
to a wave function with definite parity (symmetric or antisymmetric), and therefore, in this case,
µ = 0. This is why chemists believe such molecules as H2,B2,O2 have no dipole moment.

Product of Inversion and Rotation

The Hamiltonian is also invariant with respect to some other symmetry operations, like changing
the sign of the x coordinates of all particles, or similar operations that are products of inversion
and rotation. If one changed the sign of all the x coordinates, it would correspond to a mirror
reflection. Since rotational symmetry stems from space isotropy (which we will treat as trivial),
the mirror reflection may be identified with parity P .

Enantiomers

A consequence of inversion symmetry is that the wave functions have to be eigenfunctions of the
inversion operator with eigenvalues � = 1 (i.e., the wave function is symmetric), or � = −1
(i.e., the wave function is antisymmetric). Any asymmetric wave function corresponding to
a stationary state is therefore excluded (illegal). However, two optical isomers (enantiomers),
corresponding to an object and its mirror image, do exist (Fig. 2.5).14

13 Therefore, what they do measure? The answer will be given in Chapter 12.
14 The property that distinguishes them is known as chirality (human hands are an example of chiral objects). The

chiral molecules (enantiomers) exhibit optical activity; i.e., polarized light passing through a solution of one of the
enantiomers undergoes a rotation of the polarization plane always in the same direction (which may be seen easily
by reversing the direction of the light beam). The enantiomeric molecules have the same properties, provided one
is checking this by using non-chiral objects. If the probe were chiral, one of the enantiomers would interact with
it differently (for purely sterical reasons). Enantiomers (e.g., molecular associates) may be formed from chiral or
non-chiral subunits.
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(a) (b) (c)

Fig. 2.5. Example of chirality. (a) A molecule central atom-(ABCD) with four different substituents: A,B,C,D in a nonplanar
configuration; (b) the same molecule after applying the inversion operation (with respect to the central atom); (c) an attempt of
superposing the initial and the transformed molecules by rotation, to get matching, fails; (a) and (c) represent an example of a pair
of enantiomers. Each of these isomers, after reflection in a mirror (e.g., the central atom-BC plane) becomes identical to its partner.

We ask in a pharmacy
for D-glucose (strangely
enough the pharmacist is
fully cooperative and does
not make trouble). We pay a
small sum, and he gives us
something that should not
exist15 – a substance with
a single enantiomer. We
should obtain a substance
composed of molecules in
their stationary states, which
therefore have to have def-
inite parity, either as a sum
of the wave functions for
the two enantiomers D and

Chen Ning Yang (b. 1922) and
Tsung Dao Lee (b. 1926) American
physicists and professors at the
Advanced Study Institute in Prince-
ton, predicted in 1956 that parity
would break in the weak interac-
tions, which a few months later
was confirmed experimentally by

Madame Chien-Shung Wu. In 1957,
Yang and Lee received the Nobel
Prize “for their penetrating inves-
tigation of parity laws, which led
to important discoveries regarding
elementary particles.”

L (� = 1, cf., Appendix D available at booksite.elsevier.com/978-0-444-59436-5, on p. e65,
Example I) :ψ+ = ψD+ψL or as the difference (� = −1):ψ− = ψD−ψL . The energies cor-
responding to ψ+ and ψ− differ, but the difference is extremely small (quasi-degeneracy). The
brave shopkeeper has given us something with the wave function ψ = N

(
ψ+ + ψ−

) = ψD

(the result of decoherence), which therefore describes a non-stationary state.16 As we will see
later in this chapter (p. 94), the approximate lifetime of the state is proportional to the inverse

of the integral
〈
ψD| ĤψL

〉
. If one computed this integral, one would obtain an extremely small

15 Stated more exactly, it should be unstable.
16 Only ψ+ and ψ− are stationary states.

http://booksite.elsevier.com/978-0-444-59436-5
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number.17 It would turn out that the pharmacy could safely keep the stock of glucose for mil-
lions of years. Maybe the reason for decoherence is interaction with the rest of the Universe,
maybe even interaction with a vacuum. The very existence of enantiomers, or even if one of
them prevails on Earth, does not mean breaking parity symmetry. This would happen if one of
the enantiomers corresponded to a lower energy than the other.18

17 This is seen even after attempting to overlap two molecular models physically (see Fig. 2.5). The overlap of the
wave functions will be small for the same reasons (the wave functions decay exponentially with distance).

18 This is what happens in reality, although the energy difference is extremely small. Experiments with β-decay
have shown that nature breaks parity in weak interactions. Parity conservation law, therefore, has an approximate
character.

With no preference for any of the enantiomers, one of them may spontaneously increase its concentration
until it reaches 100%; i.e., with a complete elimination of the other one (0%). Is something like that possible at
all? It seems to contradict common sense, since one of the enantiomers won, while the other lost, whereas their
chances were exactly equal.

This phenomenon occurs in reality, if autocatalysis is involved. The key information is the following: in such a
system, a large, random, and self-augmenting fluctuation is possible. Indeed, let us imagine just for simplicity 50
molecules of D and 50 molecules of L, together with a certain number of molecules N (let us call them “neutral”),
with the following possible reactions (giving equal chances to D and L):

D+ L→ 2N

D+ N→ 2D

L+ N→ 2L.

The last two reactions (of autocatalytic character) represent the induction of an enantiomer (“forcing chirality”)
through the interaction of N with a molecule of a given enantiomer. No preference of D or L is assumed in
this induction. Despite of this, one of the enantiomers will defeat the other. To explain this, let us assume
that the elementary reactions 1,2, or 3 of the individual molecules form a random chain in time (for example:
1, 2, 2, 3, 1, 3, . . .). If the chain starts by the first reaction, we have a situation similar to the starting one (49 : 49
instead of 50 : 50, in the number of D:L molecules). If, however, the chain starts from the second reaction, there
will be a 51 : 50 preference of D, while when the third reaction takes place, one will have 50 : 51 preference of
L. In the last two cases, we have a deviation from the equal chances of two enantiomers (fluctuation). Suppose
that we have the second case; i.e., 51 : 50 preference of D. Note, that now, when continuing the reaction chain
at random, the chance the reaction 2 to happen, is greater than the chance of reaction 3. It is seen, therefore, that
any fluctuation from the “equal-chances situation” has a tendency to self-augment, although there is always a
chance that the fluctuation disappears. The racemic mixture, therefore, represents an instable system. Sooner
or later, there will be a transition (first mild, but then more and more violent) from racemate to the absolute
prevailing of one of the enantiomers. Their chances were and are equal, but just by chance, one of them won.

Sometimes random processes may lead to large fluctuations. For instance, Louis Pasteur was able to crystallize
the crystals of one enantiomer and the crystals of the other enantiomer and then to separate them. This is possible
not only without Pasteur, but also without any human, just spontaneously. Suppose that two such pieces of crystals
were created where the primordial life was to be started, and that afterward, a volcano explosion took place,
in which the volcanic lava covered (or even destroyed) one of the crystals, eliminating it from anything what
happened later (e.g., the chiral induction during biological evolution). This simple argument, proposed by Leszek
Stolarczyk, is worth considering in light of the fact that in nature, there is a strong preference for one chirality.
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2.1.8 Invariance with Respect to Charge Conjugation

If one changed the signs of the charges of all particles, the Hamiltonian would not change.

This therefore corresponds to exchanging particles and antiparticles. Such a symmetry oper-
ation is called the charge conjugation and denoted as C symmetry. This symmetry will be not
marked in the wave function symbol (because as a rule, we are dealing with matter, not antimat-
ter), but we will want to remember it later. Sometimes it may turn out unexpectedly to be useful
(see Chapter 13, p. 820). After Wu’s experiment, physicists tried to save the hypothesis that
what is conserved is the CP symmetry; i.e., the product of charge conjugation and inversion.
However, analysis of experiments with the meson K decay has shown that even this symmetry
is approximate (although the deviation is extremely small).

2.1.9 Invariance with Respect to the Symmetry of the Nuclear Framework

In many applications, the positions of the nuclei are fixed (clamped nuclei approximation; see
Chapter 6), often in a high-symmetry configuration (see Appendix C available at booksite.
elsevier.com/978-0-444-59436-5, on p. e17). For example, the benzene molecule in its ground
state (after minimizing the energy with respect to the positions of the nuclei) has the symmetry
of a regular hexagon. In such cases, the electronic Hamiltonian additionally exhibits invariance
with respect to some symmetry operations, and therefore, the wave functions are the eigenstates
of these molecular symmetry operations. Therefore, any wave function may have an additional
label: namely, the symbol of the irreducible representation19 it belongs to.

2.1.10 Conservation of Total Spin

In an isolated system, the total angular momentum J is conserved. However, J = L+ S, where
L and S stand for the orbital and spin angular momenta (sum over all particles), respectively.
The spin angular momentum S, being a sum over all particles, is not conserved.

However, the (non-relativistic) Hamiltonian does not contain any spin variables. This means
that it commutes with the operator of the square of the total spin, as well as with the operator
of one of the spin components (by convention, the z component). Therefore, in the non-
relativistic approximation, one can simultaneously measure the energy E , the square of
the spin S2, and one of its components: Sz .

19 This is the representation of the symmetry group composed of the symmetry operations mentioned above.
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2.1.11 Indices of Spectroscopic States

In summary, assumptions about the homogeneity of space and time, isotropy of space, and parity
conservation lead to the following quantum numbers (indices) for the spectroscopic states:

• N quantizes energy.
• J quantizes the length of total angular momentum.
• M quantizes the z component of total angular momentum.
• � determines parity:

�N ,J ,M,�
(
r, R

)
.

Besides these indices that follow from the fundamental laws (in the case of parity, it is a little
too exaggerated), there may be also some indices related to less fundamental conservation laws,
as follows:

• The irreducible representation index of the symmetry group of the clamped nuclei Hamil-
tonian (see Appendix C available at booksite.elsevier.com/978-0-444-59436-5)

• The values of S2 (traditionally, one gives the multiplicity 2S + 1) and Sz

2.2 Schrödinger Equation for Stationary States

Erwin Schrödinger (1887–1961), Austrian physicist
and professor at Jena, Stuttgart, Graz, Breslau,
Zurich, Berlin and Vienna.

In later years, Schrödinger recalled the Zurich
period most warmly, especially discussions with
mathematician Hermann Weyl and physicist Peter
Debye. In 1927, Schrödinger succeeded Max Planck
in the Chair of Theoretical Physics at the University of
Berlin, and in 1933 received the Nobel Prize “for the
discovery of new productive forms of atomic theory.”
Hating the Nazi regime, he left Germany in 1933 and
moved to the University of Oxford. However, homesick
for his native Austria, he went back in 1936 and took
a professorship at the University of Graz. Meanwhile,
Hitler carried out his Anschluss with Austria in 1938,
and Schrödinger, even though not a Jew, could
have been an easy target as one who fled Germany
because of the Nazis. He emigrated to the United
States (Princeton), and then to Ireland (Institute for

Advanced Studies in Dublin), worked there till 1956,
then returned to Austria and taught at the University
of Vienna until his death.

http://booksite.elsevier.com/978-0-444-59436-5
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In his scientific work, as well as in his personal
life, Schrödinger did not strive for big goals; rather,
he worked by himself. Maybe what characterizes him
best is that he always was ready to leave having
belongings ready in his rucksack. Among the goals
of this textbook listed in the Introduction there is no
demoralization of youth. This is why I will stop here,
limit myself to the carefully selected information given
above and refrain from describing the circumstances,
in which quantum mechanics was born. For those
students who read the recommended in the Addi-
tional Literature, I provide some useful references: W.
Moore, “Schrödinger: Life and Thought,” Cambridge
University Press, 1989, and the comments on the
book given by P.W. Atkins, Nature, 341(1989), also
http://www-history.mcs.st-andrews.ac.uk/history/
Mathematicians/Schrodinger.html

Schrödinger’s curriculum vitae found in Breslau
(now Wrocław):

“Erwin Schrödinger, born on Aug., 12, 1887 in
Vienna, the son of the merchant Rudolf Schrödinger
and his wife née Lauer. The family of my father
comes from the Upper Palatinate and Wirtemberg
region, and the family of my mother from German
Hungary and (from the maternal side) from Eng-
land. I attended a so called “academic” high school
(once part of the university) in my native town.
Then during 1906–1910 I studied physics at Vienna
University, where I graduated in 1910 as a doctor of
physics. I owe my main inspiration to my respectable
teacher Fritz Hasenöhrl, who by an unlucky fate
was torn from his diligent students - he fell glori-
ously as an attack commander on the battlefield
of Vielgereuth. As well as Hasenöhrl, I owe my
mathematical education to Professors Franz Mertens
and Wilhelm Wirtinger, and a certain knowledge of

experimental physics to my principal of many years
(1911–1920) Professor Franz Exner and my inti-
mate friend R.M.F. Rohrmuth. A lack of experimen-
tal and some mathematical skills oriented me basi-
cally towards theory. Presumably the spirit of Ludwig
Boltzmann (deceased in 1906), operating especially
intensively in Vienna, directed me first towards the
probability theory in physics. Then, (…) a closer con-
tact with experimental works of Exner and Rohrmuth
oriented me to the physiological theory of colors, in
which I tried to confirm and develop the achievements
of Helmholtz. In 1911–1920 I was a laboratory assis-
tant under Franz Exner in Vienna, of course, with 4 1

2
years long pause caused by war. I have obtained my
habilitation in 1914 at the University of Vienna, while in
1920 I accepted an offer from Max Wien and become
his assistant professor at the new theoretical physics
department in Jena. This lasted, unfortunately, only
one semester, because I could not refuse a profes-
sorship at the Technical University in Stuttgart. I was
there also only one semester, because in April 1921
I came to the University of Hessen in succession to
Klemens Schrafer. I am almost ashamed to confess,
that at the moment I sign the present curriculum vitae
I am no longer a professor at the University of Breslau,
because on Oct.15. I received my nomination to the
University of Zurich. My instability may be recognized
exclusively as a sign of my ingratitude!

Breslau, Oct., 5, 1921.
Dr Erwin Schrödinger

(found in the archives of the University of Wrocław
(Breslau) by Professor Zdzisław Latajka and Profes-
sor Andrzej Sokalski, translated by Andrzej Kaim and
the author. Since the manuscript was hardly legible
due to Schrödinger’s handwriting, some names may
have been misspelled.)

It may be instructive to see how Erwin Schrödinger invented his famous equation 1.13 for

stationary states ψ of energy E (Ĥ denotes the Hamiltonian of the system):

Ĥψ = Eψ. (2.8)

Schrödinger surprised the contemporary quantum elite (associated mainly with Copenhagen
and Göttingen) with his clear formulation of quantum mechanics as wave mechanics. Many

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schrodinger.html


The Schrödinger Equation 79

scientists regard January 27, 1926, when Schrödinger submitted a paper entitled “Quantisierung
als Eigenwertproblem”20 to Annalen der Physik, as the birthday of wave mechanics.

Most probably Schrödinger’s reasoning was as follows. De Broglie discovered that what
people called a particle also had a wave nature (as described in Chapter 1). That is really
puzzling. If a wave is involved, then according to Debye’s suggestion at the November seminar
in Zurich, it might be possible to write the standing wave equation with ψ

(
x
)

as its amplitude
at position x :

v2 d2ψ

dx2 + ω2ψ = 0, (2.9)

where v stands for the (phase) velocity of the wave and ω represents its angular frequency
(ω = 2πν, where ν is the usual frequency), which is related to the wavelength λ by the well-
known formula21

ω/v = 2π

λ
. (2.10)

Besides, Schrödinger knew from de Broglie, who had lectured in Zurich on this subject, that
the wavelength, λ, is related to a particle’s momentum p through λ = h/p, where h = 2π�

is the Planck constant. This equation is the most famous achievement of de Broglie, and it
relates the corpuscular (p) character and the wave (λ) character of any particle.

On the other hand, the momentum p is related to the total energy (E) and the potential energy
(V ) of the particle through p2 = 2m(E−V ), which follows from the expression for the kinetic
energy T = mv2

2 = p2/(2m) and E = T + V . Therefore, Eq. (2.9) can be rewritten as

d2ψ

dx2 +
1

�2 [2m(E − V )]ψ = 0, (2.11)

The most important step toward the great discovery was transferring the term with E to the right
side. Let us see what Schrödinger obtained:[

− �
2

2m

d2

dx2 + V

]
ψ = Eψ. (2.12)

This was certainly a good moment for a discovery. Schrödinger obtained a kind of eigenvalue
equation 1.13, recalling his experience with eigenvalue equations in the theory of liquids.22 What

20 This title translates as “Quantization as an Eigenproblem.” Well, once upon a time, quantum mechanics was
discussed in German. Some traces of that period remain in the nomenclature. One is the “eigenvalue” problem,
or “eigenproblem,” which is a German-English hybrid.

21 In other words, ν = v
λ or λ = vT (i.e., wavelength equals the velocity times the period). Equation (2.9) represents

an oscillating function ψ
(
x
)
. Indeed, it means that d2ψ

dx2 and ψ differ by sign; i.e., if ψ is above the x axis, then
it curves down, while if it is below the x axis, then it curves up.

22 This is a very interesting coincidence: Werner Heisenberg was also involved in fluid dynamics. At the beginning,
Schrödinger did not use operators. They appeared after he established closer contacts with the University of
Göttingen.
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is striking in Eq. (2.12) is the odd fact that an operator − �
2

2m
d2

dx2 amazingly plays the role of
kinetic energy. Indeed, we see the following: something plus potential energy, all that multiplied
byψ , equals total energy timesψ . Therefore, this something clearly must be the kinetic energy!

But, wait a minute. The kinetic energy is equal to p2

2m . From this, it follows that, in the equation
obtained instead of p, there is a certain operator i� d

dx or −i� d
dx , because only then does the

squaring give the right answer.

Hermann Weyl (1885–1955), Ger-
man mathematician, professor at ETH
Zurich, the University of Göttingen,
and the Institute for Advanced Stud-
ies at Princeton (in the United States),
expert in the theory of orthogonal
series, eigenvalue problems, geomet-
ric foundations of physics, group the-
ory and differential equations. Weyl
adored Schrödinger’s wife, was a
friend of the family, and provided
an ideal partner for Schrödinger in
conversations about the eigenvalue
problem.

Would the key to the puzzle
be simply taking the classical
expression for total energy and
inserting the above operators
instead of the momenta? What
was Schrödinger supposed to
do? The best choice is always to
begin with the simplest toys, such
as the free particle, the particle
in a box, the harmonic oscillator,
the rigid rotator, or the hydrogen
atom. Nothing is known about
whether Schrödinger himself had

a sufficiently deep knowledge of mathematics to be able to solve the (sometimes non-trivial)
equations related to these problems, or whether he had advice from a friend versed in mathe-
matics, such as Hermann Weyl.

It turned out that instead of p,−i� d
dx had to be inserted rather than i� d

dx (Postulate II,
Chapter 1).

2.2.1 Wave Functions of Class Q

The postulates of quantum mechanics, especially the probabilistic interpretation of the wave
function given by Max Born, limit the class of functions allowed (“class Q,” or “quantum”).

Any wave function conforms to the following:

• It cannot be zero everywhere (Fig. 2.6a), because the system is somewhere in space.
• It has to be continuous (Fig. 2.6b). This also means that it cannot take infinite values at any

point in space23 (Fig. 2.6c,d).

23 If this happened in any nonzero volume of space (Fig. 2.6d), the probability would tend to infinity (which is
prohibited). However, the requirement is stronger than that: a wave function cannot take an infinite value even
at a single point (Fig. 2.6c). Sometimes such functions appear among the solutions of the Schrödinger equation,
and those have to be rejected. The formal argument is that, if not excluded from the domain of the Hamiltonian,

the latter would be non-Hermitian when such a function was involved in
〈

f |Ĥ g
〉
=
〈
Ĥ f |g

〉
. A non-Hermitian

Hamiltonian might lead to complex energy eigenvalues, which is prohibited.
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Fig. 2.6. Functions of class Q (i.e., wave functions allowed in quantum mechanics) — examples and counterexamples. A wave
function (a) must not be zero everywhere in space; (b) has to be continuous; (c) cannot tend to infinity even at a single point;
(d) cannot tend to infinity; (e,f,g) its first derivative cannot be discontinuous for infinite number of points; (h,i) must be square
integrable (j,k,l,m) has to be defined uniquely in space (for angular variable θ ).

• It has to have a continuous first derivative as well (everywhere in space except isolated
points (Fig. 2.6e,f,g), where the potential energy tends to −∞), because the Schrödinger
equation is a second-order differential equation and the second derivative must be defined.

• For bound states, it has to tend to zero at infinite values of any of the coordinates (Fig. 2.6h,i),
because such a system is compact and does not disintegrate in space. In consequence (from
the probabilistic interpretation), the wave function is square integrable; i.e., 〈�|�〉 <∞.

• It has to have a uniquely defined value in space24 (Fig. 2.6j,k,l,m).

2.2.2 Boundary Conditions

The Schrödinger equation is a differential equation. In order to obtain a special solution to such
equations, one has to insert the particular boundary conditions to be fulfilled. Such conditions
follow from the physics of the problem; i.e., with which kind of experiment we are going to
compare the theoretical results. For example:

24 At any point in space, the function has to have a single value. This plays a role only if we have an angular variable,
such as φ. Then, φ and φ + 2π have to give the same value of the wave function. We will encounter this problem
in the solution for the rigid rotator in Chapter 4.
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• For the bound states (i.e., square-integrable states), we put the condition that the wave
function has to vanish at infinity; i.e., if any of the coordinates tends to infinity:ψ(x = ∞) =
ψ(x = −∞) = 0.

• For cyclic systems of circumference L , the natural conditions will be ψ(x) = ψ(x + L)
and ψ ′(x) = ψ ′(x + L), because they ensure a smooth matching at x = 0 of the wave
function for x < 0 and of the wave function for x > 0.

• For scattering states (not discussed here), the boundary conditions are more complex.25

There is a countable number of bound states. Each state corresponds to eigenvalue E .
An energy level may be degenerate; that is, more than one wave function may correspond to

it, all the wave functions being linearly independent (their number is the degree of degeneracy).
The eigenvalue spectrum is usually represented by putting a single horizontal section (in the
energy scale) for each wave function:

E3

E2
E1

E0

An Analogy
Let us imagine all the stable positions of a chair on the floor (Fig. 2.7).
Consider a simple chair, which is very uncomfortable for sitting, but very convenient for a

mathematical exercise. Each of the four “legs” represents a rod of length a, the “seat” is simply
a square built of identical rods, the “back” consists of three such rods making a C shape. The

Fig. 2.7. The stable positions of a chair on the floor. In everyday life, we most often use the third excited state.

25 J.R. Taylor, Scattering Theory, Wiley, New York (1972) is an excellent reference.
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potential energy of the chair (in position i) in gravitational field equals mghi , where m stands
for the mass of the chair, g is the standard gravity, and hi the height of the center of mass with
respect to the floor. We obtain the following energies, Ei , of the stationary states (in mga):

— The chair is lying on the support: E0 = 4
11

— The chair is lying inclined: the support and the seat touch the floor E1 = 7
√

2
22 .

— The chair is lying on the side: E2 = 1
2 .

Note, however, that we have two sides. The energy is the same for the chair lying on the
first and second side (because the chair is symmetric), but these are two states of the chair,
not one. The degree of degeneracy equals 2, and therefore on the energy diagram, we have
two horizontal sections. Note how the problem of degeneracy naturally has appeared. The
degeneracy of the energy eigenstates of molecules results from their symmetry, exactly as
in the case of the chair. In some cases, one may obtain an accidental degeneracy (cf. p. 203),
which does not follow from the symmetry of an object like a chair, but from the properties
of the potential field. This is called dynamic symmetry.26

— The chair is in the normal position: E3 = 1.

There are no more stable states of the chair, and there are only four energy levels (Fig. 2.7).
The stable states of the chair are analogs of the stationary quantum states of Fig. 1.8a,b, on
p. 23, while unstable states of the chair on the floor are analogs of the non-stationary states of
Fig. 1.8c,d. Of course, there are plenty of unstable positions of the chair with respect to the floor.
The stationary states of the chair have more in common with chemistry that one might think. A
chairlike molecule (organic chemists have already synthesized much more complex molecules)
interacting with a crystal surface would very probably have similar stationary states, Fig. 2.8.

Note that a chair with one leg removed made by a very impractical cabinetmaker, a fan of
surrealism (in our analogy, a strange chairlike molecule: just another pattern of chemical bonds;
i.e., another electronic state), will result in a different set of energy levels for such a weird chair.
Thus, we see that the vibrational levels depend in general on the electronic state.

2.2.2.1 Mathematical and Physical Solutions

It is worth noting that not all solutions of the Schrödinger equation are physically
acceptable.

For example, for bound states, all other solutions than those of class Q (see p. 80) must be
rejected. Also, the solution ψ , which does not exhibit the proper symmetry, must be rejected.

26 Cf. C. Runge, Vektoranalysis vol. I, p. 70, S. Hirzel, Leipzig (1919); W. Lenz, Zeit. Physik, 24, 197(1924); as
well as L.I. Schiff, Quantum Mechanics, McGraw-Hill, New York (1968).
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Fig. 2.8. A quantum-mechanical analogy of the stable positions of a chair on the floor. A stiff molecule C10 H10 with the shape
shown here, when interacting with a crystal surface, would acquire several stable positions similar to those of the chair on the floor.
They would correspond to some vibrational states (the molecule would vibrate about these positions) of a given electronic state
(“the same bond pattern” ), which in this analogy would correspond to the fixed structure of the chair.

In particular, such illegal, unacceptable functions are asymmetric with respect to the label
exchange for electrons (e.g., symmetric for some pairs and antisymmetric for others). Also, a
fully symmetric function would also be such a non-physical (purely mathematical) solution.
They are called mathematical, but non-physical, solutions to the Schrödinger equation. Some-
times such mathematical solutions correspond to a lower energy than any physically acceptable
energy (in such a case, they are called the underground states).

2.3 The Time-Dependent Schrödinger Equation

What would happen if one prepared the system in a given state ψ , which does not represent a
stationary state? For instance, one may deform a molecule by using an electric field and then
switch the field off.27 The molecule will turn out to be suddenly in state ψ ; i.e., not in its
stationary state. Then, according to quantum mechanics, the state of the molecule will start to
change according to the time evolution equation (time-dependent Schrödinger equation):

Ĥψ = i�
∂ψ

∂t
. (2.13)

The equation plays a role analogous to Newton’s equation of motion in classical mechanics.
In Newton’s equation, the position and momentum of a particle evolve. In the time-dependent
Schrödinger equation, the evolution proceeds in a completely different space–the space of states
or the Hilbert space (cf., Appendix B available at booksite.elsevier.com/978-0-444-59436-5,
on p. e7).

27 Here, we disregard the influence of the magnetic field that accompanies any change of electric field.

http://booksite.elsevier.com/978-0-444-59436-5
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Therefore, in quantum mechanics, one has absolute determinism, but in the state space.
Indeterminism begins only in our space, when one asks about the coordinates of a particle.

2.3.1 Evolution in Time

As it is seen from Eq. (2.13), knowledge of the Hamiltonian and of the wave function at a given
time (left side) contains sufficient information to determine the time derivative of the wave
function (right side). This means that we may compute the wave function after an infinitesimal
time dt :

ψ + ∂ψ
∂t

dt = ψ − i

�
Ĥψdt =

[
1+

(
−i

t

N�

)
Ĥ

]
ψ,

where dt = t/N with N (natural number) very large. Thus, the new wave function results from
action of the operator [1+(−i t

N�
)Ĥ ] on the old wave function. Now, we may apply the operator

again and again. We assume that Ĥ is time-independent. The total operation is nothing but the
action of the operator:

lim
N→∞

[
1+

(
−i

t

N�

)
Ĥ

]N

.

Please recall that ex = limN→∞
[
1+ x

N

]N .

Hence, the time evolution corresponds to action on the initialψof the operator exp (− i t
�

Ĥ):

ψ ′ = exp

(
− i t

�
Ĥ

)
ψ. (2.14)

Quantity exp Â is defined through the Taylor expansion: eÂ = 1+ Â + Â2/2+ · · ·

Our result satisfies the time-dependent Schrödinger equation,28 if Ĥ does not depend on time
(as we assumed when constructing ψ ′).

28 One may verify inserting ψ ′ into the Schrödinger equation. Differentiating ψ ′ with respect to t , the leftside is
obtained.
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Inserting the spectral resolution of the identity29 (cf., postulate II in Chapter 1), one obtains30

ψ ′ = exp

(
−i

t

�
Ĥ

)
1ψ = exp

(
−i

t

�
Ĥ

)∑
n

|ψn〉〈ψn|ψ〉

=
∑

n

〈ψn|ψ〉 exp

(
−i

t

�
Ĥ

)
|ψn〉 =

∑
n

〈ψn|ψ〉 exp

(
−i

t

�
En

)
|ψn〉.

This is how the state ψ will evolve. It will be similar to one or another stationary state
ψn , more often to those ψn , which overlap significantly with the starting function (ψ) and/or
correspond to low energy (low frequency). If the overlap 〈ψn|ψ〉 of the starting functionψ with
a stationary state ψn is zero, then during the evolution, no admixture of the ψn state will be
seen; i.e., only those stationary states that constitute the starting wave function ψ contribute to
the evolution.

2.3.2 Time Dependence of Mechanical Quantities

Let us take a mechanical quantity A and the corresponding (Hermitian) operator Â, and check
whether the computed mean value (the normalization of the wave function ψ is assumed)

A ≡
〈
Â
〉
≡
〈
ψ
(
t
) | Â (t)ψ (t)〉 depends on time. The time derivative of

〈
Â
〉

reads as (we use

the time-dependent Schrödinger equation: Ĥψ = i� ∂ψ
∂t ):

d
〈
Â
〉

dt
=
〈
∂

∂t
ψ | Âψ

〉
+
〈
ψ |
[
∂

∂t
Â

]
ψ

〉
+
〈
ψ | Â ∂

∂t
ψ

〉

=
〈
− i

�
Ĥψ | Âψ

〉
+
〈
ψ |
[
∂

∂t
Â

]
ψ

〉
+
〈
ψ | Â

(
− i

�

)
Ĥψ

〉

= i

�

〈
Ĥψ | Âψ

〉
+
〈
ψ |
[
∂

∂t
Â

]
ψ

〉
− i

�

〈
ψ | ÂĤψ

〉

= i

�

〈
ψ |Ĥ Âψ

〉
+
〈
ψ |
[
∂

∂t
Â

]
ψ

〉
− i

�

〈
ψ | ÂĤψ

〉

= i

�

〈
ψ |
[

Ĥ , Â
]
ψ
〉
+
〈
ψ |
[
∂

∂t
Â

]
ψ

〉
= i

�

〈[
Ĥ , Â

]〉
+
〈
∂

∂t
Â

〉
.

29 The use of the spectral resolution of the identity in this form is not fully justified. A sudden cut in the electric field
may leave the molecule with a nonzero translational energy. However, in the above spectral resolution, one has the
time-independent stationary states computed in the center-of-mass coordinate system, and therefore translation is
not taken into account.

30 Here, we used the property of an analytical function f , that for any eigenfunction ψn of the operator Ĥ , one has

f (Ĥ)ψn = f (En)ψn . This follows from the Taylor expansion of f (Ĥ) acting on eigenfunction ψn .
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It is seen, that the mean value of a mechanical quantity in general depends on time through

two components: the first contains the mean value of the commutator
[

Ĥ , Â
]
= Ĥ Â − ÂĤ ,

and the second one represents the mean value of the time derivative of the operator:

d
〈
Â
〉

dt
= i

�

〈[
Ĥ , Â

]〉
+
〈
∂

∂t
Â

〉
. (2.15)

Thus, even if Â does not depend on time explicitly
(
∂
∂t Â = 0

)
, but does not commute with

Ĥ , the expected value of A (i.e.,
〈
Â
〉

is time-dependent31).

2.3.3 Energy Is Conserved

For any isolated system, Ĥ �= f (t), and when we take Â = Ĥ , both terms equal zero and we

get
d
〈
Ĥ
〉

dt = 0.

The mean value of the Hamiltonian is conserved during evolution.

2.3.4 Symmetry Is Conserved

The time-dependent Schrödinger equation says the following: we have the wave function at
time t = 0 [i.e., ψ(x, 0)]. If you want to see what it will look like at time t , you just have to

apply to function ψ(x, 0) an evolution operator exp (−i Ĥ
�

t) ≡ Û (t) and you get the answer:

Û (t)ψ(x, 0) = ψ(x, t).
There remains, however, a small problem: how function ψ(x, t) will be related to ψ(x, 0)?

What kind of question is this? This will be in general just another function (however, it will
preserve the normalization condition and the mean value of the energy). It is as if somebody asked
about the evolution of an Arabian horse. It will preserve its weight (analog of the normalization),
and it will move with the same kinetic energy (analog of conserving total energy). Let us,
however, consider some more subtle features; e.g., is it possible that at t = 0, the horse is in a

31 Eq. (2.15) looks a bit suspicious. The quantity
〈
∂
∂t Â

〉
is certainly a real function as the mean value of a Hermitian

operator, but what about i
�

〈[
Ĥ , Â

]〉
with this imaginary unit i? Well, everything is all right because the operator[

Ĥ , Â
]
is antihermitian; i.e.,

〈
ψ |
[

Ĥ , Â
]
ψ
〉
= −

〈[
Ĥ , Â

]
ψ |ψ

〉
. This, however, means that

〈
ψ |
[

Ĥ , Â
]
ψ
〉
=

−
〈
ψ |
[

Ĥ , Â
]
ψ
〉∗

and, therefore, for the complex number z =
〈
ψ |
[

Ĥ , Â
]
ψ
〉
=
〈[

Ĥ , Â
]〉

, we have z+ z∗ = 0.

Therefore,
〈[

Ĥ , Â
]〉

is necessarily an imaginary number of the type ib,with real b, and i
�

〈[
Ĥ , Â

]〉
= i

�
ib = − b

�

is a real number.



88 Chapter 2

symmetric state,32 while after a while [action of Û (t)], the horse is in an asymmetric state, such
as one that has a tendency to bend its head to the right?

Let us consider a symmetry operator R̂ that commutes with Ĥ : R̂ Ĥ = Ĥ R̂. Assume that
the initial state ψ(x, 0) exhibits a symmetry. This means satisfying the following equation:

R̂ψ(x, 0) = exp (iα)ψ(x, 0), (2.16)

where α represents a certain real number.33 The symmetry is guaranteed in such a case because
the complex modulus of the transformed function (which decides about probability) does not
change: |R̂ψ(x, 0)| = | exp (iα)ψ(x, 0)| = | exp (iα)| · |ψ(x, 0)| = 1 · |ψ(x, 0)| = |ψ(x, 0)|.
This symmetry is characterized by the value of α. What can we say about the symmetry of the
final state? Let us see34:

R̂ψ(x, t) = R̂Û (t)ψ(x, 0) = R̂ exp

(
−i

Ĥ

�
t

)
ψ(x, 0) = exp

(
−i

Ĥ

�
t

)
R̂ψ(x, 0)

= exp

(
−i

Ĥ

�
t

)
exp(iα)ψ(x, 0) = exp(iα) exp

(
−i

Ĥ

�
t

)
ψ(x, 0) = exp(iα)ψ(x, t).

Thus, the final state exhibits at any time t the same symmetry (due to the same value of α):

R̂ψ(x, t) = exp(iα)ψ(x, t), (2.17)

Evolution in time causes neither the appearance nor the disappearance of the symmetry of
the wave function. The symmetry is conserved.

32 This means that the horse in its movements does not prefer its right (left) side over its left (right) side. This, does
not mean that taking a picture of such a horse results in a perfect symmetry in the picture. Such a state means
only, that after taking many such pictures and after superposing all of them to get one picture, we see a perfectly
symmetric creature.

33 If this symmetry operation means

• an arbitrary time-independent translation of the coordinate system, say along the x axis, α ∼ px (px means
the x component of the momentum, see Appendix F available at booksite.elsevier.com/978-0-444-59436-5, on
p. e73) and px represents a constant of motion (i.e., does not change).

• an arbitrary translation on the time axis gives α ∼ E(E stands for the total energy) and E is also a constant of
motion.

• for an arbitrary rotation of the coordinate system, say, about z axis, one obtains α ∼ Jz (Jz denotes the z
component of the angular momentum, see Appendix F available at booksite.elsevier.com/978-0-444-59436-5,
on p. e73) with Jz as a constant of motion.

34 Note that from R̂ Ĥ = Ĥ R̂ also follows R̂ exp
(
−i Ĥ

�
t
)
= exp

(
−i Ĥ

�
t
)

R̂ (recall the definition of exp
(
−i Ĥ

�
t
)

through the Taylor expansion).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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2.3.5 Meditations at a Spring

In chemistry, one assumes (tacitly) that two molecules, say, a water molecule created in a
chemical reaction a millisecond ago and a water molecule from the Oligocene well (e.g., created
more than 23 million years ago), represent identical objects. How could we know this?

In liquid water, the molecules are subject to intermolecular interactions, which complicate
things. Let us consider the same molecules, but isolated in outer space. It is generally believed
that even a molecule created a millisecond ago (not speaking about one from the Oligocene
well) had enough time to achieve the ground state via emission of photons. If this is true, we
can consider them to be described by identical ground-state wave functions.

What about 1 femtosecond (10−15 s) instead of 1 millisecond? Well, very probably, the first
molecule would be in a non-stationary state35 and it would have no time to emit photons. These
two molecules would be different (i.e., distinguishable).

Let us consider larger molecules–e.g., two molecules of hemoglobin in interstellar space,
created by two different methods a femtosecond ago.36 With a probability very close to 1, these
two molecules would be created in two different conformational states. Now, both states evolve
in time. Even if they would lower their energies and get the same ground state by emitting
photons, this would take virtually an infinite amount of time due to the plethora of kinetic
traps (metastable conformations) on their trajectories within the configurational space. These
metastable conformations are separated by important energy barriers, difficult to overcome.
A hemoglobin molecule, unlike a water molecule, will in general have a long memory of their
initial states. Thus, we see that all systems evolve, but the evolution time spans an incredibly
large time scale.37

Well, let us consider water aggregates (treated as large molecules) formed by a net of hydrogen
bonds, like those in liquid water. As shown by Margarita Rodnikova, the hydrogen bond network
in liquid water exhibits a kind of elastic properties38 (i.e., it behaves like molecular aggregates
with some stability). What about the lifetime of such aggregates?39 The contemporary approach
to this problem is just ignoring it or saying arbitrarily that liquid water has no memory. It would
be certainly more appropriate to leave the answer to experiment.40

35 A single vibration in a molecule is a matter of femtoseconds.
36 This example looks surrealistic, but science relies on questions of the “what if?” type.
37 Think of a shell visible in a rock, or the rock structure itself. These structures were created many millions of years

ago, but evolve so slowly that we see them today.
38 M.N. Rodnikova, J. Phys. Chem. (Russ.), 67, 275(1993).
39 One has to define somehow the lifetime (“memory”). For example, it could be the relaxation time τ , after which

the root mean square deviation from the starting structure (in atomic resolution) exceeds 1 Å. If the structure is
stable, both τ and the memory of the molecular aggregate are large.

40 Some water aggregates bound by the hydrogen bonds have very large lifetimes. How can I know this? Simply,
I have seen my footprints in the snow. They certainly represented nothing else but structures that exist only
because the hydrogen bonds. These structures did not disappear in a femtosecond, but were there for many hours.
Interestingly, when the temperature was raised by a few degrees (above 0◦C) my footprints disappeared in an
hour. Did they disappear instantaneously upon melting?
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2.3.6 Linearity

The most mysterious feature of the Schrödinger equation is its linear character. The world is
nonlinear because the effect is never strictly proportional to its cause. However, if ψ1(x, t) and
ψ2(x, t) satisfy the time-dependent Schrödinger equation, then their arbitrary linear combination
also represents a solution.41

2.4 Evolution After Switching a Perturbation

Let us suppose that we have a system with the Hamiltonian Ĥ
(
0
)

and its stationary states ψ
(
0
)

k :

Ĥ
(
0
)
ψ

(
0
)

k = E
(
0
)

k ψ

(
0
)

k , (2.18)

which form the orthonormal complete set42

ψ

(
0
)

k

(
x, t
) = φ(0)k

(
x
)
exp

⎛
⎝−i

E
(
0
)

k

�
t

⎞
⎠ , (2.19)

where x represents the coordinates, and t denotes time.
Let us assume that at time t = 0, the system is in the stationary state ψ

(
0
)

m .

At t = 0, a drama begins: One switches on the perturbation V (x, t), that depends in general
on all the coordinates (x) and time (t), and after time τ , the perturbation is switched off.

Now we are asking about the probability of finding the system in stationary state ψ
(
0
)

k .

After the perturbation is switched on, wave functionψ
(
0
)

m is no longer stationary and begins to

evolve in time according to the time-dependent Schrödinger equation
(

Ĥ
(
0
)
+ V̂

)
ψ = i� ∂ψ

∂t .

This is a differential equation with partial derivatives with the boundary conditionψ(x, t = 0) =
φ

(
0
)

m
(
x
)
. The functions

{
ψ

(
0
)

n

}
form a complete set, and therefore the wave function that fulfills

the Schrödinger equation ψ
(
x, t
)

at any time can be represented as a linear combination with
time-dependent coefficients c:

ψ
(
x, t
) = ∞∑

n

cn
(
t
)
ψ

(
0
)

n
(
x, t
)
. (2.20)

41 Indeed, Ĥ
(
c1ψ1 + c2ψ2

) = c1 Ĥψ1 + c2 Ĥψ2 = c1i� ∂ψ1
∂t + c2i� ∂ψ2

∂t = i�
∂
(
c1ψ1+c2ψ2

)
∂t .

42 This can always be assured (by suitable orthogonalization and normalization) and follows from the Hermitian

character of the operator Ĥ (0).
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Inserting this on the left side of the time-dependent Schrödinger equation, one obtains(
Ĥ
(
0
)
+ V̂

)
ψ =

∑
n

cn

(
Ĥ
(
0
)
+ V̂

)
ψ

(
0
)

n =
∑

n

cn

(
E
(
0
)

n + V

)
ψ

(
0
)

n ,

whereas its right side gives

i�
∂ψ

∂t
= i�

∑
n

⎡
⎣ψ(0)n

∂cn

∂t
+ cn

∂ψ

(
0
)

n

∂t

⎤
⎦

= i�
∑

n

[
ψ

(
0
)

n
∂cn

∂t
+ cn

(
− i

�
E
(
0
)

n

)
ψ

(
0
)

n

]
=
∑

n

[
i�ψ

(
0
)

n
∂cn

∂t
+ cn E

(
0
)

n ψ

(
0
)

n

]
.

Both sides give ∑
n

cn V̂ψ
(
0
)

n =
∑

n

(
i�
∂cn

∂t

)
ψ

(
0
)

n .

Let us multiply the left side by ψ(0)∗k and integrate the result in

∞∑
n

cnVkn = i�
∂ck

∂t
, (2.21)

for k = 1, 2, . . ., where

Vkn =
〈
ψ

(
0
)

k |V̂ψ
(
0
)

n

〉
. (2.22)

The formulas obtained are equivalent to the Schrödinger equation. These are differential
equations, which we would generally wish to see, provided that the summation is not infinite.43

In practice, however, one has to keep the summation finite.44 If the assumed number of terms
in the summation is not too large, then solving the problem using computers is feasible.

2.4.1 The Two-State Model–Time-Independent Perturbation

For the sake of simplicity, let us take the two-state model (cf., Appendix D available at booksite.

elsevier.com/978-0-444-59436-5, on p. e65) with two orthonormal eigenfunctions

∣∣∣∣φ
(
0
)

1

〉
=

|1〉and

∣∣∣∣φ
(
0
)

2

〉
= |2〉of the Hamiltonian Ĥ

(
0
)

Ĥ
(
0
)
= E

(
0
)

1 |1〉 〈1| + E
(
0
)

2 |2〉 〈2|
43 In fact, only then is the equivalence to the Schrödinger equation ensured.
44 This is typical for expansions into the complete set of functions (the so-called algebraic approximation).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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with the following perturbation
(

to assure V̂ to be Hermitian
)

:

V̂ = v |1〉 〈2| + v∗ |2〉 〈1| ,

with the corresponding matrix V =
(

0 v

v∗ 0

)
.

This model has an exact solution (even for a large perturbation V̂ ). One may introduce various
time dependencies of V̂ , including various regimes for switching on the perturbation.

The differential equations (2.21) for the coefficients c1
(
t
)

and c2
(
t
)

are (in a.u., ω21 =
E
(
0
)

2 − E
(
0
)

1 and v = v∗):

c2v exp
(−iω21t

) = i
∂c1

∂t

c1v exp
(
iω21t

) = i
∂c2

∂t
. (2.23)

Now we assume that v is time-independent and the initial wave function is |1〉; i.e., c1
(
0
) = 1,

c2
(
0
) = 0. In such a case, one obtains45

c1(t) = exp

(
−i

1

2
ω21t

)[
cos (avt)+ i

ω21

2av
sin (avt)

]
,

c2(t) = −1

a
exp

(
i
1

2
ω21t

)
sin (avt), (2.24)

where a =
√

1+ (ω21
2v

)2.

2.4.2 Two States–Degeneracy

One of the most important cases corresponds to the degeneracy ω21 = E
(
0
)

2 − E
(
0
)

1 = 0. One
obtains a = 1 and

c1
(
t
) = cos (vt)

c2
(
t
) = − sin

(
vt
)
.

This is a very interesting result. After applying symmetric orthogonalization (see
Appendix J available at booksite.elsevier.com/978-0-444-59436-5), the functions |1〉 and |2〉
may be identified with theψD and ψL for the D and L enantiomers (cf., p. 74) or, with the wave

45 For example, use Mathematica software to do this. Let us check the conservation of normalization (i.e., its

time independence): |c1(t)|2 + |c2(t)|2 = cos2 (avt) + ω2

(2av)2
sin2 (avt) + 1

a2 sin2 (avt) = cos2 (avt) +
ω2+4v2

(2av)2
sin2 (avt) = cos2 (avt)+ sin2 (avt) = 1.

http://booksite.elsevier.com/978-0-444-59436-5
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functions 1s, centered on the two nuclei in the H+2 molecule. As one can see from the last two
equations, the two wave functions oscillate, transforming one to the other, with an oscillation
period T = 2π

v
. If v were very small (as in the case of D- and L-glucose), then the oscillation

period would be very large. This happens to D- and L-enantiomers of glucose, where changing
the nuclear configuration from one to the other enantiomer means breaking a chemical bond (a
high and wide energy barrier to overcome). This is why the drugstore owner can safely stock
a single enantiomer for a very long time.46 But this may not be true for other enantiomers. For
instance, imagine a pair of enantiomers that represent some intermolecular complexes, and a
small change of the nuclear framework may cause one of them to transform into the other. In
such a case, the oscillation period may be much smaller than the lifetime of the Universe–e.g., it
may be comparable to the time of an experiment. In such a case, one could observe the oscilla-
tion between the two enantiomers. This is what happens in reality. One observes a spontaneous
racemization, which is of dynamic character (i.e., a single molecule oscillates between D and
L forms).

2.4.3 The Two-State Model - An Oscillating Perturbation

It is interesting what happens to the wave function as time passes, when a perturbation varying

with time as exp(iωt) is switched on. Formula (for V̂ ) has to be modified to (with the second
term having an exp(−iωt) time-dependence to ensure that the operator (2.25) is Hermitian)

V̂ = v[exp(iωt) |1〉 〈2| + exp(−iωt) |2〉 〈1|], (2.25)

with |1〉 ≡ ψ
(
0
)

1 and |2〉 ≡ ψ
(
0
)

2 and real v.
Inserting such a perturbation into Eqs. (2.21) results in Eqs. (2.23), but replacing ω21 →

ω21 −ω. Assuming that function |1〉 is the starting one, that means c1
(
0
) = 1, c2

(
0
) = 0, and

therefore, Eq. (2.24) takes the form

c1(t) = exp

[
−i

1

2

(
ω21 − ω

)
t

][
cos(avt)+ i

(
ω21 − ω

)
2av

sin(avt)

]
,

c2(t) = −1

a
exp

[
i
1

2

(
ω21 − ω

)
t

]
sin(avt),

where this time a =
√

1+ (ω21−ω
2v

)2
.

2.4.4 Two States–Resonance Case

For ω = ω21 (the energy of the photon matches the energy level difference), we obtain

c1
(
t
) = cos (vt),

c2
(
t
) = − sin

(
vt
) ; (2.26)

46 It cannot, however, be kept longer than the sell-by date.
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i.e., the system oscillates between stateψ
(
0
)

1 and stateψ
(
0
)

2 , with period 2π
v

, and no one of these
states is privileged.47

It is intriguing to see that for oscillating perturbation in the case of two levels of different
energies, we got exactly the same behavior as in the case of degenerate levels. It looks as
if the two levels have equal energy (degeneracy) after the resonance photon energy of one
of them is counted, depending on absorption or emission.

2.4.5 Short-Time Perturbation–The First-Order Approach

If one is to apply first-order perturbation theory, two things have to be assured: the perturbation

V̂ has to be small, and the time of interest has to be small (switching the perturbation in
corresponds to t = 0). This is what we are going to assume from now on. At t = 0, one starts
from the mth state and therefore cm = 1, while other coefficients cn = 0. Let us assume that
to the first approximation, the domination of the mth state continues even after switching the
perturbation on, and we will be interested in detecting the most important tendencies in time
evolution of cn for n �= m. These assumptions (they give first-order perturbation theory48) lead
to a considerable simplification of Eqs. (2.21):

Vkm = i�
∂ck

∂t
for k = 1, 2, . . . N .

In this, and the further equations of this chapter, the coefficients ck will depend implicitly on
the initial state m. The change of ck(t) is therefore proportional to Vkm . A strong coupling for
the expansion function ψ(0)k (i.e., the system becomes a bit similar to that described by ψ(0)k )

corresponds to large values of the coupling coefficient Vkm , which happens when function ψ(0)k

47 Such oscillations necessarily mean that the energy of the system changes periodically: after time τ = π
2v the

system absorbs a photon of energy �ω12 from the electromagnetic field. Then, again, after τ , emits the same
photon, and then absorption, emission, etc., this scenario repeats periodically (excitations and deexcitations).
Such behavior is possible only because of continuous supplying of the photons from the field given by Eq. (2.25).
If the system interacted with a single photon instead of the field (2.25), the excited state would change to the
ground state and the photon in the form of a spherical wave expanding to infinity (equal probability of detecting
the photon in any spot on a sphere). If we had only our system in the Universe and the Universe were limited by
a mirror, the photon would finally come back to the system, causing its excitation, then emission, etc., similar to
our solution. However, our Universe is not limited by a mirror and the photon spherical wave would expand to
infinity without finding any obstacles. There would be no chance for the photon to come back and the atom would
not be excited.

48 For the sake of simplicity, we will not introduce a new notation for the coefficients c corresponding to the first-order
procedure. If the above simplified equation were introduced to the left side of Eq. (2.21), then its solution would
give c accurate up to the second order, etc.
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resembles function V̂ψ(0)m . This represents a strong constraint both for ψ(0)k and V̂ , only some

special perturbations V̂ are able to couple effectively two states,49 such as ψ(0)k and ψ(0)m .
The quantity Vkm depends on time for two or even three reasons. First and second, the

stationary states ψ
(
0
)

m and ψ

(
0
)

k do have a time dependence, and third, the perturbation V̂ may
also depend on time. Let us highlight the time dependence of the wave functions by introducing
the frequency

ωkm = E
(
0
)

k − E
(
0
)

m

�

and the definition

vkm ≡
〈
φ

(
0
)

k |V̂φ
(
0
)

m

〉
.

One obtains

− i

�
vkm eiωkmt = ∂ck

∂t
.

Subsequent integration with the boundary condition ck(τ = 0) = 0 for k �= m gives

ck
(
τ
) = − i

�

∫ τ

0
dt vkm

(
t
)

eiωkmt . (2.27)

The square of ck
(
τ
)

represents (to the accuracy of first-order perturbation theory) the prob-

ability that at time τ , the system will be found in state ψ
(
0
)

k . Let us calculate this probability for
a few important cases of perturbation V̂ .

2.4.6 Time-Independent Perturbation and the Fermi Golden Rule

From Eq. (2.27), one has

ck
(
τ
) = − i

�
vkm

∫ τ

0
dt eiωkmt = − i

�
vkm

eiωkmτ − 1

iωkm
= −vkm

eiωkmτ − 1

�ωkm
. (2.28)

49 First of all, there must be something in V̂ , which influences the particles of the system, like electric field interaction
with electrons of an atom. If the atom stays spherically symmetric, there is no coupling with the field. Only by
making a shift of electrons do we get some interaction, proportional to this shift. Therefore, roughly speaking, V̂

is in this case proportional to the shift x of the most weakly bound electron. Let us assume that we start from ψ
(0)
m

(describing this electron, we neglect the other electrons), which is a spherically symmetric function. Therefore,

V̂ψ(0)m ∼ x · (spherically symmetric) and the most promising function ψ(0)k would be of the px type, since only

then the integral Vkm would have a chance to be nonzero. But still, if ψ(0)m and ψ(0)k correspond to different
energies, they have their phase factors multiplied in the integrand, which results in their product oscillating in

time with the frequency ωkm = (E(0)k − E(0)m )/�. The only way to damp these oscillations (making Vkm having

a substantial value for any t) is to use V̂ , and therefore x , oscillating itself, preferably with the same frequency to
damp effectively. To damp oscillations exp (iωkmt), we have to have V̂ oscillating as exp (−iωkmt), because these
factors give no oscillations when multiplied. The last conclusion is independent of the nature of V̂ . Therefore,
even from such a simple reasoning, we have to change quantum state using light frequency, which matches the
difference of the corresponding energy levels.
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Now let us calculate the probability density Pk
m = |ck |2, that at time τ , the system will be in

state k (the initial state is m):

Pk
m

(
τ
) = |vkm |2

(−1+ cosωkmτ
)2 + sin2 ωkmτ(

�ωkm
)2 = |vkm |2

(
2− 2 cosωkmτ

)
(
�ωkm

)2
= |vkm |2

(
4 sin2 ωkmτ

2

)
(
�ωkm

)2 = |vkm |2 1

�2

(
sin2 ωkmτ

2

)
(
ωkm

2

)2 .

In order to undergo the transition from state m to state k, one has to have a large vkm (i.e.,
a large coupling of the two states through perturbation V̂ ). Note that probability Pk

m strongly
depends on the time τ chosen; the probability oscillates as the square of the sine when τ increases.
For some τ it is large, while for others it is zero. From example 4 in Appendix E available at
booksite.elsevier.com/978-0-444-59436-5, on p. e69 one can see that for large values of τ , one
may write the following approximation50 to Pk

m :

Pk
m

(
τ
) ∼= |vkm |2 π τ

�2 δ
(ωkm

2

)
= 2πτ

�2
|vkm |2 δ

(
ωkm

) = 2πτ

�
|vkm |2 δ

(
E
(
0
)

k − E
(
0
)

m

)
,

where we have used twice the Dirac delta function property that δ(ax) = δ(x)
|a| .

As one can see, Pk
m is proportional to time, which makes sense only because time τ has to be

relatively small (i.e., first-order perturbation theory has to be valid). Note that the Dirac delta
function forces the energies of both states (the initial and the final) to be equal because of the
time independence of V̂ .

A time-independent perturbation is unable to change the state of the system when it corre-
sponds to a change of its energy.

A very similar formula is systematically derived in several important cases. Probably this is
why the probability per unit time is called the Fermi golden rule51:

Fermi Golden Rule

wk
m ≡

Pk
m

(
τ
)

τ
= |vkm |2 2π

�
δ

(
E
(
0
)

k − E
(
0
)

m

)
. (2.29)

50 We assume that τ is large when compared to 2π/ωkm , but it is not too large to keep the first-order perturbation
theory valid.

51 E. Fermi, Nuclear Physics, University of Chicago Press, Chicago (1950) p. 142.

http://booksite.elsevier.com/978-0-444-59436-5
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2.4.7 The Most Important Case: Periodic Perturbation

Let us assume a time-dependent periodic perturbation:

V̂
(
x, t
) = v̂ (x) e±iωt .

Such a perturbation corresponds to an oscillating electric field52 of angular frequency ω.
Let us take a look at successive equations, which were obtained at the time-independent V̂ .

The only change will be that Vkm will take the form

Vkm ≡
〈
ψ

(
0
)

k |V̂ψ
(
0
)

m

〉
= vkmei

(
ωkm±ω

)
t instead of Vkm ≡

〈
ψ

(
0
)

k |V̂ψ
(
0
)

m

〉
= vkmeiωkmt .

The whole derivation will be therefore identical, except that the constant ωkm will be replaced
by ωkm ± ω. Hence, we have a new form of the Fermi golden rule for the probability per unit
time of transition from the mth to the kth state:

Fermi Golden Rule

wk
m ≡

Pk
m

(
τ
)

τ
= |vkm |2 2π

�
δ

(
E
(
0
)

k − E
(
0
)

m ± �ω

)
. (2.30)

Note that V̂ with exp(+iωt) needs the equality E
(
0
)

k + �ω = E
(
0
)

m , which means that

E
(
0
)

k ≤ E
(
0
)

m ; and therefore, one has emission from the mth to the kth states. On the other hand,

V̂ with exp(−iωt) forces the equation E
(
0
)

k − �ω = E
(
0
)

m , which corresponds to absorption
from the mth to the kth state.

Therefore, a periodic perturbation is able to make a transition between states of different
energy.

Summary

The Hamiltonian of any isolated system is invariant with respect to the following transformations (operations):

• Any translation in time (homogeneity of time)
• Any translation of the coordinate system (space homogeneity)
• Any rotation of the coordinate system (space isotropy)
• Inversion (r→−r)

52 In the homogeneous field approximation, the field interacts with the dipole moment of the molecule (cf. Chapter 12)

V
(
x, t
) = V

(
x
)

e±iωt = −µ̂ · Ee±iωt ,

where E denotes the electric field intensity of the light wave and µ̂ is the dipole moment operator.
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• Reversing all charges (charge conjugation)
• Exchanging labels of identical particles

This means that the wave function corresponding to a stationary state (the eigenfunction of the Hamiltonian) also
has to be an eigenfunction of the following:

• Total momentum operator (due to the translational symmetry)
• Total angular momentum operator and one of its components (due to the rotational symmetry)
• Inversion operator
• Any permutation (of identical particles) operator (due to the non-distinguishability of identical particles)

• Ŝ2 and Ŝz operators (for the non-relativistic Hamiltonian, p. 66, due to the absence of spin variables in it)

Such a wave function corresponds to the energy belonging to the energy continuum.53 Only after separation of the
center-of-mass motion does one obtain the spectroscopic states (belonging to a discrete spectrum)�N ,J ,M,�

(
r,R

)
,

where N = 0, 1, 2, . . . denotes the quantum number of the electronic state, J = 0, 1, 2, . . . quantizes the total angular
momentum, MJ ,−J ≤ MJ ≤ J quantizes its component along the z axis, and � = ±1 represents the parity with
respect to the inversion. As to the invariance with respect to permutations of identical particles, an acceptable wave
function has to be antisymmetric with respect to the exchange of identical fermions, whereas it has to be symmetric
when exchanging identical bosons.

The time-independent Schrödinger equation Ĥψ = Eψ has been derived from the wave equation and the de
Broglie formula. Solving this equation results in the stationary states and their energies. This is the basic equation
of quantum chemistry. The prevailing weight of research in this domain is concentrated on solving this equation for
various systems.

The time-dependent Schrödinger equation Ĥψ = i� ∂ψ
∂t represents the time evolution of an arbitrary initial wave

function. The assumption that translation in time is a unitary operator leads to preserving the normalization of the
wave function and of the mean value of the Hamiltonian. If the Hamiltonian is time-independent, then one obtains the
formal solution to the Schrödinger equation by applying the operator exp (− i t

�
Ĥ) to the initial wave function. The

time evolution of the stationary stateφ
(
0
)

m is most interesting in the case of suddenly switching the perturbation V̂ . The
state is no longer stationary, and the wave function begins to change as time passes. Two cases have been considered:

• Time-independent perturbation.
• Periodic perturbation.

Only in the case of a time-dependent perturbation may the system change the energy state.

Main Concepts, New Terms

atomic units (p. 66)
algebraic approximation (p. 91)
baryon number (p. 71)
bound state (p. 82)
charge conjugation (p. 76)
dipole moment (p. 72)
dynamic symmetry (p. 83)
enantiomers (p. 73)
Fermi golden rule (p. 96)
first-order perturbation theory (p. 94)

functions of class Q (p. 80)
gauge symmetry (p. 71)
invariance of theory (p. 64)
inversion (p. 72)
lepton number (p. 71)
mathematical solution (p. 84)
mirror reflection (p. 73)
molecular symmetry (p. 76)
periodic perturbation (p. 97)
physical solutions (p. 83)

53 This is because the molecule as a whole (i.e., its center of mass) may have an arbitrary kinetic energy. Sometimes
it is rewarding to introduce the notion of the quasicontinuum of states, which arises if the system is enclosed in a
large box instead of considering it in infinite space. This simplifies the underlying mathematics.
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rotational symmetry (p. 73)
Schrödinger equation (p. 77)
space isotropy (p. 64)
space homogeneity (p. 64)
spectroscopic state (p. 69)
spin conservation (p. 76)
stationary state (p. 77)
symmetry C (p. 76)

symmetry of the Hamiltonian (p. 63)
symmetry P (p. 72)
time-evolution operator (p. 85)
time-independent perturbation (p. 95)
translational symmetry (p. 68)
two-state model (p. 91)
wave function evolution (p. 85)
wave function “matching” (p. 82)

From the Research Front

The overwhelming majority of research in the domain of quantum chemistry is based on the solution of the time-
independent Schrödinger equation. Without computers, it was possible to solve (in an approximate way) the equation
for H+2 by conducting a hall full of secretaries with primitive calculators for many hours (what a determination).
Thanks to computers, solving such problems became easy as early as the 1960s. Despite the enormous progress in
computer science, until the end of the 1980s, the molecules studied were rather small when compared to researchers’
expectations. They could be treated only as models because they were usually devoid of substituents that theoreticians
were forced to consider irrelevant. The last years of the twentieth century were marked by the unprecedented delivery
by theoreticians of powerful high-tech efficient tools of quantum chemistry to other specialists: chemists, physicists,
etc., as well as laypeople. The software computes millions of integrals, uses sophisticated mathematics (literally
the whole arsenal of quantum chemistry), but users need not know about it. All they have to do is click a mouse
on a quantum chemistry method icon.54 Despite such progress, the time-dependent Schrödinger equation is solved
extremely rarely. For the time being, researchers are interested mainly in stationary states. The quality of results
depends on the size of the molecules investigated. Very accurate computations (accuracy ∼0.01 kcal/mol) are
feasible for the smallest molecules containing a dozen of electrons, less accurate ones use first principles (ab initio
methods) and are feasible for hundreds of atoms (accuracy to a few kcals/mol). Semi-empirical quantum calculations55

of even poorer accuracy are applicable to thousands of atoms.

Ad Futurum

The numerical results routinely obtained so far indicate that, for the vast majority of chemical problems (yet not
all, cf., Chapter 3) there is no better tool than the Schrödinger equation. Future progress will be based on more
and more accurate solutions for larger and larger molecules. The appetite for progress is unlimited here, but the
numerical difficulties increase much faster than the size of the system. However, progress in computer science has
systematically opened new possibilities, which always are many times larger than previous ones. Some simplified
alternatives to the Schrödinger equation (e.g., such as described in Chapter 11) will also be more important.

Undoubtedly methods based on the time-dependent Schrödinger equation will also be developed. A typical
possible target might be to plan a sequence of laser pulses56 such that the system undergoes a change of state from
ψ1 to ψ2 (a state-to-state reaction). The way we carry out chemical reactions, usually by rather primitive heating,
may change to a precise transformation of the system from state to state.

54 I hope all students understand that a quantum chemist has to be equipped with something more than a strong
forefinger for clicking.

55 In such calculations, many integrals are approximated by simple formulas (sometimes involving experimental
data), the main goal of which is efficiency.

56 That is a sinusoidal impulse for each of the sequences: switching on time, duration, intensity, and phase. In terms
of contemporary laser techniques, it is an easy task. Now chemists should consider transforming the reagents into
products. The beginnings of such an approach are already present in the literature (e.g., J. Manz, G.K. Paramonov,
M. Polášek, and C. Schütte, Isr. J. Chem., 34, 115(1994).
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It seems that at the essence of science is the fundamental question of why, and a clear answer to this question
follows from a deep understanding the Nature’s machinery. We cannot tell a student, “Well, this is what the computer
says,” because it is more important for you and me to understand than that the computer cranks out an answer. Hence,
interpretation of the results will be of crucial importance (a sort of Bader analysis; cf., Chapter 11). Progress in this
realm seems to be rather modest for the time being.

Additional Literature
R. Feynman, The Character of Physical Law, Cox and Wyman, Ltd, London, (1965).

The best recommendation is that the Feynman’s books need no recommendation.
J. Cioslowski, in “Pauling’s Legacy: Modern Modelling of the Chemical Bond,” eds. Z.B. Maksić, W.J. Orville-
Thomas, Elsevier, Amsterdam, (1999) p.1.

Questions

1. The momentum conservation law is a consequence of

a. space isotropy
b. homogeneity of time
c. homogeneity of space
d. invariance of the time-dependent Schrödinger equation with respect to change of the sign of time

2. Invariance of the time-independent Hamiltonian with respect to any rotation of the coordinate system results
in

a. momentum conservation
b. the square of the total angular momentum and only one of the components of the total angular momentum

being measurable
c. the total energy and the square of the total angular momentum being measurable
d. the total energy and only one of the components of the total angular momentum being measurable

3. The non-relativistic Hamiltonian contains

a. Coulombic interaction of all charged particles
b. interaction of magnetic fields created by moving charged particles
c. interaction of point-like particles
d. the interaction of the spin magnetic moments of the individual particles

4. The wave function

a. has to be continuous
b. has to have the same value for an angular variable α and for α + 2π
c. must not tend to infinity
d. must have continuous derivative (in the whole domain)

5. Wave function for a bound state

a. tends to zero as any Cartesian coordinate of particles tends to infinity
b. must have a continuous first derivative
c. being related to probability, takes only non-negative values
d. has to be defined for all values of Cartesian coordinates of all the particles of the system

6. Time-independent Schrödinger equation

a. is satisfied by a wave function that is an eigenfunction of the Hamiltonian of the system
b. any solution of this equation corresponds to a physically acceptable state of the system
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c. an eigenvalue may correspond to several linearly independent eigenfunctions
d. energy levels represent eigenvalues of this equation

7. Time-dependent Schrödinger equation [Ĥ stands for the Hamiltonian, ψ(x, t) is the wave function, x symbol-
izes the spatial coordinates, t denotes time]

a. describes the evolution in time of any quantum state

b. takes the form: Ĥψ = �
∂ψ
∂t

c. allows to calculate the time derivative of a wave function from its spatial-coordinate dependence at a fixed
time

d. if Ĥ does not depend on time, its solution reads as ψ(x, t) = exp (−i Ĥ
�

t)ψ(x, t = 0)

8. In evolution of any wave function,

a. for some values of time the wave function is equal to one of the eigenfunctions of the Hamiltonian
b. the mean value of the Hamiltonian decreases
c. normalization of the wave function is satisfied at any time
d. when starting from an excited state we end up in the ground state

9. In the two-state model (two states with energies E
(
0
)

1 and E
(
0
)

2 ) with a time-independent perturbation,

a. the system always oscillates between these two states: for some values of time the wave function represents
either of these two states

b. the system oscillates between these two states only in the case of degeneracy: for some values of time the
wave function represents either of these two states

c. in the case of degeneracy the larger the coupling energy of the states the larger the oscillation period is
d. the coupling energy for D and L isomers of glucose is small, because the transition from one isomer to the

other requires breaking a chemical bond (large barrier)

10. The Fermi golden rule

a. was derived by Dirac
b. pertains to the probability of changing the state due to perturbation applied
c. a time-independent perturbation enables a transition from a state of higher energy to a state of lower energy
d. a time-dependent periodic perturbation may change a state to another state of different energy

Answers

1c, 2b,c,d, 3a,c, 4a,b,c, 5a,d, 6a,c,d, 7a,c,d, 8c, 9b,d, 10a,b,d





CHAPTER 3

Beyond the Schrödinger Equation

“Newton, forgive me…”
Albert Einstein

Where Are We?

The problems considered in the present chapter are shown as a small side-branch at the base of the tree1.

An Example

Imagine that you are with some colleagues in your brand-new luxury car made to your very particular specifications,
with an extravagant feature: the unlimited speed (of light). The manual says proudly that its exclusive quantum-
mechanical construction is based purely on the famous Schrödinger equation, in which c = ∞. Your colleagues are
sure that your car is much better than the corresponding cheap relativistic model for everybody. Well, it turned out
recently,2 your non-relativistic wonder car would not start at all: when pushed, the starter would be able to make only
a unpleasant sound indicating a dead battery. The reason is a large relativistic effect in the electric potential difference
between the lead electrode and the lead dioxide electrode. Your non-relativistic battery would attain only something
like 20% of the voltage that the relativistic battery usually produces. Well, I am sure you will enthusiastically agree
with me (together with millions of car drivers and passengers all over the world), that there is a need to abandon the
non-relativistic theory and quest for a more accurate one.

Now, here is still another argument to ponder. Many people would want to know everything about the precious
metal gold. The yellow shine of this metal has hypnotized humanity for centuries. Few people know that the color
of gold, as calculated assuming the infinite velocity of light, would actually be silver-like3.

1 This chapter owes much to the presentation given by L. Pisani, J.-M. André, M.-C. André, and E. Clementi,
J. Chem. Educ., 70, 894–901 (1993), as well as to the work of my friends J.-M. André, D.H. Mosley, M.-C.
André, B. Champagne, E. Clementi, J.G. Fripiat, L. Leherte, L. Pisani, D. Vercauteren, and M. Vracko, Exploring
Aspects of Computational Chemistry: Vol. I, Concepts, Presses Universitaires de Namur, pp. 150–166 (1997);
Vol. II, Exercises, Presses Universitaires de Namur, pp. 249–272(1997).

2 R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö, and P. Zaleski-Ejgierd, Phys. Rev. Lett., 106, 18301 (2011).
3 P. Pyykkö, Chem. Rev., 88, 563 (1988); also P. Pyykkö, ibid., 97, 597 (1997).

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00003-9
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The Schrödinger equation fails especially for heavy elements. Here is an example of three diatomics: Cu2, Ag2,
Au2 (ZCu = 29, ZAg = 47, ZAu = 79)4.

Bond Length (Å) Cu Ag Au
Non-relativistic calculations 2.26 2.67 2.90
Relativistic calculations 2.24 2.52 2.44
Experimental results 2.22 2.48 2.47

The heavier the element, the larger is the error of the non-relativistic approach. This is a huge discrepancy (see
boldface) for such a quantity as bond length.

What Is It All About?

A Glimpse of Classical Relativity Theory (� �) p. 106

• The Vanishing of Apparent Forces
• The Galilean Transformation
• The Michelson-Morley Experiment
• The Galilean Transformation Crashes
• The Lorentz Transformation
• New Law of Adding Velocities
• The Minkowski Space-Time Continuum
• How do we Get E = mc2?

Toward Relativistic Quantum Mechanics (� �) p.122
The Dirac Equation (� �� ) p. 124

• The Electronic Sea and the Day of Glory
• The Dirac Equations for Electrons and Positrons
• Spinors and Bispinors
• What Next?
• Large and Small Components of the Bispinor
• How to Avoid Drowning in the Dirac Sea
• From Dirac to Schrödinger – How Is the Non-Relativistic Hamiltonian Derived?
• How Does the Spin Appear?
• Simple Questions

The Hydrogen-Like Atom in Dirac Theory (� �) p. 135

• Step by Step: Calculation of the Hydrogen-Like Atom Ground State Within Dirac Theory

Toward Larger Systems (� � ) p. 141

• Non-Interacting Dirac Electrons
• Dirac-Coulomb (DC) Model

Beyond the Dirac Equation... (� ��) p. 145

• The Breit Equation
• About QED

The greater the velocity of an object, the greater the errors in Newton dynamics. Electrons have greater velocity
when close to the nuclei of a large electric charge5. This is why relativistic corrections may turn out to be important
for heavy elements.

4 J.-M. André and M.-C. André, “Une introduction à la théorie de la relativité classique et quantique à l’usage des
chimistes”, Universitè de Namur, Namur, 1999, p. 2.

5 This is easy to estimate. From Appendix H available at booksite.elsevier.com/978-0-444-59436-5 on p. e91 it
follows that the mean value of the kinetic energy of an electron described by the 1s orbital in an atom of atomic

http://booksite.elsevier.com/978-0-444-59436-5
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The Schrödinger equation is incompatible with special relativity theory. This flaw has to be corrected somehow.
The problem is far from being solved, but progress so far shows the Schrödinger equation, the spin of a particle, etc.
in a new light.

Why Is This Important?

This chapter addresses the very foundations of physics, and in principle, this subject has to be treated on an equal
footing with the postulates of quantum mechanics. The Schrödinger equation of Chapter 2 does not fulfill (as
will be shown in this chapter) the requirements of relativity theory, and therefore is in principle “illegal.” In this
chapter, Dirac’s attempt to generalize the Schrödinger equation to adapt it to relativity theory will be described. If
one assumes that particle velocities are small compared to that of light, then from this more general theory, one
obtains the Schrödinger equation. Also, the notion of spin, which was introduced as a postulate in Chapter 1, follows
as a natural consequence of the relativistic theory. One may draw the conclusion that this chapter addresses “the
foundations of foundations,” and therefore should occupy a prominent position in the TREE instead of representing
a small side branch (as it does now). However, the relativistic effects, even if visible in chemistry, do not play an
important role in the case of the light elements (almost the whole of organic chemistry, as well as almost the whole
of biology). This is why I have chosen a rather pragmatic (“non-fundamental”) way of presentation. This chapter is
mainly for those readers who are interested in

• “The foundations of foundations”
• Very accurate calculations for small atoms and molecules
• Calculations for the systems containing heavy elements.

What Is Needed?

• The postulates of quantum mechanics (Chapter 1, necessary)
• Operator algebra (see Appendix A available at booksite.elsevier.com/978-0-444-59436-5, p. e1 necessary)
• Vector and scalar potentials (see Appendix G available at booksite.elsevier.com/978-0-444-59436-5, p. e81,

necessary)

Classical Works

The American physicist Albert Michelson (by himself in 1881 and in 1887 with Edward Morley) carried out some
experiments showing that the speed of light is the same in the directions perpendicular and parallel to the Earth’s
orbit; i.e., the Earth’s orbital velocity did not change the speed of light with respect to the Earth. The results were
published in the American Journal of Science, 22, 120 (1881) with the title “The relative motion of the Earth and
the luminiferous aether,” and ibid., 34, 333 (1887) (with a similar title). � In 1889, the Irish physicist George
Francis FitzGerald made the conjecture that if all moving objects were foreshortened in the direction of their motion,
this would account for the strange results of the Michelson-Morley experiment. This was published in Science, 13,
390 (1889), with the title “The ether and the Earth’s atmosphere.” � The revolutionary special relativity theory
(which explained this in detail) was developed by Albert Einstein in an article entitled “Zur Elektrodynamik bewegter

number Z is equal to T̄ = 1
2 Z2 (in a.u.). On the other hand, for a rough estimation of the electron velocity v, one

may write T̄ = mv2

2 . This results in the expression v = Z valid in a.u., while the velocity of light c = 137.036 a.u.
The largest Z known hardly exceeds 100. It is seen, therefore, that if an atom with Z > 137 existed, then the 1s
electrons would attain velocities exceeding the velocity of light. Even if this calculation is nothing but a rule of
thumb, there is no doubt that when Z increases, a certain critical Z value is approached (the so-called relativistic
mass effect).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Körper,” published in Annalen der Physik (Leipzig), 17, 891 (1905). � Einstein’s article is based largely on the ideas
of the Dutchman Hendrik Antoon Lorentz, who independently of FitzGerald proposed the Lorentz transformation
(of space and time) in 1904. The transformation accounted for the contraction of moving objects, as predicted by
FitzGerald. The paper “Electromagnetic Phenomena in a System Moving with any Velocity smaller than that of
Light” was published in Proceedings of the Academy of Sciences of Amsterdam, 6, 809 (1904). � The German
mathematician Hermann Minkowski realized that the work of Lorentz and Einstein could best be understood using
a non-Euclidean space of the space and time variables. His first paper on this subject was “Die Grundgleichungen
für die elektromagnetischen Vorgänge in bewegten Körper,” published in Nachrichten der königlichen Gesellschaft
der Wissenschaften zu Göttingen (1908). � The Soviet physicist Vladimir A.Fock derived the first relativistic wave
equation for a particle [published in Zeitschrift für Physik, 39, 226 (1926)], then the German scientist Walter Gordon
did the same and also published in Zeitschrift für Physik, 40, 117 (1926). Finally, a similar theory was proposed
independently by the Swede Oskar Klein in Zeitschrift für Physik, 41, 407 (1927). The Austrian scientist Erwin
Schrödinger also derived the same equation, and this is why it is sometimes called “the equation with many fathers.”
� A more advanced quantum mechanical theory (for a single particle) adapted to the principles of relativity was
given by the British physicist Paul Adrien Maurice Dirac in several articles in Proceedings of the Royal Society
(London) entitled “The fundamental equations of quantum mechanics,” A109, 642 (1926); “Quantum mechanics
and a preliminary investigation of the hydrogen atom, ibid. A110, 561 (1926); “The quantum theory of radiation,”
ibid.” A114, 243 (1927); and “The quantum theory of the electron,” ibid. A117 (1928) 610 and, “ The Quantum Theory
of the Electron. Part II” ibid. A118, 351 (1928). � An extension of relativistic quantum theory to many-electron
problems (still approximate) was published by the American physicist Gregory Breit in Physical Review with the title
“The effect of retardation on the interaction of two electrons,” 34, 553 (1929), and then in two other papers entitled
“Fine structure of He as a test of the spin interaction of two electrons,” ibid. 36, 383 (1930), and “Dirac’s equation
and the spin-spin interactions of two electrons,” ibid. 39, 616 (1932). � In 1948, the American physicists Richard
Feynman and Julian Schwinger, as well as the Japanese physicist Shinichiro Tomonaga independently invented the
quantum electrodynamics (QED), which successfully combined quantum theory with the special theory of relativity
and produced extremely accurate results. � The relativistic approach has been introduced to quantum chemistry
by Pekka Pyykkö and Jean-Paul Desclaux in a paper “Relativity and Periodic System of Elements” published in
Accounts of Chemical Research, 12, 276, 1979.

3.1 A Glimpse of Classical Relativity Theory

3.1.1 The Vanishing of Apparent Forces

Ernest Mach (1838–1916) was an
Austrian physicist and philosopher,
professor at the Universities of Graz,
Prague, and Vienna, and godfather
of Wolfgang Pauli. Mach investigated
supersonic flows. In recognition of his
achievements, the velocity of sound in
air (1224 km/hour) is called Mach 1.

The three principles of Newtonian6

dynamics were taught to us in
school. The first principle, that a
free body (with no acting force)
moves uniformly along a straight
line, seems to be particularly sim-
ple. It was not so simple for Ernest
Mach, though.

6 For Newton’s biography, see Chapter 7.
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Mach wondered how one recognizes that no force is acting on a body. The contemporary
meaning of the first principle of Newton dynamics is the following. First, we introduce a
Cartesian coordinate system x, y, z to the Universe, then remove from the Universe all objects
except one, to avoid any interactions. Then, we measure equal time intervals using a spring
clock and put the corresponding positions of the body to the coordinate system (thus, we are
there with our clock and our ruler). The first principle says that the positions of the body are
along a straight line and equidistant. What a crazy procedure! The doubts and dilemmas of
Mach were implanted in the mind of Albert Einstein.

Albert Einstein (1879–1955), born in Ulm, Germany,
studied at the ETH, Zurich. He is considered by many
as a genius for all times. Einstein had the ability to
look at difficult problems from an unusual perspective,
seeing the simplicity behind the complex reality. The
beginnings were however hard. He failed the entrance
exam to the ETH Zurich. He wrote: “If I have the
good fortune to pass my examinations, I would study
mathematics and physics. I imagine myself becom-
ing a teacher.” Three of Einstein’s fellow students
were appointed assistants at ETH, but not him. As a
teenager and student, Einstein rejected many social
conventions. This is why he was forced to begin his
scientific career at a secondary position in the federal
patent office. Being afraid of his supervisor, he used to
read books that he kept hidden in a drawer (he called
the drawer the “Department of Physics”).

The year of his 26th birthday, 1905, was particu-
larly fruitful. He published three fundamental papers:
about relativity theory, about Brownian motion, and
about the photoelectric effect. For the latter work, Ein-
stein received the Nobel Prize in physics in 1921.
After these publications, he was appointed professor
at the University of Zurich and then at the University
of Prague. Starting in 1914, Einstein headed the
Physics Institute in Berlin, which was founded espe-
cially for him. He emigrated to the United States in
1933 because he was relentlessly persecuted by the
Nazis for his Jewish origin. Einstein worked at the
Institute for Advanced Study in Princeton, New Jersey,
and died there in 1955. According to his will, his ashes
were dispersed over the United States from the air.
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This Bern Patent Office employee also knew about the dramatic dilemmas of Hendrik Lorentz,
which will be discussed shortly. Einstein recalls that there was a clock at a tram stop in Bern.
Whenever his tram moved away from the stop, the modest patent office clerk asked himself
what the clock would show if the tram had the velocity of light. Other passengers probably read
their newspapers, but Einstein had questions that led humanity on new pathways.

Let us imagine two coordinate systems (each in 1-D): O “at rest” (we assume it to be inertial7),
while the coordinate system O ′ moves with respect to the first in a certain way (possibly very
complicated). The position of the moving point may be measured in O , giving the number x
as the result, while in O ′, one gets the result x ′. These numbers are related to one another as
follows (t is time, f is a function of time):

x ′ = x + f (t). (3.1)

If a scientist working in a lab associated with the coordinate system O would like to calculate
the force acting on the abovementioned point body, he would get a result proportional to the
acceleration (i.e., to d2x

dt2 ). If the same were done by another scientist working in a lab in O ′,
then he would obtain another force, this time proportional to the acceleration computed as
d2x ′
dt2 = d2x

dt2 + d2 f
dt2 . The second term in this force is the apparent force. One encounters such

apparent forces in elevators, on a carousel, etc., where a body moves as if for no reason.

Let us note an important consequence: if one postulates the same forces (and therefore the
same dynamics) in two-coordinate systems, f (t) has to be a linear function (because its
second derivative is equal to zero). This means that a family of all coordinate systems that
moved uniformly with respect to one another would be characterized by the same description
of phenomena because the forces computed would be the same (inertial systems).

Physics textbooks written in the two laboratories associated with O and O ′ would describe
all the phenomena in the same way.

The linearity condition gives x ′ = x + vt . Let us take a fresh look of this equation: x ′
represents a linear combination of x and t , which means that time and the linear coordinate
mix together. One has two coordinates: one in the O coordinate system and the other in the O ′
coordinate system. Wait a minute! Since the time and the coordinate are on an equal footing
(they mix together), maybe one may also have the time (t) appropriate for (i.e., running in) the

7 That is, the Newton equation is satisfied. A coordinate system associated with an accelerating train is not inertial
because there is a nonzero force acting on everybody on the train, while people sit.
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O and the time (t ′) running in the O ′ coordinate system?

Now, a crucial step in the reasoning. Let us write in a most general way a linear transformation
of coordinates and time (the forces computed in both coordinate systems are the same):

x ′ = Ax + Bt

t ′ = Cx + Dt .

First, the corresponding transformation matrix has to be invertible (i.e., non-singular), because
inversion simply means exchanging the roles of the two coordinate systems and of the observers
flying with them. Thus, one has:

x = Āx ′ + B̄t ′

t = C̄x ′ + D̄t ′.

Next, A has to be equal to Ā because the measurements of length in O and O ′ (i.e., x and x ′),
cannot depend on whether one looks at the O coordinate system from O ′, or at the O ′ system
from O . If the opposite were true, then one of the coordinate systems would be privileged
(treated in a special way). This, however, is impossible because the two coordinate systems
differ only in that O ′ flies from O with velocity v, while O flies from O ′ with velocity −v,
but the space is isotropic. The same has to happen with the time measurements: on board O
(i.e., t), and on board O ′ (i.e., t ′), therefore D = D̄. Since (from the inverse transformation
matrix) Ā = D

AD−BC and D̄ = A
AD−BC , we have

D

AD − BC
= A

A

AD − BC
= D.

From this, D
A = A

D follows, or

A2 = D2. (3.2)

From the two solutions, A = D and A = −D, one has to choose only A = D, because the
second solution would mean that the times t and t ′ have opposite signs; i.e., when time runs
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forward in O it would run backward in O ′. Thus, we have

A = D. (3.3)

3.1.2 The Galilean Transformation

Galileo Galilei (1564–1642) was an Italian scientist
and professor of mathematics at Pisa. Only those who
have visited Pisa are able to appreciate the inspiration
(for studying the free fall of bodies of different
materials) from the incredibly leaning tower. Galileo’s
opus magnum (right-hand side) was published by
Elsevier in 1638.

The equality condition A = D is satisfied by the Galilean transformation, in which the two
coefficients equal 1 :

x ′ = x − vt

t ′ = t,

where position x and time t (say, of a passenger on a train), is measured in a fixed platform
coordinate system, while x ′ and t ′ are measured in a train-fixed coordinate system. There are
no apparent forces in the two coordinate systems related by the Galilean transformation. Also,
the Newtonian equation is consistent with our intuition that time flows at the same pace in any
coordinate system.
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3.1.3 The Michelson-Morley Experiment

Hendrik Lorentz (1853–1928) was a Dutch
scientist and a professor at Leiden. Lorentz
was very close to formulating the special the-
ory of relativity. It was pointed out to Lorentz
in 1894 that FitzGerald had published some-
thing similar. He wrote to FitzGerald, but the
latter replied that indeed he has sent a half-
page article to Science, but he did not know
“whether they ever published it .” After this,
Lorentz took every opportunity to stress that
FitzGerald was the first to present the idea.

Hendrik Lorentz indicated
that the Galilean transfor-
mation represents only one
possibility of making the
apparent forces vanish (i.e.,
assuring that A = D). Both
constants need not equal 1.
As it happens, such a gen-
eralization was found by an
intriguing experiment per-
formed in 1887.

Albert Michelson (1852–1931)
was an American physicist and
professor at the University of
Chicago, USA. He specialized
in the precise measurements
of the speed of light.

Edward Williams Morley
(1838–1923) was an American
physicist and chemist and pro-
fessor of chemistry at Western
Reserve University in Cleve-
land, Ohio.

Michelson and Morley were
interested in whether the
speed of light differs when-
measured in two laborato-
ries moving with respect to
one another. According to
the Galilean transformation,
the two velocities of light
should be different, in the
same way as the speed of train
passengers (measured with
respect to the platform) differs

depending on whether they walk in the same or the opposite direction with respect to the
train motion. Michelson and Morley replaced the train by the Earth, which moves along its orbit
around the Sun with a speed of about 40 km/s. Fig. 3.1 shows the Michelson-Morley exper-
imental framework schematically. Let us imagine two identical right-angle V-shaped objects
with all the arm lengths equal to L .

Each of the objects has a semitransparent mirror at its vertex8, and ordinary mirrors at the
ends. We will be interested in how much time it takes the light to travel along the arms of
our objects (back and forth). One of the two arms of any object must be oriented along the x
axis, while the other one must be orthogonal to it. The mirror system enables us to overlap the
light beam from the horizontal arm (x axis) with the light beam from the perpendicular arm. If
there were any difference in phase between them, we would immediately see the interference

8 Such a mirror is made by covering glass with a silver coating.
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Fig. 3.1. The Michelson-Morley experimental framework. We have two identical V-shaped right-angle objects, each associated
with a Cartesian coordinate system (with origins O and O ′). The first is at rest (solid line), while the second (dashed) moves with
velocity v with respect to the first (along coordinate x). We are going to measure the velocity of light in two laboratories rigidly
bound to the two coordinate systems. The mirrors are at the ends of the objects: C, E in O and C’, E’ in O ′, while at the origins,
two semitransparent mirrors Z and Z’ are installed. Time 2t3 ≡ t↓ is the time it takes for light to go down and up the vertical arm.

pattern9. The second object moves along x with velocity v (and is associated with coordinate
system O ′) with respect to the first (“at rest,” associated with coordinate system O).

3.1.4 The Galilean Transformation Crashes

In the following section, we will suppose that the Galilean transformation is true. In coordinate
system O , the time required for light to travel (in a round trip) the length of the arm along the
x axis (T→) and that required to go perpendicularly to the axis (T↓) are the same:

T→ = 2L

c

T↓ = 2L

c
.

Thus, in the O coordinate system, there will be no phase difference between the two beams
(one coming from the parallel, the other from the perpendicular arm) and therefore, no interfer-
ence will be observed. Let us consider now a similar measurement in O ′. In the arm collinear with
x , when light goes in the direction of v, it has to take more time (t1) to get to the end of the arm:

ct1 = L + vt1, (3.4)

than the time required to come back (t2) along the arm:

ct2 = L − vt2. (3.5)

9 From my own experience, I know that interference measurement is very sensitive. A laser installation was fixed
to a steel table 10 cm thick set into the foundations of the Chemistry Department building, and the interference
pattern was seen on the wall. My son Peter (then five years old) just touched the table with his finger. Everybody
could see immediately a large change in the pattern, because the table . . . bent.
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Thus, the total horizontal round-trip time t→ is10

t→ = t1 + t2 = L

c − v +
L

c + v =
L(c + v)+ L(c − v)
(c − v)(c − v) = 2Lc

c2 − v2 =
2L
c

1− v2

c2

. (3.6)

What about the perpendicular arm in the coordinate system O ′? In this case, the time for light
to go down (t3) and up will be the same (let us denote total flight time by t↓ = 2t3; see Fig. 3.1).
Light going down requires time t3 = t↓

2 to travel along the arm. Light goes along the hypotenuse

of the rectangular triangle with sides L and vt↓
2 (because it goes down, but not only down, since

after t↓
2 , it is found at x = vt↓

2 ). We will find, therefore, the time t↓
2 from the Pythagorean theorem:

(
c

t↓
2

)2

= L2 +
(
v

t↓
2

)2

, (3.7)

or

t↓ =
√

4L2

c2 − v2 =
2L√

c2 − v2
=

2L
c√

1− v2

c2

. (3.8)

The times t↓ and t→ do not equal each other for the moving system and there will be the
interference that has previously been discussed in this chapter.

However, there is actually no interference!
Thanks to this result, Lorentz was forced to doubt the Galileian transformation (apparently
the foundation of the whole science).

3.1.5 The Lorentz Transformation

The interference predicted by the Galilean transformation is impossible because physical phe-
nomena would experience the two systems in a different way, while they differ only by their
relative motions (v has to be replaced by −v).

To have everything back in order, Lorentz assumed that when a body moves, its length L→
(measured by using the unit length at rest in the coordinate system O) along the direction of
the motion contracts according to the following equation:

L→ = L

√
1− v

2

c2 . (3.9)

10 Those who have some experience with relativity theory will certainly recognize the characteristic term 1− v2

c2 .
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If we insert such a length, instead of L , in the expression for t→, then we obtain

t→ =
2L→

c

1− v2

c2

=
2L

√
1− v2

c2

c

1− v2

c2

=
2L
c√

1− v2

c2

, (3.10)

and everything is perfect again: t↓ = t→. There is no interference, which means that x ′ (i.e., the
position of a point belonging to a rigid body as measured in O ′) and x (the position of the same
point measured in O) have to be related by the following formula. The coordinate x measured
by an observer in his O is composed of the intersystem distance O O ′ (i.e., vt plus the distance
O ′− point), but measured using the length unit of the observer in O [i.e., the unit that resides

in O (thus, non-contracted by the motion)]. Because of the contraction 1 :
√

1− v2

c2 of the rigid

body, the latter result will be smaller than x ′ (recall that x ′ is what the observer measuring the
position in his O ′ obtains); hence:

x = x ′
√

1− v
2

c2 + vt (3.11)

or
x ′ = x√

1− v2

c2

− vt√
1− v2

c2

, (3.12)

which means that in the linear transformation, assuring no apparent forces,

A = 1√
1− v2

c2

, (3.13)

B = − v√
1− v2

c2

. (3.14)

Of course, Professor O’Connor in his laboratory O ′ would not believe Professor Oconnor
(sitting in his O lab) that he (O’Connor) has a contraction of the rigid body. And indeed, if
Professor O’Connor measured the rigid body using his standard length unit (he would not know
that his unit is contracted), then the length measured would be exactly the same as that measured
just before separation of the two systems, when both systems were at rest. In a kind of retaliation,
Professor O’Connor could say that it is certainly not him who has the contraction, but his
colleague, Oconnor. He would be right, because for him, his system is at rest, and his colleague
Oconnor flies away from him with velocity−v. Indeed, the formula (3.11) makes that very clear:
an exchange x ↔ x ′, t ↔ t ′ and v ↔ −v, leads to the point of view of Professor O’Connor

x ′ = x

√
1− v

2

c2 − vt ′, (3.15)
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and one can indeed see an evident contraction of the rigid body of Professor Oconnor. This way,
neither of these two coordinate systems is privileged. That is very, very good.

As we have already shown, in linear transformation (x ′, t ′)→ (x, t), the diagonal coefficients
have to equal (A = D); therefore,

t ′ = Cx + Dt (3.16)

and D = 1√
1− v2

c2

. (3.17)

To complete the determination of the linear transformation, we have to calculate the constant
C (p. 109). Albert Einstein assumed that if Professors Oconnor and O’Connor began (in their
own coordinate systems O and O ′) to measure the velocity of light, then despite the different
distances (x and x ′) and different flight times11 (t and t ′), both scientists would get the same
velocity of light (denoted by c).

In other words, x = ct and x ′ = ct ′.

Using this assumption and Eqs. (3.12) and (3.17), we obtain

ct ′ = Dct − vDt, (3.18)

while multiplying Eq. (3.16) for t ′ by c, we get

ct ′ = cCx + Dct . (3.19)

Subtracting both equations, we have

0 = −vDt − cCx (3.20)

or

C = −vt D

cx
= −vt D

cct
= −vD

c2 . (3.21)

Thus, we obtain the full Lorentz transformation, which on one hand assures no apparent forces
and on the other, assures the same speed of light in both systems:

x ′ = 1√
1− v2

c2

x − v√
1− v2

c2

t

t ′ = − v
c2

1√
1− v2

c2

x + 1√
1− v2

c2

t .

11 At the moment of separation, t = t ′ = 0.
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Let us check first whether if v = 0, then everything is OK. Yes, it is. Indeed, the denominator
equals 1, and we have t ′ = t and x ′ = x . Let us see what would happen if the velocity of light
were equal to infinity. Then, the Lorentz transformation becomes identical to the Galilean one.
In general, after expanding t ′ and x ′ in a power series of v2/c2, we obtain

x ′ = −vt + x + 1

2

(−vt + x
) v2

c2 + · · ·

t ′ = t +
(
− x

v
+ t

2

)
v2

c2 + · · ·

This means that only at very high velocity v may we expect differences between both trans-
formations.

3.1.6 New Law of Adding Velocities

Our intuition has worked out for velocities that are much smaller than the velocity of light.
The Lorentz transformation teaches us something that seems to contradict our intuition, though
What does it mean that the velocity of light is constant? Suppose that we are flying with the
velocity of light and send the light in the direction of our motion. Our intuition tells us that the
light will have the velocity equal to 2c–but that has to be wrong. How will it happen?

We would like to have the velocity in the coordinate system O , but first, let us find the
velocity in the coordinate system O ′ (i.e., dx ′

dt ′ ). From the Lorentz transformation, one obtains,
step by step:

dx ′

dt ′
=

1√
1− v2

c2

dx − v√
1− v2

c2

dt

− v
c2

1√
1− v2

c2

dx + 1√
1− v2

c2

dt
=

dx
dt − v

1− v
c2

dx
dt

. (3.22)

By extracting dx
dt or using the symmetry relation (when O ′ → O , then v→−v), we obtain:

dx

dt
=

dx ′
dt ′ + v

1+ v
c2

dx ′
dt ′

(3.23)

or

Velocity Addition Law

V = v′ + v
1+ vv′

c2

. (3.24)

In this way, we have obtained a new rule of adding the velocities of the train and its passenger.
Everybody naively thought that if the train velocity is v and the passenger velocity with respect
to the train corridor is v′, then the velocity of the passenger with respect to the platform is
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V = v + v′. It turned out that this is not true. On the other hand, when both velocities are
negligibly small with respect to c, then indeed one restores the old rule

V = v′ + v. (3.25)

Now, let us try to fool Mother Nature. Suppose that our train is running with the velocity of
light (i.e., v = c), and we take out a flashlight and shine the light forward (i.e., dx ′

dt ′ = v′ = c).
What will happen? What will the velocity V of the light be with respect to the platform? 2c?
From Eq. (3.24), we have V = 2c

2 = c. This is precisely what is called the universality of the
speed of light. Now, let us make a bargain with Nature. We are dashing through the train at the
speed of light (v = c) and walking along the corridor with velocity v′ = 5 km/h. What will
our velocity be with respect to the platform? Let us calculate again:

dx

dt
= 5+ c

1+ c
c2 5
= 5+ c

1+ 5
c

= c
5+ c

5+ c
= c. (3.26)

Once more we have been unable to exceed the speed of light c. So let’s make one last attempt.
Let us take the train velocity as v = 0.95c, and fire along the corridor a powerful missile with
speed v′ = 0.10c. Will the missile exceed the speed of light or not? We have

dx

dt
= 0.10c + 0.95c

1+ 0.95c
c2 0.10c

= 1.05c

1+ 0.095
= 1.05

1.095
c = 0.9589c, (3.27)

and c is not exceeded. What a wonderful formula!

3.1.7 The Minkowski Space-Time Continuum

The Lorentz transformation may also be written as

[
x ′
ct ′

]
= 1√

1− v2

c2

[
1 −vc−vc 1

] [
x
ct

]
.

What would happen if the roles of the two systems were interchanged? To this end, let us
express x, t as x ′, t ′. By inversion of the transformation matrix, we obtain12

[
x
ct

]
= 1√

1− v2

c2

[
1 v

c
v
c 1

] [
x ′
ct ′

]
. (3.28)

We have perfect symmetry because it is clear that the sign of the velocity has to change.
Therefore,

none of the systems is privileged.

12 You may check this by multiplying the matrices of both transformations; doing this, we obtain the unit matrix.
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Now let us come back to Einstein’s morning tram meditation13 about what he would see
on the clock at the tram stop if the tram had the velocity of light. Now we have the tools to
solve the problem. It concerns two events–two ticks of the clock observed in the coordinate
system associated with the tram stop (i.e., x1 = x2 ≡ x), but happening at two different times
t1 and t2 [differing by, say, 1 second (i.e., t2− t1 = 1), this is associated with the corresponding
movement of the clock hand]. What will Einstein see when his tram leaves the stop with velocity
v with respect to the stop, or in other words, when the tram stop moves with respect to him with
velocity−v? He will see the same two events, but in his coordinate system, they will happen at

t ′1 = t1√
1− v2

c2

−
v

c2 x√
1− v2

c2

and t ′2 = t2√
1− v2

c2

−
v

c2 x√
1− v2

c2

. That is, according to the tram passenger, the

two ticks at the tram stop will be separated by the time interval

t ′2 − t ′1 =
t2 − t1√
1− v2

c2

= 1√
1− v2

c2

.

Thus, when the tram ran through the streets of Bern with velocity v = c, the hands on the
tram-stop clock (when seen from the tram) would not move at all, and this second would be
equivalent to eternity.

This effect is known as time dilation. Of course, for the passengers waiting at the tram stop
and watching the clock, its two ticks would be separated by exactly 1 second. If Einstein took
his watch out of his waistcoat pocket and showed it to them through the window, they would
be amazed. The seconds will pass at the tram stop, while Einstein’s watch would seem to have
stopped. This effect has been double-checked experimentally many times. For example, the
meson lives such a short time (in the coordinate system associated with it), that when created by
cosmic rays in the stratosphere, it would have no chance of reaching a surface laboratory before
decaying. Nevertheless, as seen from the laboratory coordinate system, the meson’s clock ticks
very slowly and mesons are observable.

13 Even today, Bern looks quite provincial. In the center, Albert Einstein lived at Kramgasse 49, in a small house,
squeezed by others, next to a small café, with Einstein’s achievements on the walls. Einstein’s small apartment is
on the second floor, containing a room facing the backyard, in the middle a child’s room, and a large living room
facing the street. A museum employee with oriental features says the apartment looks as it did in the “miraculous
year 1905,” everything is the same (except the wallpaper), and then, she concludes by saying “Maybe this is the
most important place in the history of science.”
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Hermann Minkowski intro-
duced the seminal concept of
the four-dimensional space-
time continuum (x, y, z, ct)14.
In our one-dimensional space,
the elements of the Minkowski
space-time continuum are events
[i.e., vectors (x, ct)], something
happens at space coordinate x at
time t , when the event is observed
from coordinate system O . When
the same event is observed in
two coordinate systems, then the

Hermann Minkowski (1864–
1909) was a German mathe-
matician and physicist, a pro-
fessor in Bonn, Königsberg,
and Technische Hochschule
Zurich, and from 1902, a pro-
fessor at the University of Göt-
tingen. This teacher of Ein-
stein concluded: “Space of
itself and time of itself will sink
into mere shadows, and only
a kind of union between them
shall survive.”

corresponding x, t and x ′, t ′ satisfy the Lorentz transformation. It turns out that in both coor-
dinate systems the distance of the event from the origin of the coordinate system is preserved.
The square of the distance is calculated in a strange way:

(ct)2 − x2 (3.29)

for the event (x, ct). Indeed, let us check carefully:

(ct ′)2 − (x ′)2 = 1

1− v2

c2

(
−v

c
x + ct

)2 − 1

1− v2

c2

(
x − v

c
ct

)2

= 1

1− v2

c2

[
v2

c2 x2 + c2t2 − 2vxt − x2 − v
2

c2 c2t2 + 2vxt

]

= 1

1− v2

c2

[
v2

c2 x2 + c2t2 − x2 − v
2

c2 c2t2
]
= (ct)2 − (x)2. (3.30)

This equation and Eq. (3.28) enabled Minkowski to interpret the Lorentz transformation
[Eq. (3.28)] as a rotation of the event (x, ct) in the Minkowski space about the origin of the
coordinate system (since any rotation preserves the distance from the rotation axis).

14 Let me report a telephone conversation between the Ph.D. student Richard Feynman and his supervisor, Professor
Archibald Wheeler from the Princeton Advanced Study Institute (according to Feynman’s Nobel lecture, 1965):
Wheeler: “Feynman, I know why all electrons have the same charge and the same mass!” Feynman: “Why?” W:
“Because they are all the same electron!” Then, Wheeler explained: “Suppose that the world lines which we were
ordinarily considering before in time and space–instead of only going up in time were a tremendous knot, and
then, when we cut through the knot by the plane corresponding to a fixed time, we would see many, many world
lines and that would represent many electrons (…)”
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3.1.8 How Do We Get E = mc2?

The Schrödinger equation is invariant with respect to the Galilean transformation. Indeed, the
Hamiltonian contains the potential energy, which depends on interparticle distances (i.e., on
the differences of the coordinates), whereas the kinetic energy operator contains the second
derivative operators that are invariant with respect to the Galilean transformation. Also, since
t = t ′, the time derivative in the time-dependent Schrödinger equation does not change.

Unfortunately, both Schrödinger equations (time-independent and time-dependent) are not
invariant with respect to the Lorentz transformation, and therefore, they are illegal. As a result,
one cannot expect the Schrödinger equation to describe accurately objects that move with
velocities comparable to the speed of light.

Let us consider a particle moving in the potential V . The Schrödinger equation has been
derived (see p. 79) from the total energy expression

E = p2

2m
+ V , (3.31)

where p is the momentum vector and m is the mass.
Einstein was convinced that nothing could be faster than light15. Therefore, what would

happen if a particle were subject to a constant force? It would eventually attain the velocity of
light, and what would happen afterward? There was a problem, and Einstein assumed that in
the laboratory coordinate system in which the particle is accelerated, the particle will increase
its mass. In the coordinate system fixed on the particle no mass increase will be observed, but in
the laboratory system, it will. We have to admire Einstein’s courage. For millions of people, the
mass of a body represented an invariant characteristic of the body. How was the mass supposed
to increase? Well, Einstein reasoned that the increase law should be such that the particle was
able to absorb any amount of the kinetic energy. This means that when v → c, then we have
to have m(v) → ∞. One of the possible formulas for m(v) may contain a factor typical of
relativity theory [cf. Eq. (3.17)]:

m(v) = m0√
1− v2

c2

, (3.32)

where m0 is the so-called rest mass of the particle (i.e., its mass measured in the coordinate
system residing on the particle). It is seen that if v/c were zero (as it is in the non-relativistic
world), then m would be equal to m0 (i.e., to a constant, as it is in non-relativistic physics)16.

15 Maybe this is true, but nothing in the special theory of relativity compels such a statement.
16 Therefore, no corrections to the Schrödinger equation are needed. At the beginning of this chapter, we arrived

at the conclusion that the electron velocity in an atom is close to its atomic number Z (in a.u.). Hence, for the
hydrogen atom (Z H = 1), one may estimate v/c 	 0.7%; i.e., v of the electron in the 1s state represents a velocity
of the order of 2100 km/s, which is probably very impressive for a car driver, but not for an electron. However, for
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For the time being, the legitimacy of Eq. (3.32) is questionable as being just one of the
possible ad hoc suppositions. However, Einstein has shown that this particular formula fits the
existing equation of motion. First, after expanding the mass into the Taylor series, one obtains
something interesting:

m(v) = m0

{
1+ 1

2

v2

c2 +
3

8

v4

c4 + · · ·
}
, (3.33)

especially after multiplying the result by c2:

mc2 − m0c2 = m0v
2

2
+ smaller terms. (3.34)

It looks as if the kinetic energy indeed was stored directly in the mass m. Einstein deduced
that the total kinetic energy of the body may be equal to

E = mc2.

He convinced himself about this after calculating its time derivative. After assuming that
Eq. (3.32) is correct, one obtains:

d E

dt
= c2 dm

dt
= c2 d

dt

m0√
1− v2

c2

= m0c2 d

dt

1√
1− v2

c2

= m0c2
(
−1

2

) (
1− v

2

c2

)− 3
2 −2v

c2

dv

dt

= m0

(
1− v

2

c2

)− 3
2

v
dv

dt
= m0√(

1− v2

c2

) 1

1− v2

c2

v
dv

dt
= m0√(

1− v2

c2

)
⎛
⎝1+

v2

c2

1− v2

c2

⎞
⎠ v

dv

dt

= m0√(
1− v2

c2

)vdv

dt
+ v

2

c2 m0

(
1− v

2

c2

)− 3
2

v
dv

dt
= mv

dv

dt
+ v2 dm

dt
= vd(mv)

dt
.

gold (Z Au = 79), we obtain v/c 	 51%. This means that in an atom of gold, the electron mass is larger by about
15% with respect to its rest mass; and therefore, the relativistic effects are non-negligible. For such important
elements as C, O, N (biology), the relativistic corrections may be safely neglected. A young graduate student,
Grzegorz Łach, posed an interesting, purely academic question (such questions and the freedom to discuss them
represent the cornerstone and the beauty of university life): Will the human body survive if relativistic effects
are switched off? Most of the biomolecules would function practically without significant changes, but the heavy
metal atoms in enzyme-active sites might direct differently the chemical reactions in which they are involved. But
would they? Would the new direction be destructive for the body? Nobody knows. On the other hand, we have
forgotten about the spin concept, which follows consequently only from relativistic quantum theory. Without spin,
no world similar to ours is conceivable.
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Precisely the same equation is satisfied in non-relativistic mechanics if E denotes the kinetic
energy:

d E

dt
= d(mv2

2 )

dt
= 1

2
m2v

dv

dt
= vd(mv)

dt
. (3.35)

Therefore, in relativity theory,
Ekin = mc2. (3.36)

This formula has been verified in laboratories many times. For example, it is possible nowa-
days to speed electrons in cyclotrons up to a velocity that differs from c by 1

8000000 c. That

corresponds to 1 − v2

c2 = 1
4000000 , and the electron’s mass m becomes 2000 times larger than

its m0. This means that the electron is pumped up with energy to such an extent that its mass is
similar to that of the proton. The energy stored in mass is huge. If, from the mass of a 20000
TNT atomic bomb, one subtracted the mass of its ashes after an explosion17, then one would
obtain only about 1 g! The energy freed from this 1 g gives an effect similar to the apocalypse.

3.2 Toward Relativistic Quantum Mechanics

The Equation of Many Fathers

We would like to express the kinetic energy Ekin through the particle’s momentum p, because
we would then know how to obtain the corresponding quantum mechanical operators (Chapter 1,
p. 18). To this end, let us consider the expression

E2
kin − (m0c2)2 = m2c4 − m2

0c4 = m2
0c4

(
1

1− v2/c2 − 1

)
= m2

0c4

1− v2/c2

v2

c2

= m2v2c2 = p2c2. (3.37)

Therefore,

Ekin = c
√

p2 + m2
0c2 (3.38)

and the total energy E in the external potential V is as follows:

E = c
√

p2 + m2
0c2 + V . (3.39)

What if the particle is subject to an electromagnetic field, given by the electric field E and
the magnetic field H (or the magnetic induction B) in every point of the space? Instead of E
and H (or B), we may introduce two other quantities: the vector field A and the scalar field
φ (see Appendix G available at booksite.elsevier.com/978-0-444-59436-5). As we can show

17 R. Feynman, R.B. Leighton, and M. Sands, “Feynman Lectures on Physics,” Addison-Wesley Publishing Company,
Boston (1964).

http://booksite.elsevier.com/978-0-444-59436-5
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in classical electrodynamics18, the kinetic energy of the particle subject to an electromagnetic
field is very similar to the same expression without the field [Eq. (3.38)]; namely, for a particle
of charge q , the momentum p is to be replaced by p− q

c A and the potential V by qφ. Therefore,
we obtain the following expression for the total energy of the particle in an electromagnetic
field:

E = c

√(
p− q

c
A

)2 + m2
0c2 + qφ, (3.40)

where A and φ represent functions of the particle’s position.
If we wanted to use the last expression to construct the Hamiltonian, then we would find

serious difficulty; namely, the momentum operator p̂ = −i�∇ (replacing p according to pos-
tulate II, as described in Chapter 1) is under the square root, leading to nonlinear operators.
A few brave scientists noted, however, that if someone made a square, then the danger would
disappear. We would obtain

(E − qφ)2 = c2
[(

p− q

c
A

)2 + m2
0c2

]
. (3.41)

All that has been and still is a sort of guessing from some traces or indications.

The equations corresponding to physical quantities will be transformed to the corresponding
operator equations, and it will be assumed that both sides of them will act on a wave function.

What, then, should be inserted
as the operator Ĥ of the energy
E? This was done by Schrödinger
(before by Fock, Klein, and Gor-
don, which is why it is also
known as the “equation of many
fathers”). Schrödinger inserted
what he had on the right side
of his time-dependent equation
Ĥ� = i� ∂

∂t�; i.e., Ĥ = i� ∂
∂t .

Oskar Klein (1894–1977) was
the youngest son of the
chief rabbi of Sweden and
a professor of mathemat-
ics and physics at Stock-
holm Högskola. Walter Gor-
don (1893–1940) until 1933
was a professor at the Uni-
versity of Hamburg, and after
that, he resided in Sweden.

This way, (
i�
∂

∂t
− qφ

)2

= c2
[(
−i�∇ − q

c
A

)2 + m2
0c2

]
, (3.42)

or after acting on the wave function, we obtain the Fock-Klein-Gordon equation:(
i�
∂

∂t
− qφ

)2

� = c2
[(
−i�∇ − q

c
A

)2 + m2
0c2

]
�. (3.43)

18 For example, H.F. Hameka, Advanced Quantum Chemistry, Addison-Wesley, Reading, p. 40 (1965).
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This equation has at least one advantage over the Schrödinger equation: ct and x, y, z enter
the equation on equal footing, which is required by special relativity. Moreover, the Fock-Klein-
Gordon equation is invariant with respect to the Lorentz transformation, whereas the Schrödinger
equation is not. This is a prerequisite of any relativity-consistent theory, and it is remarkable that
such a simple derivation made the theory invariant. The invariance, however, does not mean that
the equation is accurate. The Fock-Klein-Gordon equation describes a boson particle because
� is a usual scalar-type function, in contrast to what we will see shortly in the Dirac equation.

3.3 The Dirac Equation

3.3.1 The Dirac Electronic Sea and the Day of Glory

Paul Adrien Maurice Dirac (1902–1984) was a British physicist, theoretician,
and professor at universities in Cambridge, and then in Oxford. Dirac was very
interested in on hiking and climbing. He used to practice before expeditions
by climbing trees near Cambridge, in the black outfit in which always gave his
lectures.

He spent his last years at the University of Tallahassee in Florida. On being
guided through New York City, Dirac remembered old times. The guide remarked
that there were visible changes, among others the buses had been painted pink.
Dirac quietly agreed, adding that indeed they had, at least from one side…

Charles Galton Darwin (1887–
1962) was a British physicist
and mathematician, professor
at the University of Edinburgh,
Scotland, and the grandson
of the famed evolutionist Sir
Charles Robert Darwin. Darwin
investigated the scattering of α
particles on atoms. Courtesy of
Dr. R.C. McGuiness, National
Physical Laboratory, UK.

Paul Dirac used the Fock-Klein-
Gordon equation to derive a
Lorentz transformation invariant
equation19 for a single fermion
particle. The Dirac equation is
solvable only for several very sim-
ple cases. One of them is the free
particle (Dirac), and the other is an
electron in the electrostatic field of
a nucleus (Charles Darwin–but not
the one you are thinking of).

One may add here a few other systems (e.g., the harmonic oscillator), and that’s it.
From Eq. (3.38), in the case of a free particle V = 0, one obtains two sets of energy

eigenvalues, one corresponding to the negative energies,

E = −
√

p2c2 + m2
0c4, (3.44)

19 See J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York, (1964).
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Fig. 3.2. Energy levels for the hydrogen atom according to Schrödinger (left side) and Dirac (right side). The shadowed areas
correspond to the positive and negative energy continua.

and the other corresponding to the positive energies,

E = +
√

p2c2 + m2
0c4. (3.45)

Dirac was not worried by the fact that both roots appear after an ad hoc decision to square
the expression for the energy [Eqs. (3.40) and (3.41)]. As we can see, since the momentum
may change from 0 to ∞ (p = mv, and for v → c, we have m → ∞), we therefore have
the negative energy continuum and symmetrically located positive energy continuum, both of
which are separated by the energy gap 2m0c2 (Fig. 3.2).

When he was 26 years old, Dirac made the absurd assumption that what people call a vacuum
is in reality a sea of electrons occupying the negative energy continuum (known as the Dirac
electronic sea). The sea was supposed to consist of an infinite number of electrons, which had
to imply catastrophic consequences concerning, for example, the infinite mass of the Universe,
but Dirac did not feel any doubt about his notion. “We see only those electrons that have positive
energy,” said Dirac. Why he was so determined? Well, Dirac’s concept of the sea was proposed
to convince us that due to the Pauli exclusion principle, the doubly occupied sea electronic states
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Carl David Anderson (1905–
1991) was an American
physicist and a professor at
the Pasadena Institute of
Technology. In 1932, Ander-
son discovered the positron
when studying cosmic rays
(using the cloud chamber).
He received for this the
Nobel Prize in 1936. He was
also a co-discoverer of the
muon.

are simply inaccessible for an
extra electron, which is therefore
forced to have the positive ener-
gies. All this looks like no more
than an ad hoc speculation. Dirac
could remove these difficulties
by resigning from the negative
spectrum, but he did not.20

Then, consequently continu-
ing his reasoning, Dirac asked
whether he could somehow see

those electrons that occupy the sea. His answer was that yes, it is possible. According to Dirac,
it is sufficient to excite such an electron by providing the energy of the order of 2m0c2 to cover
the energy gap (the energy 2m0c2 is very large, of the order of 1 MeV). Then the sea electron
would have the positive energy and could be observed as other electrons with positive energy.
However, besides the electron, there would be a hole in the Dirac sea. Dirac has been severely
molested about what this strange hole would correspond to in experimental physics. Once, when
pushed too strongly, he said desperately that this was a proton. Some seemed to be satisfied, but
others began to attack him furiously. However, Dirac has demonstrated that the hole would have
the dynamic and electric properties of an electron, except that its sign would be opposite21. This
has been nothing but a hypothesis for the existence of antimatter, a state of matter unknown at
that time. Imagine the shock of the scientific community, when three years later, Carl Anderson
reported the creation of electron-positron pairs from a vacuum after providing energy 2m0c2.
That was a glorious day for Dirac and his quantum theory.

In a moment, we will see the determination with which Dirac attacked the Fock-Klein-Gordon
operator equation, which we will write a little differently here:

[
i� ∂
∂t − qφ

c

]2

−
[(
−i�∇ − q

c
A

)2 + m2
0c2

]
= 0. (3.46)

20 None of the many fathers of the Fock-Klein-Gordon equation dared to take into account another possibility, the
one with the negative square root in Eq. (3.40), a step made by Paul Dirac. In this case the Dirac’s argument about
the electron sea and the Pauli exclusion principle would not work, since we have to do with the bosons! We would
have an abyss of negative energies, a disaster for the theory.

21 Paul Dirac, when a pupil in primary school, made his reputation after solving a riddle that goes very well with the
person who thought out the positively charged electron (positron):

Three fishermen went fishing and camping overnight at a lake. After fishing all day, when evening came, they
put the fish in a bucket and, tired, fell asleep in the tent. At midnight, one of the fishermen woke up and, tired of
the whole escapade, decided to take one-third of all the fish, leave the tent quietly, and go home. When he counted
the fish in the bucket, it turned out that the number of fish was indivisible by 3. However, when he threw one fish
back in the lake, the number was divisible by 3, he took his one-third and went away. After a while, a second
fisherman woke up and did the same, and then the third. The question was, how many fish were in the bucket?
Dirac’s answer was… −2.
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Let us first introduce the following abbreviations:

π0 =
i� ∂
∂t − qφ

c
, πμ = −i�

∂

∂μ
− q

c
Aμ (3.47)

for μ = x, y, z or 1, 2, 3.
Dirac persisted in treating Eq. (3.46) as a2 − b2; therefore, he rewrote it in the form

(a + b)(a − b); i.e.,(
π0 +

∑
μ=x,y,z

αμπμ + α0m0c

) (
π0 −

∑
μ=x,y,z

αμπμ − α0m0c

)
= 0. (3.48)

He was so confident that he said Eq. (3.48) had to be satisfied at any price by finding suitable
unknownsαi (independent of coordinates and time). Theαs had to satisfy the following relations
(anticommutation relations):

α2
μ = 1, (3.49)

αμαν + αναμ = 0 f or μ �= ν. (3.50)

Indeed, using the anticommutation relations, one recovers the Fock-Klein-Gordon equation:(
π0 +

3∑
μ=x,y,z

αμπμ + α0m0c

) (
π0 −

3∑
μ=x,y,z

αμπμ − α0m0c

)

= π2
0 −

[
3∑

μ=x,y,z

αμπμ + α0m0c

]2

= π2
0 −

3∑
μ,ν=x,y,z

αμανπμπν

−
3∑

μ=x,y,z

(
αμα0 + α0αμ

)
πμm0c − α2

0m2
0c2 = π2

0 −
3∑

μ,ν=x,y,z

(αμαν + αμαν)πμπν

−m2
0c2 = π2

0 −
3∑

μ=x,y,z

π2
μ − m2

0c2.

Note that the αs cannot be just numbers, because no numbers can satisfy the anticommutation
relation. They have to be matrices. Since we have four variables x, y, z, and t , then we may
expect matrices of order 4, but they could be larger. Here is one of the consistent choices of
matrices (0, 1 are the zero and unit 2x2 matrices, respectively, while σx , σy, σz are the Pauli
matrices, defined on p. 29, that determine electron spin):

αx =
(

0 σx

σx 0

)
αy =

(
0 σy

σy 0

)

αz =
(

0 σz

σz 0

)
α0 ≡ β =

(
1 0
0 −1

)
.
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The Pauli matrices represent the first sign of what will happen later on: the Dirac equation
will automatically describe the spin angular momentum.

3.3.2 The Dirac Equations for Electrons and Positrons

After the factorization described above, Dirac obtained two operator equations. The Dirac
equations (for the positron and electron) correspond to these operators acting on the wave
function �. Thus, we obtain the equation for the negative electron energies i.e. for the positron
(we use the abbreviation, a kind of the “dot product” of the α matrices and the operator π :∑
μ=x,y,z αμπμ ≡ α · π ) (

π0 + α · π + α0m0c
)
� = 0 (3.51)

and for the positive electron energies (electron):(
π0 − α · π − α0m0c

)
� = 0. (3.52)

These two equations are coupled together through the same function�, which has to satisfy
both of them. This coupling caused a lot of trouble in the past. First, people assumed that the
equation with the negative electron energies (positron equation) may be ignored because the
energy gap is so large that the Dirac sea is occupied whatever a chemist does with a molecule.
This assumption turned out to cause some really vicious or odd performances of numerical
procedures (discussed later in this chapter). The electron equation alone reads as

i�
∂�

∂t
= (qφ + cα · π + α0m0c2)�. (3.53)

If one is interested in stationary states (cf., p. 22), the wave function has the form

�(x, y, z, t) = �(x, y, z)e−i E
�

t , where we have kept the same symbol for the time independent

factor �(x, y, z). After dividing by e−i E
�

t , we obtain

The Dirac Equation for Stationary Electronic States

(E − qφ − α0m0c2 − cα · π)� = 0. (3.54)

The quantity qφ = V in future applications will denote the Coulomb interaction of the
particle under consideration with the external potential.

3.3.3 Spinors and Bispinors

The last equation needs to be commented on. Because the matrices α have dimension 4, then�
has to be a four-component vector (known as bispinor, its connection to the spin concept will
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be shown later in this chapter):

� =

⎛
⎜⎜⎝
ψ1

ψ2

φ1

φ2

⎞
⎟⎟⎠ =

(
ψ

φ

)
,

where the first two components (ψ1 and ψ2, functions of class Q), which for reasons that will
become clear in a moment are called large components, are hidden in vector ψ , while the two
small components (φ1 and φ2, functions of class Q)22 are labeled as vector φ. Vectors ψ and φ
are called the spinors.

So how should you operate the N−component spinor (note that for N = 4, we have called
them bispinors)? Let us construct the proper Hilbert space for the N−component spinors. As
usual (p. e7), first we will define the sum of two spinors in the following way:⎛

⎜⎜⎝
�1

�2

· · ·
�N

⎞
⎟⎟⎠+

⎛
⎜⎜⎝
�1

�2

· · ·
�N

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
�1 +�1

�2 +�2

· · ·
�N +�N

⎞
⎟⎟⎠ ,

and then, the product of the spinor by a number γ is given as follows:

γ

⎛
⎜⎜⎝
�1

�2

· · ·
�N

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
γ�1

γ�2

· · ·
γ�N

⎞
⎟⎟⎠ .

Next, we check that the spinors form an Abelian group with respect to the above-defined addi-
tion (cf., Appendix C available at booksite.elsevier.com/978-0-444-59436-5, p. e17) and that the
conditions for the vector space are fulfilled (see Appendix B available at booksite.elsevier.com/
978-0-444-59436-5). Then, we define the scalar product of two spinors:

〈� | �〉 =
N∑

i=1

〈�i |�i 〉 ,

where the scalar products 〈�i | �i 〉 are defined as usual in the Hilbert space of class Q functions.
Then, using the scalar product 〈� | �〉, we define the distance between two spinors: ‖�−�‖ ≡√〈�−� | �−�〉 and afterwards, the concept of the Cauchy series (the distances between

22 It will be shown that in the non-relativistic approximation, the large components reduce to the wave function
known from the Schrödinger equation, and the small components vanish. The constant E , as well as the function
V , individually multiply each component of the bispinor �, while σ · π ≡ αxπx + αyπy + αzπz denotes the
“dot product” of the matrices αμ , μ = x, y, z by the operators πμ (in the absence of the electromagnetic field, it
is simply the momentum operator component; see p. e81). The matrix β is multiplied by the constant m0c2, and
then by the bispinor �.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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the consecutive terms tend to zero). The Hilbert space of spinors will contain all the linear
combinations of the spinors together with the limits of all the Cauchy series.

An operator acting on a spinor means that a spinor with each component resulting from action
on the corresponding component is as follows:

Â

⎛
⎜⎜⎝
�1

�2

· · ·
�N

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Â�1

Â�2

· · ·
Â�N

⎞
⎟⎟⎟⎠ .

Sometimes we will use a notation showing that a matrix of operators acts on a spinor. In this
case, the result corresponds to multiplication of the matrix (of operators) and the vector (spinor):⎛

⎜⎜⎜⎝
Â11 Â12 · · · Â1N

Â21 Â22 · · · Â2N

· · · · · · · · · · · ·
ÂN1 ÂN2 · · · ÂN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝
�1

�2

· · ·
�N

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∑
j Â1 j� j∑
j Â2 j� j

· · ·∑
j ÂN j� j

⎞
⎟⎟⎟⎠ .

3.3.4 What Next?

In the following section, we will show

a. that the first two components of the bispinor are much larger than the last two.
b. that in the limit c→∞, the Dirac equation gives the Schrödinger equation.
c. that the Dirac equation accounts for the spin angular momentum of the electron.
d. how to obtain, in a simple way, an approximate solution of the Dirac equation to the electron

in the field of a nucleus (hydrogen-like atom).

3.3.5 Large and Small Components of the Bispinor

Using matrix multiplication rules, the Dirac equation [Eq. (3.54)] with bispinors can be rewritten
in the form of two equations with spinors ψ and φ:

(E − V − m0c2)ψ − c(σ · π)φ = 0 (3.55)

(E − V + m0c2)φ − c(σ · π)ψ = 0. (3.56)

The quantity m0c2 represents the energy. Let us use this energy to shift the energy scale (we
are always free to choose 0 on this scale): ε = E −m0c2, in order to make ε comparable in the
future to the eigenvalue of the Schrödinger equation (p. 77). We obtain

(ε − V )ψ − c(σ · π)φ = 0 (3.57)

(ε − V + 2m0c2)φ − c(σ · π)ψ = 0. (3.58)
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This set of equations corresponds to a single matrix equation:(
V c(σ · π)

c(σ · π) V − 2m0c2

) (
ψ

φ

)
=

(
ε 0
0 ε

) (
ψ

φ

)
. (3.59)

3.3.6 How to avoid Drowning in the Dirac Sea

When, in the past, Eq. (3.59) was solved and the energy ε minimized with respect to the
variational parameters in the trial spinors ψ and φ (a routine practice in the non-relativistic
case; see Chapter 5), then some serious numerical problems occurred. Either the numerical
procedures diverged, or the solutions obtained were physically unacceptable. The reason for
this was that the existence of the Dirac sea had been totally ignored by neglecting Eq. (3.51)
for the positron and taking Eq. (3.52) solely for electron motion. The variational trial functions,
however, felt the presence of Dirac sea electronic states (there was nothing in the theory that
would prevent the electron from attempting to occupy negative energies), and the corresponding
variational energies dived down the energy scale toward the abyss of the sea without bottom23.
The presence of the Dirac sea makes the Dirac theory, in fact, a theory of an infinite number of
particles, whereas formally it is only a theory of a single particle in an external field. This kind
of discomfort made people think of the possibility of describing the electron from the Dirac
electronic sea by replacing the bispinors by the exact spinor (two-component) theory24. Such
exact separation has been reported by Barysz and Sadlej25.

An approximate (and simple) prescription was also invented to avoid the catastrophic drown-
ing described above. Indeed, Eq. (3.58) can be transformed without any problem to

φ =
(

1+ (ε − V )

2m0c2

)−1 1

2m0c
(σ · π)ψ .

23 The possible severity of the problem has been shown by M. Stanke and J. Karwowski, “Variational principles in
the Dirac theory: Spurious solutions, unexpected extrema and other traps,” in New Trends in Quantum Systems
in Chemistry and Physics, vol. I, pp. 175–190, eds. J. Maruani et al., Kluwer Academic Publishers, Dordrecht
(2001). Sometimes an eigenfunction corresponds to a quite different eigenvalue. Nothing of that sort appears in
non-relativistic calculations.

24 This is exact within the Dirac model.
25 M. Barysz, A.J. Sadlej, and J.G. Snijders, Int. J. Quantum Chem., 65, 225 (1997); M. Barysz, J. Chem. Phys., 114,

9315 (2001); M. Barysz and A.J. Sadlej, J. Mol. Struct. (Theochem), 573, 181 (2001); M. Barysz and A.J. Sadlej, J.
Chem. Phys., 116, 2696 (2002). In the latter paper, an exact solution to the problem was given. The two-component
theory, although more appealing, both from the point of view of physics as well as computationally, implies a
change in definition of the operators; e.g., the position operator is replaced by a quite complex expression. This
fact, ignored in computations using two-component theories, has been analyzed in the following articles: V. Kellő,
A.J. Sadlej, and B.A. Hess, J. Chem. Phys., 105, 1995 (1996); M. Barysz and A.J. Sadlej, Theor. Chem. Acc., 97,
260 (1997); V. Kellő and A.J. Sadlej, Int. J. Quantum Chem., 68, 159 (1998); V. Kellő and A.J. Sadlej, J. Mol.
Struct. (Theochem), 547, 35 (2001).
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Since 2m0c2 represents a huge energy when compared to the kinetic energy ε − V , then the
first parenthesis on the right side is approximately equal to 1. This means, however, that

φ ≈ 1

2m0c
(σ · π)ψ, (3.60)

which is known as kinetic balancing. It was shown that the kinetically balanced trial function
achieves the miracle26 of the energy not tending to −∞. The kinetic balancing indicates some
fixed relation between φ and ψ .

Let us focus now on σ · π . This is a 2 × 2 matrix and in the absence of an electromagnetic
field (π = p), one has:

σ · π = σx p̂x + σy p̂y + σz p̂z =
(

0 p̂x

p̂x 0

)
+

(
0 −i p̂y

i p̂y 0

)
+

(
p̂z 0
0 − p̂z

)

=
(

p̂z p̂x − i p̂y

p̂x + i p̂y − p̂z

)
.

It is seen that σ · π is on the order of momentum mv, and for the small velocities, on the
order of m0v.

Hence, one obtains φ ≈ 1
2m0c (σ · π)ψ ≈ v

2cψ , and so the component φ is for small v much
smaller than the component ψ ,

which justifies the terms small and large components27.

3.3.7 From Dirac to Schrödinger–How Is the Non-Relativistic Hamiltonian Derived?

The approximate relation (“kinetic balance”) between the large and small components of the
bispinor (that holds for small v/c) may be used to eliminate the small components28 from
Eqs. (3.57) and (3.58). We obtain

(ε − V )ψ − c(σ · π) 1

2m0c
(σ · π)ψ = (3.61)

(ε − V )ψ − 1

2m0
(σ · π)(σ · π)ψ = 0. (3.62)

Let us take a closer look at the meaning of the expression

(σ · π)(σ · π) =
(

p̂z p̂x − i p̂y

p̂x + i p̂y − p̂z

) (
p̂z p̂x − i p̂y

p̂x + i p̂y − p̂z

)
=

(
p̂2 0
0 p̂2

)
= p̂21

26 This remedy has not only an ad hoc character, but also it does not work for the heaviest atoms, which are otherwise
the most important target of relativistic computations.

27 These terms refer to the positive part of the energy spectrum. For the negative continuum (the Dirac sea), the
proportion of the components is reversed.

28 A more elegant solution was reported by Andrzej W. Rutkowski, J. Phys. B, 19, 3431, 3443 (1986). For the
one-electron case, this approach was later popularized by Werner Kutzelnigg as the direct perturbation theory
(DPT).
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Let us insert this expression into Eq. (3.62). We obtain what is sometimes called “the
Schrödinger equation with spin” (because it is satisfied by a two-component spinor):(

p̂2

2m0
+ V

)
ψ = εψ .

Recalling that p̂ represents the momentum operator, we observe that each of the large com-
ponents satisfies the familiar Schrödinger equation:(

− �
2

2m0
�+ V

)
ψ = εψ.

Therefore, the non-relativistic equation has been obtained from the relativistic one, assuming
that the velocity of particle v is negligibly small with respect to the speed of light c. The Dirac
equation remains valid even for larger particle velocities.

3.3.8 How Does the Spin Appear?

It will be shown that the Dirac equation for the free electron in an external electromagnetic field
is leading to the spin concept. Thus, in relativistic theory, the spin angular momentum appears
in a natural way, whereas in the non-relativistic formalism, it was the subject of a postulate of
quantum mechanics (p. 26).

First let us introduce the following identity:(
σ · a) (

σ · b) = (
a · b)

1+ iσ · (a× b
)
,

where we have three times the product of two matrices, each formed by a “scalar product” of
matrix σ and a vector29, consecutively: σ · a , σ · b and σ · (a× b

)
. Now, taking a = b = π ,

one obtains the relation

(σ · π)(σ · π) = (
π · π)

1+ iσ
(
π × π)

.

29 Such a “scalar product” is, σ · a = σx ax + σyay + σzaz . Let us look at the example of σ · a, where we have:

σ · a =
(

0 ax
ax 0

)
+

(
0 −iay

iay 0

)
+

(
az 0
0 −az

)
=

(
az ax − iay

ax + iay −az

)
.

Multiplying the matrices (σ · a) and (σ · b), therefore, we get

(σ · a)(σ · b) =
(

a · b+ i(a× b)z (a× b)y + i(a× b)x
−(a× b)y + i(a× b)x a · b− i(a× b)z

)

= (a · b)1+ i

(
(a× b)z (a× b)x − i(a× b)y

(a× b)x + i(a× b)y+ −(a× b)z

)
= (a · b)1+ iσ · (a× b),

which is the right side of the identity.
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If the vector π had numbers as its components, the last term would have had to be zero
because the vector product of two parallel vectors would be zero. This, however, need not be
true when the vector components are operators (as they are in this case). Since π = p − q

c A,
then

(
π · π) = π2 and

(
π × π) = iq �

c curlA. To check this, we will obtain the last equality for
the x components of both sides (the proof for the other two components looks the same). Let
the operator

(
π × π)

act on an arbitrary function f (x, y, z). As a result, we expect the product
of f and the vector iq �

c curlA to be as follows:

(π × π)x f = ( p̂y − q/cAy)( p̂z − q/cAz) f − ( p̂z − q/cAz)( p̂y − q/cAy) f

= [
p̂y p̂z − q/c p̂y Az − q/cAy p̂z + (q/c)2 Ay Az − p̂z p̂y + q/c p̂z Ay

+ q/cAz p̂y − (q/c)2 Az Ay
]

f

= −q/c(− i�)

{
∂

∂ y

(
Az f

)− Az
∂ f

∂ y
+ Ay

∂ f

∂z
− ∂

∂z

(
Ay f

)}

= i�q/c

{
∂Az

∂ y
− ∂Ay

∂z

}
f = iq�

c

(
curlA

)
x f .

From the Maxwell equations (p. e81), we have curlA = H , where H represents the magnetic
field intensity. Let us insert this into the Dirac equation [which is valid for kinetic energy much
smaller than 2m0c2; see Eq. (3.61)]:

(ε − V )ψ = 1

2m0
(σ · π)(σ · π)ψ = 1

2m0
(π · π)ψ

+ i

2m0
σ · (π × π)ψ = 1

2m0
(π · π)ψ + i

2m0

iq�

c
(σ ·H)ψ

=
[
π2

2m0
− q�

2m0c
σ ·H

]
ψ =

[
π2

2m0
+ e�

2m0c
σ ·H

]
ψ .

In the last parenthesis, beside the kinetic energy operator (first term), there is a strange second
term. The term has the appearance of the interaction energy −M ·H of a mysterious magnetic
dipole moment M with magnetic field H (cf. interaction with magnetic field, p. 764). The
operator of this electronic dipole moment M = − e�

2m0cσ = −μBσ , where μB stands for the

Bohr magneton equal to e�

2m0c . The spin angular momentum operator of the electron is denoted

by (cf. p. 29) s. Therefore, one has s = 1
2�σ . Inserting σ to the equation for M, we obtain

M = −2
μB

�
s = − e

m0c
s. (3.63)

It is exactly twice as much as we get for the orbital angular momentum and the corresponding
orbital magnetic dipole.
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When two values differ by an integer factor (as in this case), this should stimulate our mind
because it may mean something fundamental that might depend on the number of dimensions
of our space or something similar. However, one of the most precise experiments ever made
by humans gave30 2.0023193043737 ± 0.0000000000082 instead of 2 (hence, the anoma-
lous magnetic spin dipole moment of the electron). Therefore, our excitement must diminish.
A more accurate theory (quantum electrodynamics, some of the effects of which will be
described later in this chapter) gave a result that agreed with the experiment within an exper-
imental error of ±0.0000000008. The extreme accuracy achieved witnessed the exceptional
status of quantum electrodynamics, because no other theory of mankind has achieved such a
level of accuracy.

3.3.9 Simple Questions

How should we interpret a bispinor wave function? Does the Dirac equation describe a single
fermion, an electron, a positron, an electron and a Dirac sea of other electrons (infinite number
of particles), or an effective electron or effective positron (interacting with the Dirac sea)? After
eighty years, these questions do not have a clear answer.

Despite the glorious invariance with respect to the Lorentz transformation and despite spec-
tacular successes, the Dirac equation has some serious drawbacks, including a lack of clear
physical interpretation. These drawbacks are removed by a more advanced theory–quantum
electrodynamics.

3.4 The Hydrogen-like Atom in Dirac Theory

After this short break, we have returned to the Dirac theory. The hydrogen-like atom may be
simplified by immobilizing the nucleus and considering a single particle–the electron31 moving
in the electrostatic field of the nucleus32−Z/r . This problem has an exact solution first obtained
by Charles Galton Darwin (cf. p. 124). The electron state is described by four quantum numbers
n, l,m,ms , where n = 1, 2, . . . stands for the principal, 0 ≤ l ≤ n − 1 for the angular, |m| ≤ l
for the magnetic (both are integers), and ms = 1

2 ,−1
2 for the spin quantum number. Darwin

30 R.S. Van Dyck Jr., P.B. Schwinberg, and H.G. Dehmelt, Phys. Rev. Letters, 59, 26 (1990).
31 In the Dirac equation, A = 0 and −eφ = V = − Ze2

r were set.
32 The center of mass motion can be easily separated from the Schrödinger equation. Nothing like this has been

done for the Dirac equation. The atomic mass depends on its velocity with respect to the laboratory coordinate
system, the electron and proton mass also depend on their speeds, and there is also a mass deficit as a result of
binding between both particles. All this seems to indicate that separation of the center of mass is not possible.
Nevertheless, for an energy expression accurate to a certain power of c−1, such a separation is, at least in some
cases, possible.
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obtained the following formula for the relativistic energy of the hydrogen-like atom (in a.u.):

En, j = − 1

2n2

[
1+ 1

nc2

(
1

j + 1
2

− 3

4n

)]
,

where j = l + ms , and c is the speed of light (in a.u.). For the ground state (1s, n = 1,
l = 0,m = 0,ms = 1

2 ), we have

E1, 1
2
= −1

2

[
1+

(
1

2c

)2
]
.

Thus, instead of the non-relativistic energy equal to −1
2 , from the Dirac theory, we obtain

−0.5000067 a.u., which means a very small stabilizing correction to the non-relativistic energy.
The electron energy levels for the non-relativistic and relativistic cases are shown schematically
in Fig. 3.2.

3.4.1 Step by Step: Calculation of the Hydrogen-Like Atom Ground State
Within Dirac Theory

3.4.1.1 Matrix Form of the Dirac Equation

We will use the Dirac equation [Eq. (3.59)]. First, the basis set composed of two bispinors will

be created: �1 =
(
ψ

0

)
and �2 =

(
0
φ

)
, and the wave function � will be sought as a linear

combination� = c1�1+c2�2, which represents an approximation. Within this approximation,
the Dirac equation looks like this:(

V − ε c(σ · π)
c(σ · π) V − 2m0c2 − ε

) (
c1�1 + c2�2

) = 0,

which gives

c1

(
V − ε c(σ · π)

c(σ · π) V − 2m0c2 − ε
)
�1 + c2

(
V − ε c(σ · π)

c(σ · π) V − 2m0c2 − ε
)
�2 = 0.

By making a scalar product first with �1 and then with �2, we obtain two equations:

c1

〈
�1

∣∣∣∣
(

V − ε c(σ · π)
c(σ · π) V − 2m0c2 − ε

)
�1

〉

+ c2

〈
�1

∣∣∣∣
(

V − ε c(σ · π)
c(σ · π) V − 2m0c2 − ε

)
�2

〉
= 0,

c1

〈
�2

∣∣∣∣
(

V − ε c(σ · π)
c(σ · π) V − 2m0c2 − ε

)
�1

〉

+ c2

〈
�2

∣∣∣∣
(

V − ε c(σ · π)
c(σ · π) V − 2m0c2 − ε

)
�2

〉
= 0.
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Taking into account the particular structure of the bispinors �1 and �2, we obtain the same
equations expressed in (two component) spinors:

c1 〈ψ
∣∣(V − ε)ψ 〉+ c2 〈ψ |c(σ · π)φ〉 = 0

c1 〈φ |c(σ · π)ψ〉 + c2 〈φ
∣∣(V − 2m0c2 − ε)φ〉 = 0.

This is a set of homogeneous linear equations. To obtain a nontrivial solution33, the deter-
minant of the coefficients multiplying the unknowns c1 and c2 has to be zero (the secular
determinant, cf., the variational method in Chapter 5):∣∣∣∣ 〈ψ

∣∣(V − ε)ψ 〉 〈ψ |c(σ · π)φ〉
〈φ |c(σ · π)ψ〉 〈φ ∣∣(V − 2m0c2 − ε)φ〉 ∣∣∣∣ = 0. (3.64)

The potential V in Eq. (3.64) will be taken as−Z/r , where r is the electron-nucleus distance.

3.4.1.2 The Large Component Spinor

It is true that we have used an extremely poor basis in this discussion; however, we will
try to compensate for it by allowing a certain flexibility within the large component spinor:

ψ =
(

1s
0

)
, where the hydrogen-like function 1s =

√
ζ 3

π
exp( − ζr). The parameter ζ will

be optimized in such a way as to minimize the energy ε of the electron. This idea is similar
to the variational method in the non-relativistic theory (Chapter 5 and Appendix H available at
booksite.elsevier.com/978-0-444-59436-5, p. e91), however, it is hardly justified in the relativis-
tic case. Indeed, as proved by numerical experience, the variational procedure often fails. As a
remedy, we will use the kinetic balancing already described of the large and small components
of the bispinor (p. 132). The spinor of the small components is therefore obtained automatically
from the large components (approximation):

φ = Nφ(σ · π)
(

1s
0

)
= Nφ

(
p̂z p̂x + i p̂y

p̂x − i p̂y p̂z

) (
1s
0

)

= Nφ

(
p̂z(1s)

( p̂x + i p̂y)(1s)

)
,

where Nφ is a normalization constant. In the above formula, p̂ represents the momentum operator.
The normalization constant Nφ will be found from

〈φ | φ〉 = 1 = ∣∣Nφ
∣∣2 {〈

p̂z(1s) | p̂z(1s)〉 + 〈
( p̂x + i p̂y)(1s) | ( p̂x + i p̂y)(1s)〉} = ∣∣Nφ

∣∣2 ·{ 〈
p̂z(1s) | p̂z(1s)〉 + 〈

p̂x (1s) | p̂x (1s)〉 + i
〈
p̂x (1s) | p̂y(1s)〉 − i

〈
p̂y(1s) | p̂x (1s)〉

+ 〈
p̂y(1s) | p̂y(1s)〉

}
.

33 It is easy to give a trivial solution, but it is not acceptable (the wave function cannot equal zero everywhere):
c1 = c2 = 0.

http://booksite.elsevier.com/978-0-444-59436-5


138 Chapter 3

In the above formula, integrals with the imaginary unit i equal zero because the integrand
is an odd function. After using the Hermitian character of the momentum operator we obtain
1 = ∣∣Nφ

∣∣2 〈1s
∣∣ p̂21s

〉 = ∣∣Nφ
∣∣2
ζ 2. The last equality follows from Appendix H available at

booksite.elsevier.com/978-0-444-59436-5, p. e91. Thus, one may choose Nφ = 1/ζ .

3.4.1.3 Calculating Integrals in the Dirac Matrix Equation

Now we will calculate one by one all the integrals that appear in the Dirac matrix equation. The
integral 〈ψ ∣∣− Z

r ψ
〉 = −Zζ , because the scalar product leads to the nuclear attraction integral

with a hydrogen-like atomic orbital, and this gives the result above (see Appendix H available
at booksite.elsevier.com/978-0-444-59436-5, p. e91). The next integral can be computed as
follows:〈

φ

∣∣∣∣1

r
φ

〉
= ∣∣Nφ

∣∣2
〈

p̂z(1s)(
p̂x + i p̂y

)
(1s)

∣∣∣∣1

r

(
p̂z(1s)(

p̂x + i p̂y
)
(1s)

)〉

= ∣∣Nφ
∣∣2

〈
p̂z(1s)

∣∣∣∣1

r
p̂z(1s)

〉
+

〈(
p̂x + i p̂y

)
(1s)

∣∣∣∣1

r

(
p̂x + i p̂y

)
(1s)

〉

= ∣∣Nφ
∣∣2

〈
(1s)

∣∣∣∣ p̂z
1

r
p̂z(1s)

〉
+

〈
(1s)

∣∣∣∣( p̂x − i p̂y
) 1

r

(
p̂x + i p̂y

)
(1s)

〉

= ∣∣Nφ
∣∣2

〈
(1s)

∣∣∣∣
(

p̂z
1

r

)
p̂z(1s)

〉
+

〈
(1s)

∣∣∣∣
[(

p̂x − i p̂y
) 1

r

] (
p̂x + i p̂y

)
(1s)

〉

+
〈
(1s)

∣∣∣∣1

r
p̂z p̂z(1s)

〉
+

〈
(1s)

∣∣∣∣1

r

(
p̂x − i p̂y

) (
p̂x + i p̂y

)
(1s)

〉
. (3.65)

In the second row, the scalar product of spinors is used, while in the third row, the Hermitian
character of the operator p̂. Further,〈

φ

∣∣∣∣1

r
φ

〉
= ∣∣Nφ

∣∣2
[〈
(1s)

∣∣∣∣
(

p̂z
1

r

)
p̂z(1s)

〉
+

〈
(1s)

∣∣∣∣1

r

(
p̂2

x + p̂2
y + p̂2

z

)
(1s)

〉

+
〈
(1s)

∣∣∣∣
[(

p̂x − i p̂y
) 1

r

] (
p̂x + i p̂y

)
(1s)

〉]

= ∣∣Nφ
∣∣2

[〈
(1s)

∣∣∣∣
(

p̂z
1

r

)
p̂z(1s)

〉
−

〈
(1s)

∣∣∣∣1

r
�(1s)

〉
+

〈
(1s)

∣∣∣∣
(

p̂x
1

r

)
p̂x (1s)

〉

+
〈(

1s
) ∣∣∣∣

(
p̂y

1

r

)
p̂y

(
1s

)〉
− i

〈 (
1s

)∣∣∣∣
(

p̂y
1

r

)
p̂x (1s)

〉

+ i

〈
(1s)

∣∣∣∣
(

p̂x
1

r

)
p̂y(1s)

〉]
. (3.66)

We used the atomic units (and therefore p̂2 = −�), and the momentum operator is equal to
−i∇. The two integrals at the end cancel each other out, because each of the integrals does not
change when the variables are interchanged: x ↔ y.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Finally, we obtain the following formula: 〈φ ∣∣1
r φ

〉 = −N 2
φ

{〈1s
∣∣1

r�(1s)
〉+ 〈1s

∣∣(∇ 1
r

)
∇(1s)

〉} = −ζ−2
{(−3ζ 3 + 2ζ 3

)} = ζ , where the equality follows from a direct calculation of
the two integrals34.

The next matrix element to calculate is equal to 〈φ ∣∣c (
σ · π)

ψ
〉
. We proceed as follows (recall

kinetic balancing and we also use Appendix H available at booksite.elsevier.com/978-0-444-
59436-5, p. e91):

〈φ ∣∣c (
σ · π)

ψ
〉 = Nφc

〈
(σ · π)

(
1s
0

) ∣∣∣∣(σ · π) (
1s
0

)〉

= Nφc

〈(
p̂z(1s)

( p̂x + i p̂y)(1s)

) ∣∣∣∣
(

p̂z(1s)
( p̂x + i p̂y)(1s)

)〉
= Nφc

[〈
p̂z(1s)

∣∣ p̂z(1s)
〉+ 〈

( p̂x + i p̂y)(1s)
∣∣( p̂x + i p̂y)(1s)

〉]
= Nφc 〈1s

∣∣ p̂2(1s)
〉 = 1

ζ
cζ 2 = cζ.

The last matrix element reads as

〈ψ ∣∣c (
σ · π)

φ
〉 = Nφc

〈(
1s
0

) ∣∣∣∣(σ · π)2
(

1s
0

)〉

= Nφc

〈(
1s
0

) ∣∣∣∣
(

p̂2 0
0 p̂2

) (
1s
0

)〉
= Nφc 〈1s

∣∣ p̂21s
〉 = c

1

ζ
ζ 2 = cζ.

3.4.1.4 Dirac’s Secular Determinant

At this point, we have all the integrals needed and may write the secular determinant corre-
sponding to the matrix form [Eq. (3.64)] of the Dirac equation. After inserting the calculated
integrals, we get ∣∣∣∣−Zζ − ε cζ

cζ −Zζ − 2c2 − ε
∣∣∣∣ = 0.

Expanding the determinant gives the equation for the energy ε:

ε2 + ε(2Zζ + 2c2)+ [Zζ(Zζ + 2c2)− c2ζ 2] = 0.

Hence, we get two solutions:

ε± = −(c2 + Zζ )±
√
(c4 + ζ 2c2).

34 In the first integral, we have the same situation as earlier in this chapter. In the second integral, we write the nabla
operator in Cartesian coordinates, obtain a scalar product of two gradients, and then get three integrals equal to
one another (they contain x, y, z), and it is sufficient to calculate one of them by spherical coordinates using the
formula H.2 in Appendix H available at booksite.elsevier.com/978-0-444-59436-5, p. e91.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Note that the square root is of the order of c2 (in a.u.), and with the (unit) mass of the electron
m0, it is of the order of m0c2. Therefore, the minus sign before the square root corresponds to
a solution with energy of the order of −2m0c2, while the plus sign corresponds to energy on
the order of zero. Recall that we have shifted the energy scale in the Dirac equation and this
is the last solution, ε+ (hereafter denoted by ε), which is to be compared to the energy of the
non-relativistic hydrogen-like atom:

ε = − (
c2 + Zζ

)+√
c4 + ζ 2c2 = − (

c2 + Zζ
)+ c2

√
1+ ζ

2

c2

= − (
c2 + Zζ

)+ c2
(

1+ ζ 2

2c2 −
ζ 4

8c4 + · · ·
)
= −Zζ + ζ

2

2
+

(
− ζ

4

8c2 + · · ·
)
. (3.67)

3.4.1.5 Non-relativistic Solution

If c → ∞ (i.e., we approach the non-relativistic limit), then ε = −Zζ + ζ 2

2 . Minimization
of this energy with respect to ζ gives its optimum value ζ nonrel

opt = Z . In this way, one recov-
ers the result known from non-relativistic quantum mechanics (see Appendix H available at
booksite.elsevier.com/978-0-444-59436-5) obtained in the variational approach to the hydro-
gen atom with the 1s orbital as a trial function.

3.4.1.6 Relativistic Contraction of Orbitals

Minimizing the relativistic energy given by Eq. (3.67) leads to an equation for optimum ζ ≡ ζ rel
opt :

dε

dζ
= 0 = −Z + 1

2

(
c4 + ζ 2c2)− 1

2 2ζc2 = −Z + (
c4 + ζ 2c2)− 1

2 ζc2,

giving

ζ rel
opt =

Z√
1− Z2

c2

.

The result differs remarkably from the non-relativistic value ζ nonrel
opt = Z , but approaches the

non-relativistic value when c→∞. Note that the difference between the two values increases
with atomic number Z , and that the relativistic exponent is always larger than its non-relativistic
counterpart. This means that the relativistic orbital decays faster with the electron-nucleus
distance, and therefore,

the relativistic orbital 1s is smaller (contraction) than the corresponding non-relativistic one.

Let us see how this situation is for the hydrogen atom. In that case, ζ rel
opt = 1.0000266 as

compared to ζ nonrel
opt = Z H = 1. And what about 1s orbital of gold? For gold, ζ rel

opt = 96.68,

http://booksite.elsevier.com/978-0-444-59436-5
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while ζ nonrel
opt = Z Au = 79. This is a large relativistic contraction of the atomic orbitals.

Since for a heavy atom, the effective exponent of the atomic orbitals decreases when mov-
ing from the low-energy compact 1s orbital to higher-energy outer orbitals, this means that
the most important relativistic orbital contraction occurs for the inner shells. The chemical
properties of an atom depend on what happens to its outer shells (valence shell). Therefore,
we may conclude that the relativistic corrections are expected to play a secondary role in
chemistry35.

If we insert ζ rel
opt into Eq. (3.67), we obtain the minimum value of ε:

εmin = −
(
c2 + Zζ

)+√
c4 + ζ 2. (3.68)

Since Z2/c2 is small with respect to 1, we may expand the square root in the Taylor series,√
1− x = 1− 1

2 x − 1
8 x2 − · · ·We obtain

εmin = −c2 + c2

{
1−

(
1

2

) (
Z2

c2

)
− 1

8

(
Z2

c2

)2

− · · ·
}

= − Z2

2

(
1+

(
Z

2c

)2

+ · · ·
)
. (3.69)

In the case of the hydrogen atom (Z = 1), we have

εmin = −1

2

(
1+

(
1

2c

)2

+ · · ·
)
, (3.70)

where the first two terms shown give Darwin’s exact result36 (discussed earlier in this chap-
ter). Inserting c = 137.036 a.u., we obtain the hydrogen atom ground-state energy ε =
−0.5000067 a.u., which agrees with Darwin’s result.

3.5 Toward Larger Systems

The Dirac equation is rigorously invariant with respect to the Lorentz transformation, which
is certainly the most important requirement for a relativistic theory. Therefore, it would seem
to be a logically sound approximation for a relativistic description of a single quantum par-
ticle. Unfortunately, this is not true. Recall that the Dirac Hamiltonian spectrum contains a

35 We have to remember, however, that the relativistic effects also propagate from the inner shells to the valence
shell through the orthogonalization condition, which has to be fulfilled after the relativistic contraction. This is
why the gold valence orbital 6s shrinks, which has an immediate consequence in the relativistic shortening of the
bond length in Au2, cited at the beginning of this chapter.

36 That is, the exact solution to the Dirac equation for the electron in the external electric field produced by the
proton.
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continuum of states with negative energies, which is not bound from below (a kind of “energy
abyss” with threatening consequences). Dirac desperately postulated that all these negative con-
tinuum energy levels are inaccessible for an electron occupying a “normal” energy level with
positive energy, such as, for example, the levels of the hydrogen atom37. This inaccessibility
was supposed to result from postulated occupation of these levels by the electrons from the
Dirac sea and operation of the Pauli exclusion principle.

The first contradiction within the Dirac theory is the following: the Dirac model ceases to be
of a one-particle type (by occupying the negative energy continuum by an infinite number of
electrons), but despite of this it is unable to describe even two electrons when they are in the
positive energy states. A second contradiction is visible from the Fock-Klein-Gordon equation.
There also is a negative energy continuum [one also may have a negative solution when making
the square root of the square of Eq. (3.39), p. 122], but since the Fock-Klein-Gordon equation
describes bosons38, for which the Pauli exclusion principle is not operating (see Chapter 1), the
concept of Dirac about inaccessibility is useless in this case.39

The internal inconsistencies of the Dirac model lead to some absurd results. For example, the
Dirac electron velocity, defined as the eigenvalue of the operator being the time derivative of the
position operator, is everywhere equal to the velocity of light. These and other inconsistencies
are removed only after going to a more advanced theory, which is quantum electrodynamics
(QED). Unfortunately, QED represents a complicated machinery, which nowadays cannot be
applied to large molecules of chemical interest. Therefore, in practice, we are forced to use the
Dirac equation, and to be effective for larger systems, we should somehow invent its many-
particle generalizations. During the more than eighty years after the Dirac theory was derived,
the dangers and traps connected to the Dirac equation have been quite well recognized. Currently,
the Dirac theory is able to produce results with excellent agreement with experimental data.
This however is often associated with a special care during computations.

3.5.1 Non-Interacting Dirac Electrons

Just to see what kind of problems are associated with application of the Dirac equation, let us
consider two non-interacting Dirac electrons. Let us assume that a two-electron Hamiltonian
is simply a sum of the two one-electron Hamiltonians. Such two-electron problem can be

37 Such transitions would cause not only the destruction of atoms, but also a catastrophe on a scale of the universe,
since an infinite amount of energy has to be emitted.

38 An analysis of the transformation properties of the Fock-Klein-Gordon equation and of the Dirac equation leads
to the conclusion that satisfaction of the first of these equations requires the usual (i.e., scalar) wave function,
whereas the second equation requires a bispinor character of the wave function. Scalar functions describe spinless
particles (because they cannot be associated with the Pauli matrices), while bispinors in the Dirac equation are
associated with the Pauli matrices, and describe a particle of 1/2 spin.

39 This means that the Dirac sea is nothing more than a fairy tale. But sometimes fairy tales are useful and calming
(in the short term), for children as well as for scientists.



Beyond the Schrödinger Equation 143

(a) (b)

Fig. 3.3. The spectrum of the Dirac Hamiltonian for one electron (a) and two non-interacting electrons (b). On the right side,
the original scale of energy

(
E

)
was used, while on the left side, the shifted scale

(
ε
)

was applied. In the one-electron case, one
obtains two continua: the first one,�+, describes the states with positive energies, while the second one,�−, pertains to the states
with negative energies. In the case of two electrons, the continua �++ and �−− appear when both electrons belong to the same
continuum �+ or �−. However, the total scale of energy is covered by continuum �+−, which corresponds to one electron in
�+ and the other in �−. Continua �+d and �−d appear when one of the electrons occupies a discrete level, while the second one
is in a state belonging to a continuum (�+ or �−).

separated into two one-electron ones. If we are in a situation with the Schrödinger equation,
nothing special happens–we construct the solution for the two-electron problem from the one-
electron solutions. If we solve such a problem in the Dirac model, the negative continuum
becomes a source of serious problems. Note that the sum of energies of two electrons, one
with the positive and one with the negative energy, may give us any energy (see Fig. 3.3). We
see also that the energy eigenvalues of the two-electron Hamiltonian that correspond to bound
states are immersed in the continuum extending from −∞ to +∞. This is strange, but for the
time being, it does not cause any numerical catastrophe, provided that we first separate the
problem into the two one-electron ones (for the non-interacting electrons this is possible) and
then solve the two problems separately. If we do this way we get the correct values of the discrete
states.

3.5.2 Dirac-Coulomb (DC) Model

Things become very complex when we try to switch on the electronic interaction. First, what
should we use as the interaction energy operator? Nobody knows, but one idea might be to add
to the sum of the Dirac one-electron operators the Coulombic interaction operators of all the
particles. This is what is known as the Dirac-Coulomb (DC) model.40

40 Some researchers take into account the relativistic effects as a kind of perturbation of the Schrödinger equation.
They solve the latter one with the corresponding potential energy modified in such a way as to mimic the relativistic
effects.
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The DC approximation is rightly seen by many scholars as methodologically inconsistent.
Indeed, as we will show shortly, the Coulomb law needs the infinite velocity of light, which
involves its non-relativistic character. Such a non-relativistic ingredient should not be mixed
with any relativistic theory (e.g., the Dirac model), because we may get an odd theory that
could lead us into scientific swamps with traps and dancing elves, which in reality do not exist.
Already in the fifties of 20th century Brown and Ravenhall41 remarked that the DC theory
predicts some states that correspond to mixtures of one-particle continuum-like state and one-
particle bound-like state. This is referred to in the literature as the Brown-Ravenhall sickness.
This means that in the DC model, the ground state and all the excited states do not represent
any bound states, but are in fact resonance states. Resonance states are unstable by definition
[i.e., they have a finite lifetime and describe inevitable spontaneous disintegration of the system
into pieces (although this may happen after the system has enjoyed a long life)].42 This is in an
obvious contradiction with experimental facts, because, for example, the helium atom exists,
and there is nothing to indicate its internal instability.

Therefore, we have a serious problem because the modern relativistic computations for atoms
and molecules are almost exclusively based on the DC approximation43. The problem can be
at least partially removed if one applies some methods based on the one-electron model (e.g.,
a mean field model)44. A mean field means that we study the motion of a single particle in
the field of other particles, but their motion is averaged (their motion and, in a sense, the other
particles themselves disappear from the theory through the averaging). In such a model, the
wave function for all electrons is built from some one-electron functions, which in this case
represent four-component bispinors. One obtains these bispinors by solving the corresponding
Dirac equation in a kinetically-balanced bispinor basis, [Eq. (3.60)], p. 132. The kinetic balance
protects the model against the variational collapse, but not against the Brown-Ravenhall sickness.
One avoids the symptoms of this sickness by projecting the DC equation onto the space of those
states that correspond to positive energy45. Such a procedure assures stability of solutions and
allows for using the well-known methods developed for bound states. However, we pay a price:
the variational space used is not complete. Moreover, often construction of a basis set that does
not contain admixtures from �− is impossible46.

41 G.E. Brown and D.G. Ravenhall, Proc. Royal Soc. A208, 552 (1951).
42 The resonance states will be discussed in more detail in Chapter 6.
43 For small systems, like hydrogen-, helium-, and lithium-like atoms, there is a possibility that more accurate

methods of QED could be used.
44 See, Chapter 8.
45 In practice, this looks as follows. The many-electron wave function (let us focus our attention on a two-electron

system only) is constructed from those bispinors, which correspond to positive energy solutions of the Dirac
equation. For example, among two-electron functions built of such bispinors, no function corresponds to �−−,
�−g and, most importantly, to �+−. This means that carrying out computations with such a basis set, we do not
use the full DC Hamiltonian, but instead, its projection on the space of states with positive energies.

46 One example of this is when we are beyond the mean-field model.
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It has been realized only recently that to avoid the abovementioned traps, as well as to see how
the solutions of the DC equation look like, one has to apply the methods specific to resonance
states47 because they are such states and cannot be legitimately treated otherwise. The energies
obtained as solutions of the full DC equation (a correct approach) differ from the solutions of
the equation projected onto the space of states with positive energies (approximation) by the
terms proportional to (Z/c)3, with Z meaning the nuclear charge48. It turned out also that the
lifetimes of the resonance states, which correspond to the truly bound states, are proportional
to (Z/c)−3, and therefore are relatively long (especially for light atoms)49. It is worth noting
that the DC equation, also with the Breit corrections described in the next section, is exact up to
the terms proportional to (Z/c)2. Therefore, the effects connected to the instability of the DC
solution, although they have been very annoying at the numerical as well as the interpretation
level, are smaller than the limits of validity of the DC model itself50.

3.6 Beyond the Dirac Equation…

How reliable is the relativistic quantum theory presented? The Dirac or Fock-Klein-Gordon
equations, as is usually the case in physics, describe only some aspects of reality. The fact that
both equations are invariant with respect to the Lorentz transformation indicates only that the
space-time symmetry properties are described correctly. The physical machinery represented by
these equations is not so bad, since several predictions have been successfully made (antimatter,
electron spin, energy levels of the hydrogen atom). Yet, in the latter case, an assumption of
the external field V = − Ze2

r is a positively desperate step, which in fact is unacceptable in
a fair relativistic theory for the proton and the electron (and not only of the electron in the
external field of the nucleus). Indeed, the proton and the electron move. At a given time, their
distance is equal to r , but such a distance might be inserted into the Coulombic law if the
speed of light were infinite because the two particles would feel their positions instantaneously.
However, since any perturbation by a position change of a particle needs time to travel to the
other particle, we have to use another distance somehow, taking this into account (Fig. 3.4). The
same pertains, of course, to any pair of particles in a many-body system (the so-called retarded
potential).

There is certainly a need for a more accurate theory.

47 G. Pestka, M. Bylicki, and J. Karwowski, J. Phys. B: At. Mol. Opt. Phys., 39, 2979 (2006); ibid., 40, 2249 (2007).
48 Here, we consider an atom.
49 In principle, one should write Ze2/�c instead of Z/c. The dimensionless constant e2/�c ≈ 1/137 is known as a

fine structure constant, in atomic units (e = 1, � = 1; see Chapter 4), it equals 1
c .

50 The corrections proportional to (Z/c)n for n ≥ 3, which come from the QED, are nowadays being treated
perturbationally (Chapter 5), also for many-electron systems, like all atoms. These corrections may become
important in interpretation of some particular phenomena, like the X-ray spectra.
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Fig. 3.4. Retardation of the interaction. The distance r12 of two particles in the interaction potential (as in Coulomb’s law) is
bound to represent an approximation because we assume an instantaneous interaction. However, when the two particles find each
other (which takes time), they are already somewhere else. In Richard Feynman’s wording, “The Sun atom shakes, my eye electron
shakes eight minutes later.”

3.6.1 The Breit Equation

Gregory Breit (1899–
1981) was an Ameri-
can physicist and pro-
fessor at the New York,
Wisconsin, Yale, Buf-
falo universities. Breit
and Eugene Wigner
introduced the reso-
nance states of parti-
cles, and, with Edward
Condon, created the
proton-proton scatter-
ing theory. Breit mea-
sured also the height
of the ionosphere.

Breit constructed a many-electron
relativistic theory that takes into
account such a retarded potential in
an approximate way51. Breit explic-
itly considered only the electrons
of an atom; its nucleus (similar to
the Dirac theory) created only an
external field for the electrons. This
ambitious project was only partly
successful because the resulting
theory turned out to be approxi-
mate not only from the point of
view of quantum theory (with some

interactions not taken into account), but also from the point of view of relativity theory (an
approximate Lorentz transformation invariance).

For two electrons, the Breit equation has the following form (r12 stands for the distance
between electron 1 and electron 2):{

Ĥ
(
1
)+ Ĥ

(
2
)+ 1

r12
− 1

2r12

[
α(1)α(2)+

[
α(1) · r12

] [
α(2) · r12

]
r2

12

]}
� = E�, (3.71)

51 The Breit equation is invariant with respect to the Lorentz transformation, but only within an accuracy up to some
small terms.
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where [cf., Eq. (3.54) with E replaced by the Hamiltonian]

Ĥ
(
i
) = qiφ

(
ri

)+ cα
(
i
)
π

(
i
)+ α0

(
i
)

m0c2 = −eφ
(
ri

)+ cα
(
i
)
π

(
i
)+ α0

(
i
)

m0c2

is the Dirac Hamiltonian for electron i pointed by vector ri , whereas the Dirac matrices
for electron i

[
(α(i) = [

αx
(
i
)
), αy

(
i
)
, αz

(
i
)]]

and the corresponding operators πμ
(
i
)

have been defined on p. 127, φ
(
ri

)
represent the scalar potential calculated at ri . The wave

function � represents a 16-component spinor (here represented by a square matrix of rank 4),
because for each electron, we would have the usual Dirac bispinor (with four components) and
the two-electron wave function depends on the Cartesian product of the components52.

The Breit Hamiltonian (in our example, for two electrons in an electromagnetic field) can be
approximated by the following useful formula53, known as the Breit-Pauli Hamiltonian:

Ĥ
(
1, 2

) = Ĥ0 + Ĥ1 + · · ·Ĥ6, (3.72)

where

• Ĥ0 = p̂2
1

2m0
+ p̂2

2
2m0
+ V represents the familiar non-relativistic Hamiltonian.

• Ĥ1 = − 1
8m3

0c2

(
p̂4

1 + p̂4
2

)
comes from the velocity dependence of mass, more precisely from

the Taylor expansion of Eq. (3.38) for small velocities:

• Ĥ2 = − e2

2
(
m0c

)2
1

r12

[
p̂1 · p̂2 + r12·

(
r12·p̂1

)
p̂2

r2
12

]
stands for the correction54 that accounts in part

for the abovementioned retardation. Alternatively, the term may be viewed as the interaction
energy of two magnetic dipoles, each resulting from the orbital motion of an electron (orbit-
orbit term)

• Ĥ3 = μB
m0c

{[
E (

r1
)× p̂1 + 2e

r3
12

r12 × p̂2

]
· s1 +

[
E (

r2
)× p̂2 + 2e

r3
12

r21 × p̂1

]
· s2

}
is the

interaction energy of the electronic magnetic moments (resulting from the abovementioned
orbital motion) with the spin magnetic dipole moments (spin-orbit coupling), μB stands
for the Bohr magneton, and E denotes the electric field vector. Since we have two orbital
magnetic dipole moments and two spin orbital dipole moments, there are four spin-orbit
interactions. The first term in square brackets stands for the spin-orbit coupling of the same
electron, while the second term represents the coupling of the spin of one particle with the
orbit of the second.

• Ĥ4 = ie�(
2m0c

)2

[
p̂1 · E

(
r1

)+ p̂2 · E
(
r2

)]
is a non-classical term peculiar to the Dirac theory

(also present in the one-electron Dirac Hamiltonian) called the Darwin term.

52 In the Breit equation [Eq. (3.71)], the operators in {} act either by multiplying the 4 × 4 matrix � by a function
(i.e., each element of the matrix) or by a 4× 4 matrix resulting from α matrices.

53 H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Plenum Publishing Corpo-
ration, New York, 1977, p. 181.

54 For the non-commuting operators: â
(

â · b̂
)

ĉ =∑3
i, j=1 âi â j b̂ j ĉi .
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• Ĥ5 = 4μ2
B

{
−8π

3

(
s1 · s2

)
δ

(
r12

)+ 1
r3

12

[
s1 · s2 −

(
s1·r12

)(
s2·r12

)
r2

12

]}
corresponds to the spin

dipole moment interactions of the two electrons (the spin-spin term). The first term is called
the Fermi contact term, since it is nonzero only when the two electrons touch one another
(see Appendix E available at booksite.elsevier.com/978-0-444-59436-5, p. e69), whereas
the second term represents the classical dipole-dipole interaction of the two electronic spins
(cf., the multipole expansion in Appendix X available at booksite.elsevier.com/978-0-444-
59436-5, p. e169 and Chapter 13); i.e., the interaction of the two spin magnetic moments
of the electrons (with the factor 2, according to Eq. (3.63), p. 134).

• Ĥ6 = 2μB
[
H

(
r1

) · s1 +H
(
r2

) · s2
]+ e

m0c

[
A

(
r1

) · p̂1 + A
(
r2

) · p̂2
]

is known as the Zee-
man interaction [i.e., the interaction of the spin (the first two terms) and the orbital electronic
magnetic dipole moments (the second two terms) with the external magnetic field H]; cf.,
Eq. (3.63).

The terms listed above are of prime importance in the theory of the interaction of matter with
the electromagnetic field (e.g., in nuclear magnetic resonance).

3.6.2 About QED

The Dirac and Breit equations do not account for several subtle effects. They are predicted by
QED, a many-particle theory.

The QED energy may be conveniently developed in a power series of 1
c :

• In zero order, we have the non-relativistic approximation (solution to the Schrödinger equa-
tion).

• There are no first-order terms.
• The second order contains the Breit corrections.
• The third and further orders are called the radiative corrections.

Radiative Corrections

The radiative corrections include:

• Interaction with the vacuum (Fig. 3.5a). In contemporary physics theory, the perfect vacuum
does not just represent nothing. The electric field of the vacuum itself fluctuates about zero
and these instantaneous fluctuations influence the motion of any charged particle. When a
strong electric field operates in a vacuum, the latter undergoes a polarization (called vacuum
polarization), which means a spontaneous creation of matter, and more specifically, of
particle-antiparticle pairs.

• Interaction with virtual photons. The electric field influences the motion of the electron.
What about its own electric field? Does that influence its motion as well? The latter effect is

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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(a)

(c) (d)

(b)

Fig. 3.5. (a) The electric field close to the proton (composed of three quarks) is so strong that it creates matter and antimatter
(shown as electron-positron pairs). The three quarks visible in scattering experiments represent the valence quarks. (b) One of the
radiative effects in the QED correction of the c−3 order (see Table 3.1). The pictures show the sequence of the events from left
to right. A photon (wavy line on the left) polarizes the vacuum, an electron-positron pair (solid lines) is created, and the photon
vanishes. Then the created particles annihilate each other and a photon is created. (c) A similar event (of the c−4 order in QED),
but during the existence of the electron-positron pair, the two particles interact by exchange of a photon. (d) An electron (horizontal
solid line) emits a photon, which creates an electron-positron pair that annihilates producing another photon. Meanwhile, the first
electron emits a photon, then first absorbs the photon from the annihilation, and afterward the photon emitted by itself earlier. This
effect is of the order c−5 in QED.

usually modeled by allowing the electron to emit photons and then to absorb them (“virtual
photons”)55 (Fig. 3.5b,c,d).

The QED calculations performed to date have been focused on the energy. The first cal-
culations of atomic susceptibilities (helium) within an accuracy including the c−2 terms were
carried out independently by Pachucki and Sapirstein56 and by Cencek and coworkers57, and
with accuracy up to c−3 (with estimation of the c−4 term) by Łach and coworkers. To get a
sense of what subtle effects may be computed nowadays, Table 3.1 shows the components of
the first ionization energy and of the dipole polarizability (see Chapter 12) of the helium atom.

Notes on Table 3.1:

• Ĥ0 denotes the result obtained from the accurate solution of the Schrödinger equation (i.e.,
the non-relativistic and finite nuclear mass theory). Today, the solution of the equation could

55 For unknown reasons, physics is based on the interaction of objects of spin 1
2 (like electrons or quarks) mediated

by objects of spin 1 (like photons, gluons, or W particles). This principle is described by Richard Feynman (see
the “Additional Literature” section later in this chapter).

56 K. Pachucki and J. Sapirstein, Phys. Rev. A, 63, 12,504 (2001).
57 W. Cencek, K. Szalewicz, and B. Jeziorski, Phys. Rev. Lett., 86 5675 (2001).
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Table 3.1. Contributions of various physical effects (non-relativistic, Breit, QED, and beyond QED, distinct physical contributions shown
in bold) to the ionization energy and the dipole polarizability α of the helium atom, as well as comparison with the experimental values (all
quantities are expressed in atomic units; i.e., e = 1, � = 1,m0 = 1, where m0 denotes the rest mass of the electron). The first column gives
the symbol of the term in the Breit–Pauli Hamiltonian [Eq. (3.72)] as well as of the QED corrections given order by order (first corresponding
to the electron-positron vacuum polarization (QED), then, beyond quantum electrodynamics, to other particle-antiparticle pairs (non-QED):
μ, π , …) split into several separate effects. The second column contains a short description of the effect. The estimated error (third and fourth
columns) is given in parentheses in the units of the last figure reported.

Term Physical Interpretation Ionization Energy [MHz] α[a.u.×10−6]a

Ĥ0 Schrödinger equation 5 945 262 288.62(4) 1 383 809.986(1)
δ Nonzero size of the nucleus −29.55(4) 0.022(1)
Ĥ1 ppp4 term 1 233 305.45(1) −987.88(1)
Ĥ2(el-el) Electron-electron retardation (Breit interaction) 48 684.88(1) −23.219(1)
Ĥ2(el-n) Electron-nucleus retardation (Breit interaction) 319.16(1) −0.257(3)
Ĥ2 Breit (total) 49 004.04(1) −23.476(3)
Ĥ3 Spin-orbit 0 0
Ĥ4(el-el) Electron-electron Darwin term 117 008.83(1) −66.083(1)
Ĥ4(el-n) Electron-nucleus Darwin term −1 182 100.99(1) 864.85(2)
Ĥ4 Darwin (total) −1 065 092.16(1) 798.77(2)
Ĥ5 Spin-spin (total) −234 017.66(1) 132.166(1)
Ĥ6 Spin-field 0 0
QED(c−3) Vacuum polarization correction to electron-electron interaction −72.48(1) 0.41(1)
QED(c−3) Vacuum polarization correction to electron-nucleus interaction 1 463.00(1) −1.071(1)
QED(c−3) Total vacuum polarization in c−3 order 1 390.52(1) −1.030(1)
QED(c−3) Vac.pol.+ other ccc−3 QED correction −40 483.98(5) 30.66(1)
QED(c−4) Vacuum polarization 12.26(1) 0.009(1)
QED(c−4) Total ccc−4 QED correction −834.9(2) 0.56(22)
QED-h.o. Estimation of higher order QED correction 84(42) −0.06(6)
non-QED Contribution of virtual muons, pions, etc. 0.05(1) −0.004(1)∑

Theory (total) 5 945 204 223(42)b 1 383 760.79(23)

Experiment 5 945 204 238(45)c 1 383 791(67)d

a G. Łach, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett., 92, 233,001 (2004).
b G.W.F. Drake and P.C. Martin, Can. J. Phys., 76, 679 (1998); V. Korobov and A. Yelkhovsky, Phys. Rev. Lett., 87, 1930 (2001).
c K.S.E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, Phys. Rev. A, 55, 1866 (1997).
d F. Weinhold, J. Phys. Chem., 86, 1111 (1982).
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be obtained with greater accuracy than reported here. Imagine that here, the theory is limited
by the error we know the helium atom mass, which is only 12 significant figures.

• The effect of the nonzero size of the nucleus is small, so it is almost never taken into
account in computations. If we enlarged the nucleus to the size of an apple, the first Bohr
orbit would be 10 km from the nucleus. And still (sticking to this analogy), the electron is
able to distinguish a point from an apple? Not quite, it sees the (tiny) difference because the
electron knows the region close to the nucleus: it is there that it resides most often. Anyway,
the theory is able to compute such a tiny effect.

• The term p4 and the total Darwin effect nearly cancel each other out for unclear reasons.
This cancellation is being persistently confirmed in other systems as well. Strangely enough,
this pertains not only to the ionization energy, but also to the polarizability.

• After the abovementioned cancellation (of p4 and Darwin terms), the retardation becomes
one of the most important relativistic effects. As seen from Table 3.1, the effect is about 100
times larger (both for the ionization energy and the polarizability) for the electron-electron
retardation than for that of the nucleus-electron. This is quite understandable because the
nucleus represents a “massive rock” (it is about 7000 times heavier in comparison to an elec-
tron), it moves slowly, and in the nucleus-electron interaction, only the electron contributes
to the retardation effect. Two electrons make the retardation much more serious.

• Term Ĥ3 (spin-orbit coupling) is equal to zero for symmetry reasons (for the ground state).
• In the Darwin term, the nucleus-electron vs electron-electron contribution have reversed

magnitudes: about 1 : 10, as compared to 100 : 1 in retardation. Again, this time it seems
intuitively correct. We have the sum of the particle-particle terms in the Hamiltonian Ĥ4 =

ie�(
2m0c

)2

[
p̂1 · E

(
r1

)+ p̂2 · E
(
r2

)]
, where E means an electric field created by two other

particles on the particle under consideration. Each of the terms is proportional to ∇i∇i V =
�i V = 4πqiδ(ri ), where δ is the Dirac δ delta function (see Appendix E available at
booksite.elsevier.com/978-0-444-59436-5, p. e69), and qi denotes the charge of the particle
“i .” The absolute value of the nuclear charge is twice the electron charge.

• In term Ĥ5, the spin-spin relates to the electron-electron interaction because the helium
nucleus has spin angular momentum 0.

• The Coulombic interactions are modified by polarization of vacuum (just as two charges
in a dielectric medium interact more weakly). Table 3.1 reports such corrections58 to the
electron-electron and the electron-nucleus interactions [QED(c−3)], taking into account that
electron-positron pairs jump out from the vacuum. One of these effects is shown in Fig. 3.5a.
As seen from Table 3.1, the nucleus polarizes the vacuum much more easily (about 10 times
more than the polarization by electrons). Once again, the larger charge of the nucleus makes
the electric field larger and qualitatively explains the effect. Note that the QED corrections
(corresponding to e-p creation) decrease quickly with their order. One of these higher-order
corrections is shown in Fig. 3.5d.

58 However, these effects represent a minor fraction of the total QED(c−3) correction.

http://booksite.elsevier.com/978-0-444-59436-5


152 Chapter 3

• What about the creation of other (than e-p) particle-antiparticle pairs from the vacuum? the
larger the rest mass is, the more difficult it is to squeeze out the corresponding particle-
antiparticle pair. And yet we have some tiny effect (see non-QED entry) corresponding to
the creation of such pairs as muon-antimuon (μ) , pion-antipion59 (π ), etc. This means that
the helium atom is composed of the nucleus and the two electrons only, when we look at it
within a certain approximation. To tell the truth, the atom contains also photons, electrons,
positrons, muons, pions, and whatever you wish, but with a smaller and smaller probability
of appearance. All that has only a minor effect of the order of something like the seventh
significant figure (both for the ionization potential and for the polarizability).

Summary

The beginning of the twentieth century has seen the birth and development of two revolutionary theories: relativity
and quantum mechanics. These two theories turned out to be incompatible, and attempts were made to make them
consistent. This chapter consists of two interrelated parts:

• An introduction of the elements of relativity theory, and
• Attempts to make quantum theory consistent with relativity (relativistic quantum mechanics).

Special Theory of Relativity

• If experiments are to be described in the same way in two laboratories that move with respect to the partner
laboratory with constant velocities v and −v, respectively, then the apparent forces have to vanish. The same
event is described in the two laboratories (by two observers) in the corresponding coordinate system (in one,
the event happens at coordinate x and time t , and in the second, at x ′ and t ′). A sufficient condition that makes
the forces vanish is based on linear dependence: x ′ = Ax + Bt and t ′ = Cx + Dt , where A, B,C, D denote
some constants.

• In order to put both observers on the same footing, we have to have A = D.
• The Michelson-Morley experiment has shown that each of the observers will note that in the partner’s laboratory,

there is a contraction of the dimension pointing to the partner. As a consequence, there is a time dilation; i.e.,
each of the observers will note that time flows slower in the partner’s laboratory.

• Einstein assumed that in spite of this, any of the observers will measure the same speed of light (c) in his
coordinate system.

• This leads to the Lorentz transformation, which says where and when the two observers see the same event.

The Lorentz transformation is especially simple after introducing the Minkowski space (x, ct):

[
x ′
ct ′

]
=

1√
1− v2

c2

{
1 − vc− vc 1

} [
x
ct

]
. None of the two coordinate systems is privileged (relativity principle).

• Finally, we derived Einstein’s formula Ekin = mc2 for the kinetic energy of a body with mass m (this depends
on its speed with respect to the coordinate system where the mass is measured).

59 Pions are π mesons, subnuclear particles with mass comparable to that of the muon, a particle about 200 times
more massive than an electron. Pions were discovered in 1947 by C.G. Lattes, G.S.P. Occhialini, and C.F. Powell.
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Relativistic Quantum Mechanics

• Fock, Klein, and Gordon found the total energy for a particle using the Einstein formula for kinetic energy

Ekin = mc2, adding the potential energy and introducing the momentum60 p = mv. After introducing an
external electromagnetic field (characterized by the vector potential A and the scalar potential φ), they obtained

the following relation among operators

[
i� ∂

∂t−qφ
c

]2
−

[(−i�∇ − q
c A

)2 + m2
0c2

]
= 0, where m0 denotes the

rest mass of the particle.
• Paul Dirac factorized the left side of this equation by treating it as the difference of squares. This gave two

continua of energy separated by a gap of width 2m0c2. Dirac assumed that the lower (negative energy) con-
tinuum is fully occupied by electrons (i.e., a vacuum), while the upper continuum is occupied by the single
electron (our particle). If we managed to excite an electron from the lower continuum to the upper one, then in
the upper continuum, we would see an electron, while the hole in the lower continuum would have the prop-
erties of a positive electron (positron). This corresponds to the creation of the electron-positron pair from the
vacuum.

• The Dirac equation for the electron has the following form:
(

i� ∂
∂t

)
� = (qφ + c

∑
μ=x,y,z αμ

πμ+α0m0c2)�, where πμ in the absence of magnetic field is equal to the momentum operator p̂μ,μ = x, y, z,
while αμ stand for the square matrices of the rank 4, which are related to the Pauli matrices (see the discussion
of spin in Chapter 1). As a consequence, the wave function � has to be a four-component vector composed of
square integrable functions (bispinor).

• The Dirac equation demonstrated pathological behavior when a numerical solution was sought. The reason for
this was the decoupling of the electron and positron equations. The exact separation of the negative and positive
energy continua has been demonstrated by Barysz and Sadlej, but it leads to a more complex theory. Numerical
troubles are often removed by an ad hoc assumption called kinetic balancing (i.e., fixing a certain relation among
the bispinor components). By using this relation, we prove that there are two large and two small (smaller by a
factor of about 2 c

v ) components of the bispinor61.
• The kinetic balance can be used to eliminate the small components from the Dirac equation. Then, the assumption

c = ∞ (non-relativistic approximation) leads to the Schrödinger equation for a single particle.
• The Dirac equation for a particle in the electromagnetic field contains the interaction of the spin magnetic

moment with the magnetic field. In this way, spin angular momentum appears in the Dirac theory in a natural
way (as opposed to the non-relativistic case, where it has had to be postulated).

• The problem of an electron in the external electric field produced by the nucleus (i.e., the hydrogen-like atom)
has been solved exactly within the Dirac model. It turned out that the relativistic corrections are important only
for systems with heavy atoms.

• It has been demonstrated in a step-by-step calculation how to obtain an approximate solution of the Dirac
equation for the hydrogen-like atom. One of the results is that the relativistic orbitals are contracted compared
to the non-relativistic ones.

• Finally, the Breit equation has been given. The equation goes beyond the Dirac model by taking into account the
retardation effects. The Breit-Pauli expression for the Breit Hamiltonian contains several easily interpretable
physical effects.

• Quantum electrodynamics (QED) provides an even better description of the system by adding radiative effects
that take into account the interaction of the particles with the vacuum.

60 They wanted to involve the momentum in the formula to be able to change the energy expression to an operator
(p→ p̂) according to the postulates of quantum mechanics.

61 For solutions with negative energies, this relation is reversed.
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Main Concepts, New Terms

anticommutation relation (p. 127)
apparent forces (p. 106)
bispinors (p. 128)
Breit equation (p. 147)
Breit-Pauli Hamiltonian
contact term (p. 148)
contraction of orbitals (p. 140)
Darwin solution (p. 135)
Darwin term (p. 147)
Dirac-Coulomb model (p. 143)
Dirac electronic sea; Dirac sea (p. 125)
Dirac equation (p. 128)
Dirac vacuum (p. 125)
Einstein equation (p. 121)
electron spin (p. 145)
Fermi contact term (p. 148)
Fock-Klein-Gordon equation (p. 122)
inertial system (p. 108)
Galilean transformation (p. 110)
kinetic balance (p. 132)
Klein-Gordon equation (p. 122)

length contraction (p. 113)
Lorentz transformation (p. 113)
Michelson-Morley experiment (p. 111)
Minkowski space-time (p. 177)
negative energy continuum (p. 125)
positive energy continuum (p. 125)
positron (p. 126)
particle-antiparticle creation (p. 148)
radiative corrections (p. 148)
relativistic mass (p. 120)
relativistic mass effect (p. 120)
relativity principle (p. 117)
retarded potential (p. 146)
spinors (p. 128)
spin-orbit coupling (p. 147)
spin-spin coupling (p. 147)
time dilation (p. 118)
vacuum polarization (p. 148)
velocity addition law (p. 116)
virtual photons (p. 148)

From the Research Front

Dirac-Coulomb theory within the mean field approximation (see Chapter 8) is routinely applied to molecules and
allows us to estimate the relativistic effects even for large molecules. In the computer era, this means that there are
computer programs available that allow anybody to perform relativistic calculations.

Much worse is the situation with the calculations going beyond the Dirac approach. The first estimation for
molecules of relativistic effects beyond the Dirac approximation was carried out by Ladik,62 and then by Jeziorski
and Kołos63. Besides the computation of the Lamb shift for the water molecule64, not much has been computed in
this area for years.

Then it turned out that a promising approach (the test was for the hydrogen molecule) is to start with an accurate
solution to the Schrödinger equation65 and go directly toward the expectation value of the Breit-Pauli Hamiltonian
with this wave function (i.e., to abandon the Dirac equation), and then to the QED corrections.66 This Breit-Pauli

contribution represents the complete first nonzero relativistic effect proportional to67
(

1
c

)2
. Then the complete

QED contribution proportional to
(

1
c

)3
is computed directly, as well as a major part of the

(
1
c

)4
QED term.

62 J. Ladik, Acta. Phys. Hung., 10, 271 (1959).
63 The calculations were performed for the hydrogen molecular ion H+2 [B. Jeziorski and W. Kołos, Chem. Phys.

Lett., 3, 677 (1969).]
64 P. Pyykkö, K.G. Dyall, A.G. Császár, G. Tarczay, O.L. Polyansky, and J. Tennyson, Phys. Rev. A, 63, 24,502

(2001).
65 This solution was done with the center of mass separated out.
66 K. Piszczatowski, G. Łach, M. Przybytek, J. Komasa, K. Pachucki, and B. Jeziorski, J. Chem. Theory Comput.,

5, 3039 (2009).
67 That is, the 1

c contribution vanishes.
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Calculated in this way, dissociation energy for the hydrogen molecule amounts to 36118.0695 ± 0.0010 cm−1, as
compared to the experimental result68 36118.0696±0.0004 cm−1. The estimated size of the neglected QED effects
is ±0.0004 cm−1. The even more stringent and equally successful test of this approach from my colleagues will be
reported in Chapter 6, in the section “From the Research Front.” It seems, therefore, that for now, and taking the
best-known (and the simplest) molecule, we may say that the present theory describes Nature with extreme accuracy.

Ad Futurum

Compared to typical chemical phe-
nomena, the relativistic effects remain
of marginal significance in almost
all instances for the biomolecules or
molecules typical in traditional organic
chemistry. In inorganic chemistry,
however, these effects could be much
more important. Probably the Dirac-
Coulomb theory combined with the
mean field approach will remain a sat-
isfactory standard for the vast majority
of researchers, at least for the next
few decades. At the same time, there

Hans Albrecht Bethe (1906–2005) was an
American physicist, a professor at Cor-
nell University, and a student of Arnold
Sommerfeld. Bethe contributed to many
branches of physics, such as crystal field
theory, interaction of matter with radiation,
quantum electrodynamics, and the struc-
ture and nuclear reactions of stars (for the
latter achievement, he received the Nobel
Prize in physics in 1967).

will be theoretical and computational progress for small molecules (and for atoms), where the Dirac theory will be
progressively replaced by quantum electrodynamics.

In most applications, we do not need an accuracy like that reported in the section “From the Research Front,”
earlier in this chapter, but the reason why such results are important is general, pertaining to all those, who perform
any kind of quantum-mechanical calculations. In this way science tests the reliability of its most reliable tools, both
experimental and theoretical. The agreement achieved makes all of us confident that we know what we are doing
and that the world works much in the way that we think it should.

Sooner or later, however, as has happened so many times in the past, we will meet an irreducible discrepancy. If
this happens, a better theory will have to be constructed–this is how science operates.

Additional Literature
H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Plenum Publishing Corporation,
New York (1957).

This book is absolutely exceptional. It is written by excellent specialists in such a competent way and with such
care, that despite the passage of many decades since it was written, it remains the fundamental and best source.

I.M. Grant and H.M. Quiney, “Foundations of the relativistic theory of atomic and molecular structure,” Adv. At.
Mol. Phys., 23, 37 (1988).

L. Pisani, J.M. André, M.C. André, and E. Clementi, J. Chem. Educ., 70, 894–901(1993); also J.M. André,
D.H. Mosley, M.C. André, B. Champagne, E. Clementi, J.G. Fripiat, L. Leherte, L. Pisani, D. Vercauteren, and
M. Vracko, Exploring Aspects of Computational Chemistry, Vol. I, Concepts, Presses Universitaires de Namur,
pp. 150–166(1997), Vol. II, Exercises, Presses Universitaires de Namur, pp. 249–272(1997).

68 J. Liu, E J. Salumbides, U. Hollenstein, J.C.J. Koelemeji, K.S.E. Eikema, W. Ubachs, and F. Merkt, J. Chem.
Phys., 130, 174,306 (2009).
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This is a clear article and a fine book. Their strength lies in the very simple examples of the application of the
theory.

R.P. Feynman, QED–The Strange Theory of Light and Matter, Princeton University Press, Princeton, NJ, 1988.
Excellent book written by one of the celebrities of our times in the style “quantum electrodynamics not only for

poets”.

Questions

1. In two inertial systems, the same forces operate if the two coordinate systems

a. are both at rest
b. move with the same velocity
c. are related by Galilean transformation
d. x ′ and t ′ depend linearly on x and t

2. The Michelson-Morley experiment has shown that when an observer in the coordinate system O measures a
length in O ′ (and both coordinate systems fly apart; v′ = −v), then he obtains

a. a contraction of the length unit of the observer in O ′
b. a contraction of lengths along the direction of the motion
c. the same result that is obtained by an observer in O ′
d. a contraction of length perpendicular to the motion

3. An observer in O measures the times that a phenomenon takes in O and O ′ (and both coordinate systems fly
apart; v′ = −v)

a. time goes more slowly in O ′ only if |v| < c
2

b. time goes with the same speed in O ′
c. time goes more slowly in O ′ only if |v| > c

2
d. the time of the phenomenon going on in O will be shorter

4. In the Minkowski space, the distance of any event from the origin (and both coordinate systems fly apart;
v′ = −v) is

a. the same for observers in O and in O ′
b. equal to ct − x
c. equal to 0
d. is calculated according to a non-Euclidean metric

5. A bispinor represents

a. a two-component vector with each component being a spinor
b. a two-component vector with complex numbers as components
c. a four-component vector with functions as components
d. a square integrable vector function

6. Non-physical results of numerical solutions to the Dirac equation appear because

a. the Dirac sea is neglected
b. the electron states have components belonging to the negative energy continuum
c. the electron has kinetic energy equal to its potential energy
d. there is no lower limit of the energy spectrum.

7. The Schrödinger equation can be deduced from the Dirac equation under the assumption that

a. v/c is small
b. the speed of the electron is close to c
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c. all components of the bispinor have equal length
d. the magnetic field is zero

8. In the Breit equation, there is an approximate cancellation of

a. the retardation effect with the nonzero size of the nucleus effect
b. the retardation effect electron-electron with that of the electron-nucleus
c. the spin-spin effect with the Darwin term

d. the Darwin term with the p4 term

9. Dirac’s hydrogen atom orbitals, when compared to Schrödinger’s are

a. more concentrated close to the nucleus, but have a larger mean value of r
b. have a smaller mean value of r
c. more concentrated close to the nucleus
d. of the same size, because the nuclear charge has not changed

10. The Breit equation

a. is invariant with respect to the Lorentz transformation
b. takes into account the interaction of the magnetic moments of electrons resulting from their orbital motion
c. takes into account the interaction of the spin magnetic moments
d. describes only a single particle

Answers

1a,b,c,d, 2a,b, 3d, 4a,d, 5a,c,d, 6a,b,d, 7a, 8d, 9b,c, 10b,c





CHAPTER 4

Exact Solutions–Our Beacons

“Longum iter per praecepta, breve et efficax per exempla.”
Teaching by precept is a long road, but short and efficient is the way by example.

Where Are We?

We are in the middle of the TREE trunk.

An Example

Two chlorine atoms stay together; they form the molecule Cl2. If we want to know its main mechanical properties,
it would very quickly be seen that the two atoms have a certain equilibrium distance and any attempt to change this
(in either direction) would be accompanied by work to be done. It looks like the two atoms are coupled together by a
sort of spring. If one assumes that the spring satisfies Hooke’s law,1 the system is equivalent to a harmonic oscillator.
If we require that no rotation in space of such a system is allowed, the corresponding Schrödinger equation has an
exact2 analytical solution.

What Is It All About?
Free Particle (�) p. 161
Box with Ends (�) p. 162
Cyclic Box (�) p. 167

• Comparison of Two Boxes: Hexatriene and Benzene

Carbon Nanotubes (�) p. 170
Single Barrier (��) p. 174

• Tunneling Effect Below the Barrier Height
• Surprises for Energies Larger than the Barrier

1 Another requirement is that we limit ourselves to small displacements.
2 Exact means ideal; i.e., without any approximation.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00004-0
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The Magic of Two Barriers (� �) p. 181

• Magic Energetic Gates (Resonance States)
• Strange Flight Over the Barriers

Harmonic Oscillator (�) p. 186

• Harmonic Oscillator as a Set of Non-Interacting Phonons

Morse Oscillator (�) p. 192

• Morse Potential
• Solution
• Examples

Rigid Rotator (�) p. 199
Hydrogen-Like Atom (�) p. 201

• Positronium and Its Short Life . . . in Molecules

What do all these Solutions have in Common? (�) p. 211
Hooke Helium Atom (Harmonium) (�) p.212
Hooke Molecules (�) p. 213

• Three Particles
• Four Particles
• N Particles

Charming SUSY and New Solutions (�) p. 217

• SUSY Partners
• Relation Between the SUSY Partners
• Examples

Beacons and Pearls of Physics (�) p. 224

Why Is This Important?

The Schrödinger equation is quite easy to solve nowadays with a desired accuracy for many systems. There are only
a few ones for which the exact solutions are possible. These problems and solutions play an extremely important
role in physics, since they represent a kind of beacon for our navigation in science, where as a rule we deal with
complex systems. These may most often be approximated by those for which exact solutions exist. For example,
a real diatomic molecule is difficult to describe in detail, and it certainly does not represent a harmonic oscillator.
Nevertheless, the main properties of diatomics follow from the simple harmonic oscillator model. When chemists or
physicists must describe reality they always first try to simplify the problem,3 to make it similar to one of the simple
problems described in the present chapter. Thus, from the beginning, we know the (idealized) solution. This is of
prime importance when discussing the (usually complex) solution to a higher level of accuracy. If this higher-level
description differs dramatically from that of the idealized one, most often this indicates that there is an error in our
calculations, and no task is more urgent than to find and correct it.

What Is Needed?

• The postulates of quantum mechanics (Chapter 1)
• Separation of the center of mass motion (see Appendix I available at booksite.elsevier.com/978-0-444-59436-5

on p. e93)

3 One of the cardinal strategies of science, when we have to explain a strange phenomenon, is first to simplify the
system and create a model or series of models (more and more simplified descriptions) that still exhibit the phe-
nomenon. The first model to study should be as simple as possible because it will shed light on the main machinery.

http://booksite.elsevier.com/978-0-444-59436-5
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• Operator algebra (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5 on p. e7)

In the present textbook, we assume that the reader knows most of the problems described in this chapter from
a basic course in quantum chemistry. This is why the problems are given briefly–only the most important results,
without derivation, are reported. On the other hand, such a presentation will be sufficient for our goals in most cases.

Classical Works

The hydrogen atom problem was solved by Werner Heisenberg in “Über quantentheoretischen Umdeutung kinema-
tischer und mechanischer Beziehungen,” published in Zeitschrift für Physik, 33, 879 (1925). � Erwin Schrödinger
arrived at an equivalent picture within his wave mechanics in “Quantisierung als Eigenwertproblem.I,” published
in Annalen der Physik, 79, 361 (1926). Schrödinger also gave the solution for the harmonic oscillator in a paper
(Quantisierung as Eigenwertproblem.II) which appeared in Annalen der Physik, 79, 489 (1926). � The Morse oscil-
lator problem was solved by Philip McCord Morse in “Diatomic molecules according to the wave mechanics. II.
Vibrational levels,” in Physical Review, 34, 57 (1929).4 � The tunneling effect was first considered by Friedrich
Hund in “Zur Deutung der Molekelspektren,” published in Zeitschrift für Physik, 40, 742 (1927). � The idea of
supersymmetry was introduced to quantum mechanics by Candadi V. Sukumar in an article called “Supersymmetry
factorisation of the Schrödinger equation and a Hamiltonian hierarchy,” published in the Journal of Physics A, 18,
L57 (1985). � The Schrödinger equation for the harmonium5 was first solved by Sabre Kais, Dudley R.Herschbach,
and Raphael David Levine in “Dimensional scaling as a symmetry operation,” which appeared in the Journal of
Chemical Physics, 91, 7791 (1989).

4.1 Free Particle

The potential energy for a free particle is a constant (taken arbitrarily as zero): V = 0; therefore,
energy E represents only the kinetic energy. The Schrödinger equation takes the form

− �
2

2m

d2�

dx2 = E�,

or in other words,
d2�

dx2 + κ2� = 0,

with κ2 = 2m E
�2 . The constant κ in this situation6 is a real number.

The special solutions to this equation are exp
(
iκx

)
and exp

(−iκx
)
, κ ≥ 0. Their linear

combination with arbitrary complex coefficients A′ and B ′ represents the general solution:

� = A′ exp
(
iκx

)+ B ′ exp
(−iκx

)
. (4.1)

This is a wave of wavelength λ = 2π
κ

. Function exp
(
iκx

)
represents the eigenfunction of the

momentum operator: p̂x exp (iκx) = −i� d
dx exp (iκx) = −i�iκ exp (iκx) = κ� exp (iκx).

For eigenvalue �κ > 0, therefore, the eigenfunction exp
(
iκx

)
describes a particle moving

toward+∞. Similarly, exp (−iκx) corresponds to a particle of the same energy, but moving in
4 Note the spectacular speed at which the scholars worked (Heisenberg’s first paper appeared in 1925).
5 In this case, we are talking about a harmonic model of the helium atom.
6 The kinetic energy is always positive.

http://booksite.elsevier.com/978-0-444-59436-5
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the opposite direction. The function � = A′ exp
(
iκx

) + B ′ exp
(−iκx

)
is a superposition of

these two states. A measurement of the momentum can give only two values: κ� with probability
proportional to

∣∣A′∣∣2 or −κ� with probability proportional to
∣∣B ′∣∣2.

4.2 Box with Ends

The problem pertains to a single particle in a potential (Fig. 4.1a):

V (x) = 0 for 0 ≤ x ≤ L

V (x) = ∞ for other x .

Just because the particle will never go outside the section 0 ≤ x ≤ L (where it would find
V (x) = ∞), the value of the wave function outside the section is equal to 0. It remains to find
the function in 0 ≤ x ≤ L .

(a) (b) (c)

(d) (f)(e)

Fig. 4.1. The potential energy functions for the following: (a) particle in a box; (b) single barrier; (c) double barrier; (d) harmonic
oscillator; (e) Morse oscillator; (f ) hydrogen atom.
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Let us write the Schrödinger equation for 0 ≤ x ≤ L with the Hamiltonian containing kinetic
energy only (since V = 0, one has E ≥ 0):

− �
2

2m

d2�

dx2 = E�. (4.2)

The solution is given by Eq. (4.1), which also may be written as (with A and B as complex
numbers)

� = A sin κx + B cos κx, (4.3)

with

κ2 = 2m E

�2 . (4.4)

Now, the key is to recall (as discussed in Chapter 2), that the wave function has to be
continuous, and therefore, two conditions have to be fulfilled: (1) � = 0 for x = 0 and
(2)� = 0 for x = L . The first condition immediately gives B = 0, the second in this situation7

is equivalent to κL = nπ , for n = 0, 1, . . . . From this follows energy quantization because κ
contains energy E . One obtains, therefore, the following solution (a standing wave8):

En = n2h2

8mL2 , (4.5)

�n =
√

2

L
sin

nπ

L
x, (4.6)

n = 1, 2, 3, . . .

because n = 0 has to be excluded, as it leads to the wave function equal to zero everywhere,
while n < 0 may be safely excluded, as it leads to the same wave functions as9 n > 0. We have
chosen the normalization constant as a positive real number. Fig. 4.2 shows the wave functions
for n = 1, 2, and 3.

Note that the wave functions (plotted as functions of x, 0 ≤ x ≤ L) are similar to what
one may expect for a vibrating string of length L , with immobilized ends. If someone had a
generator of vibrations with variable frequency and tried to transfer the vibrational energy to the
string, he would succeed only for frequencies close to some particular resonance frequencies.
The lowest-resonance frequency corresponds to such motion of the string that at any given time,
all its parts have the same sign of the amplitude (this corresponds to �1). Increasing frequency
will not result in energy transfer until the next resonance is reached, with the amplitude of
the string such as that shown by �2 (single node, where �2 = 0). This is similarly true for
�n, n = 3, 4, . . . , with the number of nodes equal to n − 1.
7 A has to be nonzero; otherwise, � = 0, which is forbidden.
8 Recall that any stationary state has a trivial time-dependence through the factor exp (−i E

�
t). A standing wave at

any time t has a frozen pattern of the nodes; i.e., the points x with � = 0.
9 It has the opposite sign, but that does not matter.
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Fig. 4.2. The wave functions for the particle in a box corresponding to n = 1, 2, and 3. Note the increasing number of nodes,
when the energy Ei of the stationary state increases.

Example 1. Butadiene Naively
The particle-in-box problem has more to do with chemistry than would appear at first glance.

In organic chemistry, we consider some molecules with conjugated double and single carbon-
carbon bonds. One of the simplest of these is butadiene:

What does this molecule have to do with the particle in a box? Nothing, it seems. First, we have
not a single particle, but 40 particles (10 nuclei and 30 electrons). Second, where is this constant
potential for the motion of the particle? It doesn’t exist. Third, a molecule does not represent a
1-D but a 3-D object, and in addition, a curved one instead of a section of the x-axis. It would
seem that any attempt to apply such a primitive theory to this molecule is ridiculous, and yet in
such a difficult situation, we will see the power of the exact solutions reported in this chapter.
All the above objections are perfectly justified, but let us try to simplify our system a little.

In the molecule being studied here, the CC bonds are “averaged,” which facilitates the motion
of the π electrons along the system (this notion will become clear in Chapter 8). The four π
electrons are loosely bound to the molecule, and we may assume that other electrons are always
rigidly bound and therefore will be ignored.
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Suppose the following:

• We removed the π electrons from the molecule (and put them temporarily into a safe).
• We “ground up” the remaining (positively charged) molecular core and distributed the

ground mass uniformly along the x-axis within a section of length L equal to the length of
the molecule (averaging the potential energy for a charged particle) to construct a kind of
highway for the π electrons.

• We added the first π electron from the safe.

In such a case, this single electron would represent something similar to a particle in a box.10

Assuming this simplified model, we know all the details of the electron distribution, including
the ground state ψ1 and excited wave functions: ψ2, ψ3, . . . (in the one-particle case, they are
called the orbitals). If we now took the π electrons from the safe and added them one by one
to the system, assuming that they would not see one another11 and then taking into account
the Pauli exclusion principle (the double occupancy by electrons of the individual orbitals is
described in more detail in Chapter 8), we would obtain information about the electron density
distribution in the molecule.12

In our example, the orbitals are real and the total electron density distribution (normalized to
four π electrons; i.e., giving 4 after integration over x) is given as13

ρ(x) = 2ψ2
1 + 2ψ2

2 = 2
2

L
sin2 π

L
x + 2

2

L
sin2 2π

L
x = 4

L

(
sin2 π

L
x + sin2 2π

L
x

)
.

The function ρ(x) is shown in Fig. 4.3a.

It is seen that

1. ρ(x) is the largest on the outermost bonds in the molecule, exactly where chemists put
two short lines to symbolize a double bond

2. π -electron density [i.e., ρ(x)] is nonzero in the center. This means that the bond there
is not strictly a single bond.

This key information about the butadiene molecule has been obtained at practically no cost
from the primitive FEMO model.

10 This is not quite so, though, because the potential is not quite constant. Also, one might remove the particle from
the box at the expense of a large but finite energy (ionization), which is not feasible for the particle in a box.

11 As we will see in Chapter 8, this approximation is more realistic than it sounds.
12 The idea we are describing is called the Free Electron Molecular Orbitals (FEMO) method.
13 The student “i” is characterized by a probability density distribution ρi (x) of finding him at coordinate x (we

limit ourselves to a single variable, measuring the student’s position, say, on his way from the dormitory to the
university). If all students moved independently, the sum of their individual probability densities at point x0 [i.e.,
ρ(x0) =

∑
i ρi (x0)] would be proportional to the probability density of finding any student at x0. The same

pertains to electrons, when assumed to be independent.
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(a) (b)

(d)(c)

(e)

Fig. 4.3. π− electron density charge distributions for several molecules computed by the Free Electron Molecu-
lar Orbitals (FEMO) method. The length L of each molecule has been assumed to equal 1. For other lengths,
the charge distributions are similar. The electron density for four electrons in butadiene (a) and of six electrons in
hexatriene (b). The electron density maxima coincide with the positions chemists write as double bonds. The six
electron density distribution in the benzene molecule is peculiar because it is constant along the perimeter of the molecule (c). If
we subtract an electron from benzene (d) or add an electron to it (e), then maxima and minima of the π electron density appear. If
an electron is subtracted (d), there are two maxima (double bonds) and two π electron deficient regions denoted as having charge
+ 1

2 . After one electron π is added (e), then we obtain four maxima (two double bonds and two electron-rich regions denoted by

charge − 1
2 ).

Of course, we cannot expect the description to reflect all the details of the charge distribution
in the butadiene molecule, but one may expect this approach to be able to reflect at least
some rough features of the π electron distribution. If the results of more advanced calculations
contradicted the rough particle-in-box results, then we should take a closer look at them and
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search for an error. This is the strength of the simple exact model systems. They play the role
of the beacons–points of reference.

4.3 Cyclic Box

The 1-D box described above is similar to a stick in which the particle can move. The butadiene
molecule is rather similar to such a stick and, therefore, the 1-D box models it quite well.

And what can model the benzene molecule? In a crude approximation, we may think of
benzene as a stick with the two ends joined in such a way as to be unable to recognize where
the union has taken place. Limiting ourselves to this effect,14 we may use the solution given by
Eq. (4.3) and impose appropriate boundary conditions. What could these boundary conditions
be? The wave functions at the two ends of the box have to be stitched together without leaving
any trace of the seam. This is achieved by two boundary conditions:�

(
0
) = �(L) forcing the

two wave function values to match and � ′
(
0
) = � ′(L) making the seam “invisible.”15 The

two conditions mean

A sin κ0+ B cos κ0 = A sin κL + B cos κL

Aκ cos κ0− Bκ sin κ0 = Aκ cos κL − Bκ sin κL

or

B = A sin κL + B cos κL

A = A cos κL − B sin κL.

To find a non-trivial solution, the determinant of the coefficients at the unknown quantities

A and B has to vanish16:

∣∣∣∣ sin κL cos κL − 1
cos κL − 1 − sin κL

∣∣∣∣ = 0, which is equivalent to

cos κL = 1.

The last condition gives κL = 2πn, n = 0,±1,±2, . . . . This immediately produces a for-
mula for the energy very similar to that for the box with ends, Eq. (4.5), but with the replacement
n→ 2n:
14 This also neglects such effects as the particular shape of the benzene (curvature, etc.).
15 There is no such a thing in nature as infinitely steep potential energy walls or infinite values of the potential

energy (as in the particle-in-a-box problem). This means we should treat such idealized cases as limit cases of

possible continuous potential energy functions. From the Schrödinger equation − �
2

2m
∂2ψ

∂x2 = Eψ − Vψ , we see

that in such a case, the continuity of V implies (ψ must be continuous) the continuity of ∂
2ψ

∂x2 . The continuity of
the second derivative results in the continuity of the first derivative as well. What about a non-physical case of a
discontinuous V , as in the rectangular barrier case? Well, then we lose the continuity of the second derivative by
definition, but still we may have the continuity of the first derivative (this we force successfully in the case being
described). In a more drastic (and non-physical) case of the discontinuity, as in the particle in a box (infinitely
steep V and, on top of that V = ∞), we lose continuity of the first derivative (at x = 0, L).

16 This is a set of homogeneous linear equations.
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En = (2n)2h2

8mL2 , (4.7)

where this time n = 0,±1,±2, . . .

The corresponding wave functions are

ψ0 =
√

1

L
for n = 0,

ψn>0 = A sin
2πn

L
x + B cos

2πn

L
x,

ψn<0 = −A sin
2π |n|

L
x + B cos

2π |n|
L

x .

Since ψn>0 and ψn<0 correspond to the same energy, any combination of them also rep-
resents an eigenfunction of the Schrödinger equation corresponding to the same energy (see
Appendix B available at booksite.elsevier.com/978-0-444-59436-5 on p. e7). Therefore, taking
as the new wave functions (for n �= 0) the normalized sum and difference of the above wave
functions, we finally obtain the solutions to the Schrödinger equation in the simplest form:

�0 ≡ ψ0 =
√

1

L
for n = 0

�n>0 =
√

2

L
sin

2πn

L
x for n > 0

�n<0 =
√

2

L
cos

2πn

L
x for n < 0

4.3.1 Comparison of Two Boxes: Hexatriene and Benzene

Let us now take an example of two molecules: hexatriene and benzene (i.e., the cyclohexatriene).
Let us assume for simplicity that the length of the hexatriene L is equal to the perimeter of the
benzene.17 Both molecules have six π -electrons (any of them). The electrons doubly occupy
(the Pauli exclusion principle) three one-electron wave functions corresponding to the lowest
energies. Let us compute the sum of the electron energies as the “total electron energy”18 (in
the units h2

8mL2 , to have the formulas as compact as possible):

17 This is to some extent an arbitrary assumption, which simplifies the final formulas nicely. In such cases, we have
to be careful that the conclusions are valid.

18 As will be shown in Chapter 8, this method represents an approximation.

http://booksite.elsevier.com/978-0-444-59436-5
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• Hexatriene: Eheks = 2× 1+ 2× 22 + 2× 32 = 28
• Benzene: Ebenz = 2× 0+ 2× 4+ 2× 4 = 16.

We conclude that six π electrons in the benzene molecule correspond to lower energy (i.e.,
they are more stable) than the six π electrons in the hexatriene molecule. Chemists find this
experimentally: the benzene ring with its π electrons survives in many chemical reactions,
whereas this rarely happens to the π - electron system of hexatriene.

Our simple theory predicts that the benzene π - electron system is more stable than that of
the hexatriene molecule.

And what about the electronic density in both cases? We obtain (Fig. 4.3b-c)

• Hexatriene: ρ(x) = 2× 2
L

[
sin2 π

L x + sin2 2π
L x + sin2 3π

L x
]

• Benzene: ρ(x) = 2× 1
L + 2× 2

L [sin2 2π
L x + cos2 2π

L x] = 6
L .

This is an extremely interesting result.

The π -electron density is constant along the perimeter of the benzene molecule.

No single and double bonds - all CC bonds are equivalent (Fig. 4.3c). Previous experience
had already led chemists to the conclusion that all the C − C bonds in benzene are equivalent.
This is why they decided to write down the benzene formula in the form of a regular hexagon
with a circle in the middle (i.e., not to show the single and double bonds, ). The FEMO method
reflected that feature in a naive way. Don’t the π electrons see where the carbon nuclei are? Of
course they do. We will meet some more exact methods in further chapters of this textbook,
which give a more detailed picture, but it will turn out that all CC bonds would have the same
density distribution, similar to the solution given by the primitive FEMO method. From the
wave functions (p. 168), it follows that this will happen not only for benzene, but also for all
the systems with (4n+ 2)−electrons, n = 1, 2,... because of a very simple (and, therefore, very
beautiful) reason that sin2 x + cos2 x = 1 for any x .

The addition or subtraction of an electron makes the distribution non-uniform (Fig. 4.3d-e).
Also in six π -electron hexatriene molecules, uniform electron density is out of the question
(Fig. 4.3b). Note that the maxima of the density coincide with the double bonds chemists like to
write down. However, even in this molecule, there is still a certain equalization of bonds, since
the π electrons are also where chemists write a single bond (although the π electron density is
smaller over there19).

Again, important information has been obtained at almost no cost.

19 This is a location where, in the classical picture, no π electron should be.
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2-D Rectangular Box

Let us consider a rectangular box (Fig. 4.4) with sides L1 and L2 and V = 0 inside and V = ∞
outside. We first separate the variables x and y, which leads to the two 1-D Schrödinger equations
(solved as shown above).

The energy eigenvalue is, therefore, equal to the sum of the energies for the 1-D problems:

En = h2

8m

(
n2

1

L2
1

+ n2
2

L2
2

)
, (4.8)

while the wave function has the form of the product of both 1-D solutions:

�n1n2 = 2

√
1

L1L2
sin

n1π

L1
x · sin

n2π

L2
y, (4.9)

where n1, n2 = 1, 2, . . .
If someone cut out a plywood square, immobilized the square sides, and tried to transfer

vibrations using a vibration generator, he would be most effective for some resonance frequen-
cies. The distribution of amplitudes of vibrations of the plywood (as functions of x and y) would
be very similar to what we see in Fig. 4.4. Note that for the plywood square, any frequency
except the lowest one corresponds to two vibrational modes, exactly as in the 2-D square box
(L1 = L2 = L) one has two states �n1n2 and �n2n1 (double degeneracy). If one made the
sides different (of the plywood or of the 2-D box) the degeneracy would be lifted. Thus, the
degeneracy is a consequence of symmetry.

4.4 Carbon Nanotubes

Graphite is an allotropic form of carbon with an extraordinary structure: a stack of honeycomb-
looking, identical sheets of carbon atoms (graphenes); see Fig. 4.5a. Inside any graphene sheet,
the carbon atoms are bound by chemical bonds (see Chapter 8) forming a hexagonal lattice, the
graphene sheets are attracted to each other by relatively weak intermolecular forces (described in
Chapter 13). These systems look as being difficult subjects for solving the Schrödinger equation.
We will try, however, to simplify them, in order to make this solution manageable. A single
graphene sheet, similar to the benzene ring, has the most mobile π -electrons, one per carbon
atom. These electrons may be treated in the spirit of the FEMO method as a set of independent
electrons.

The fullerenes (the most important of them is C60 of a football shape) are related to the
graphene sheets, and they correspond to some bending of a single graphene sheet (built of
carbon regular hexagons), which is possible most effectively by replacing in the structure some
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(d)

(b)

(a)

(e)

(c)

Fig. 4.4. Examples of the wave functions for a particle in a square box, the quantum numbers (n1, n2) correspond to (a)
(
1, 1

)
;

(b)
(
1, 2

)
; (c)

(
2, 1

)
; (d)

(
2, 2

)
; (e)

(
4, 4

)
. In the case shown, the higher the energy, the more nodes there are in the wave function.

This rule is not generally true. For example, in a rectangular box with L1 
 L2, even a large increase of n1 does not raise the
energy too much, while introducing a lot of nodes. On the other hand, increasing n2 by 1 raises the energy much more, while
introducing only one extra node. A reader acquainted with hydrogen atom orbitals will easily recognize the resemblance of these
images to some of them (cf., pp. 204–208), because of the rule mentioned in the text.
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(a)

(b)

(c)

Fig. 4.5. Graphene, graphite, and nanotubes. (a) Graphite represents a structure of layered graphene sheets; (b) by replacing some
hexagons by pentagons in the graphene, one obtains a curvature of the monoatomic carbon surface; (c) nanotube.

hexagons by pentagons (see Fig. 4.5b). The bending together with the possibility of seaming
the sides of the graphene may lead theoreticians to a plethora of possible structures, including
closed ones such as fullerenes. There are, however, some other interesting possibilities. Keeping
the hexagonal structure intact, one may just roll the graphene sheet and seam the sides by the
carbon-carbon bonds to make a cylinder 20 (see Fig. 4.5c).

20 The rolling up may be accomplished in several different ways: making the seam directly “head-to-head”; i.e.,
without any shift when seaming, with one carbon shift, two carbons shift, etc. The resulting nanotubes preserve
the locally hexagonal structure, but their physical and chemical properties strongly depend not only on the radius
of the nanotube, but primarily on the abovementioned shift.
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Using the FEMO method, Massimo Fusaro21 treated the nanotube as a surface for free motion
of independent electrons. The calculated energy levels were then occupied by a corresponding
number of electrons (one from each carbon atom). The radius R = 3 ja

2π of the cylinder is defined
through the number (2 j) of the carbon atoms terminating the nanotube, where a = 1.42 Å is
the CC nearest-neighbor distance in typical systems with the conjugated single and double CC

bonds. The length of the cylinder can be calculated as L = ( NC
2 j + 1)

√
3a
2 , where NC stands for

the total number of the carbon atoms in the nanotube. The total number of electrons (also NC )
considered in the FEMO model can be calculated from the radius and the length of the nanotube

as NC = 4
3

(
2πR·L
a2
√

3
− πR

a

)
.

A nanotube is a complicated, many-electron molecule and, it seems, its electronic structure
can be revealed only after long computations that give an approximation to the solution of the
Schrödinger equation. And again, we may admire the power of simple models. After assuming
the continuous cylinder model, one may expect for R = 0 that we have to recover the solution
for the box with ends, while for L = 0 and R �= 0, one should get the solution for the cyclic
box. It turns out that in principle, we do get something like that, except that the shortest cylinder
built of carbon atoms cannot have zero length.

The Schrödinger equation for a particle on a side surface of a cylinder (assuming the cylinder
axis as x , the position of the particle is given by x, φ, whereφ is an angle measuring rotation about
x) can be solved exactly. After applying the boundary conditions (the wave function has to vanish
at the ends of the cylinder), one gets the following solution (Anl is a normalization constant):

ψn,l>0(x, φ) = Anl sin (lφ) sin
(nπ

L
x
)

dla l > 0,

ψn,l<0(x, φ) = Anl cos (lφ) sin
(nπ

L
x
)

dla l < 0,

ψn,l=0(x, φ) = An0 sin
(nπ

L
x
)

dla l = 0,

where n = 1, 2, . . . , NC
2 j (due to the atomic resolution of our model, a larger n would make

the repeating of the already-obtained solutions), while l = 0,±1,±2, . . . The wave functions
given above represent nothing else but products of the wave function for the box with ends and
for the cyclic box.

The calculated energy eigenvalues are

Enl = n2h2

8mL2 +
(
2l
)2

h2

8m
(
2πR

)2 ,
21 M. Fusaro, J.Comput.Theor.Nanoscience, 6, 1175 (2009). A general approach to infinite nanotubes using their

translational symmetry (see Chapter 9) is described in D.J. Klein, W.A. Seitz, and T.G. Schmalz, J. Phys. Chem.,
97, 1231 (1993).
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which means that we have a sum of energy for the box with ends and of the cyclic box (for the
length of the box equal to 2πR). For l �= 0, we get double degeneracy; for l = 0, the levels are
non-degenerate.

Thus, a particle confined on the side surface of the cylinder belongs also to those problems
of quantum mechanics that can be solved exactly.

Nanotube in More Detail

Does the FEMO orbital model describe a real nanotube? Maybe it is just a nice exercise unrelated
to the reality. In contemporary quantum chemistry, we have a toolbox with many methods that
are much more accurate than FEMO. One of these methods is known as density functional theory
(DFT; see Chapter 11) and proved to be a reliable tool. Fusaro carried out DFT computations
of what are called reactivity indices,22 which measure which positions on the nanotube surface
are more reactive than other ones. These particular reactivity indices have been associated
with what is known as the Fukui function,23 which describes the rate at which the electric
charge at a particular point changes when the total electric charge of the nanotube varies.
Therefore, this is an indication where an attacking ion would be directed when it approaches
the nanotube (it will choose the place with the largest charge that is opposite to its own charge).
It turned out that the Fukui function for the nanotube as a function of position changes quasi-
periodically (not counting the end effects) along the nanotube, as well as around the nanotube
axis. The values of the Fukui function calculated within the FEMO model and those computed
by the much more advanced DFT approach agreed semi-quantitatively. Both these results reveal
the abovementioned quasi-periodicity.

Such results are encouraging. We see that at least in this case, we can understand the machinery
of the world by seeing that its main features appear from something very simple–a kind of
primitive theory in which we control and understand every detail. A more sophisticated theory
may add some new (and sometimes useful and important) features, but in many cases, such a
theory does not have the power of showing convincingly why something happens.

4.5 Single Barrier

Is it possible to pass through a barrier with less energy than the barrier height? Yes, as we will
soon see.

4.5.1 Tunneling Effect Below the Barrier Height

Let us imagine a rectangular potential energy barrier (as shown previously in Fig. 4.1): V (x) = V0

for 0 ≤ x ≤ a, with V (x) = 0 for other values of x (V0 > 0 is a number). Let us assume a

22 M. Fusaro, J. Comp. Theor. Nanoscience., 11, 2393 (2010).
23 K. Fukui, T. Yonezawa, and H. Shingu, J. Chem. Phys., 20, 722 (1952); K. Fukui, T. Yonezawa, and C. Nagata,

J. Chem. Phys., 21, 174 (1953); T. Yonezawa and C. Nagata, Bull. Chem. Soc. Japan, 27, 423 (1954).



Exact Solutions–Our Beacons 175

particle of mass m going from the negative values of x (i.e., from the left side), with its kinetic
energy equal to E .

The x axis will be divided into three regions:

1. −∞ < x < 0, then V (x) = 0.

2. 0 ≤ x ≤ a, then V (x) = V0.

3. a < x <∞, then V (x) = 0.

So, the barrier region has length a. In each of these regions, the Schrödinger equation will
be solved, and then the solutions will be stitched together in such a way as to make it smooth
at any boundary between the regions. The solutions for each region separately can be written
very easily as24

�1(x) = A1eiκ0x + B1e−iκ0x , (4.10)

�2(x) = A2eiκx + B2e−iκx , (4.11)

�3(x) = A3eiκ0x + B3e−iκ0x , (4.12)

where A and B represent amplitudes of the de Broglie waves running right and left, respectively,
where in regions 1 and 3 κ2

0 = 2m E
�2 , and in region25 2: κ2 = 2m(E−V0)

�2 . The quantities |Ai |2
and |Bi |2 are proportional to the probability of finding the particle going right (|Ai |2) and left
(|Bi |2) in the region i .

In regions 1 and 2, one may have the particle going right, but also left because of reflections
from the boundaries, hence in 1 and 2 A and B will have nonzero values. However, in region
3, we will have B3 = 0 because there will be no wave going back (it has nothing to reflect on).
We have to work on choosing such A and B, as to wave functions of connected regions match
at the boundaries (the functions should “meet”) and, at each boundary, have the same value of
the first derivative (they should meet smoothly). Satisfaction of these requirements is sufficient
to determine the ratios of the coefficients, and this is what we are looking for when aiming at
describing what will happen more often than something else.

Therefore, such a perfect stitching means that for x = 0 and x = a, one has

�1(x = 0) = �2(x = 0),

�2(x = a) = �3(x = a)

� ′1(x = 0) = � ′2(x = 0)

� ′2(x = a) = � ′3(x = a).

24 This is the wave function for a free particle. The particle has the possibility (and therefore also the probability)
to move left or right. The formulas are natural because in a particular region, the potential energy represents a
constant [in regions 1 and 3, V (x) = 0 = const , while in region 2, V (x) = V0 = const ′].

25 We will obtain these formulas after solving in each region the Schrödinger equation ∂2�
∂x2 + κ2� = 0.
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Using Eqs. (4.10) through (4.12), we may rewrite this as

A1 + B1 = A2 + B2

A2eiκa + B2e−iκa = A3eiκ0a

κ0 A1 − κ0 B1 = κA2 − κB2

A2κeiκa − B2κe−iκa = A3κ0eiκ0a.

We have five unknowns: A1, B1, A2, B2, and A3, but only four equations to determine them.

Note that we are interested only in |A3|2
|A1|2 ≡ D, because this is the probability of passing the

barrier assuming that the particle was sent from the left. Therefore, after dividing all equations
by A1, we have only four unknowns: B1

A1
≡ b1,

A2
A1
≡ a2,

B2
A1
≡ b2,

A3
A1
≡ a3, and four equations

to determine them:

1+ b1 = a2 + b2,

a2eiκa + b2e−iκa = a3eiκ0a,

κ0 − κ0b1 = κa2 − κb2,

a2κeiκa − b2κe−iκa = a3κ0eiκ0a.

The solution of this set of equations (for a given E > 0) gives the transmission coefficient
D(E) = |a3|2 as a function of energy:

D = 1

1+ 1
4β
(
β−1

) sin2 κa
, (4.13)

whereβ = E
V0

is a ratio of the impact energy and the barrier height. The quantity κ =
√

2m(E−V0)

�2

is positive for E > V0, and we use directly Eq. (4.13). For E < V0, there is a problem because

κ is imaginary [κ =
√

2m(E−V0)

�2 = ik, where k =
√

2m(V0−E)
�2 > 0]. However, calculation of

D is simple again; for E < V0, we obtain26

D = 1

1+ 1
4β
(
1−β)sh2ka

. (4.14)

26 This is because sin κa = exp (iκa)−exp (−iκa)
2i = exp (−ka)−exp (+ka)

2i = − 1
i sh(ka) = i sh(ka), so sin2 κa =

−sh2(ka).
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When E = V0, there is a problem because β = 1 and 1(
β−1

) sin2 κa is an expression of the

type 0
0 (i.e., division by zero). Using, however, the de l’Hospital rule, we get27

D = 1

1+ ma2

2�2 V0

.

Here, common sense tells us that if E > V0, the particle certainly will pass the barrier: we
say that it will go “over the barrier.” For the time being, let us just consider the cases for which
the energy is smaller than the barrier: E < V0. If our pointlike particle behaved according to
classical mechanics, it would not pass the barrier. It is like a car having velocity28 v and mass m

(therefore, its kinetic energy E = mv2

2 ) cannot pass a hill of height h, if E < V0 with V0 = mgh
(g is the gravitational acceleration). Let us see how it will look in quantum mechanics. From
Eq. (4.14), it can be seen that for any E < V0, we have D > 0 except if29 E = 0. This means
that the particle can pass through a wall like the car in our analogy passed through a tunnel
made in the hill. This intriguing phenomenon is known as tunneling.30

Let us see what the effectiveness of the tunneling (D) depends on. Fig. 4.6 shows that

for tunneling,

• The larger the impact energy of the particle, the larger D is.
• A higher barrier (V0) or a wider barrier (larger a) decreases D.
• Tunneling of a lighter particle is easier.

27 The de l’Hospital rule gives a series of transformations

1(
β − 1

) sin2 κa = lim
E→V0

sin2
(√

2m(E−V0)

�2 a

)
E
V0
− 1

= lim
E→V0

2 sin

(√
2m(E−V0)

�2 a

) 2m
�2

2
√

2m(E−V0)

�2 a
a2

1
V0

= 2ma2

�2 V0.

28 Here, we assume that the engine is switched off.
29 In such a case, in Eq. (4.14), β = 0, with the consequence that D = 0.
30 The wonder I am trying to convince you of will fade a bit, however. What kinetic energy is really necessary for

an object to be transported over the hill? Should it be always equal to or greater than mgh? Well imagine that our
car is divided into a series of pieces (say 1000 of them), tied one to the next by thin threads of a certain length.
What about transporting the car now? Well, we will need to expend energy to transport the first piece to the top of
the barrier (say mgh

1000 ), but the second piece would be then pulled by the first one descending behind the hill! The
same happens for other pieces. We see therefore, that when the object to transport is not pointlike, but instead has
some dimension in space, the energy cost of passing the barrier may be smaller! A quantum particle is described
by a wave function extended in space; therefore, its passing the barrier is possible even if the particle itself has
insufficient kinetic energy. This is what we observe in the tunneling effect.
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(a) (b) (c)

(f)(e)(d)

Fig. 4.6. A classical particle cannot tunnel through a barrier, while a quantum particle can. These images show the transmission
coefficient (tunneling) of the electron having various energies (always lower than the barrier) and passing through a barrier of
various heights and widths. Panels (a)–(c) show that the greater the energy, the easier it is to tunnel, and the higher the barrier, the
harder it is to pass the barrier (at the same energy of the particle). Panels (d)–(f) show the dependence of the transmission coefficient
on the barrier width: the wider the barrier, the harder it is to go through.

All these changes are monotonic. This means there are no magic values of the impact energy,
of the barrier height or width, for which the tunneling would be easier.

What about the wave function for a tunnelling particle (E < V0)? The answer is in Fig. 4.7.
As one can see:

• The real as well as the imaginary parts of the wave function do not equal zero along the
barrier (i.e., the particle will appear there).

• The real as well as the imaginary parts of the wave function vanish exponentially along the
barrier.

• The latter means that since the barrier has a finite width, the wave function will not vanish
at the exit from the barrier region. Then, after going out of the barrier region, the wave
function again begin to oscillate having the same wavelength, but a smaller amplitude! This
means that the particle passes the barrier with a certain probability p and reflects from the
barrier with probability 1− p.

4.5.2 Surprises for Energies Larger than the Barrier

Now let us see what will happen if the impact energy E is larger than the barrier height V0? The
transmission coefficient is given by the general Eq. (4.13).

Fig. 4.8 shows the probability of passing the barrier (D) as a function of E. A common
sense suggests that, if a particle has kinetic energy larger than the barrier height (V0), it will
always pass the barrier. We have, however, a surprise: it passes the barrier with probability
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Fig. 4.7. Tunneling of an electron
(
m = 1

)
with energy E = 2.979 a.u. through a single barrier of height 5 a.u., and width 1 a.u.

The wave function plot (real and imaginary parts) corresponds to the following values of coefficients A1 = 1 (as a reference);
B1 = 0.179− 0.949i ; A2 = 1.166− 0.973i ; B2 = 0.013+ 0.024i ; A3 = −0.163− 0.200i and represents a wave.

equal to 100% only for certain particular impact energies E, when κ satisfies κa = nπ , where
n = 1, 2, ... For other values of κ , the particle has only a certain chance to pass (see Fig. 4.8).
This result is a bit puzzling. What is special in these magic values of κ , for which the particle
does not see the barrier? For the time being we do not know, but for now, here is something
interesting. For these magic impact energies, we have 2m(E−V0)

�2 a2 = n2π2 or

E ≡ En = V0 + n2h2

8ma2 , (4.15)

but this means that energy levels of the particle are in a box of a length that is equal to the
barrier width and placed exactly on top of the barrier! This seems unbelievable. The barrier
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Fig. 4.8. Probability (D) of passing the barrier by a particle (its mass is 1 a.u. and is equal to the mass of an electron, the barrier:
height V0 = 2 a.u., width a = 3 a.u.) as a function of the impact energy (E). For E < V0, one has the tunneling probability D
increasing with E . The vertical line corresponds to E = V0; for a particle with this energy, the probability of passing the barrier
is only about 0.1. Then, for E > V0 (i.e., the impact energy being larger than the barrier height), the probability of reflecting
is generally large. However, if the impact energy matches a particle-in-a-box eigenvalue of energy, the transmission coefficient
increases to 100%.

and the box of the same length represent extremes in their character. But despite of that, here
is the miracle coming true! It looks as if the de Broglie wave describing the particle should fit
a half-integer number of its wavelengths within the region of perturbation (either the energy
barrier or the energy well). Only then does the wave not lose its rhythm, a fact important for
constructive interference, and only then the particle passes over the barrier as if without seeing it.
It is interesting that to get this effect, one has to have E > V0. There was no such effect for
tunneling (for E < V0); the interference was impossible due to the exponential decay of the
wave function instead of its oscillatory behavior.

Here is one more intriguing problem. Eq. (4.15) tells us that if the impact energy increases, the
magiclike 100% passages will be rarer and rarer. We might expect a reverse behavior, because
for very large E , the particle should not pay attention to the barrier and pass through it without
seeing it. Fig. 4.8 makes the situation clear: the 100% passages indeed will be rarer and rarer
with increasing E , but it will be easier and easier to pass through for impact energies, which do
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not satisfy κa = nπ . For large values of the impact energies, the particle practically will not
see the barrier (in agreement with common sense).

4.6 The Magic of Two Barriers

If we take two rectangular barriers of height V0 with a well between them (Fig. 4.1c), then we
will also have some magic. This time, we allow for any energy of the particle (E > 0).

How Will the Problem Be Solved?

We have five non-overlapping sections of the x-axis. In each section, the wave function will be
assumed to be in the form�(x) = Aeiκx+Be−iκx with some A and B coefficients, and with the

corresponding values of κ2 = 2m
(
E−V

)
�2 . In section 5, however, the particle goes right and never

left; hence B5 = 0. Now, the other coefficients A and B will be determined by stitching the wave
function nicely at each of the four boundaries in order to have it move smoothly through the
boundary (the wave function values and the first derivative values have to be equal for the left
and right sections to meet at this boundary). In this way, we obtain a set of eight linear equations
with eight unknown ratios: Ai

A1
, i = 2, 3, 4, 5 and Bi

A1
, i = 1, 2, 3, 4. The most interesting ratio is

A5/A1 because this coefficient determines the transmission coefficient through the two barriers.
Using the program Mathematica,31 we obtain an amazing result.

Transmission Coefficient

Let us check how the transmission coefficient (which in our case is identical to the transmission
probability) changes through two identical barriers of height V0 = 5 (all quantities given in
a.u.), each of width a = 1, when increasing the impact energy E from 0 to V0 = 5. In general,
the transmission coefficient is very small. For example, for E = 2, the transmission coefficient
through the single barrier (Dsingle) amounts to 0.028; that is, the chance of transmission is about
3%, while the transmission coefficient through the double barrier (Ddouble) is equal to 0.00021
(i.e., about 100 times smaller). It stands to reason, it is encouraging. It is fine that it is harder
to cross two barriers than a single barrier.32 And the story will certainly be repeated for other
values of E . To be sure, let us scan the whole range 0 ≤ E < V0. The result is shown in Fig. 4.9
and represents a surprise.

4.6.1 Magic Energetic Gates (Resonance States)

There is something really exciting going on. In our case, we have three energies E ≤ V0, at
which the transmission coefficient Ddouble increases dramatically in a narrow energy range.
These energies are 0.34, 1.364, and 2.979. Thus, there are three secret energetic gates for going

31 See the Web Annex at booksite.elsevier.com/978-0-444-59436-5, and the file Mathematica\Dwiebar.ma.
32 This is even more encouraging for a prison governor; of course, a double wall is better than a single one.

http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 4.9. The transmission coefficient (D) for a particle going through a potential double barrier (of height 5 a.u.) as a function
of the particle impact energy E . We see some sudden increases of the transmission coefficient (resonance states).

through the double barrier. It is sufficient just to hit the right energy (resonance energy). Is the
chance of passing two barriers large? Let us take a look. For all three resonances, the transmission
coefficient is equal to Ddouble = 1, but it drops down differently when going off resonance.
Thus, there are three particle energies, for which the particle goes through the two barriers like
a knife through butter, as if the barriers did not exist.33 Moreover, as we can see for the third
resonance, the transmission coefficient through the single barrier amounts to Dsingle = 0.0669
(i.e., only 7%), but through two barriers, it is 100%. It looks as if it would be hard for a prisoner
to pass through a single armored prison door, but when the anxious prison governor made a
second armored door behind the first, the prisoner (trained in quantum mechanics) disappeared
through the two doors like a ghost.34

So what happens over there? Let us stress once more that the phenomenon is 100 % of a
quantum nature because a classical particle would tunnel neither through the double nor through

33 This news should be strictly confidential in penitentiary departments. This phenomenon was described first by
David Bohm, Quantum Theory, Prentice-Hall, New York (1951).

34 There is experimental evidence for such resonance tunneling through two energy barriers in semiconductors. One
of the first reports on this topic was a paper by T.C.L.G. Soliner, W.D. Goodhue, P.E. Tannenwald, C.D.Parker,
and D.D.Peck, Appl. Phys. Lett., 43, 588 (1983).
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the single barrier. Why do we observe such dramatic changes in the transmission coefficient for
the two barriers? We may have some suspicions. From the time the second barrier is created, a
new situation appears: a well between the two barriers, something similar to the box discussed
earlier.35 A particle-in-a-box has some peculiar energy values: the energies of the stationary
states (cf., p. 163). In our situation, all these states correspond to a continuum, but something
magic might happen if the particle had just one of these energies. Let us calculate the stationary-
state energies assuming that V0 = ∞. Using the atomic units in the energy formula, we have
En = h2

8m
n2

L2 = π2

L2
n2

2 . To simplify the formula even more, let us take L = π . Finally, we

have simply En = n2

2 . Hence, we might expect something strange for the energy E equal to
E1 = 1

2 , E2 = 2, E3 = 9
2 , E4 = 8 a.u., etc. (the last energy level, E4 = 8, is already higher than

the barrier height). Note, however, that the resonance states obtained appear at quite different
energies: 0.34, 1.364, and 2.979.

But perhaps this intuition nevertheless contains a grain of truth. Let us concentrate on
E1, E2, E3, and E4. One may expect that the wave functions corresponding to these energies
are similar to the ground-state (nodeless), first (single node), and second (two nodes) excited
states of the particle-in-a-box. What then happens to the nodes of the wave function for the
particle going through two barriers? Here are the plots for the off-resonance (Fig. 4.10) and
resonance (of the highest energy; see Fig. 4.11) cases.

These figures and similar figures for lower-energy resonances support the hypothesis: if an
integer number of the half-waves of the wave function fit the region of the “box” between the
barriers (“barrier-box-barrier”36), in this case, we may expect resonance–a secret gate to go
through the barriers.37 As we can see, indeed we have been quite close to guessing the reason
for the resonances. On the other hand, it turned out that the box length should include not only
the box itself, but also the barrier widths. Perhaps to obtain the right resonance energies, we
simply have to adjust the box length. Since, instead of resonance at E1 = 1

2 , we have res-
onance at energy 0.34, then we may guess that it is sufficient to change the box width L to

L ′ =
√

0.5
0.34 L = 1.21L , to make the first resonance energies match. Then, instead of E1 = 1

2 ,

we have exactly the first resonance energy equal to E ′1 = 0.34. This agreement was forced by
us, but later, instead of E2 = 2 we obtain E ′2 = 1.36, which agrees very well with the second
resonance energy 1.364. Then, instead of E3 = 4.5, we obtain E ′3 = 3.06, a good approximation

35 Note, however, that the box has finite well depth and finite width of the walls.
36 We see one more time that a quantum particle is a kind of magic object. Even its passing over a single barrier

revealed already some unexpected difficulties. Now we see some strange things happen for two barriers. It looks
as if the particle’s passing (through a single or a double barrier) goes smoothly given the condition that the particle
does not “lose its rhythm” in the barrier region. This “not losing the rhythm” reflects its wave nature and means
fitting an integer number of its de Broglie half-waves within the obstacle region.

37 As one can see in this case, contrary to what happened with a single barrier, the wave function does not vanish
exponentially within the barriers.
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(a)

(b)

Fig. 4.10. The off-resonance case below the barriers’ height. With the tunneling of an electron with energy E = 2 a.u. through
two barriers of height V0 = 5 and width a = 1, the barrier separation is L = π (all quantities in a.u.). The real part of the wave
function (a) oscillates before the first barrier and is reduced by an order of magnitude in the first barrier. Between the barriers,
the function oscillates for about one period, decays in the second barrier, and goes out of the barrier region with an amplitude
representing about 5% of the starting amplitude. A similar picture follows from the imaginary part of the wave function (b).

to 2.979, but evidently the closer the barrier energy, the harder it is to obtain agreement.38 The
next resonance state is expected to occur at E ′4 = 8× 0.68 = 5.44, but we have forgotten that
this energy already exceeds the barrier height (V0 = 5 a.u.). We will come back to this state in a
moment.

38 Note, please, that resonance width is different for each resonance. The most narrow resonance corresponds to the
lowest energy, the widest to the highest energy. The width of resonances is related to the notion of the resonance
lifetime τ (τ is proportional to the inverse of the resonance width).
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(a)

(b)

Fig. 4.11. The resonance case below the barriers’ height. With the tunneling of an electron with energy E = 2.979 a.u. through
two barriers of height V0 = 5 and width a = 1, the barrier separation is L = π (all quantities in a.u.). The real part of the wave
function (a) oscillates before the first barrier with amplitude 1 and increases by a factor of about 3.5 within the first barrier. Between
the barriers, the function makes slightly more than about one period, decays in the second barrier, and goes out of the barrier region
with an amplitude representing about 100% of the starting amplitude. A similar picture follows from the imaginary part of the wave
function (b).

4.6.2 Strange Flight Over the Barriers

Let us consider the two barriers and an electron with higher energy than the barrier height V0.
What will happen? Well, we may say that this means the particle energy is sufficient to pass the
barrier. Let us see.

Let us assume the barrier height V0 = 5 and the particle energy is equal to 5.5 a.u. We
solve our equations and we obtain a transmission coefficient equal to 0.138; hence the electron
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will bounce back with a probability of about 86%. How it did bounce off? That’s hard to
say.

Fig. 4.9 shows the transmission coefficient for energies higher than the barrier height. It turns
out that at energy E = 5.037 a.u. (i.e., higher than the barrier height), another resonance state
is hidden, which assures almost 100% certainty of transmission (whereas the particle energies
in the energetic neighborhood lead to a considerable reflection rate, as described above). We
expected such behavior for all E > V0, but it turned out to be true for the resonance state. Let us
recall that we have already predicted “by mistake” a box stationary state with energy E ′4 = 5.44,
which is higher than the barrier height V0. This, and the number of the nodes within the barrier
range seen in Fig. 4.12, tells us that indeed this is the state.39

What makes the difference between the resonance and off-resonance states for E > V0?
The corresponding wave functions (real and imaginary parts) are given in Figs. 4.12 and 4.13.

Thus, resonance states may also hide in that part of the continuum that has energy higher
than the barriers (with a short lifetime because such resonances are wide; cf., Fig. 4.9). They
are also a reminder of the stationary states of the particle in a box longer than the separation of
the barriers and infinite well depth.

4.7 Harmonic Oscillator

A 1-D harmonic oscillator is a particle of mass m, subject to the force −kx , where the force
constant k > 0, and x is the deviation of the particle from its equilibrium position40 (x = 0).
The potential energy is given as a parabola V = 1

2 kx2.

New Variable and the Transformed Hamiltonian

First, let us write down the Hamiltonian:

Ĥ = − �
2

2m

d2

dx2 +
1

2
kx2.

39 It corresponds to a lower energy than we predicted (similar to the case of E3). No wonder that due to finite well
depth, the states corresponding to the upper part of the well “feel” the box is longer.

40 A harmonic oscillator represents a single particle. Sometimes, however, we mean by it two pointlike particles bound
together by a spring, having a certain equilibrium length, and when the length deviates from the equilibrium,
the potential energy is proportional to the square of the deviation. This two-particle model looks much more
attractive to us since diatomic molecules, like H2, HCl, etc., resemble it. As a consequence, one might apply to
diatomics conclusions from the solution of the Schrödinger equation for the harmonic oscillator. The diatomics
will be discussed in detail in Chapter 6. It will turn out there that a relative motion of two atoms can indeed be
reduced (in a certain approximation) to a harmonic motion of a single particle; however, its deviation from the
equilibrium position cannot be lower than −R0, where R0 stands for the equilibrium length of the diatomic. The
reason is very simple: even if the spring connecting the two atoms were an ideal one, the harmonicity can pertain
to extending the spring, but certainly not to squeezing it. When squeezing by−R0, the two atoms seat one on the
other, and this is the end of squeezing at all. This means that one cannot have a harmonic molecule for some basic
reasons.
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(a)

(b)

Fig. 4.12. The resonance case over the barriers. The wave function for an electron with energy E = 5.037 a.u.; i.e., over the
barrier V0 = 5. As we can see, the amplitude is nearly the same for the wave function before and after the barriers (this means
the transmission coefficient of the order of 100%). The real part, and especially the imaginary part, wobble within the range of the
barrier’s range; i.e., within section (0, 5.14). (Note: the imaginary part has a large amplitude.) We may guess that the state is related
to the three-node stationary state.

Now, let us introduce a very useful scaled coordinate: q = 4
√

km
�2 x , with−∞ < q <∞. The

Hamiltonian written with using the new variable reads very interestingly as

(
ω =

√
k
m

)

Ĥ = − �
2

2m

(
dq

dx

d

dq

)2

+ 1

2
k

1√
km
�2

q2 = −1

2
�

√
k

m

d2

dq2 +
1

2
�

√
k

m
q2 = �ω

[
−1

2

d2

dq2 +
1

2
q2
]
.

(4.16)
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(a)

(b)

Fig. 4.13. The off-resonance case over the barriers; the wave function for an electron (E = 5.5 a.u.; i.e., over the barrier height
V0 = 5). Despite the fact that E > V0, the amplitude of the outgoing wave is considerably reduced after passing the range of the
barriers (0, 5.14). This means that the particle flying over the barriers may reflect from them.

Creation and Annihilation Operators

Now let us prepare two tools, which are the operators: B̂ = 1√
2

(
d

dq + q
)

, known as a creation

operator, and b̂ = 1√
2

(
− d

dq + q
)

, being an annihilation operator (their names will become

clear in a minute). It turns out41 that b̂ = B̂†. As we will see in a moment, these operators

41 Indeed, for f and g being arbitrary functions of class Q (please recall that i d
dq represents a Hermitian operator):〈

b̂ f |g
〉
= 1√

2

〈
(− d

dq + q) f |g
〉
= 1

i
1√
2

〈
i d

dq f |g
〉
+ 1√

2
〈q f |g〉 = 1

i
1√
2

〈
f |i d

dq g
〉
+ 1√

2
〈q f |g〉 = 1√

2

〈
f | d

dq g
〉
+

1√
2
〈q f |g〉 = 1√

2

〈
f |( d

dq + q)g
〉
=
〈

f |B̂g
〉
, which means b̂ = B̂†.
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will create or annihilate the energy quanta of our system, which will be called phonons, each
of energy hν = �ω.

Let us see what the operator B̂† B̂ does. For an arbitrary function42 f , we have

B̂† B̂ f =
(

1√
2
(− d

dq
+ q)

)(
1√
2
(

d

dq
+ q)

)
f = −1

2

d2 f

dq2 −
1

2

d

dq
(q f )+ 1

2
q

d f

dq
+ 1

2
q2 f

= −1

2

d2 f

dq2 −
1

2
( f + q

d f

dq
)+ 1

2
q

d f

dq
+ 1

2
q2 f =

(
−1

2

d2

dq2 +
1

2
q2 − 1

2

)
f .

Hence, we recognize immediately that the Hamiltonian has the form

Ĥ = hν(B̂† B̂ + 1

2
). (4.17)

Eigenfunctions and Eigenvalues

Now we will find the eigenfunctions [Eq. (4.22)] and eigenvalues [Eq. (4.21)] of the Hamiltonian

Ĥ . To this end, we note first that43

[B̂, B̂†] = 1 or B̂ B̂† = B̂† B̂ + 1. (4.18)

Let us consider the following function:

ψv =
(
v!)− 1

2 (B̂†)vψ0 (4.19)

whereψ0 stands for the normalized Gaussian function44:ψ0(q) = 1
4√π exp (−1

2q2). Let us note

first that B̂ψ0 =
(

1√
2
( d

dq + q)
)

1
4√π exp (−1

2q2) = 1
4√π
(

1√
2
(−q + q)

)
exp (−1

2q2) = 0. This

42 When transforming operators, one has to remember that they act on a function (this is why we consider such a
function explicitly); otherwise, it is easy to make a mistake.

43 We have

B̂ B̂† f =
(

1√
2
(

d

dq
+ q)

)(
1√
2
(− d

dq
+ q)

)
f

= −1

2

d2 f

dq2 +
1

2

d

dq
(q f )− 1

2
q

d f

dq
+ 1

2
q2 f

= −1

2

d2 f

dq2 +
1

2
( f + q

d f

dq
)− 1

2
q

d f

dq
+ 1

2
q2 f =

(
−1

2

d2

dq2 +
1

2
q2 + 1

2

)
f ,

and therefore, we get the commutation relation needed.
44 We briefly check the normalization:

∫∞
−∞ |ψ0(q)|2dq = 1√

π

∫∞
−∞ exp (−q2)dq = 1√

π

∫∞
−∞ exp (−q2)dq =

1√
π

√
π = 1.
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result will be used in a minute. We have also45

B̂† B̂ψv = vψv. (4.20)

Now, recall that what we have in the Hamiltonian [Eq. (4.17)] is just B̂† B̂. Therefore, function
ψv given by Eq. (4.19) for v = 0, 1, 2, . . . represents an eigenfunction of the Hamiltonian:
Ĥψv = hν(B̂† B̂ + 1

2 )ψv = Evψv , with the energy

Ev = hν(v + 1/2), (4.21)

with v = 0, 1, 2, . . . Note, that the oscillator energy is never equal to zero and is additive; i.e.,
the phonons, each of energy �ω, do not interact. The smaller the oscillating mass or the larger
the force constant, the larger the energy of the phonon; see Fig. 4.14.

The harmonic oscillator has an infinite number of the energy levels, all of them non-
degenerate, their separation is constant and equals to hν.

The stateψ0 describes the absence of phonons (i.e., a phonon vacuum); therefore, an attempt

of annihilation of the vacuum gives zero: B̂ψ0 = 0. The function ψv =
(
v!)− 1

2 (B̂†)vψ0,
which is a general solution of the Schrödinger equation, represents therefore a state with v non-
interacting phonons, each of energy hν, created from the phonon vacuum (by using v creation
operators B̂†).

45 Let us see what we will get when applying the operator B̂† B̂ [and using the commutation relation (4.18)] to the
wave function ψv :

B̂† B̂ψv =
(
v!)− 1

2 B̂† B̂(B̂†)vψ0 =
(
v!)− 1

2 B̂† B̂ B̂†(B̂†)v−1ψ0 =
(
v!)− 1

2 B̂†
(

B̂† B̂ + 1
)
(B̂†)v−1ψ0

= (v!)− 1
2 (B̂†)2 B̂(B̂†)v−1ψ0 +

(
v!)− 1

2 B̂†(B̂†)v−1ψ0 =
(
v!)− 1

2 (B̂†)2 B̂(B̂†)v−1ψ0 + ψv.
The commutation relation replaces B̂ B̂† by B̂† B̂ + 1. The B̂† B̂ part made that in the sequence of v operators

B̂† in ψv the operator B̂ has been shifted right by one position (see the first term) and on its right side, it has only
v − 1 of B̂† operators. On the other hand, the presence of the unit operator made that we got the second term in the
form 1 ·ψv = ψv . Now we will use once more the commutation relation. Also this time it will cause a one-position

right shift of B̂ resulting in
(
v!)− 1

2 (B̂†)3 B̂(B̂†)v−2ψ0 together with a new additive term ψv (altogether we have
already 2ψv). This procedure is repeated v times up to the point, when we get (note the first term turns out to

be zero):
(
v!)− 1

2 (B̂†)v+1 B̂ψ0 + vψv = 0 + vψv = vψv , where we have used the relation B̂ψ0 = 0. Hence,

B̂† B̂ψv = vψv .
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(a) (b)

Fig. 4.14. A “fingerprint” of the harmonic oscillator–an infinite number of equidistant energy levels. These images represent
in fact several independent figures one on top of the other: the parabola means the potential energy as a function of deviation of
the oscillating particle from its equilibrium position, and the energy levels denote in principle some points on the axis of the total
energy (traditionally and arbitrarily shown as horizontal sections). (a) Energy levels of an oscillator with a large force constant k;
(b) energy levels of an oscillator with a small force constant k.

The eigenfunctions of the Schrödinger equation can be also shown explicitly:

�v(q) = NvHv(q) exp

(
−q2

2

)
(4.22)

where v = 0, 1, 2, . . . . is the oscillation quantum number, Hv represent the Hermite polyno-
mials46 (of degree v) defined as

Hv(q) =
(−1

)v exp (q2)
dv exp

(−q2
)

dqv
,

and Nv is the normalization constant Nv =
√(

α
π

) 1
2 1

2vv! .
The first Hermite polynomials are

H0(q) =
(−1

)0 exp (q2)
d0( exp (−q2))

d0q
= exp (q2) exp (−q2) = 1,

H1(q) =
(−1

)1 exp (q2)
d( exp (−q2))

dq
= − exp (q2)

(−2q
)

exp (−q2) = 2q,

H2(q) =
(−1

)2 exp (q2)
d2( exp (−q2))

dq2 = 4q2 − 2, . . .

Fig. 4.15 shows how the wave functions for the 1-D harmonic oscillator look like, and the
plots for a 2-D harmonic oscillator (one obtains the solution by a simple separation of variables,

46 Charles Hermite was a French mathematician (1822–1901), professor of Sorbonne. The Hermite polynomials
were defined half a century earlier by Pierre Laplace.
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.

.

Fig. 4.15. Some of the wave functions �v for a 1-D oscillator. The number of nodes increases with the oscillation quantum
number v.

the wave function is a product of the two wave functions for the harmonic oscillators with x
and y variables, respectively) (see Fig. 4.16).

The harmonic oscillator is one of the most important and beautiful models in physics.
When almost nothing is known, except that the particles are held by forces, then the first
model considered is the harmonic oscillator. This happened for the black body problem (dis-
cussed in Chapter 1), and now it is the case with the quantum dots,47 string theory,48 solvated
electron,49 etc.

4.8 Morse Oscillator

4.8.1 Morse Potential

Diatomic molecules differ from harmonic oscillators mainly in that they may dissociate. If we
pull a diatomic molecule with internuclear distance R equal to the equilibrium distance Re,
then at the beginning, displacement x = R − Re is indeed proportional to the force applied.
However, afterward the pulling becomes easier and easier. Finally, the molecule dissociates; i.e.,
we separate the two parts without any effort at all. This fundamental difference with respect to
the harmonic oscillator is qualitatively captured by the potential proposed by Morse (parameter
α > 0)50:

V (x) = De−αx (e−αx − 2
)
. (4.23)

47 Quantum dots are part of the “nanotechnology”: on a solid surface, some atomic clusters are placed (quantum
dots), lines of such atoms (nanowires), etc. Such systems may exhibit unusual properties.

48 Quarks interact through exchanging gluons. An attempt to separate two quarks leads to such a distortion of the
gluon bond (string) that the string breaks down and separates into two strings with new quarks at their ends created
from the distortion energy.

49 Many polar molecules may lower their energy in a liquid by facing an extra electron with their positive poles of
the dipole. This is the solvated electron.

50 Philip McCord Morse (1903− 1985) was an American theoretical physicist.
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(b)

(d)

(c)

(a)

Fig. 4.16. A graphic representation of the 2-D harmonic oscillator wave function (isolines). Panels (a) through (i) show the wave
functions labeled by a pair of oscillation quantum numbers

(
v1, v2

)
. The higher the energy, the larger the number of node planes. A

reader acquainted with the wave functions of the hydrogen atom will easily recognize a striking resemblance between these figures
and the orbitals.
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(i)

(g)

(e) (f)

(h)

Fig. 4.16. (Continued)
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(a)

(b)

Fig. 4.17. (a) The Morse potential energy curves have the shape of a hook. How does the shape depend on the Morse parameters?
The figures show the curves for D = 1, 2 and α = 1, 2. As we can see, D controls the well depth and α its width. (b) The Morse
oscillator is a kind of compromise between the harmonic oscillator (b1) and a rectangular well (b2). Both potentials correspond
to exact solutions of the Schrödinger equation. Model b2 gives the discrete spectrum, as well as the continuum and the resonance
states. The latter ones are only very rarely considered for Morse oscillators, but they play an important role in scattering phenomena
(primarily in reactive collisions).

As we can see, D represents the well depth and the parameter α decides its width. When the
displacement x = 0, the function attains the minimum V = −D, when x →∞, then V → 0
(see Fig. 4.17).

Besides the abovementioned similarity, the Morse oscillator differs from real diatomics
mainly by two qualitative features. First, for R = 0, we obtain a finite potential energy for
the Morse oscillator. Second, the asymptotic behavior of the Morse oscillator for x → ∞
means exponential asymptotics, while the atomic and molecular systems at large distances
interact as 1

Rn .
The second derivative of V (x) calculated at the minimum of the well represents the force

constant k of the Morse oscillator:
k = 2α2 D. (4.24)

The parabola −D + 1
2 kx2 best approximates V (x) close to x = 0 and represents the har-

monic oscillator potential energy (with the force constant k). The Morse oscillator is hard to
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squeeze–the potential energy goes up faster than that of the harmonic oscillator with the same
force constant k.

Solution

One had to have courage to presume that analytical solution with such a potential energy exists.
Morse found the solution, which represents a rare example of an exact solution to a nonlinear
problem. Exact solutions exist not only for the ground (oscillation quantum number v = 0),
but also for all the excited states (v = 1, 2, . . . vmax ) belonging to the discrete spectrum. The
energy levels are non-degenerate and are given by the following formula:

Ev = −D + hν

(
v + 1

2

)
− hν

(
v + 1

2

)2

β, (4.25)

v = 0, 1, 2, . . . , vmax ,

where, using atomic units, we obtain

hν = 2α

(
D

2μ

) 1
2

. (4.26)

This formula follows from the parabolic approximation of the Morse potential (which is valid
for small displacements x),51 while

β = �ω

4D
, (4.27)

where μ is the mass of the oscillating particle. When the Morse oscillator serves as a model of
a diatomic molecule, μ stands for the reduced mass of both nuclei μ = (1/m1 + 1/m2)

−1 (see
Appendix I available at booksite.elsevier.com/978-0-444-59436-5 on p. e93). As we can see,
the energy of the oscillator never equals zero (similar to the harmonic oscillator) and

the separation between consecutive energy levels decreases.

The wave functions are slightly more complicated than those for the harmonic oscillator and
are given by the following formula:

ψv(z) = Nve−
z
2 zbv L2bv

v (z), (4.28)

51 Let us recall that, for the harmonic oscillator 2πν =
√

k
μ ; therefore, from Eq. (4.24), hν = �α

√
2D
μ , while � = 1

a.u.

http://booksite.elsevier.com/978-0-444-59436-5
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where v = 0, 1, . . . vmax , variable z is a real number related to displacement x by the formula

z = 2ae−αx , and the normalization coefficient Nv =
√

2bvv!
�
(
2bv+v+1

) with �(z) = ∫∞0 e−t t z−1dt ,

while

a = 2D

�ω
(4.29)

bv = a − 1

2
− v > 0. (4.30)

The above condition gives maximum v = vmax ; therefore, vmax + 1 is the number of
eigenfunctions. Thus, we always have a finite number of energy levels.

L stands for the polynomial given by the formula

Lc
n(z) =

1

n!e
zz−c dn

dzn

(
e−zzn+c) , (4.31)

where n = 0, 1, 2, . . . is the polynomial degree.52 A short exercise gives

Lc
0(z) = 1

Lc
1(z) = (c + 1)− z

Lc
2(z) =

1

2
z2 − (c + 2

)
z + 1

2

(
c + 1

) (
c + 2

)
.

. . .

This means the number of nodes in a wave function is equal to v (as in the harmonic oscillator).
The wave functions resemble those of the harmonic oscillator but are slightly deformed (have
a bit larger values for x > 0).

For very large well depths (D), the parameter β of Eq. (4.27) becomes very small. This results
in Ev approaching the corresponding formula for the harmonic oscillator −D + hν(v + 1/2),
and the energy levels become equidistant from the nearest neighbor separation equal to hν. The
potential is highly anharmonic (of the “hook-type”), but the energy levels would be equidistant,
as in the harmonic oscillator. Is it possible? Yes, it is. The key is that, for small values of v,
the term −hν(v + 1/2)2β does not yet enter into play, and low energy levels correspond to
small amplitudes (x) of vibrations. For small x , the potential is close to parabolic,53 as for the
harmonic oscillator with force constant k.

52 Indeed, n-time derivation gives e−z zn+c as a term with the highest power of z. Multiplication by ezz−c

gives zn

53 This is as witnessed by a Taylor expansion of V (x) for x = 0.
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Example 1. Hydrogen Molecule
The hydrogen molecule has been investigated in detail. As will be seen in Chapters 6 and 10,

the theory challenges there some very subtle experiments. Let us approximate the most accurate
theoretical potential energy curve54 (as a function of the internuclear distance R) by a Morse
curve.

Is such an approximation reasonable? Let us see. From Wolniewicz’s calculations, we may
take the parameter D = 109.52 kcal/mol = 38293 cm−1, while the parameter α is chosen
in such a way as to reproduce the theoretical binding energy for R = Re + 0.4 a.u.,55 where
Re = 1.4 a.u. is the position of the minimum binding energy. It turns out that, say, “by chance”
this corresponds to α = 1. From Eqs. (4.29) and (4.30), we obtain a = 17.917, and the allowed
v are those satisfying the inequality bv = 17.417−v > 0. We expect, therefore, 18 energy levels
with v = 0, 1, . . . , 17 for H2 and 25 energy levels for T2 (in the last case, bv = 24.838−v > 0.).
Accurate calculations of Wolniewicz give 14 vibrational levels for H2, and 25 levels for T2. Thus,
decreasing the reduced mass makes the vibrational levels less dense and some vibrational levels
even disappear. This means that isotope substitution by a heavier isotope leads to stabilization.
Moreover, from Eq. (4.26) we obtain for H2 : hν = 0.019476 a.u.= 4274 cm−1, while from
Eq. (4.27), we have β = 0.0279. From these data, one may calculate the energetic gap between
the ground (v = 0) and the first excited state (v = 1) for H2,�E0→1, as well as between the
first and the second excited states, �E1→2. We get:

�E0→1 = hν − hν[(1+ 1/2)2 − (0+ 1/2)2]β = hν(1− 2β)

�E1→2 = hν − hν[(2+ 1/2)2 − (1+ 1/2)2]β = hν(1− 4β).

Inserting the calculated hν and β gives �E0→1 = 4155 cm−1 and �E1→2 = 3797 cm−1.
The first value agrees very well with the experimental value56 of 4161 cm−1. However,
comparison of the second value with the measured 3926 cm−1 is a little bit worse, although
it is still not bad for our simple theory. The quantity D represents the binding energy; i.e., the
energy difference between the well bottom and the energy of the dissociated atoms. In order
to obtain the dissociation energy, we have to consider that the system does not start from the
energy corresponding to the bottom of the curve, but from the level with v = 0 and energy 1

2 hν.
Hence, our estimation of the dissociation energy is Ediss = D − 1

2 hν = 36156 cm−1, while
the experimental value amounts to 36118 cm−1.

Example 2. Two Water Molecules
Our first example pertains to a chemical bond. Now let us take in the same way a quite

different situation, where we have relatively weak intermolecular interactions; namely, the
hydrogen bond between two water molecules. The binding energy in such a case is of the
order of D = 6 kcal mol−1 = 0.00956 a.u.= 2097 cm−1; i.e., about twenty times smaller

54 L.Wolniewicz, J. Chem. Phys., 103, 1792 (1995).
55 Of course, this choice is arbitrary.
56 I.Dabrowski, Can. J. Phys., 62, 1639 (1984).
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than before. To stay within a single oscillator model, let us treat each water molecule as a
pointlike mass. Then, μ = 16560 a.u. Let us stay with the same value of α = 1. We obtain
(p. 197) a = 17.794, and hence b0 = 17.294, b1 = 16.294, . . . , b17 = 0.294, bn>17 < 0. Thus
(accidentally), we also have 18 vibrational levels.

This time, from Eq. (4.26), we have hν = 0.001074 a:u: = 235 cm−1, and β = 0.02810
a.u.; therefore, �E0→1 = 222 cm−1 and �E1→2 = 209 cm−1. These numbers have the same
order of magnitude as those appearing in the experiments (cf., p. 362).

4.9 Rigid Rotator

A rigid rotator is a system of two pointlike masses, m1 and m2, with a constant distance R
between them. The Schrödinger equation may be easily separated into two equations, one
for the center of mass motion and the other for the relative motion of the two masses (see
Appendix I available at booksite.elsevier.com/978-0-444-59436-5 on p. e93). We are interested
only in the second equation, which describes the motion of a particle of mass μ equal to the
reduced mass of the two particles, and the position in space given by the spherical coordinates
R, θ, φ, where 0 ≤ R <∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π . The kinetic energy operator is equal to
− �

2

2μ�, where the Laplacian� represented in the spherical coordinates is given in Appendix H
available at booksite.elsevier.com/978-0-444-59436-5 on p. e91. Since R is a constant, the part
of the Laplacian that depends on the differentiation with respect to R is absent.57 In this way,
we obtain the equation (equivalent to the Schrödinger equation) for the motion of a particle on
a sphere:

− �
2

2μR2

{
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1(

sin θ
)2 ∂2

∂φ2

}
Y = EY , (4.32)

where Y (θ, φ) is the wave function to be found and E represents the energy. This equation may
be rewritten as

Ĵ 2Y = 2μR2 EY , (4.33)

where the square of the angular momentum operator equals

Ĵ 2 = −�
2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
.

The equation may be rewritten as

1

Y

{
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1(

sin θ
)2 ∂2Y

∂φ2

}
= λ,

57 This reasoning has an heuristic character, but the conclusions are correct. Removing an operator is a subtle matter.
In the correct solution to this problem, we have to consider the two masses with a variable distance R with the full
kinetic energy operator and potential energy in the form of the Dirac delta function (see Appendix E available at
booksite.elsevier.com/978-0-444-59436-5 on p. e69) −δ(R − R0).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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where λ = −2μR2

�2 E . The solution of the equation is known in mathematics as a spherical

harmonic.58 It exists if λ = −J (J + 1), J = 0, 1, 2, . . . :

Y M
J (θ, φ) = NJ M · P |M|J

(
cos θ

) · 1√
2π

exp (i Mφ), (4.34)

where NJ M =
√

2l+1
2

(
l−|m|)!(
l+|m|)! is the normalization coefficient, and P is the associated Legendre

polynomial,59 defined as

P |M|J (x) = (1− x2)
|M|

2
d |M|

dx |M|
PJ (x), (4.35)

with the Legendre polynomial

PJ (x) = 1

2J J !
d J

dx J

(
x2 − 1

)J
. (4.36)

From the uniqueness of the solution (Fig. 2.6j), it follows that M has to be an integer.60

The solution exists if J = 0, 1, 2, 3, . . . , and from the analysis of the associate Legendre
polynomials, it follows that M cannot exceed61 J because otherwise Y = 0. The energy levels
are given by

E J = J (J + 1)
�

2

2μR2 (4.37)

for J = 0, 1, 2, . . .

It is seen that the lowest energy level
(
J = 0

)
corresponds to Y 0

0 = const (the function
is, of course, nodeless, as shown in Fig. 4.18a). This means that all orientations of the
rotator have equal probability. The first excited state corresponds to J = 1 and is triply

degenerate, since M = 0,±1. The corresponding wave functions are: Y 0
1 =

√
3

4π cos θ,

58 There are a few definitions of the spherical harmonics in the literature [see E.O.Steinborn and K.Ruedenberg,
Advan.Quantum Chem., 7, 1 (1973)]. The Condon-Shortley convention often is used, and is related to the definition

given above in the following way: Y M
J = εM

[
Y M

J

]
C S
, Y J

J =
(−1

)J
[
Y J

J

]
C S

, where εM = i |M|+M .
59 Adrien Legendre (1752–1833) was a French mathematician and professor at the Ecole Normale Superieure, an

elite school of France founded by Napoleon Bonaparte.
60 Indeed, since φ is an angle, we have exp (i Mφ) = exp[i M(φ + 2π)]. Hence, exp (i M2π) = 1, and therefore,

cos (2πM) = 1 and sin (2πM) = 0. This is fulfilled only if M is an integer.
61 PJ (x) is a polynomial of the J th degree, while d |M|

dx |M| in P |M|J (x) decreases the degree by M . If M exceeds J ,

then P |M|J (x) automatically becomes equal to zero.
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Fig. 4.18. A schematic representation of the nodes for rigid rotator wave functions: (a) ground state (nodeless); (b) triply degenerate
first excited state (single node).

Y 1
1 =

√
3

8π sin θ exp
(
iφ
)
, Y−1

1 =
√

3
8π sin θ exp

(−iφ
)
. The first function, being real, may

be easily plotted (Fig. 4.18b), while the second and the third are not (they are complex). Since
they both correspond to the same eigenvalue of the Hamiltonian, their arbitrary linear combi-
nation is an equally good eigenfunction of this operator. Therefore, we may take Y 1

1 and Y−1
1

as ψ1 = 1
2

(
Y 1

1 + Y−1
1

)
=
√

3
8π sin θ cosφ and ψ1 = 1

2i

(
Y 1

1 − Y−1
1

)
=
√

3
8π sin θ sin φ. Both

functions are real, and they are shown in Figs. 4.18c-d. Note that again, we have the usual
situation: the ground state is nodeless, the first excited state has a single node, etc.

Y M
J is not only the eigenfunction of the Hamiltonian Ĥ and of the square of the angular

momentum Ĵ 2, but also of the z component of the angular momentum operator, Ĵz = −i� ∂
∂φ

:

ĴzY M
J = M�Y M

J . (4.38)

4.10 Hydrogen-Like Atom

We have two particles: an electron of mass m and charge −e and a nucleus of mass M and
charge +Ze. The Hamiltonian contains two kinetic energy operators and the Coulombic inter-
action−Ze2/r , where r is the electron-nucleus separation. We have, therefore, six coordinates.
In Appendix I available at booksite.elsevier.com/978-0-444-59436-5 on p. e93, it is shown how
the center-of-mass motion can be separated (we are not interested in this motion). There remain

http://booksite.elsevier.com/978-0-444-59436-5
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three coordinates, x, y, and z, showing where the electron is with respect to the nucleus. The
resulting Schrödinger equation contains a single kinetic-energy operator of a particle of reduced
mass μ (almost equal to the electron mass) with coordinates x, y, and z, and Coulombic inter-
action of the electron and the nucleus (as before). Now, instead of x, y, and z, we introduce the
spherical coordinates r , θ , and φ. Then, as the class Q solution, we obtain

ψnlm(r , θ, φ) = Nnl Rnl(r)Y
m
l (θ, φ), (4.39)

where Y m
l is identical to the solution [Eq. (4.34)] of a rigid rotator of length r , and the function

Rnl has the following form in a.u.:

Rnl(r) = rl L2l+1
n+l

(
2Zr

na0

)
exp

(
− Zr

na0

)
, (4.40)

where the Bohr first orbit radius is

a0 = 1

μ
� 1a.u., (4.41)

where

principal quantum number n = 1, 2, 3 . . .
azimuthal quantum number l = 0, 1, 2, . . . , n − 1
magnetic quantum number m = −l,−l + 1, . . . , 0, . . .+ l.

and the associated Laguerre polynomial Lβα(x) is defined as

Lβα(x) =
dβ

dxβ
Lα(x), (4.42)

while the Laguerre polynomial is given by62

Lα(x) = exp (x)
dα

dxα
[xα exp (−x)]. (4.43)

Since the Hamiltonian commutes with the square of the total angular momentum operator Ĵ 2

and with the operator of Ĵz (cf., Chapter 2 and Appendix F available at booksite.elsevier.com/
978-0-444-59436-5 on p. e73), then the functions ψnlm are the eigenfunctions of the following
operators:

Ĥψnlm = Enψnlm (4.44)

62 Lβα(x) are indeed polynomials of the α − β degree. If β > α, from Eq. (4.42), it follows that Lβα = 0.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Ĵ 2ψnlm = l(l + 1)�2ψnlm, (4.45)

Ĵzψnlm = m�ψnlm, (4.46)

where, expressed in a.u.,

En = − Z2

2n2

(
1

1+ 1
Mp

)
, (4.47)

with Mp representing the proton mass (in a.u.; i.e., about 1840). The content of the parentheses
in the last formula works out as 0.999457 (i.e., almost 1), which would be obtained for an
infinite mass of the nucleus.

Each of the energy levels is n2–fold degenerate. Note that the hydrogen atom energy depends
solely on the principal quantum number n. The fact that the energy does not depend on the
projection of the angular momentum m� is natural because the space is isotropic and no direction
is privileged. However, the fact that it does not depend on the length of the angular momentum√

l(l + 1)� is at first sight strange. The secret is in the Coulombic potential 1
r produced by the

pointlike nucleus and connected with the notion of dynamic symmetry mentioned on p. 83. If we
considered a non-pointlike nucleus or were interested in the orbital 2s of such a quasi-hydrogen
atom as lithium,63 then the energy would depend on the quantum number l.

The one-electron wave functions (orbitals) of the hydrogen atom with l = 0 are tradi-
tionally denoted as ns: 1s, 2s,...,with l = 1, as np: 2p, 3p, 4p, . . . , with l = 2, 3, . . . , as
nd: 3d, 4d,, nf: 4 f , 5 f , . . . .

The wave functions ψnlm can be plotted in several ways. For example, the function (nlm) =
(100) or 1s, given by the formula

1s ≡ ψ100(r , θ, φ) =
√

Z3

π
exp (−Zr), (4.48)

and can be visualized in several alternative forms, as shown in Fig. 4.19.
We see that what the electron likes most is to sit on the nucleus. Indeed, if we chopped the

space into tiny cubes and then computed the value of (1s)2 in each cube (the function is real,
so the complex modulus sign is irrelevant), and multiplied the number obtained by the volume
of the cube, the resulting number in each cube would mean the probability of finding the elec-
tron in a particular cube. Evidently, this number will be largest for the cube that contains the

63 In this case, the nucleus is screened by a cloud of two 1s electrons. The 2s electron thinks that it is in a hydrogen
atom with a spatious nucleus of the size of the 1s orbital and an effective charge +1.
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Fig. 4.19. Various ways of visualization the 1s hydrogen orbital, which is a function of electron position in 3-D space (coordinates
in panels a-c are in a.u.). (a) Isolines of the z = 0 section of the wave function (going through the nucleus). Black means the value
zero, white color means a high value. This is a map of a mountain. The center of (a) shows a large white plateau that represents an
artefact. In fact, in panel (b), the section of the 1s orbital as a function of r represents a mountain with a sharp summit (a discontinuity
of the first derivative). Panel (c) is similar to (a), but instead of isolines, we have a white mist with the highest concentration in
the center, disappearing exponentially with increasing distance r . Panel (d) shows a spherically symmetric isosurface of the wave
function.

nucleus (the origin). In school, we were told about the Bohr model64 the orbits, and the first
Bohr orbit (corresponding to the atom ground state). Do we relegate all this to mythology?
Not completely. If we changed the question to “What is the distance at which the electron is
most likely to be found?” then the answer should indeed be as we were taught in school: the
first Bohr orbit. This is easy to show by computing the radial probability density of finding
the electron (i.e., integrating over all orientations, leaving the dependence on the distance):

64 Nobody is perfect–not even geniuses. Here is a story by John Slater: “Brillouin delivered an interesting lecture
concerning his relations. When he finished, Bohr stood up and attacked him with an inhuman fury. I have never
heard any adult scold another person in public with such an emotional engagement without any reason whatsoever.
After this show, I have decided that my antipathy with respect to Bohr dating since 1924 continues to be justified.”
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Fig. 4.20. Various graphical representations of the hydrogen 2s orbital (coordinates in panels a-c are expressed in a.u.). (a) Isolines
of the z = 0 section of the orbital. Gray means zero, white a high positive value, and black a negative value. Note that gray is not
only at the peripheries, but also around the center. This means that 2s orbital exhibits a nodal sphere of radius 2 a.u. [see Eq. (4.49)],
that would contain a little more than 5% of the electronic density (whereas for the 1s orbital, the same sphere contains about 75%
of electron cloud). The center of the figure (a) shows a large white plateau, which represents an artefact. In fact, panel (b), showing
the section of 2s orbital represents a mountain with a sharp peak (a discontinuity of the first derivative is shown incorrectly in the
figure; instead of a sharp summit, one has an artefact plateau) with a depression at its base. Panel (c) is similar to (a), but instead of
isolines, one has a white mist with the largest concentration in the center, then taking the negative values (black mist) and finally
disappearing exponentially with increasing distance r . Panel (d) shows a spherically symmetric isosurface of the wave function
(the sphere was shown as larger than the 1s orbital because the 2s orbital decays more slowly than 1s).

ρ(r) = ∫
dθdφr2 sin θ |ψ100|2 = 4Z3r2 exp (−2Zr). The maximum of ρ(r) corresponds

exactly to r = 1 a.u. or the first Bohr orbit radius.65

The 2s orbital (n = 2, l = 0,m = 0) reads as (see Fig. 4.20):

2s ≡ ψ200(r , θ, φ) = N2s
(
Zr − 2

)
exp (−Zr/2), (4.49)

65 The computed maximum position does not coincide with the mean value of r (see Appendix H available at
booksite.elsevier.com/978-0-444-59436-5 on p. e91) 〈r〉 = 〈ψ100|rψ100〉 =

∫∞
0 drrρ(r) = 3

2 a.u.

http://booksite.elsevier.com/978-0-444-59436-5
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with the normalization constant N2s = Z
3
2

4
√

2π
. A sphere of radius 2/Z (representing the nodal

sphere) contains66 only a little more than 5% of the total electronic density (independently
of Z ).67

The wave functions (orbitals) with m �= 0 are difficult to draw because they are complex.
However, we may plot the real part of ψnlm (i.e. Reψnlm) by taking the sum of ψnlm and ψnl−m

[i.e., 2Reψnlm and the imaginary part of ψnlm (i.e. Imψnlm) from the difference of ψnlm and
ψnl−m equal to 2iImψnlm]. These functions are real and can be easily plotted. In this way,
we obtain the orbitals 2px and 2py from the functions ψ211 and ψ21−1. The orbital ψ210 is
identical to 2pz:

2px = N2px exp (−Zr/2)

2py = N2p y exp (−Zr/2)

2pz = N2pz exp (−Zr/2),

where an easy calculation (just five lines long) gives the normalization constant N2p = Z N2s .
The 2p orbitals are shown in Fig. 4.21.

Note that a linear combination of eigenfunctions is an eigenfunction, if the functions mixed
correspond to the same eigenvalue. This is why 2px and 2py are the eigenfunctions of the
Hamiltonian and of the square of the angular momentum operator, but they are not eigenfunctions
of Ĵz .

Similarly, we obtain the five real 3d orbitals. They can be easily obtained from Eq. (4.39)
and subsequently making them real by choosing Reψnlm and Imψnlm . As a result, we have the

following normalized 3d orbitals (N3d = Z
7
2

81

√
2
π

):

3dxy = N3d xy exp (−Zr/3),

3dxz = N3d xz exp (−Zr/3),

3dyz = N3d yz exp (−Zr/3),

3dx2−y2 = 1

2
N3d(x

2 − y2) exp (−Zr/3)

3d3z2−r2 = 1

2
√

3
N3d(3z2 − r2) exp (−Zr/3).

The 2p and 3d orbitals are shown68 in Figs. 4.21, 4.22, and 4.23. A summary of the hydrogen
atomic orbitals is shown in Fig. 4.24.69

66 See the Mathematica files for Chapter 4 in the Web Annex.
67 A sphere of the same radius encloses about 75% of the electron density for the 1s orbital.
68 It pays to memorize the abbreviations 2px , 2py , 2pz and the five 3d orbitals. Indeed, we may then easily write

down their mathematical formulas (even neglecting the normalization constants). Having the formulas, we may
draw any section of them; i.e., we can predict the form of Figs. 4.22 and 4.23.

69 A night bus ride might give us some unexpected impressions. Of all atomic orbitals, you may most easily see
orbital 1s. Just look through the condensation on a bus window at a single street lamp. You will see a gleam that
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Fig. 4.21. Various graphical representations of the hydrogen 2px orbital (coordinates in panels a-c are expressed in a.u.). The
two other 2p orbitals: 2py and 2pz look the same as 2px , but are oriented along axes y and z, respectively. Note that for the
hydrogen atom, all four orbitals 2s, 2px , 2py , and 2pz correspond to the same energy, and all have a single nodal surface. For 2s,
the surface (Fig. 4.20) is a sphere of radius 2, for the 2px , 2py , and 2pz orbitals, the nodal surfaces are the planes x, y, z = 0.
(a) isolines of the z = 0 section of the orbital. Gray means zero, white means a high value, and black means a negative value.
(b) The values of the section z = 0. Note in panels (a) and (b), that the right side of the orbital is positive, while the left side is
negative. The maximum (minimum) value of the orbital is at x = 2 (x = −2) a.u. Panel (c) is similar to (a), but instead of isolines,
we have a mist with the largest value (white) on the right and the smallest (and negative, black) value on the left. The orbital finally
disappears exponentially with increasing distance r from the nucleus. Panel (d) shows an isosurface of the absolute value of the
angular part of the wave function |Y 0

1 |. As for Y 0
1 itself, one of the lobes takes negative values and the other positive values, and

they touch each other at the position of the nucleus. To obtain the orbital, we have to multiply this angular function by a spherically
symmetric function of r . This means that an isosurface of the absolute value of the wave function will also have two lobes (for the
wave function itself, one will be positive and the other negative), but they will not touch each other in accordance with Panel a.

decays to black night. You may also quite easily find a double lamp that will offer you a 2p orbital and sometimes
has the chance to see some of the 3d orbitals. Once I have even found the 2s orbital, but I do not understand how it
was possible. I was looking at a single lamp, which made an intense gleam in the center, which gradually decayed
and then again an annular gleam appeared that finally vanished. This is what the square of the 2s orbital looks
like.
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Fig. 4.22. Various graphical representations of the hydrogen 3dxy orbital (coordinates in panels a-c are expressed in a.u.). The
three other 3d orbitals: 3dyz , 3dxz and 3dx2−y2 , look the same as 3dxy , but they are oriented in space according to their indices,
see Fig. 4.24. (a) Isolines of the z = 0 section of the orbital. Gray means zero, white means a positive value, and black means a
negative value. Note in panels a and b that 3d orbitals are symmetric with respect to inversion. One may imagine the z = 0 section
of 3dxy as two hills and two valleys [as shown in panel (b)]. Panel (c) is similar to (a), but instead of isolines, one has a white mist
with the highest value on the northeast line and the smallest (and negative) value on the northwest line (black mist). The orbital
finally disappears exponentially with increasing distance r from nucleus. Panel (d) shows an isosurface of the absolute value of
the angular part of the wave function: |Y 2

2 − Y−2
2 |. As for Y 2

2 − Y−2
2 itself, two of the lobes take negative values, the other two

take positive values, and they touch each other at the nucleus. To obtain the orbital, one has to multiply this angular function by a
spherically symmetric function of r . This means that an isosurface of the absolute value of the wave function will have also four
lobes (for the wave function itself, two will be positive and the other two negative), but they will not touch in accordance with
panel a.

4.10.1 Positronium and Its Short Life...in Molecules

A bound pair of an electron and a positron (the “positive electron” predicted by Dirac and
discovered by Anderson; see Chapter 3) is known as positronium. The positronium can be
detected in the radiation of some radioactive elements, as well as a product of some collisions
of atomic nuclei. Its lifetime is of the order of a millisecond. After such a time, a mutual
annihilation of the two objects takes place with the emission of the γ photons.
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(a) (b)

(d)(c)

Fig. 4.23. Various graphical representations of the hydrogen 3d3z2−r2 orbital (coordinates in panels a-c are expressed in a.u.).
The z-axis is vertical, and the x-axis is horizontal. (a) Isolines of the xz section of the orbital. Gray means zero, white means
a high positive value, and black means a negative value. Note that in panels a-b, 3d3z2−r2 orbitals are symmetric with respect
to inversion. We may imagine the xz section of the 3d3z2−r2 as two hills and two valleys [panel (b)], and the hills are higher
than the depth of the valleys (the plateaus in panel b are artificial). Panel (c) is similar to (a), but instead of isolines, one has
a mist with the highest value (white) on the north-south line and the smallest (and negative, black mist) value on the east-west
line. The orbital finally disappears exponentially with increasing distance r from the nucleus. Panel (d) shows an isosurface of
the absolute value of the angular part of the wave function (|Y 0

2 |). As for Y 0
2 itself, there are two positive lobes and a negative

ring, and they touch each other at the nucleus. To obtain the orbital, we have to multiply this angular function by a spherically
symmetric function of r . This means that an isosurface of the absolute value of the wave function will have two lobes along the z
axis as well as the ring, but they will not touch in accordance with panel a. The lobes along the z-axis are positive, and the ring is
negative. A peculiar form of 3d3z2−r2 becomes more familiar when one realizes that it simply represents a sum of two “usual”

3d orbitals. Indeed, 3d3z2−r2 = 1
2
√

3
N1[2z2 −

(
x2 + y2

)
] exp (−Zr/3) = 1

2
√

3
N1[

(
z2 − x2

)
+
(

z2 − y2
)
] exp (−Zr/3) =

1
2
√

3
N1

2
N1

(
3dz2−x2 + 3dz2−y2

)
= 1√

3

(
3dz2−x2 + 3dz2−y2

)
.

The Schrödinger equation gives only the stationary states (the ground state and the excited
ones), which live forever. It cannot describe, therefore, the annihilation process, but it is able to
describe the positronium before the annihilation takes place. This equation for the positronium
is identical to that for the hydrogen atom, except that the reduced mass changes from μ ≈ 1
a.u. to μ = 1

2 a.u. ( 1
μ
= 1

1 + 1
1 = 2). As a result (see the definition of a0 on p. 202), one

may say that “the size of the orbitals of the positronium doubles” when compared to that of the
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Fig. 4.24. A review of all orbitals with the quantum number n = 1, 2, 3. The x-, y-, and z-axes (not shown) are oriented in
the same way (as the directions of the 2px , 2py , and 2pz orbitals, respectively). The figures 2s and 3s are schematic; their cross
sections are intended to underline that these orbitals are spherically symmetric, but they possess a certain “internal structure.”
The 1s orbital decays monotonically with r (this is shown by a limiting sphere), but 2s and 3s change sign one and two times,
respectively. The internal spheres displayed symbolize the corresponding nodal spheres. The orbital 3px (representing also 3py
and 3pz ) is shown in a similar convention: there is an extra nodal surface inside (besides the plane x = 0), resembling a smaller
orbital p.
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hydrogen atom, since their exponential decay coefficient is now multiplied by 1
2 . It does not

matter whether one puts the positron or the electron in the center of the positronium (where the
positronium orbitals are centered)–the view of the positronium from such a center is the same.70

In both cases, what moves is a “quasi-particle” of the opposite charge to that kept in the center,
its mass being 1

2 .
A millisecond is a short time for humans, but a very long time in the molecular world. Let us

take a look of a system consisting of proton+two electrons+positron, where the positron might
be seen to play a role of an extremely light second nucleus in such a “hydrogen molecule.” If
the corresponding “atoms” (the hydrogen atom and the positronium) did not interact, one would
have the total energy −1

2 − 1
4 = −0.75 a.u., while an accurate result for the total system under

consideration71 is equal to−0.789 a.u. Therefore, the binding energy of this unusual “hydrogen
molecule” is of the order of 25 kcals/mol; i.e., about 1

4 of the binding energy of the hydrogen
molecule.

4.11 What Do All These Solutions Have in Common?

• In all the systems considered (except the tunneling effect, where the wave function is non-
normalizable), the stationary states are similar: the number of their nodes increases with
their energy (the nodeless function corresponds to the lowest energy).

• If the potential energy is a constant (particle-in-a-box, rigid rotator), then the energy level
(nearest-neighbor) separation increases with the energy.72 The energy levels get closer for
larger boxes, longer rotators, etc.

• A parabolic potential energy well (harmonic oscillator) reduces this tendency, and the energy
levels are equidistant. The distance decreases if the parabola gets wider (less restrictive).

• The Morse potential energy curve may be seen as a function that may be approximated (as
the energy increases) by wider and wider parabolic sections. No wonder, therefore, that the
level separation decreases. The number of energy levels is finite.73

• The Coulomb potential, such as that for the hydrogen atom, resembles vaguely the Morse
potential (dissociation limit, but infinite depth). We expect, therefore, that the energy levels
for the hydrogen-like atom will become closer and closer when the energy increases, and
we are right. Is the number of these energy levels finite, as for the Morse potential? This
is a more subtle question. Whether the number is finite or not decides the asymptotics (the
behavior at infinity). The Coulomb potential makes the number infinite.

70 The situation is similar to what we have seen in the case of the hydrogen atom and the observer sitting on the
electron or on the proton, as described in Appendix I available atbooksite.elsevier.com/978-0-444-59436-5, p. e93.

71 K. Strasburger, H. Chojnacki, J. Chem. Phys., 108, 3218 (1998).
72 In both cases, the distance goes as the square of the quantum number.
73 This type of reasoning prepares us for confronting real situations. Practically, we will never deal with the abstract

cases described in the present chapter, and yet in later years, we may say something like this: “Look, this potential
energy function is similar to case X in Chapter 4 of that thick boring book we have been forced to study. So the
distribution of energy levels and wave functions has to be similar to those given there.”

http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 4.25. The Hooke helium atom. The electrons repel by Coulombic forces and are attracted by the nucleus by harmonic
(non-Coulombic) forces.

4.12 Hooke Helium Atom (Harmonium)

Two-electron systems already represent a serious problem for quantum chemistry because the
mutual correlation of electronic motions must be carefully taken into account. As we will see in
further chapters, such calculations are feasible, but the wave functions are very complicated; e.g.,
they may represent linear combinations of thousands of terms and still only be approximations
of the exact solution to the Schrödinger equation. This is why people were surprised when Kais
et al. showed that a two-electron system has an exact analytical solution.74

Unfortunately, this wonderful two-electron system is (at least partially) non-physical. It rep-
resents a strange helium atom, in which the two electrons (with their distance denoted by
r12) interact through the Coulombic potential, but each is attracted to the nucleus by a har-
monic spring [i.e., satisfying the Hooke law (of equilibrium length 0 and force constant k, with
electron-nucleus distances denoted by r1 and r2); see Fig. 4.25].

The Hamiltonian of this problem (atomic units are used75) has the form:

Ĥ = −1

2
�1 − 1

2
�2 + 1

2
k(r2

1 + r2
2 )+

1

r12
.

It is amazing in itself that the Schrödinger equation for this system has an analytical solution
(for k = 1

4 ). It could be an extremely complicated analytical formula. It is a sensation that the
solution is dazzlingly beautiful and simple

ψ
(
r1, r2

) = N

(
1+ 1

2
r12

)
exp

[
−1

4

(
r2

1 + r2
2

)]
,

74 S. Kais, D.R. Herschbach, N.C. Handy, C.W. Murray, and G.J. Laming, J. Chem. Phys., 99, 417 (1993).
75 Here, the nucleus is assumed to have an infinite mass.
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where

|N |2 = π
3
2

8+ 5
√
π
.

The wave function represents the product of the two harmonic oscillator wave functions
(Gaussian functions), but also an additional extremely simple correlation factor

(
1+ 1

2r12
)
. As

we will see in Chapter 10, exactly such a term is required for the ideal solution. In this exact
function, there is nothing else–just what is absolutely necessary.76

4.13 Hooke Molecules

The readers together with the author admired an exact solution of the Schrödinger equation
for the harmonium. It is truly a wonder: two electrons, but still we get an exact (and simple)
solution. Is it the end of such wonders?

Well, let us consider two particles for a while longer. The Hamiltonian for a system of two
point masses m1 and m2 with positions shown by vectors r1 and r2 and interacting according
to the potential energy term V12

(|r1 − r2|
)

(therefore, being a function of their distance only)

has the form Ĥ(r1, r2):

Ĥ(r1, r2) ≡ Ĥ12(r1, r2) = − �
2

2m1
�1 − �

2

2m2
�2 + V12

(|r1 − r2|
)
. (4.50)

By introducing the center-of-mass coordinates

RC M = m1r1 + m2r2

m1 + m2
, (4.51)

and the coordinates describing the position of particle 1 with respect to the position of particle
2 as follows:

ρ = r1 − r2, (4.52)

we get77 the Hamiltonian in the new coordinates (see Appendix I available at booksite.elsevier.com/
978-0-444-59436-5, Example 1):

Ĥ(RC M , ρ) = − �
2

2M
�C M − �

2

2μ
�ρ + V12

(
ρ
)
, (4.53)

where M = m1 + m2 and the reduced mass μ = m1m2
M .

The resulting Schrödinger equation can be separated into two equations: one describing the
motion of the center of mass (with the Hamiltonian − �

2

2M�C M ) and the second one describing

the relative motion of the particles
(
with the Hamiltonian− �

2

2μ�ρ + V12
(
ρ
) )

. This looks as if

76 However, we might have millions of complicated terms.
77 We replace a set of six coordinates (the components of r1 and r2) by a new set of six coordinates.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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someone described the whole motion as the independent motion of two “particles”: one of them
has the position of the center of mass and the mass equal to M , while the other “particle” has
the position of particle 1, seen from particle 2, and has the same mass as the reduced mass μ.

This result has been already used by us (e.g., when describing the rigid rotator). We just want
now to recall it and to introduce a useful notation before continuing the discussion in the same
vein.

Three Particles

Is a similar separation of the total Schrödinger equation into three one-particle independent
equations still possible? It turns out that in principle it is, but under certain specific conditions.
It is possible if the Hamiltonian has the form

Ĥ(r1, r2, r3) = Ĥ12(r1, r2)− �
2

2m3
�3 + a13r2

13 + a23r2
23, (4.54)

where rab = |ra − rb| for a, b = 1, 2, 3, and a13 = km1m3, a23 = km2m3, k ≥ 0.
Therefore, the separation is possible at any potential78 V12 describing the interaction of 1

and 2, but particle 3 has to interact pairwise with the other particles by harmonic forces and, in
addition, the harmonic force constants a13 and a23 must be proportional to the corresponding
masses.

Now the separation should be demonstrated, but we will not do that because all steps resem-
ble very much what was shown in Appendix I available at booksite.elsevier.com/978-0-444-
59436-5, p. e93. The separation is achieved by introducing the following new coordinates (each
of the vectors given below has three components treated as new coordinates):

R0 = m1r1 + m2r2 + m3r3

m1 + m2 + m3
,

ρ = r1 − r2,

R1 = m1r1 + m2r2

m1 + m2
− r3.

The procedure of transforming the Laplacians from the ones expressed in the old coordi-
nates to those given in the new coordinates (the same one shown in Appendix I available at
booksite.elsevier.com/978-0-444-59436-5), leads to three mutually independent Hamiltonians:

Ĥ = ĥ0(R0)+ ĥ1(ρ)+ ĥ2(R1), (4.55)

where

ĥ0(R0) = − �
2

2M
�R0 (4.56)

78 The potential has to depend on the interparticle distance only. However, such a situation is common in physics.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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corresponds to the center-of-mass motion,

ĥ1(ρ) = − �
2

2μ1
�ρ + V (ρ)+ kμ1m3ρ

2 (4.57)

describes the relative motion of particles 1 and 2, and

ĥ2(R1) = − �
2

2μ2
�R1 + k(m1 + m2)m3 R2

1, (4.58)

represents the spherical harmonic oscillator Hamiltonian, which in this case describes the motion
of particle 3 with respect to the center of mass of particles 1 and 2. In the above equations, the
following abbreviations have been used: M = m1 +m2 +m3, μ1 = m1m2

m1+m2
, μ2 = (m1+m2)m3

M .
So here is something really interesting. Indeed, we can manipulate the masses arbitrarily and

therefore create links among some apparently unrelated systems. Note that if V is chosen as the
Coulombic repulsion, Eq. (4.50) describes either two-electron Hooke atom (i.e., harmonium79),
and then we put m1 = m2 � m3 or a one-electron Hooke diatomic (m1 = m2 
 m3).

Four Particles

In the case of four particles, a separable Hamiltonian has the form

Ĥ(r1, r2, r3, r4) = Ĥ12(r1, r2)+ Ĥ34(r3, r4)

+ k
(
m1m3 r2

13 + m1m4 r2
14 + m2m3 r2

23 + m2m4 r2
24

)
.

New coordinates (on the left side) are introduced:

ρ1 = r1 − r2,

ρ2 = r3 − r4,

ρ34 = ρ3 − ρ4,

R0 = M1ρ3 + M2ρ4

M1 + M2
,

with

ρ3 =
m1r1 + m2r2

M1
,

ρ4 =
m3r3 + m4r4

M2
,

where M1 = m1+m2,M2 = m3+m4. After the corresponding changes in the Laplacians, we
get in the new coordinates

Ĥ(r1, r2, r3, r4) = ĥ0(R0)+ ĥ1(ρ1)+ ĥ2(ρ2)+ ĥ34(ρ34), (4.59)

79 Harmonium represents the two-electron Hooke atom. A Hooke diatomic molecule means two heavy particles
(nuclei) interacting by Coulomb forces. The same is true with electrons, but the heavy particle-light particle
interactions are harmonic.



216 Chapter 4

where

ĥi (ρi ) = −
�

2

2μi
�ρi + V (ρi )+ kμi M3−i ρ

2
i , i = 1, 2, (4.60)

ĥ34(ρ34) = −
�

2

2M
�ρ34 + k M1 M2ρ

2
34, (4.61)

with μi = m2i−1m2i
m2i−1+m2i

,M = M1 M2
M1+M2

, ĥ0(R0) describes the center-of-mass motion. If m1 =
m2 
 m3 = m4, we obtain a model of a homonuclear Hooke’s diatomic.

We are tempted now to go further and think about an even larger number of particles. Maybe
we will conquer more and more, step by step, until a number of particles for which no separation
is possible. Then we might say we did our best, but this is the limit... For the reader who shares
this concern, we have a good news: the separation is sometimes possible even for an infinite
number of particles!

N Particles

Let us suppose we have K pairs of particles in a system of N particles, their interaction
within each pair given by potential energy expressions80 Vi (ρi ), i = 1, 2, . . . , K (where
ρi = r2i−1 − r2i ). The other interactions are described by quadratic forms of coordinates81

(satisfying some conditions that ensure separability). The separation of variables gives K one-
particle Hamiltonians:

ĥi (ρi ) = −
�

2

2μi
�ρi + Vi (ρi )+ Ai ρ

2
i , i = 1, 2, . . . , K , (4.62)

where Ai is a constant that depends on particles’ masses, and N−K−1 Hamiltonians describing
spherical harmonic oscillators with properly defined coordinates (known as normal coordinates;
see Chapter 7). We also get, of course, the one-particle Hamiltonian for the center-of-mass
motion. In such a case of separability, we obtain N Schrödinger equations, each one for one
“particle.”

Solution of the problem of N interacting particles and a systematic procedure leading to
the separation of variables has been given by my friend, Jacek Karwowski, a professor at the

80 Vi with index i means that each of the two-particle potentials may have different mathematical forms.
81 The assumption of the quadratic form may lead (provided that some conditions are satisfied) to harmonic motions.

We see once more a peculiar role of harmonic approximation in physics. They often lead to unexpectedly simple
(and therefore beautiful) expressions.
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Nicolaus Copernicus University (Torun, Poland).82 The solutions already known in the literature
turn out to be the special cases of this general one: the already-described harmonium (N = 3),
H+2 Hooke’s molecule,83 and H2 Hooke’s molecule.84

4.14 Charming SUSY and New Solutions

How can we find exact solutions for new systems? Our exciting story about SUSY is reserved for
real fans of her quantum beauty, and certainly may be omitted by readers with a more pragmatic
than romantic attitude toward quantum mechanics.

We start from some banal observations (tension in our story will be built up gradually): two
identical molecules have the same energy levels. But what about two different systems? Can
the sets of energy levels of these systems be identical? Well, it is like saying that a zither and
a jar would have the same set of vibrational normal modes. If this strange thing happened, we
would guess that this might come from some invisible common feature of these two objects.
This feature might be called supersymmetry (SUSY) just to stress that the two systems are related
one to the other by a hidden symmetry operation.85

Theoretical physics already has considered such a problem. There was the possibility of
reducing the number of different kinds of interactions by introducing a relation between the
theoretical description of a fermion of spin s and a boson of spin s ± 1

2 . This relation has been
named supersymmetry. Such an idea seems very courageous because the particles have very

82 J. Karwowski, Int. J. Quantum Chem., 108, 2253 (2008). Jacek Karwowski was the first to notice that the sep-
arability can be performed sequentially (by pairs of particles interacting through Vi ) in this way including any
number of particles pairs. He proved then that the remaining interactions being quadratic forms may in some cases
be reduced to a canonical form (i.e., to normal modes; see Chapter 7) in such a way that does not pertain to the
variables of already separated pairs. The first step is always feasible, while the second one is only if the quadratic
form satisfies some conditions.

83 X. Lopez, J.M. Ugalde, L. Echevarria, and E.V. Ludeña, Phys. Rev., A74, 042504 (2006).
84 E.V. Ludeña, X. Lopez, and J.M. Ugalde, J. Chem. Phys., 123, 024102 (2005).
85 Quantum chemistry includes an intriguing notion of isospectral molecules, which have identical energy levels (we

mean the Hueckel method; i.e., a simplified molecular orbital model; see Chapter 8). From this, we have a long way
to go to reach the same systems of realistic energy levels, and even further to the same spectra (e.g., in UV-VIS)
of both molecules, which need the same transition probabilities. Nevertheless, we would not be astonished if,
for example, a piece of tiger skin and the marigold flower had the same color (coming from the same spectra),
although probably the molecules responsible for this would be different.

My friend Leszek Stolarczyk remarked on still another kind of symmetry in chemistry (in an unpublished
paper). Namely, the alternant hydrocarbons, defined in the Hueckel theory, despite the fact that they often do not
have any spatial symmetry at all, have a symmetric energy level pattern with respect to a reference energy. We
meet the same feature in the Dirac theory, if the electronic and positronic levels are considered. This suggests a
underlying, not yet known, internal reason common to the alternant hydrocarbons as viewed in the Hueckel theory
and the Dirac model, which seems to be related somehow to the notion of supersymmetry.
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different properties (due to the antisymmetry of wave functions for fermions and symmetry for
bosons; see Chapter 1). Despite of that, such a relation has been introduced.86

4.14.1 SUSY Partners

The supersymmetry in quantum mechanics87 will be shown in the simplest case possible: a
single particle of mass m moving along the x-axis. The solution of the Schrödinger equation
for the harmonic oscillator, p.188, by using the creation and annihilation operators will shine
out, exposing new and unexpected beauty.

Similar to what we have done for the quantum oscillator, let us introduce the operator

Â = �√
2m

d

dx
+W (x), (4.63)

together with its Hermitian conjugate88:

Â† = − �√
2m

d

dx
+W (x). (4.64)

Function W (x) is called a SUSY superpotential.
From these two operators, two Hamiltonians may be constructed:

Ĥ1 = Â† Â (4.65)

and
Ĥ2 = Â Â†. (4.66)

After inserting Eqs. (4.63) and (4.64) into Eq. (4.65), we obtain89

Ĥ1 f = Â† Â f =
(
− �√

2m

d

dx
+W (x)

)(
�√
2m

d

dx
+W (x)

)
f

= − �√
2m

d

dx

�√
2m

d f

dx
− �√

2m

d
(
W f

)
dx

+W
�√
2m

d f

dx
+W 2 f

= − �
2

2m

d2 f

dx2 +W 2 f − f
�√
2m

dW

dx
=
(
− �

2

2m

d2

dx2 + V1

)
f .

86 It is not yet certain whether SUSY represents indeed a symmetry seen in nature. Since in what is known as the
standard model, a rigorous SUSY does not appear, it is believed that SUSY (if it exists at all) “is broken.” If it would
appear that SUSY exists for very high energies, this would be very important for unification of the electro-weak
and strong interactions in physics.

87 The idea of supersymmetry has been introduced to quantum mechanics by C. V. Sukumar, J. Phys. A, 18, L57
(1985). My inspiration for writing this section came from a beautiful 2004 lecture by Avinash Khare, who also
belongs to the pioneers of SUSY in quantum mechanics [F.Cooper, A.Khare, and U.Sukhatme, “Supersymmetry
and quantum mechanics,” World Scientific, Singapore (2001)].

88 The proof is almost identical to that shown for the harmonic oscillator.
89 In order to avoid a mistake, we will show all this when acting on an arbitrary function f of class Q.
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Hence, we have

Ĥ1 = − �
2

2m

d2

dx2 + V1, (4.67)

where

V1 = W 2 − �√
2m

W ′. (4.68)

Similarly, we get

Ĥ2 = − �
2

2m

d2

dx2 + V2, (4.69)

V2 = W 2 + �√
2m

W ′. (4.70)

The potentials V1 and V2 are known as SUSY partner potentials.

4.14.2 Relation Between the SUSY Partners

Let us write down the Schrödinger equation for Hamiltonian Ĥ1 (the SUSY partners will be
indicated by superscript numbers):

Ĥ1ψ
(1)
n = Â† Âψ(1)n = E (1)n ψ(1)n .

After multiplying this from the left by Â, we get something interesting:
Â Â†

(
Âψ(1)n

) = E (1)n ( Âψ(1)n ), which means Ĥ2
(

Âψ(1)n
) = E (1)n ( Âψ(1)n ). After introducing

a symbol for the wave functions of Hamiltonian Ĥ2, we have Ĥ2ψ
(2)
n = E (1)n ψ

(2)
n , where

ψ
(2)
n ≡ Âψ(1)n .
It turns out, therefore, that each energy eigenvalue of Ĥ1 also represents an energy eigenvalue

of Ĥ2, while the wave function corresponding to Ĥ1, after transforming it by applying operator
Â, becomes a wave function of Ĥ2. We transform similarly the Schrödinger equation for Ĥ2 as
follows:

Ĥ2ψ
(2)
n = Â Â†ψ(2)n = E (2)n ψ(2)n

through multiplying by Â† : Â† Â( Â†ψ
(2)
n ) = E (2)n ( Â†ψ

(2)
n ). We obtain Ĥ1( Â†ψ

(2)
n ) =

E (2)n ( Â†ψ
(2)
n ). Therefore, we have the splendid beauty of SUSY right before our eyes:

ψ(2)n ≡ Âψ(1)n and ψ(1)n ≡ Â†ψ(2)n . (4.71)

An eigenvalue of Ĥ1 represents also an eigenvalue of Hamiltonian Ĥ2. Also, if ψ(1)n is
an eigenfunction of Ĥ1, then function Âψ(1)n is also an eigenfunction of Ĥ2. On the other
hand, ifψ(2)n is an eigenfunction of Ĥ2, then Â†ψ

(2)
n also represents an eigenfunction of Ĥ1.
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There is one small point that we forgot to tell you: the SUSY may have a defect. Namely, the
proof given above fails if for some reason, Âψ(1)n = 0 (case 1) or Â†ψ

(2)
n = 0 (case 2). Indeed,

if this happened, this would mean that an eigenfunction of Ĥ2 or Ĥ1, respectively, would be 0
everywhere, which is unacceptable in quantum mechanics (wave functions must be of class Q).
Will such a case have a chance to happen? First of all, note90 that E (i)n ≥ 0.

• Case 1. From Âψ(1)n = 0, it follows that Â† Âψ(1)n = 0, which means Ĥ1ψ
(1)
n = 0 =

E (1)n ψ
(1)
n . Since E (i)n ≥ 0, this may happen for n = 0 only; and on top of that, we have to

have E (1)0 = 0. The SUSY partner of this state is ψ(2)0 = Âψ(1)0 = 0 (because in the case

considered, Âψ(1)0 ≡ 0). This, however means that the SUSY partner ψ(2)0 simply does not
exist in this case.

• Case 2. We have Â†ψ
(2)
n = 0, which leads to Â Â†ψ

(2)
n = 0, and this means Ĥ2ψ

(2)
n =

0 = E (2)n ψ
(2)
n . Since E (i)n ≥ 0, this may happen only if n = 0; and in addition, we should

have E (2)0 = 0. The SUSY partner of this state ψ(1)0 = Â†ψ
(2)
0 = 0 (because by definition,

Â†ψ
(2)
0 ≡ 0). This means the SUSY partner ψ(1)0 does not exist.

Therefore,

at any complication (either Âψ(1)0 = 0 or Â†ψ
(2)
0 = 0), if it happens, the ground-state

Schrödinger equation has a single SUSY partner only. The conditions Âψ(1)0 = 0 and

Â†ψ
(2)
0 = 0 cannot be satisfied simultaneously.

The equation Âψ(1)0 = 0 may be used to calculate ψ(1)0 , if W (x) is known or, to find W (x),

if ψ(1)0 is known.91 In the first case, we have (with N standing for the normalization constant)92

ψ
(1)
0 = N exp

[
−
√

2m

�

∫ x

−∞
W (y)

]
dy. (4.72)

90 This follows from the equation for the eigenvalues: Ĥ1ψ
(1)
n = Â† Âψ(1)n = E(1)n ψ

(1)
n . Indeed, let us make the

scalar product of both sides with function ψ(1)n : E(1)n =
〈
ψ
(1)
n |Ĥ1ψ

(1)
n

〉
=
〈
ψ
(1)
n | Â† Âψ(1)n

〉
=
〈
Âψ(1)n | Âψ(1)n

〉
≥

0, because the square of the length of vector Âψ(1)n is non-negative.
91 In such a case, we will force one of the SUSY partners to have one level more than the other.
92 Indeed, let us check this:

Âψ(1)0 =
(

�√
2m

d

dx
+W (x)

)
ψ
(1)
0

= N
�√
2m

exp

[
−
√

2m

�

∫ x

−∞
W (y)

]
dy

(
−
√

2m

�

)
W (x)+W (x)ψ(1)0

= −W (x)ψ(1)0 +W (x)ψ(1)0 = 0.
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As to the second case, we have93

W (x) = − �√
2m

d
dxψ

(1)
0

ψ
(1)
0

. (4.73)

Example 1. Harmonic oscillator←→ harmonic oscillator
Let us see what kind of SUSY partner has a harmonic oscillator. First, let us shift the energy

scale94 in such a way that the ground state has energy 0. This means that the shifted potential
has the form

V1(x) = 1

2
kx2 − 1

2
hν = 1

2
kx2 − 1

2
�ω. (4.74)

Now, from Eq. (4.73) and the expression for the ground state wave function for the harmonic
oscillator, we find the superpotential from Eq. (4.73):

W (x) = − �√
2m

d
dxψ

(1)
0

ψ
(1)
0

= − �√
2m

−
√

km
�2 x exp

(
−1

2

√
km
�2 x2

)
exp

(
−1

2

√
km
�2 x2

) =
√

k

2
x .

Then, from Eqs. (4.68) and (4.70), we find the SUSY partners: V1 = W 2 − �√
2m

W ′ =
1
2 kx2 − �√

2m

√
k
2 = 1

2 kx2 − 1
2�ω, which agrees with Eq. (4.74), and a new potential partner:

V2 = W 2 + �√
2m

W ′ = 1

2
kx2 + �√

2m

√
k

2
= 1

2
kx2 + 1

2
�ω.

As we see, the potential V2 also represents a harmonic oscillator potential. The only difference,
a shift on the energy scale, is not important.95 We see once more that a harmonic oscillator plays
an outstanding role in physics.

93 When we check this: the right side is equal to

− �√
2m

d
dxψ

(1)
0

ψ
(1)
0

= − �√
2m

−
√

2m
�

W (x)ψ(1)0

ψ
(1)
0

= W (x),

which is equal to the left side. This fascinating formula says: “Show me the logarithmic derivative of the ground
state wave function and I will tell you what system we are talking about.”

94 The world looks the same after someone decides to measure energy with respect to another point on the energy
axis.

95 From a very formal point of view, the second SUSY partner is devoid of the ground state of the first partner, as
discussed earlier. However, since a harmonic oscillator has an infinite number of equidistant levels, a new SUSY
partner means only a shift of all energy levels up by �ω, so the two SUSY partners represent the same system.
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Example 2. Particle in a box←→ cotangent potential
At the beginning of this chapter (p. 162), the problem of the particle in a box was solved.

Now we will treat this as one of the SUSY partners–say, the first one. Our goal will be to find the
second SUSY partner. Similar to the harmonic oscillator a while ago, we will shift the energy
(this time by − h2

8mL2 ) in order to have the ground state of the particle in a box at energy 0. The
formula for the energy levels in the new energy scale, using the SUSY-type notation for the
eigenvalues and the eigenfunctions (as well as counting the ground state as corresponding to
n = 0), has the form

E (1)n =
(n + 1)2h2

8mL2 − h2

8mL2 =
n
(
n + 2

)
h2

8mL2 , n = 0, 1, 2, . . . ,

while the normalized wave function is

ψ(1)n =
√

2

L
sin

(n + 1)π

L
x .

From Eq. (4.73), we find the superpotential W (x) as

W (x) = − �√
2m

d
dxψ

(1)
0

ψ
(1)
0

= − �π√
2mL

ctg
(π

L
x
)
,

while from Eqs. (4.68) and (4.70), we obtain the potential energies for the two SUSY partners:

V1(x) = W 2 − �√
2m

W ′ = �
2π2

2mL2

[
ctg

(π
L

x
)]2 − �√

2m

[
− �√

2m

π

L

]
dctg

(
π
L x
)

dx

= �
2π2

2mL2

[
ctg

(π
L

x
)]2 + �

2π2

2mL2

−1

sin2 π
L x
= �

2π2

2mL2

[
ctg2

(π
L

x
)
− 1

sin2 π
L x

]

= �
2π2

2mL2

[
cos2 π

L x − 1

sin2 π
L x

]
= − �

2π2

2mL2 = −
h2

8mL2 = const

V2(x) = W 2 + �√
2m

W ′ = �
2π2

2mL2

[
ctg

(π
L

x
)]2 + �√

2m

[
− �√

2m

π

L

]
dctg

(
π
L x
)

dx

= �
2π2

2mL2

[
ctg

(π
L

x
)]2 − �

2π2

2mL2

−1

sin2 π
L x
= �

2π2

2mL2

cos2 π
L x + 1

sin2 π
L x

= �
2π2

2mL2

[
2ctg2π

L
x + 1

]
.

The first formula says that V1(x) has a constant value in
[
0, L

]
(this corresponds to the

particle-in-a-box problem). The bottom of this box is at energy − h2

8mL2 , because only then
the ground state energy will equal 0 (as it was assumed). Its SUSY partner corresponds to
V2(x) = �

2π2

2mL2

[
2ctg2 π

L x + 1
]
. As it follows from Eq. (4.71), the wave functions corresponding
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Fig. 4.26. The SUSY partners lead to the same set of energy levels, except possibly for one (the ground state of one of the
partners). One of the SUSY partners corresponds to the particle in a box (see p. 162), as shown in panel (a), together with the three

lowest energy levels 1, 4, and 9. In order to obtain the simplest formulas (and therefore get rid of the unnecessary luggage), �
2π2

2mL2
has been used as the energy unit and, additionally, the box length has been chosen equal π . The original energy scale has been
used in the figure (in which the potential energy for the particle in the box equals 0). The corresponding wave functions have been
plotted for the three lowest levels (each plot put artificially at the height of the corresponding energy level). The functions have
zero value beyond

(
0, L

)
. Panel (b) shows V2(x), calculated as the SUSY partner, together with the two lowest energy levels 4 and

9 and the corresponding wave functions (exposed at the height of their levels).

to V2(x) can be calculated from the particle-in-a-box wave functions by applying operator Â.
Therefore,

ψ
(2)
1 = Âψ(1)1 =

√
2

L

(
�√
2m

d

dx
+W (x)

)
sin

2π

L
x

=
√

2

L

(
�√
2m

2π

L
cos

2π

L
x − �π√

2mL
ctg

(π
L

x
)

sin
2π

L
x

)

=
√

2

L

�√
2m

2π

L

(
cos

2π

L
x − ctg

(π
L

x
)

sin
π

L
x cos

π

L
x

)

=
√

2

L

�√
2m

2π

L

(
cos

2π

L
x − cos2 π

L
x

)
= N ′ sin2 π

L
x,

where N ′ is a normalization constant. Similarly, one gets ψ(2)2 = N ′′ sin x sin 2x . Fig. 4.26
shows V1(x) and V2(x), as well as the energy levels corresponding to both SUSY partners.
For each of the partners, the consecutive energy levels correspond to the wave functions with
increasing number of nodes. As one can see, the SUSY partner potentials differ widely: V1(x)
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is sharp-edged, while V2(x) resembles this a bit, but is cleverly rounded in order to repel the
eigenstates corresponding to V1(x) (by one level) up, and precisely to the positions of the
partner’s excited states.

The two SUSY partners differ by one (ground-state) level.
Our story about beautiful SUSY has a happy ending: it was possible to find about a dozen of

SUSY partners (for the solutions of the Schrödinger equation known earlier).

4.15 Beacons and Pearls of Physics

Sometimes students, spoiled by the handy computers available nowadays, tend to treat the
simple systems described in this chapter as primitive and out of date. A professor has taken
them from the attic and after dusting them off, shows them in a class, while out in the “real
world,” computers with high-level science, splendid programs, and colorful graphs await. This
is wrong. The simple systems considered in this chapter correspond to extremely rare, exact
solutions of Schrödinger equations and are, therefore, precious pearls of physics by themselves.
Nobody will give a better solution, and the conclusions are 100 percent certain. It is true that
except the hydrogen atom, they all correspond to some idealized systems.96 There is no such a
thing as an unbreakable spring (e.g., a harmonic oscillator) or a rotator, that does not change its
length, etc. And yet these problems represent our firm ground or the beacons of our native land.
After reading the present chapter, we will be preparing for a long voyage. When confronted
with the surprises of new lands and trying to understand them,

the only points of reference or the beacons that tell us about terra firma will be the problems
for which analytical solutions have been found.

Summary

Exact analytical solutions97 to the Schrödinger equation play an important role as an organizer of our quantum
mechanical experiences. Such solutions have only been possible to obtain for some idealized objects. This is of great
importance for the interpretation of approximate solutions for real systems. Another great feature of exact solutions
is that they have an extremely wide range of applications: they are useful independent of whether we concentrate on
an electron in an atom, a molecule, a nucleon in a nucleus, a molecule as an entity, etc.

The main features of the solutions are:

• Free particle. The particle may be described as the superposition of the state exp (iκx), corresponding to the
particle moving right (positive values of x), and the state exp (−iκx), that corresponds to the particle moving
left. Both states correspond to the same energy (and opposite momenta ±�κ).

• Particle in a box. We consider first a particle in a 1-D box; i.e., the particle is confined to section
[
0, L

]
with

potential energy (for a particle of mass m and coordinate x) equal to zero and ∞ outside the section. Such
a potential forces the wave function to be nonzero only within the section

[
0, L

]
. We solve the elementary

96 Like Platonic ideal solids.
97 This is to distinguish from accurate solutions (i.e., received with a desired accuracy).
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Schrödinger equation and obtain� = A sin κx+ B cos κx , where κ2 = 2m E
�2 . Quantization appears in a natural

way from the condition of continuity for the wave function at the boundaries: �
(
0
) = 0 and �(L) = 0.

These two conditions give the expression for the energy levels En = n2h2

8mL2 and for the wave functions �n =√
2
L sin nπ

L x with quantum number n = 1, 2, . . . Conclusion: the successive energy levels are more and more
distant and the wave function is simply a section of the sine function (with 0 value at the ends).

• Tunneling effect. We have a particle of mass m and a rectangular barrier (section
[
0, a

]
, width a and height

V0). Beyond this section, the potential energy is zero. The particle comes from the negative x values and has
energy E < V0. A classical particle would be reflected from the barrier. However, for the quantum particle:

– The transmission coefficient is nonzero.
– The passage of a large energy particle is easier.
– A narrower barrier means a larger transmission coefficient.
– The higher the barrier, the smaller the transmission coefficient is.

The first feature is the most sensational, the others are intuitively quite acceptable.

• Resonances over the barrier. A particle with the energy E > V0 either bounces off the barrier or passes over
it. For some particular energies, there are transmissions of the particle with 100% certainty. These resonance
states are at the energies, which correspond to the eigenvalues of a potential well with the shape of the barrier
(i.e., as in the particle in a box) and placed on top of the barrier.

• Resonance states at the double barrier. It turns out that (for a given interbarrier distance and at energies lower
than the barrier) there are some “magic” energies of the particle (resonance energies), at which the transmission
coefficient is equal 100%. The magic energies correspond to the stationary states that would be for a particle
in a box a little longer than the interbarrier distance. The resonance states are also over the barrier and nearly
assure a transmission coefficient equal to 100%, whereas other energies may lead to reflection of the particle,
even if they are larger than the barrier height.

• Harmonic oscillator. A single particle of mass m coupled by a harmonic spring (with force constant k) cor-

responds to potential energy V = kx2

2 . We obtain quantization of the energy: Ev = hν
(
v + 1

2

)
, where the

vibrational quantum number v = 0, 1, 2, . . . , and the angular frequency ω = 2πν =
√

k
m . We see that the

non-degenerate energy levels are equidistant, and their distance is larger for a larger force constant and smaller
mass. The wave function has the form of a product of a Gaussian factor and a polynomial of degree v. The
polynomial assures the proper number of nodes, while the Gaussian factor damps the plot to zero for large
displacements from the particle equilibrium position. The harmonic oscillator may be viewed (Chapter 6) as a
model (for small displacements) for two masses bound by a harmonic spring (like a diatomic molecule).

• Morse oscillator. The harmonic oscillator does not allow for the breaking of the spring connecting two particles,
while the Morse oscillator admits dissociation. This is extremely important because real diatomic molecules
resemble the Morse rather than the harmonic oscillator. The solution for the Morse oscillator has the following
features:

– Energy levels are non-degenerate.
– Their number is finite.
– For large well depths, the low-energy levels tend to be the energy levels of the harmonic oscillator (the

levels are nearly equidistant).
– The higher the energy level, the larger the displacement from the equidistant situation is (the energy levels

get closer).
– The wave functions, especially those corresponding to deep-lying levels, are very similar to the corre-

sponding ones of the harmonic oscillator,98 but they do not exhibit the symmetry.99

98 This is despite the fact that the formula itself is very different.
99 The wave functions for the harmonic oscillator are either even or odd with respect to the inversion operation

(x →−x).
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• Rigid rotator. This is a system of two masses m1 and m2 that keep their distance R fixed. After separating the
center-of-mass motion (see Appendix I available at booksite.elsevier.com/978-0-444-59436-5 on p. e93), we
obtain an equation of motion for a single particle of mass equal to the reduced mass μ moving on a sphere of
radius R (position given by angles θ and φ). The energy is determined by the quantum number J = 0, 1, 2, . . .

and is equal to E J = J (J + 1) �
2

2μR2 . As we can see:

– There is an infinite number of energy levels.
– The separation of the energy levels increases with the energy (similar to the particle-in-a-box problem).
– The separation is smaller for larger masses.
– The separation is smaller for longer rotators.

The wave functions are the spherical harmonics Y M
J

(
θ, φ

)
, which for low J are very simple and for large J

are complicated trigonometric functions. The integer quantum number M satisfies the relation |M | ≤ J . The
energy levels are, therefore,

(
2J + 1

)
-tuply degenerate.

• Hydrogen-like atom. We have an electron and a nucleus of charges −e and +Ze, respectively, or −1 and +Z
in atomic units. The wave function is labeled by three quantum numbers: principal n = 1, 2, . . . , azimuthal
l = 0, 1, . . . (n − 1) and magnetic m = −l,

(−l + 1
)
, . . . , 0, . . . l. The energy in atomic units is given by the

formula100 En = −Z2/(2n2). The wave function represents the product of a polynomial (of r ), an exponential
function decreasing with r and a spherical harmonic Y m

l

(
θ, φ

)
, where r , θ, φ are the spherical coordinates of

the electron, and the nucleus is at the origin. The wave functions are denoted by the symbols nlm (with s for
l = 0, p for l = 1, etc.): 1s, 2s, 2p0, 2p1, 2p−1, . . . The degeneracy of the nth level is equal to n2.

• Hooke helium atom. In this peculiar helium atom, the electrons are attracted to the nucleus by harmonic springs
(of equal strength) of equilibrium length equal to zero. For k = 1

4 , an exact analytical solution exists. The exact

wave function is a product of two Gaussian functions and a simple factor:
(

1+ 1
2 r12

)
, which correlates the

motions of the two electrons.
• Hooke molecules. If one has K pairs of particles (with the intrapair interaction of any kind) in a system of N

particles and the other interactions are described by quadratic forms of coordinates satisfying some conditions,
the separation of variables is possible and gives K one-particle Hamiltonians and N − K − 1 Hamiltonians
describing spherical harmonic oscillators with properly defined coordinates (known as normal coordinates; see
Chapter 7). Together with the one-particle Hamiltonian for the center-of-mass motion, we obtain N Schrödinger
equations, each one for one “particle” only.

• Supersymmetry (SUSY). For a known exact solution of the Schrödinger equation for a system, one can define
another system with the same spectrum of the eigenvalues (possibly except the ground-state eigenvalue). Such
a pair of the systems is known as the supersymmetry (SUSY) partners.

Main Concepts, New Terms
annihilation operator (p. 188)
associated Laguerre polynomials (p. 201)
associated Legendre polynomials (p. 200)
binding energy (p. 198)
Bohr first orbit (p. 202)
box with ends (p. 162)
correlation factors (p. 212)
creation operator (p. 190)
cyclic box (p. 167)
dissociation energy (p. 198)
Free Electron Molecular Orbitals (FEMO) (p. 165)

free particle (p. 161)
harmonic oscillator (p. 186)
Hermite polynomials (p. 191)
Hooke atom (p. 215)
Hooke molecule (p. 213)
hydrogen-like atom (p. 201)
Laguerre polynomials (p. 201)
Legendre polynomials (p. 200)
Morse oscillator (p. 192)
nanotube (p. 170)
particle in a box (p. 162)

100 The mass of the nucleus is set to infinity.

http://booksite.elsevier.com/978-0-444-59436-5
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phonon (p. 190)
phonon vacuum (p. 190)
positronium (p. 208)
radial density (p. 204)
resonance state (p. 181)
rigid rotator (p. 199)

spherical harmonics (p. 200)
SUSY partner (p. 219)
SUSY superpotential (p. 218)
transmission coefficient (p. 176)
tunnelling effect (p. 174)

From the Research Front

A field like the one discussed in the present chapter seems to be definitely closed. We think that we have been lucky
enough to solve some simple problems, but others are just too complicated. But this is not true. For several decades,
it has been possible to solve a series of nonlinear problems, which were thought in the past to be hopeless. What
decides success is choice of the problem, quality of researchers, courage, etc.101 It is worth noting that a systematic
search for promising systems to solve is currently in progress.

Ad Futurum

It seems that the number of exactly solvable problems will continue to increase, although the pace of such research
will be low. If exactly solvable problems were closer and closer to the practice of physics, it would be of great
importance.

Additional Literature
J. Dvořák and L. Skála, “Analytical solutions of the Schrödinger equation. Ground state energies and wave func-
tions,” Collect. Czech. Chem. Commun., 63, 1161 (1998).

Here is a very interesting article with the character of a synthesis. Many potentials,102 leading to exactly solvable
problems, are presented in a uniform theoretical approach. The authors give also their own generalizations.

F. Cooper, A. Khare, and U. Sukhatme, “Supersymmetry and quantum mechanics,” World Scientific, Singapore
(2001).

Questions

1. Free particle. Wave function �(x) = A exp (iκx)+ B exp (−iκx), where A, B, κ > 0 represent constants

a. is the de Broglie’s wave of a free particle on the x-axis
b. describes a particle that moves right with the probability A and left with probability B
c. and the constants A and B ensure the normalization of wave function �

d. describes a particle that moves right with the probability proportional to |A|2 and left with probability

proportional to |B|2.

2. Particle in a box. Energy quantization follows

a. from the normalization of the wave function
b. from a single value of the wave function at any point of space

101 Already the Morse potential looks very difficult to manage, to say nothing of the harmonic helium atom.
102 This includes six that are not discussed in this textbook.
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c. from the continuity of the wave function
d. from the fact that the wave function represents an eigenfunction of the Hamiltonian.

3. The energy eigenvalues and eigenfunctions for the particle in a box

a. the energy eigenvalues are doubly degenerate because the box is symmetric
b. the eigenfunctions are orthogonal
c. increasing box length results in lowering energy levels and smaller distances between them
d. the energy levels of a heavier particle are lower than those corresponding to a lighter particle.

4. The tunneling effect (E stands for the energy, V0 means the height of the energy barrier).

a. for E < V0 the particle will bounce off the barrier with the probability smaller than 1
b. the larger the particle’s energy E < V0 or smaller the barrier’s width the particle will pass easier through

the barrier
c. for E < V0 a heavier particle will pass the barrier more easily
d. for E > V0, the particle always passes the barrier.

5. Harmonic oscillator.

a. when the force constant is multiplied by 4, the energy level separation doubles
b. has an infinite number of energy levels
c. its energy levels are non-degenerate and equidistant
d. if a deuteron oscillates in a parabolic energy well instead of a proton, the separation of the energy levels

doubles.

6. Harmonic oscillator.

a. corresponds to a parabolic potential energy well
b. it is only in the ground state that the mean value of the amplitude is equal zero
c. its wave functions are all symmetric with respect to the transformation x →−x .
d. the square of the complex modulus of the wave function vanishes for x →±∞.

7. Rigid rotator (J is the rotational quantum number).

a. its energy levels are equidistant and degenerate
b. the degeneracy of the energy level corresponding to J is equal to 2J + 1
c. the rotational energy is proportional to J (J + 1)
d. if the two rotating masses double their mass, the separation between the energy levels decreases by the factor

of 2.

8. Hydrogen atom.

a. the largest probability density of finding the electron described by the wave function 1s is on the nucleus
b. for the 1s state the largest value of the probability of finding a given nucleus-electron separation is for the

value of such separation equal to 1 a.u.
c. the mean value of the nucleus-electron separation is equal to the radius of the first Bohr orbit
d. a negative value of an atomic orbital means a lower value, while the positive means a higher value of the

probability of finding the electron.

9. Hydrogen atom.

a. its ground-state wave function is spherically symmetric
b. the wave functions 1s, 2s, 3s are spherically symmetric, while 2px represents an eigenfunction of the

Hamiltonian, of the square of the angular momentum and of the z component of the angular momentum
c. the number of the node surfaces for the wave functions 1s, 2s, 3s, 2px , 3dxy is equal to 0, 1, 2, 2, 3
d. the wave function 2py has a cylindrical symmetry.
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10. Hydrogen atom (n, l,m stand for the quantum numbers, ψnlm represent orbitals).

a. the wave function 2ψ42−1 − 1
2ψ32−1 is an eigenfunction of the Hamiltonian

b. the wave function 1
2ψ320 + 1

2ψ32−1 is an eigenfunction of the square of the angular momentum

c. the wave function i 1
3ψ310 − 1

2 iψ320 is an eigenfunction of the Hamiltonian and of the z component of the
angular momentum

d. the wave function ψ310 + i 1
2ψ32−1 − iψ300 represents an eigenfunction of the Hamiltonian

Answers

1a,d,2c,d,3b,c,d,4a,b,5a,b,c,6a,d,7b,c,d,8a,b,9a,d,10b,c,d





CHAPTER 5

Two Fundamental Approximate
Methods

Even the upper end of the river believes in the ocean.
William Stafford

Where Are We?

We are moving upward into the central parts of the TREE trunk.

An Example

We are interested in properties of the ammonia molecule in its ground and excited states; e.g., we would like to know
the mean value of the nitrogen-hydrogen distance. Only quantum mechanics gives a method for calculation this value
(p. 26): we have to calculate the mean value of an operator with the ground-state wave function. But where could this
function be taken from? Could it be a solution of the Schrödinger equation? Impossible; unfortunately, this equation
is too difficult to solve (14 particles; cf. problems with exact solutions in Chapter 4).

The only possibility is somehow to obtain an approximate solution to this equation.

What Is It All About?

We need mathematical methods that will allow us to obtain approximate solutions of the Schrödinger equation. These
methods are the variational method and the perturbational approach.

Variational Method (�) p. 232

• Variational Principle
• Variational Parameters
• Linear Variational Parameters or the Ritz Method

Perturbational Method p. 240

• Rayleigh-Schrödinger Approach (�� )
• Hylleraas Variational Principle (�)

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00005-2
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• Hylleraas Equation (�)
• Degeneracy (�)
• Convergence of the Perturbational Series (�)

Why Is This Important?

We have to know how to compute wave functions. The exact wave function is definitely out of our reach, so in this
chapter, we will talk about how to calculate the approximations.

What Is Needed?

• Postulates of quantum mechanics (Chapter 1; needed)
• Hilbert space (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5 p. e7; necessary)
• Matrix algebra (see Appendix A available at booksite.elsevier.com/978-0-444-59436-5 p. e1; needed)
• Lagrange multipliers (see Appendix N available at booksite.elsevier.com/978-0-444-59436-5 on p. e121;

needed)
• Orthogonalization (see Appendix J available at booksite.elsevier.com/978-0-444-59436-5 p. e99; occasionally

used)
• Matrix diagonalization (see Appendix K available at booksite.elsevier.com/978-0-444-59436-5 p. e105; needed)
• Group theory (see Appendix C available at booksite.elsevier.com/978-0-444-59436-5 p. e17; occasionally used)

Classical Works

The variational method of linear combinations of functions was formulated by Walther Ritz in a paper “Über eine neue
Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik,” published in Zeitschrift für Reine
und Angewandte Mathematik, 135, 1 (1909). � The method was applied by Erwin Schrödinger in his first works,
“Quantisierung als Eigenwertproblem” in Annalen der Physik, 79, 361 (1926); ibid. 79, 489 (1926); ibid. 80, 437
(1926); ibid. 81, 109 (1926). Schrödinger also used the perturbational approach when developing the theoretical results
of Lord Rayleigh for vibrating systems (hence the often-used term Rayleigh-Schrödinger perturbation theory). �
Egil Andersen Hylleraas, in the work “Über den Grundterm der Zweielektronenprobleme von H−, He, Li+, Be++
usw.,” published in Zeitschrift der Physik, 65, 209 (1930), showed for the first time that the variational principle may
be used for separate terms of the perturbational series.

5.1 Variational Method

5.1.1 Variational Principle

Let us write the Hamiltonian Ĥ of the system under consideration1 and take an arbitrary function
�, which satisfies the following conditions:

• It depends on the same coordinates as the solution to the Schrödinger equation.
• It is of class Q (which enables it to be normalized).

1 We focus here on the non-relativistic case (Eq. (2.1)), where the lowest eigenvalue of Ĥ is bound from below
(> −∞). As we remember from Chapter 3, this is not fulfilled in the relativistic case (Dirac’s electronic sea), and
may lead to serious difficulties in applying the variational method.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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We calculate the number ε that depends on� (i.e., ε is the mean value of the Hamiltonian
and a functional of �):

ε[�] =
〈
�

∣∣∣Ĥ ∣∣∣�〉
〈�|�〉 .

The variational principle states the following:

• ε ≥ E0, where E0 is the ground-state energy of the system (the lowest eigenvalue

of Ĥ )
• in the above inequality, ε = E0 happens if and only if� equals the exact ground-state

wave function �0 of the system.

Proof (expansion into eigenfunctions)

The eigenfunctions {�i } of the Hamiltonian Ĥ represent a complete orthonormal set (see
Appendix B available at booksite.elsevier.com/978-0-444-59436-5 on p. e7) in the Hilbert
space of our system.2 This means that any function belonging to this space can be represented
as a linear combination of the functions of this set

� =
∞∑

i=0

ci�i , (5.1)

where ci assures the normalization of � (i.e.,
∑∞

i=0 |ci |2 = 1, because 〈�|�〉 =∑
i, j c∗j ci

〈
� j |�i

〉 = ∑
i, j c∗j ciδi j = ∑

i c∗i ci = 1). Let us insert this into the expression

for the mean value of the energy ε =
〈
�|Ĥ�

〉
. Then,

ε − E0 =
〈
�|Ĥ�

〉
− E0 =

〈 ∞∑
j=0

c j� j |Ĥ
∞∑

i=0

ci�i

〉
− E0

=
∞∑

i, j=0

c∗j ci Ei
〈
� j |�i

〉− E0 =
∞∑

i, j=0

c∗j ci Eiδi j − E0

=
∞∑

i=0

|ci |2 Ei − E0 · 1 =
∞∑

i=0

|ci |2 Ei − E0

∞∑
i=0

|ci |2 =
∞∑

i=0

|ci |2
(
Ei − E0

) ≥ 0.

Note that the equality (in the last step) is satisfied only if � = �0. This therefore proves the
variational principle ε ≥ E0.

2 The functions are and will remain unknown; we use only the property of forming a complete set here.

http://booksite.elsevier.com/978-0-444-59436-5
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Proof using Lagrange multipliers

In several places in this book, we need to use similar proofs with Lagrange multipliers. This is
why we will demonstrate how to prove the same theorem using this technique (see Appendix N
available at booksite.elsevier.com/978-0-444-59436-5 on p. e121).

Take the functional

ε[�] =
〈
�|Ĥ�

〉
. (5.2)

We want to find a function that assures a minimum of the functional and satisfies the nor-
malization condition

〈�|�〉 − 1 = 0. (5.3)

We will change the function � a little (the change will be called variation) and see how
this will change the value of the functional ε[�]. But for this functional, we have � and �∗.
Therefore, it seems that for�∗, we have to take into account the variation made in�. In reality,
however, there is no need to do that: it is sufficient to make the variation either in� or in�∗ (the
result does not depend on the choice3). This makes the formulas simpler. We decide to choose
the variation of �∗; i.e., δ�∗.

Now we apply the machinery of the Lagrange multipliers (see Appendix N available at
booksite.elsevier.com/978-0-444-59436-5 on p. e121). Let us multiply Eq. (5.3) by the (for
the time being) unknown Lagrange multiplier E and subtract afterward from the functional ε,

3 Let us demonstrate this principle, because we will use it several times in this book. In all our cases, the functional
(which depends here on a single function φ

(
x
)
, but later we will also deal with several functions in a similar

procedure) might be rewritten as

ε[φ] =
〈
φ| Âφ

〉
, (5.4)

where Â is a Hermitian operator. Let us write φ(x) = a(x)+ ib(x), where a(x) and b(x) are real functions. The
change of ε is equal to

ε[φ + δφ] − ε[φ] =
〈
a + δa + ib + iδb| Â(a + δa + ib + iδb)

〉
−

〈
a + ib| Â(a + ib)

〉
=

〈
δa + iδb| Âφ

〉
+

〈
φ| Â(δa + iδb)

〉
+ quadratic terms

=
〈
δa| Âφ + ( Âφ)∗

〉
+ i

〈
δb|( Âφ)∗ − Âφ

〉
+ quadratic terms.

The variation of a functional only represents a linear part of the change, and therefore δε =
〈
δa| Âφ + ( Âφ)∗

〉
+

i
〈
δb|( Âφ)∗ − Âφ

〉
. At the extremum, the variation has to equal zero at any variations of δa and δb. This may

happen only if Âφ + ( Âφ)∗ = 0 and ( Âφ)∗ − Âφ = 0. This means Âφ = 0 or, equivalently, ( Âφ)∗ = 0.

The first of the conditions would be obtained if in ε we made the variation in φ∗ only (the variation in the

extremum would then be δε =
〈
δφ| Âφ

〉
= 0); hence, from the arbitrariness of δφ∗, we would get Âφ = 0). The

second, if we made the variation in φ only [then, δε =
〈
φ| Âδφ

〉
=

〈
Âφ|δφ

〉
= 0 and ( Âφ)∗ = 0] and the result

is exactly the same. This is what we wanted to show: we may vary either φ or φ∗ and the result is the same.

http://booksite.elsevier.com/978-0-444-59436-5
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resulting in an auxiliary functional G[�]:
G[�] = ε[�] − E( 〈�|�〉 − 1).

The variation of G (which is analogous to the differential of a function) represents a linear
term in δ�∗. For an extremum, the variation has to equal zero:

δG =
〈
δ�|Ĥ�

〉
− E 〈δ�|�〉 =

〈
δ�|(Ĥ − E)�

〉
= 0.

Since this has to be satisfied for any variation δ�∗, then it can follow only if

(Ĥ − E)�opt = 0, (5.5)

which means that the optimal � ≡ �opt is a solution of the Schrödinger equation4 with E as
the energy of the stationary state; i.e., �opt together with the normalization condition.

Now let us multiply Eq. (5.5) by �∗opt and integrate. We obtain〈
�opt |Ĥ�opt

〉
− E

〈
�opt |�opt

〉 = 0, (5.6)

or

E = ε
⎡
⎣ 1√〈

�opt |�opt
〉�opt

⎤
⎦ , (5.7)

which means that the conditional minimum of ε[�] is E = min(E0, E1, E2, . . .) = E0 (the
ground state). Hence, for any other �, we obtain ε ≥ E0.

The same result was obtained when we expanded � into the eigenfunction series.

Variational Principle for Excited States

The variational principle has been proved for an approximation to the ground-state wave func-
tion. But what about excited states? If the variational function� is orthogonal to exact solutions
to the Schrödinger equation that correspond to all the states of lower energy than the state we
are interested in, the variational principle is still valid5. If the wave function k being sought
represents the lowest state among those belonging to a given irreducible representation of the
symmetry group of the Hamiltonian, then the orthogonality mentioned above is automatically
guaranteed (see Appendix C available at booksite.elsevier.com/978-0-444-59436-5 on p. e17).
For other excited states, the variational principle cannot be satisfied, except that function �
does not contain lower-energy wave functions (i.e., is orthogonal to them, e.g., because the
wave functions have been cut out of it earlier).

4 In the variational calculus, the equation for the optimum� or the conditional minimum of a functional ε is called
the Euler equation. One can see that in this case, the Euler equation is identical to the Schrödinger equation.

5 The corresponding proof will be only slightly modified. Simply stated, in the expansion (5.1) of the variational
function�, the wave functions�i that correspond to lower energy states (than the state in which we are interested)
will be absent. We will therefore obtain

∑
i=1 |ci |2

(
Ei − Ek

) ≥ 0, because state k is the lowest of all the states i .

http://booksite.elsevier.com/978-0-444-59436-5
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Watch for Mathematical States

We mentioned in Chapter 1 that not all solutions of the Schrödinger equation are acceptable.
Only those that satisfy the symmetry requirements with respect to the exchange of labels corre-
sponding to identical particles (Postulate V) are acceptable. The other solutions are called math-
ematical. If, therefore, a careless scientist takes a variational function � with a non-physical
symmetry, the variational principle following our derivation exactly (p. 234) will still be valid,
but with respect to the mathematical ground state. The mathematical states may correspond to
energy eigenvalues lower than the physical ground state (they are called the underground states,
cf., p. 84). All this would end up as a catastrophe, because the mean value of the Hamiltonian
would tend toward the non-physical underground mathematical state.

5.1.2 Variational Parameters

The variational principle may seem a little puzzling. We insert an arbitrary function� into the
integral and obtain a result related to the ground state of the system under consideration. And
yet the arbitrary function � may have absolutely nothing to do with the molecule that we are
considering. The problem is that the integral still contains the most important information about
our system. The information resides in Ĥ . Indeed, if someone wrote down the expression for Ĥ ,
we would know right away that the system contains N electrons and M nuclei. We would also
know the charges of the nuclei; i.e., the chemical elements of which the system is composed.6

This is important information.
The variational method represents an application of the variational principle. The trial wave

function � is taken in an analytical form (with the variables denoted by the vector x and
automatically satisfying Postulate V). In the key positions in the formula for �, we introduce
the parameters c ≡ (c0, c1, c2, . . ., cP), which we may change smoothly. The parameters play
the role of tuning, and their particular values listed in vector c result in a certain shape of�

(
x; c).

The integration in the formula for ε pertains to the variables x; therefore, the result depends
uniquely on c. Our function ε(c) has the form

ε
(
c0, c1, c2, . . .cP

) ≡ ε(c) =
〈
�(x; c)|Ĥ�(x; c)

〉
〈�(x; c)|�(x; c)〉 .

Now the problem is to find the minimum of the function ε
(
c0, c1, c2, . . .cP

)
.

6 And yet we would be unable to decide whether we are dealing with matter or antimatter, or whether we have to
perform calculations for the benzene molecule or for six CH radicals (cf. Chapter 2).
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Fig. 5.1. The philosophy behind the variational method. A parameter c is changed in order to obtain the best solution possible.

In the general case, the task is not simple because what we are searching for is the global
minimum. The relation

∂ε
(
c0, c1, c2, . . .cP

)
∂ci

= 0 for i = 0, 1, 2, . . .P,

therefore, represents only a necessary condition for the global minimum.7 This problem may
be disregarded in the following circumstances:

• The number of minima is small.
• In particular, when we use � with the linear parameters c (in this case, we have a single

minimum; see below).

The above equations enable us to find the optimum set of parameters c = copt . Then,

in a given class of the trial functions� the best possible approximation of�0 is�
(
x; copt

)
,

and the best approximation of E0 is ε
(
copt

)
.

Fig. 5.1 shows the essence of the variational method.8

7 More information about global minimization may be found in Chapter 6.
8 The variational method is used in everyday life. Usually we determine the target (say, cleaning the car), and then

by trial and error, we approach the ideal, but we never fully achieve it.
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Example

Let us assume that someone does not know that the hydrogen-like atom problem (where the
nucleus has a charge Z ) has an exact solution.9 Let us apply the simplest version of the variational
method to see what kind of problem we will be confronted with.

An important first step will be to decide which class of trial functions to choose. We take
the class10 (for c > 0) exp (−cr) and after normalization of the function: �(r , θ, φ; c) =√

c3

π
exp (−cr). The calculation ε[�] =

〈
�

∣∣∣Ĥ ∣∣∣�〉
is shown in Appendix H available at

booksite.elsevier.com/978-0-444-59436-5 on p. e91. We obtain ε(c) = 1
2 c2− Zc. We very eas-

ily find the minimum of ε(c) and the optimum c is equal to copt = Z , which, as we know from
Chapter 4, represents the exact result. This is exceptional: in practice (for atoms or molecules),
we would never know the exact result. The optimal ε might then be obtained after many days
of number crunching11.

5.1.3 Linear Variational Parameters or the Ritz Method12

The Ritz method represents a special kind of variational method. The trial function � is
represented as a linear combination of the known basis functions {�i } with the (for the
moment) unknown variational coefficients ci .

� =
P∑

i=0

ci�i .

9 For a larger system, we will not know the exact solution either.
10 A particular choice is usually made by scientific discussion. The discussion might proceed as follows.

The electron and the nucleus attract themselves; therefore, they will be close in space. This is assured by

many classes of trial functions [e.g., exp (−cr), exp (−cr2), exp (−cr3), etc., where c > 0 is a single variational
parameter]. In the present example, we pretend that we do not know which class of functions is most promising
(i.e., which will give lower ε). Let us begin with class exp (−cr), and other classes will be investigated in the
years to come. With that decision made, we do the calculations.

11 For example, for Z = 1, we had to decide a starting value of c [say, c = 2 ; ε(2) = 0]. If we try c = 1.5, we
obtain a lower (i.e., better) value ε(1.5) = −0.375 a.u., so the energy goes down. This is a positive result, so let us
try c = 1.2 ; ε(1.2) = −0.48 j.at. This is another excellent result. However, when we continue and take c = 0.7,
we obtain ε = −0.455 (i.e., a higher energy). We would continue in this way and finally obtain something like
copt = 1.0000000. We might be satisfied by eight significant figures and decide to stop the calculations. We would
never be sure, however, whether other classes of trial functions would provide still better (i.e., lower) energies. In
our particular case, this, of course, would never happen, because we have accidentally taken a class that contains
the exact wave function.

12 Walther Ritz was a Swiss physicist and a former student of Poincaré. His contributions, beside the variational
approach, include perturbation theory and the theory of vibrations. Ritz is also known for his controversial
disagreement with Einstein on the time flow problem (“time flash”), which was concluded by their joint article
“An agreement to disagree” [W. Ritz and A. Einstein, Phys. Zeit., 10, 323 (1909)].

http://booksite.elsevier.com/978-0-444-59436-5
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Then

ε =
〈∑P

i=0 ci�i |Ĥ ∑P
i=0 ci�i

〉
〈∑P

i=0 ci�i |∑P
i=0 ci�i

〉 =
∑P

i=0
∑P

j=0 c∗i c j Hi j∑P
i=0

∑P
j=0 c∗i c j Si j

= A

B
. (5.8)

In the formula above, {�i } represents the chosen basis set.13 The basis set functions are
usually non-orthogonal, and therefore 〈

�i |� j
〉 = Si j , (5.9)

where S stands for the overlap matrix, and the integrals

Hi j =
〈
�i |Ĥ� j

〉
(5.10)

are the matrix elements of the Hamiltonian. Both matrices (S and H) are calculated once and
for all. The energy ε becomes a function of the linear coefficients {ci }. The coefficients {ci } and
the coefficients

{
c∗i
}

are not independent (ci can be obtained from c∗i ). Therefore, as the linearly
independent coefficients, we may treat either {ci } or14

{
c∗i
}
. When used for the minimization

of ε, both choices would give the same result. We decide to treat
{
c∗i
}

as variables. For each
k = 0, 1, . . .P we have to have at a minimum,

0 = ∂ε

∂c∗k
=

(∑P
j=0 c j Hkj

)
B − A

(∑P
j=0 c j Sk j

)
B2

=
(∑P

j=0 c j Hkj

)
B

− A

B

(∑P
j=0 c j Sk j

)
B

=
(∑P

j=0 c j
(
Hkj − εSkj

))
B

,

which leads to the secular equations

⎛
⎝ P∑

j=0

c j
(
Hkj − εSkj

)⎞⎠ = 0 for k = 0, 1, . . .P. (5.11)

The unknowns in the above equation are the coefficients c j and the energy ε. With respect to
the coefficients c, Eq. (5.11) represents a homogeneous set of linear equations. Such a set has

13 Such basis sets are available in the literature. A practical problem arises as to how many such functions should
be used. In principle, we should have used P = ∞. This, however, is unfeasible. We are restricted to a finite,
preferably small number. And this is the moment when it turns out that some basis sets are more effective than
others, that this depends on the problem considered, etc.

14 See footnote on p. 234.
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a non-trivial solution if the secular determinant is equal to zero (see Appendix A available at
booksite.elsevier.com/978-0-444-59436-5)

det
(
Hkj − εSkj

) = 0. (5.12)

This happens, however, only for some particular values of ε satisfying the above equation.
Since the rank of the determinant equals P + 1, we therefore obtain P + 1 solutions εi ,

i = 0, 1, 2, . . .P . Due to the Hermitian character of operator Ĥ , the matrix H will be Hermitian
as well. In Appendices J on p. e99 and L on p. e107, we show that the problem reduces to the
diagonalization of some transformed H matrix (also Hermitian). This guarantees that all εi will
be real numbers.15 Let us denote the lowest εi as ε0, to represent an approximation16 to the
ground-state energy E0. The other εi , i = 1, 2, . . .P will approximate the excited states of the
system with energies E1, E2, E3, ... We obtain an approximation to the i th wave function by
inserting the calculated εi into Eq. (5.11), and then, after including the normalization condition,
we find the corresponding set of ci . The problem is solved.

5.2 Perturbational Method

5.2.1 Rayleigh–Schrödinger Approach

The idea of the perturbational approach is very simple. We know everything about a certain
non-perturbed problem. Then we slightly perturb the system, and everything changes. If the
perturbation is small, it seems there is a good chance that there will be no drama: the wave
function and the corresponding energy will change only a little (if the changes were large, the
perturbational approach would be inapplicable). The whole perturbational procedure aims at
finding these tiny changes with satisfactory precision.

Perturbational theory is notorious for quite clumsy equations. Unfortunately, there is no way
around this if we want to explain how to calculate things. However, in practice, only a few of
these equations will be used and those equations will be highlighted in frames in this chapter.

Let us begin our story. We would like to solve the Schrödinger equation

Ĥψk = Eψk, (5.13)

and as a rule, we will be interested in a single state k, which most often is the ground state
(k = 0). This particular state will play an exceptional role in the formulas of the perturbational
theory.

15 This is a very good development, because the energy of the photon that is required for excitation from one state
to the other will be a real number.

16 This approximation assumes that we used the basis functions that satisfy Postulate V (on symmetry).

http://booksite.elsevier.com/978-0-444-59436-5
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We apply a perturbational approach when17

Ĥ = Ĥ (0) + Ĥ
(
1
)
,

where the so-called unperturbed operator Ĥ (0) is large, while the perturbation operator Ĥ
(
1
)

is small18. We assume that there is no problem whatsoever with solving the unperturbed
Schrödinger equation (also for n = k):

Ĥ (0)ψ(0)n = E (0)n ψ(0)n . (5.14)

We assume that functionsψ(0)n form an orthonormal set, which is natural.19 We are interested
in the fate of the wave function ψ(0)k after the perturbation is switched on (when it changes to
ψk). We choose the intermediate normalization; i.e.,〈

ψ
(0)
k |ψk

〉
= 1. (5.15)

The intermediate normalization means that ψk , as a vector of the Hilbert space (see
Appendix B available at booksite.elsevier.com/978-0-444-59436-5 on p. e7), has the normal-
ized ψ(0)k as the component along the unit basis vector ψ(0)k . In other words, ψk = ψ(0)k + terms

orthogonal to ψ(0)k . The intermediate normalization is convenient, but not necessary. Although
convenient for derivation of perturbational equations, it leads to some troubles when the mean
values of operators are to be calculated.

We are all set to proceed. First, we introduce the perturbational parameter 0 ≤ λ ≤ 1 in
Hamiltonian Ĥ , making it, therefore, λ–dependent20:

Ĥ
(
λ
) = Ĥ (0) + λĤ

(
1
)
.

When λ = 0, Ĥ
(
λ
) = Ĥ (0), while λ = 1 gives Ĥ

(
λ
) = Ĥ (0) + Ĥ (1). In other words, we

tune the perturbation at will from 0 to Ĥ
(
1
)
. However, it is worth noting that Ĥ

(
λ
)

for λ 
= 0, 1
may not correspond to any physical system. However, it does not need to. We are interested here
in a mathematical trick; we will come back to reality by putting λ = 1 in the final formulas.

We are interested in the Schrödinger equation satisfied for all values λ ∈ [
0, 1

]
:

Ĥ
(
λ
)
ψk

(
λ
) = Ek

(
λ
)
ψk

(
λ
)
.

17 We assume that all operators are Hermitian.
18 This is in the sense that the energy spectrum of Ĥ (0) is only slightly changed after the perturbation Ĥ

(
1
)

is
switched on.

19 We can always do that because Ĥ
(
0
)

is Hermitian (see Appendix B available at booksite.elsevier.com/
978-0-444-59436-5).

20 Its role is technical. It will enable us to transform the Schrödinger equation into a sequence of perturbational
equations, which must be solved one by one. Then the parameter λ disappears from the theory, because we put
λ = 1.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 5.2. Philosophy of the perturbational approach (the optimistic version). The ideal ground-state wave functionψ0 is constructed

as a sum of a good zero-order approximation (ψ(0)0 ) and consecutive small corrections (ψ(n)0 ). The first-order correction (ψ(1)0 ) is
still quite substantial, but fortunately the next corrections amount to only small cosmetic changes. I did not dare to continue the
pictures in case of possible divergence of the perturbational series.

Now this is a key step in the derivation. We expect that both the energy and the wave function
can be expanded in a power series21 of λ:

Ek
(
λ
) = E (0)k + λE (1)k + λ2 E (2)k + · · · (5.16)

ψk
(
λ
) = ψ(0)k + λψ(1)k + λ2ψ

(2)
k + · · · , (5.17)

where E (i)k stands for some (unknown for the moment) coefficients, and ψ(i)k represents the
functions to be found. We expect the two series to converge (Fig. 5.2).

21 It is in fact a Taylor series with respect to λ. The physical meaning of these expansions is the following: E(0)k and

ψ
(0)
k are good approximations of Ek

(
λ
)

andψk
(
λ
)
. The rest will be calculated as a sum of small correction terms.

Both series are based on a very simple idea. Imagine a rose on a long stalk. We are interested in the distance of the

flower center from the ground. Suppose the corresponding measurement gives h
(
0
)

(an analog of E
(
0
)

k or ψ
(
0
)

k ).
Now we are going to conceive a theory that predicts the distance of the flower center from the ground (h), when a
fly of mass λ sits on the flower center. The first idea is that the bending should be proportional to λ. Therefore, we

have our first guess that h(λ)− h
(
0
)
≈ λh

(
1
)
, where h

(
1
)

stands for some suitable constant of proportionality. We
find this constant with a high precision either experimentally, by weighing some small weights (less ambitious), or
theoretically (more ambitious) by applying a model of the flower. Then we proudly see that our theory is working,
when some small flies are sitting on the rose. After some time, we are bored by weighing small flies, and begin

to test the formula h(λ)− h
(
0
)
≈ λh

(
1
)

for bees. Unfortunately, our theory ceases to work well (the effect of the
nonlinearity). We watch our formula as a function of λ fail and, all of a sudden, we get an idea. The idea is to

add a new term λ2 h
(
2
)

with a suitably chosen h
(
2
)

constant: h(λ) − h
(
0
)
≈ λh

(
1
)
+ λ2h

(
2
)
. And indeed, we

again find success …until we consider even heavier insects. Then we introduce h
(
3
)
, etc. This is a good time to

stop improving our theory and say that we have a theory that works only for small insects. This is reflected by the
formulas for Ek(λ) and ψk(λ) given above.

An attempt to use the theory for heavy weights is bound to fail. These formulas will not work (even if we take
into account an infinite number of terms) for large weights [e.g., ones that are so large that the stalk breaks (an
abrupt change of its structure)]. In such cases, the series for Ek(λ) and ψk(λ) will diverge, and we will witness a
catastrophic failure of the perturbation theory.
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In practice, we calculate only E (1)k , E (2)k and (quite rarely) E (3)k , and for the wave function,

we usually limit to ψ(1)k .

How are these corrections calculated?
We insert the two perturbational series for Ek

(
λ
)

and ψk
(
λ
)

into the Schrödinger equation:(
Ĥ (0) + λĤ

(
1
)) (

ψ
(0)
k + λψ(1)k + λ2ψ

(2)
k + · · ·

)
=

(
E (0)k + λE (1)k + λ2 E (2)k + · · ·

) (
ψ
(0)
k + λψ(1)k + λ2ψ

(2)
k + · · ·

)
,

and, since the equation has to be satisfied for any λ belonging to 0 ≤ λ ≤ 1, then this may
happen only if

the coefficients at the same powers of λ on the left and right sides must be equal.

This gives a sequence of an infinite number of perturbational equations to be satisfied by the
unknown E (n)k andψ(n)k . These equations may be solved consecutively, allowing us to calculate

E (n)k and ψ(n)k with larger and larger n. We have, for example,

for λ0 : Ĥ (0) ψ
(0)
k = E (0)k ψ

(0)
k ,

for λ1 : Ĥ (0)ψ
(1)
k + Ĥ

(
1
)
ψ
(0)
k = E (0)k ψ

(1)
k + E (1)k ψ

(0)
k , (5.18)

for λ2 : Ĥ (0)ψ
(2)
k + Ĥ

(
1
)
ψ
(1)
k = E (0)k ψ

(2)
k + E (1)k ψ

(1)
k + E (2)k ψ

(0)
k ,

…
etc.22

Doing the same procedure with the intermediate normalization [Eq. (5.15)], we obtain〈
ψ
(0)
k |ψ

(
n
)

k

〉
= δ0n. (5.19)

The first of Eqs. (5.18) is evident (the unperturbed Schrödinger equation does not contain
any unknowns). The second equation involves two unknowns, ψ(1)k and E (1)k . There is a way to

eliminate ψ(1)k by using the Hermitian character of the operators. Indeed, by making the scalar

product of the equation with ψ(0)k , we obtain〈
ψ
(0)
k |

(
Ĥ (0) − E (0)k

)
ψ
(1)
k +

(
Ĥ

(
1
)
− E (1)k

)
ψ
(0)
k

〉
=

〈
ψ
(0)
k |

(
Ĥ (0) − E (0)k

)
ψ
(1)
k

〉
+

〈
ψ
(0)
k |

(
Ĥ (1) − E (1)k

)
ψ
(0)
k

〉
= 0+

〈
ψ
(0)
k |

(
Ĥ (1) − E (1)k

)
ψ
(0)
k

〉
= 0,

22 Here, we see the construction principle of these equations: we write down all the terms that give a given value of
the sum of the upper indices.
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i.e.,

the formula for the first-order correction to the energy

E (1)k = H
(
1
)

kk , (5.20)

where we defined
H

(
1
)

kn = 〈ψ(0)k |Ĥ
(
1
)
|ψ(0)n 〉. (5.21)

Conclusion: the first-order correction to the energy, E (1)k , represents the mean value of the
perturbation with the unperturbed wave function of the state in which we are interested (usually
the ground state).23

Now, from the perturbation [Eq. (5.18)] corresponding to n = 2, we get the following through
a scalar product with ψ(0)k :

〈
ψ
(0)
k |

(
Ĥ (0) − E (0)k

)
ψ
(2)
k

〉
+

〈
ψ
(0)
k |

(
Ĥ (1) − E (1)k

)
ψ
(1)
k

〉
− E (2)k

=
〈
ψ
(0)
k |Ĥ (1)ψ

(1)
k

〉
− E (2)k = 0,

and hence

E (2)k =
〈
ψ
(0)
k |Ĥ (1)ψ

(1)
k

〉
. (5.22)

For the time being, we cannot compute E (2)k because we do not know ψ(1)k , but soon we will.

Let us expand ψ(1)k into the complete set of the basis functions
{
ψ
(0)
n

}
with as-yet-unknown

coefficients cn:

ψ
(1)
k =

∑
n 
=k

cnψ
(0)
n . (5.23)

Note that because of the intermediate normalization [Eqs. (5.15) and (5.19)], we did not take
the term with n = k. We get(

Ĥ (0) − E (0)k

)∑
n 
=k

cnψ
(0)
n + Ĥ

(
1
)
ψ
(0)
k = E (1)k ψ

(0)
k ,

23 This is natural, and we use such a perturbative estimation all the time. What it really says is that we do not know
what the perturbation exactly does, but let us estimate the result by assuming that all things are going on as they
were before the perturbation was applied. In the first-order approach, insurance estimates your loss by averaging
over similar losses of others. Every morning, you assume that the traffic on the highway will be the same as it is
everyday, etc.
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and then transform into∑
n 
=k

cn

(
E (0)n − E (0)k

)
ψ(0)n + Ĥ

(
1
)
ψ
(0)
k = E (1)k ψ

(0)
k .

We find cm by making the scalar product of both sides of the last equation with ψ(0)m . Due to

the orthonormality of functions
{
ψ
(0)
n

}
, we obtain

cm = H
(
1
)

mk

E (0)k − E (0)m

,

which, from Eq. (5.22), gives the following formula for the first-order correction to the wave
function24

ψ
(1)
k =

∑
n 
=k

H
(
1
)

nk

E (0)k − E (0)n

ψ(0)n , (5.24)

and then the formula for the second-order correction to the energy

E (2)k =
∑
n 
=k

|H
(
1
)

kn |2
E (0)k − E (0)n

. (5.25)

All terms on the right side of these formulas are known (or can be calculated) from the
unperturbed Eq. (5.14). For k = 0 (ground state), we have

E
(
2
)

0 ≤ 0. (5.26)

24 This formula may be seen as the foundation for almost everything we do in our everyday life, consciously or

unconsciously. We start from an initial situation (say, state) ψ(0)k . We want to change this state, while monitoring
whether the results are OK for us the entire time. The cautious thing to do is to apply a very small amount of

perturbation (in this situation, the change is practically equal to ψ(1)k ) and watch carefully how the system reacts

upon it. The effects are seen mainly on ψ(1)k and E(2)k . In practical life, we apparently forget about higher-order
perturbational formulas. Instead, we need to apply the first-order perturbation theory all the time (in this way, the

higher-order corrections reenter implicitly). We decide whether in the new situation ψ(0)k + ψ(1)k (which now is
again treated as unperturbed) the applied perturbation should be kept the same, decreased, or increased. This is
how we enter a curve when driving a car: we adapt the steering-wheel position to what we see after having its
previous position, and we keep doing this again and again.
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From Eq. (5.24), we see that the contribution of function ψ(0)n to the wave function defor-

mation is large if the coupling between states k and n (i.e., H
(
1
)

nk ) is large, and the closer in the
energy scale these two states are.

We will limit ourselves to the most important corrections in the hope that the perturbational
method converges quickly (we will see in a moment how surprising the perturbational series
behavior can be) and further corrections are much less important.25 The formulas for higher
corrections become more and more complicated.

5.2.2 Hylleraas Variational Principle26

The derived formulas are rarely employed in practice because we only very rarely have at

our disposal all the necessary solutions of Eq. (5.14). The eigenfunctions of the Ĥ
(
0
)

operator
appeared as a consequence of using them as the complete set of functions (e.g., in expanding
ψ
(1)
k ). There are, however, some numerical methods that enable us to compute ψ(1)k using the

complete set of functions {φi }, which are not the eigenfunctions of Ĥ
(
0
)
.

Hylleraas noted27 that the functional

E [
χ̃
] = 〈

χ̃ |
(

Ĥ (0) − E (0)0

)
χ̃
〉

(5.27)

+
〈
χ̃ |

(
Ĥ

(
1
)
− E (1)0

)
ψ
(0)
0

〉
+

〈
ψ
(0)
0 |

(
Ĥ

(
1
)
− E (1)0

)
χ̃
〉

(5.28)

exhibits its minimum at χ̃ = ψ(1)0 , and for this function, the value of the functional is equal to

E
(
2
)

0 . Indeed, inserting χ̃ = ψ(1)0 + δχ into Eq. (5.28) and using the Hermitian character of the
operators, we have[

ψ
(1)
0 + δχ

]
−

[
ψ
(1)
0

]
=

〈
ψ
(1)
0 + δχ |

(
Ĥ (0) − E (0)0

)
(ψ

(1)
0 + δχ)

〉
+

〈
ψ
(1)
0 + δχ |

(
Ĥ

(
1
)
− E (1)0

)
ψ
(0)
0

〉
+

〈
ψ
(0)
0 |

(
Ĥ

(
1
)
− E (1)0

)
(ψ

(1)
0 + δχ)

〉
=

〈
δχ |

(
Ĥ (0) − E (0)0

)
ψ
(1)
0 +

(
Ĥ

(
1
)
− E (1)0

)
ψ
(0)
0

〉
+

〈(
Ĥ (0) − E (0)0

)
ψ
(1)
0 +

(
Ĥ

(
1
)
− E (1)0

)
ψ
(0)
0 |δχ

〉
+

〈
δχ |

(
Ĥ (0) − E (0)0

)
δχ

〉
=

〈
δχ |

(
Ĥ (0) − E (0)0

)
δχ

〉
≥ 0.

25 Some scientists have been bitterly disappointed by this assumption.
26 See Hylleraa’s biographic note in Chapter 10.
27 E.A. Hylleraas, Zeit. Phys., 65, 209 (1930).
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This proves the Hylleraas variational principle. The last equality follows from the first-order
perturbational equation, and the last inequality from the fact that E (0)0 is assumed to be the
lowest eigenvalue of Ĥ (0) (see the variational principle).

What is the minimal value of the functional under consideration? Let us insert χ̃ = ψ(1)0 . We
obtain

E
[
ψ
(1)
0

]
=

〈
ψ
(1)
0 |

(
Ĥ (0) − E (0)0

)
ψ
(1)
0

〉
+

〈
ψ
(1)
0 |

(
Ĥ

(
1
)
− E (1)0

)
ψ
(0)
0

〉
+

〈
ψ
(0)
0 |

(
Ĥ

(
1
)
− E (1)0

)
ψ
(1)
0

〉
=

〈
ψ
(1)
0 |

(
Ĥ (0) − E (0)0

)
ψ
(1)
0 +

(
Ĥ

(
1
)
− E (1)0

)
ψ
(0)
0

〉
+

〈
ψ
(0)
0 |Ĥ

(
1
)
ψ
(1)
0

〉
=

〈
ψ
(1)
0 |0

〉
+

〈
ψ
(0)
0 |Ĥ

(
1
)
ψ
(1)
0

〉
=

〈
ψ
(0)
0 |Ĥ

(
1
)
ψ
(1)
0

〉
= E

(
2
)

0 .

5.2.3 Hylleraas Equation

The first-order perturbation equation (p. 243) after inserting

ψ
(1)
0 =

N∑
j

d jφ j (5.29)

takes the form
N∑
j

d j (Ĥ
(0) − E (0)0 )φ j + (Ĥ

(
1
)
− E (1)0 )ψ

(0)
0 = 0.

Making the scalar products of the left and right sides of the equation with functions φi , i =
1, 2, . . . , we obtain

N∑
j

d j (Ĥ
(0)
i j − E (0)0 Si j ) = −(Ĥ

(
1
)

i0 − E (1)0 Si0) for i = 1, 2, . . ., N ,

where Ĥ (0)
i j ≡

〈
φi |Ĥ (0)φ j

〉
, and the overlap integrals Si j ≡

〈
φi |φ j

〉
. Using the matrix notation,

we may write the Hylleraas equation as

(H
(
0
)
− E (0)k S)d = −v, (5.30)

where the components of the vector v are vi = Ĥ
(
1
)

i0 − E (1)0 Si0. All the quantities can be
calculated and the set of N linear equations with unknown coefficients di remains to be solved.28

28 We obtain the same equation if in the Hylleraas functional [Eq. (5.28)], the variational function χ is expanded as a
linear combination [Eq. (5.29)], and then vary di in a similar way to that of the Ritz variational method described
on p. 238.
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5.2.4 Degeneracy

There is a trap in the perturbational formulas, which may lead to catastrophe. Let us imagine
that the unperturbed state k (its change represents the target of the perturbation theory) is
g-tuply degenerate. Then Eq. (5.14) is satisfied by g wave functions ψ(0)k,m,m = 1, 2, . . ., g,
which according to Appendix B available at booksite.elsevier.com/978-0-444-59436-5, p. e7

can be chosen as orthonormal; i.e.,
〈
ψ
(0)
k,m |ψ(0)k,n

〉
= δmn:

Ĥ (0)ψ
(0)
k,m = E (0)k ψ

(0)
k,m . (5.31)

If one decided to choose a given ψ(0)k,m as the unperturbed state, we could not calculate either

E (2)k or ψ(1)k , because the denominators in the corresponding formulas would equal 0 and the
results would “explode to infinity.”

We should fix the problem in some way. Let us focus on a particular unperturbed state ψ(0)k,1.
The slightest perturbation applied would force us to consider the Ritz variational method to
determine the resulting state. We can choose allψ(0)k,m functions as possible expansion functions;

however, this means also including ψ(0)k,m,m = 2, 3, . . ., g, but they may enter with potentially
very large weights.29 This means the possibility of a giant change of the wave function resulting
from even a very small perturbation.30 Therefore, we cannot say the perturbation is small, while
this is the most important requirement for perturbation theory to operate (Fig. 5.3).

The first thing to do is to adapt the wave function of the unperturbed system to the perturbation.
To this end, we will use the Ritz variational method with the expansion functions31 ψ

(0)
k,m,

m = 1, 2, . . ., g:

φ
(0)
k,m =

g∑
i=1

ckmψ
(0)
k,m . (5.32)

29 This is the case because they satisfy the Schrödinger equation for the unperturbed system with the same eigenvalue

of energy. As a consequence, any linear combination of them satisfies this equation, as well as ψ(0)k,1 itself.
30 Thinking about the future, this is the reason for the richness of local spatial configurations around atoms in

chemical compounds (which is called the valency). Most often, such atoms offer a degenerate or quasi-degenerate
valence orbitals. They can, therefore, mix (hybridization) easily even under small perturbation coming from the
neighborhood. The product of such mixing (hybridized orbitals) is oriented toward the perturbing partner atoms. On
top of that, these hybrids may offer 2, 1, 0 electrons (depending on what number of electrons the partner’s orbitals
carry), which leads to the coordination bond with donation of the electron pair, covalent bond, or coordination
bond with acceptance of the electron pair, respectively.

31 The same solution is obtained when inserting Eq. (5.32) into the first-order perturbational equation, carrying out

the scalar products of this equation consecutively with ψ(0)k,m ,m = 1, 2, . . ., g and solving the resulting system of
equations.

http://booksite.elsevier.com/978-0-444-59436-5
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(a) (b) (c)

Fig. 5.3. A degenerate state may mean an instable system (“superpolarizable”), which adapts itself very easily to an external
(even very small) perturbation. The figure shows how the hydrogen atom in a degenerate state changes when a proton approaches
it. (a) the atom in a non-perturbed stationary state 2px . (b) The proton interacts with the hydrogen atom, but the 2px orbital does
not reflect this. It is true that the orbital 2px describes the total energy very well (because the interaction is weak), but it describes
the electron charge distribution in the hydrogen atom interacting with the proton very badly. (c) Contrary to this, the function

φ
(0)
k = (2s) + 1√

2
(2px + 2py), satisfies the Schrödinger equation for the unperturbed hydrogen atom as well as the function

2px , but it is much more reasonable after the perturbation is switched on. The function φ(0)k shows that the electron recognizes

the direction of the proton and tries to approach it. The function φ(0)k represents a giant change with respect to 2px . The most
reasonable unperturbed function will be determined by the variational method as a linear combination of (mostly) 2s, 2px , 2py ,
and 2pz . After this is done, one may keep improving the function by adding perturbational corrections.

The secular equation (5.11), after inserting Ĥ = Ĥ (0)+ Ĥ
(
1
)

and using Eq. (5.31), transforms
to32

det

{
E (0)k δmn + Ĥ

(
1
)

mn − εδmn

}
= 0. (5.33)

This may be rewritten as

det

{
Ĥ

(
1
)

mn − E (1)k δmn

}
= 0, (5.34)

with33 E (1)k ≡ ε − E (0)k . Solving this equation, we obtain the unknown energies E (1)k,i ,

i = 1, 2, . . .g. Solving the secular equation (Chapter 5 and Appendix L available at
booksite.elsevier.com/978-0-444-59436-5, p. e107) consecutively for E (1)k,i , i = 1, 2, . . .g, we
get the sets (numbered by i = 1, 2, . . .g) of coefficients ckm . This means we have the quantity
g of the unperturbed functions. We choose one of them, which corresponds to the target state,
and the perturbational approach is applied to it in the same way as for the non-degenerate case
(except we no longer include ψ(0)k,m to the expansion functions).

5.2.5 Convergence of the Perturbational Series

The perturbational approach is applicable when the perturbation only slightly changes the
energy levels, therefore not changing their order. This means that the unperturbed energy

32 Ĥmn =
〈
ψ
(0)
k,m |Ĥ (0)ψ

(0)
k,n

〉
+

〈
ψ
(0)
k,m |Ĥ (1)ψ

(0)
k,n

〉
= E(0)k δmn + Ĥ

(
1
)

mn ; Smn = δmn .
33 The energies E(1)k,i have an additional superscript (1) just to stress that they are proportional to perturbation. They

all stem from the unperturbed state k, but in general, they differ for different i ; i.e., we usually get a splitting of
the energy level k.

http://booksite.elsevier.com/978-0-444-59436-5
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level separations have to be much larger than a measure of perturbation such as Ĥ
(
1
)

kk =〈
ψ
(0)
k |Ĥ

(
1
)
ψ
(0)
k

〉
. However, even in this case, we may expect complications.

The subsequent perturbational corrections need not be monotonically decreasing. However,
if the perturbational series [Eq. (5.17)] converges, for any ε > 0, we may choose such N0 that

for N > N0, we have
〈
ψ
(N )
k |ψ(N )k

〉
< ε; i.e., the vectors ψ(N )k have smaller and smaller lengths

in the Hilbert space.
Unfortunately, perturbational series are often divergent in a sense known as asymptotic con-

vergence. A divergent series
∑∞

n=0
An
zn is called an asymptotic series of a function f (z), if

the function Rn
(
z
) = zn[ f (z)− Sn(z)], where Sn(z) =∑n

k=0
Ak
zk satisfies the following con-

dition: limz→∞ Rn(z) = 0 for any fixed n. In other words, the error of the summation {i.e.,
[ f (z)− Sn(z)]} tends to 0 as z−(n+1) or faster.

Despite the fact that the series used in physics and chemistry are often asymptotic (therefore,
divergent), we are able to obtain results of high accuracy with them, provided that we limit
ourselves to an appropriate number of terms. The asymptotic character of such series manifests
itself in practice in such a way that the partial sums stabilize and we obtain numerically a situation
typical for convergence. For instance, we sum up the consecutive perturbational corrections and
obtain the partial sums changing on the eighth, then ninth, then tenth significant figures. This is a
very good time to stop the calculations, publish the results, finish the scientific career and move
on to other business. The addition of further perturbational corrections ends up in catastrophe
(cf. Appendix X available at booksite.elsevier.com/978-0-444-59436-5 on p. e169). It begins
by an innocent, very small, increase in the partial sums, they just begin to change the ninth, then
the eighth, then the seventh significant figure. Then, it only gets worse and worse and ends with
an explosion of the partial sums to∞ and a very bad state of mind for the researcher (I did not
dare to depict it in Fig. 5.2).

In perturbation theory, we assume that Ek
(
λ
)

andψk
(
λ
)

are analytical functions ofλ (p. 242).
In this mathematical aspect of the physical problem, we may treat λ as a complex number. Then
the radius of convergence ρ of the perturbational series on the complex plane is equal to the
smallest |λ|, for which one has a pole of Ek

(
λ
)

or ψk
(
λ
)
. If the limit exists, the convergence

radius ρk for the energy perturbational series may be computed as34

ρk = lim
N→∞

∣∣∣E (N )k

∣∣∣∣∣∣E (N+1)
k

∣∣∣ .
For physical reasons, λ = 1 is most important. It is, therefore, desirable to have ρk ≥ 1. Note

from Fig. 5.4, that if ρk ≥ 1, then the series with λ = 1 is convergent together with the series
with λ = −1.

Let us take as the unperturbed system the harmonic oscillator (with the potential energy
equal to 1

2 x2) in its ground state, and the operator Ĥ
(
1
)
= −0.000001 · x4 as its perturbation.

34 If the limit does not exist, nothing can be said about ρk .

http://booksite.elsevier.com/978-0-444-59436-5
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(a)

(b)

Fig. 5.4. The complex plane of the λ parameter. The physically interesting points are at λ = 0, 1. In perturbation theory, we
finally put λ = 1. Because of this, the convergence radius ρk of the perturbational series has to be ρk ≥ 1. However, if any complex
λ with |λ| < 1 corresponds to a pole of the energy, the perturbational series will diverge in the physical situation (λ = 1). The
figure shows the position of a pole by concentric circles. (a) the pole is too close (ρk < 1), and the perturbational series diverges;
(b) the perturbational series converges because ρk > 1.

In such a case, the perturbation seems to be small35 in comparison with the separation of
the eigenvalues of Ĥ

(
0
)
. And yet the perturbational series sows the seeds of catastrophe. It is

quite easy to see why a catastrophe has to happen. After the perturbation is added, the potential

35 As a measure of the perturbation, we may use
〈
ψ
(0)
0 |Ĥ

(
1
)
ψ
(0)
0

〉
, which means an integral of x4 multiplied by

a Gaussian function (cf. Chapter 4). Such an integral is easy to calculate and, in view of the fact that it will be
multiplied by the (small) factor 0.000001, the perturbation will turn out to be small.
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becomes qualitatively different from 1
2 x2. For large x , instead of going to∞, it will tend to−∞.

The perturbation is not small at all–it is a monster. This will cause the perturbational series to
diverge. How will this happen in practice? Well, in higher orders, we have to calculate the

integrals
〈
ψ
(0)
n |Ĥ

(
1
)
ψ
(0)
m

〉
, where n,m stand for the vibrational quantum numbers. As we recall

from Chapter 4, high-energy wave functions have large values for large x , where the perturbation
gets larger and larger as x increases. This is why the integrals will be large. Therefore, the better
we do our jobs (higher orders, higher-energy states), the faster we approach catastrophe.

Let us consider the opposite perturbation Ĥ
(
1
)
= +0.000001 · x4. Despite the fact that

everything looks good (i.e., the perturbation does not qualitatively change the potential), the
series will diverge sooner or later. It is bound to happen because the convergence radius does not
depend on the sign of the perturbation. A researcher might be astonished when the corrections
begin to “explode.”

Quantum chemistry experiences with perturbational theories look quite consistent, to wit:

• Low orders may give excellent results.
• Higher orders often make the results worse.36

Summary
There are basically two numerical approaches to obtain approximate solutions to the Schrödinger equation: variational
and perturbational. In calculations, we usually apply variational methods, while perturbational methods are often
applied to estimate some small physical effects. The result is that most concepts (practically all the ones we know
of) characterizing the reaction of a molecule to an external field come from the perturbational approach. This leads
to such quantities (see Chapter 12) as dipole moment, polarizability, and hyperpolarizability. The computational role
of perturbational theories may, in this context, be seen as being of the second order.

• Variational method

– The method is based on the variational principle, which says that, if for a system with Hamiltonian Ĥ we

calculate the number ε =
〈
�|Ĥ�

〉
〈�|�〉 , where� stands for an arbitrary function, then the number ε ≥ E0, with

E0 being the ground-state eigenvalue of Ĥ . If it happens that ε[�] = E0, then there is only one possibility:
� represents the exact ground-state wave function ψ0.

– The variational principle means that to find an approximate ground-state wave function, we can use the
variational method: minimize ε[�] by changing (varying)�. The minimum value of ε[�] equals ε[�opt ];
which approximates the ground-state energy E0 and corresponds to �opt ; i.e., an approximation to the
ground-state wave function ψ0.

– In practice, the variational method consists of the following steps:

∗ Make a decision as to the trial function class, among which the �opt (x) will be sought37.
∗ Introduce into the function the variational parameters c ≡ (c0, c1, . . .cP ) : �(x; c). In this way,

ε becomes a function of these parameters: ε(c).
∗ Minimize ε(c) with respect to c ≡ (c0, c1, . . .cP ) and find the optimal set of parameters c = copt .
∗ The value ε(copt ) represents an approximation to E0.
∗ The function �(x; copt ) is an approximation to the ground-state wave function ψ0(x).

36 Even orders as high as 2000 have been investigated in the hope that the series will improve the results.
37 x symbolizes the set of coordinates (space and spin, cf. Chapter 1).
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– The Ritz procedure is a special case of the variational method, in which the parameters c enter � linearly:
�(x; c) =∑P

i=0 ci�i , where {�i } are some known basis functions that form (or more exactly, in principle
form) the complete set of functions in the Hilbert space. This formalism leads to a set of homogeneous linear
equations to solve (secular equations), from which we find approximations to the ground- and excited-state
energies and wave functions.

• Perturbational method

We assume that the solution to the Schrödinger equation for the unperturbed system is known (E(0)k for the energy

and ψ(0)k for the wave function, usually k = 0; i.e., the ground state), but when a small perturbation Ĥ
(
1
)

is added to
the Hamiltonian, then the solution changes (to Ek and ψk , respectively) and is to be sought using the perturbational

approach. Then the key assumption is Ek
(
λ
) = E(0)k + λE(1)k + λ2 E(2)k + . . . and ψk

(
λ
) = ψ

(0)
k + λψ(1)k +

λ2ψ
(2)
k + . . ., where λ is a parameter that tunes the perturbation. The goal of the perturbational approach is to

compute corrections to the energy E(1)k , E(2)k , . . . and to the wave functionψ(1)k , ψ
(2)
k , . . .. We assume that because the

perturbation is small, only a few such corrections are to be computed–in particular, E(1)k =
〈
ψ
(0)
k |Ĥ

(
1
)
ψ
(0)
k

〉
, ψ

(1)
k =

∑
n 
=k

H
(
1
)

nk

E (0)k −E (0)n
ψ
(0)
n , E(2)k =∑

n 
=k
|H

(
1
)

kn |2
E (0)k −E (0)n

, where H
(
1
)

kn =
〈
ψ
(0)
k |Ĥ

(
1
)
ψ
(0)
n

〉
.

Main Concepts, New Terms

asymptotic convergence (p. 250)
complete set of functions (p. 246)
convergence radius (p. 250)
corrections to energy (p. 242)
corrections to wave function (p. 242)
Hylleraas equation (p. 247)
Hylleraas functional (p. 247)
Hylleraas variational principle (p. 246)
perturbation (p. 240)
perturbational method (p. 240)
perturbed system (p. 240)

Ritz method (p. 238)
secular equation (p. 239)
secular determinant (p. 240)
trial function (p. 236)
underground states (p. 236)
unperturbed system (p. 240)
variational function (p. 232)
variational method (p. 232)
variational parameters (p. 236)
variational principle (p. 232)
variational principle for excited states (p. 235)

From the Research Front
In practice, the Ritz variational method is used most often. One of the technical problems to be solved is the size
of the basis set. Enormous progress in computation and software development now facilitates investigations that
20 years ago were absolutely beyond the imagination. The world record in quantum chemistry means a few billion
expansion functions. To accomplish this, quantum chemists have had to invent some powerful methods of applied
mathematics.

Ad Futurum
The computational technique impetus that we witness nowadays will continue in the future (though perhaps in a
modified form). It will be no problem to find some reliable approximations to the ground-state energy and wave
function for a molecule composed of thousands of atoms. We will do this effectively; however, we may ask whether
such effectiveness is at the heart of science. Would it not be interesting to know what these 10 billion terms in our
wave function are telling us, and what we could learn from this?
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Additional Literature
E Steiner, The Chemistry Maths Book, Oxford: Oxford University Press (1996).

A very good textbook that contains much useful information about the secular equation.
W. H. Press et al., Numerical Recipes, The Art of Scientific Computing, Third Edition, Cambridge University Press,
New York (2007).

Probably the best textbook in computational mathematics; some chapters are very closely related to the topics
of this chapter (diagonalization, linear equations).

H. Margenau and G. M. Murphy, The Mathematics of Physics and Chemistry, D. van Nostrand Co., New York;
1956.

An excellent book dealing with most mathematical problems which we may encounter in chemistry and physics,
including the variational and perturbational methods.

J. O. Hirschfelder, W. Byers Brown, and S. T. Epstein, “Recent developments in perturbation theory," Adv. Quantum
Chem., 1, 255 (1964).
An article on perturbation theory that has been obligatory for those working in the domain for many years.

Questions
1. Variational principle

a. says that the mean value of the Hamiltonian calculated with any trial wave function is greater than the
experimental ground-state energy of the system.

b. says that the number ε =
〈
φ|Ĥφ

〉
〈φ|φ〉 computed with any trial wave function φ is greater than or equal to the

lowest eigenvalue of the Hamiltonian Ĥ .

c. if

〈
φ|Ĥφ

〉
〈φ|φ〉 is equal to the lowest eigenvalue of the Hamiltonian Ĥ , this means φ is an exact eigenfunction of

Ĥ corresponding to this eigenvalue.
d. may lead to non-physical states of the system.

2. Variational method (Ĥ stands for the Hamiltonian, φ is a trial function, ε denotes the mean value of energy)

a. means minimization of functional ε[φ] =
〈
φ|Ĥφ

〉
〈φ|φ〉 .

b. variational parameters are introduced in the trial function φ and ε becomes a function of these parameters.
c. we minimize φ as a function of variational parameters.
d. we search for the global minimum of ε as a function of variational parameters. The set of the optimum

parameters gives best approximation to the ground-state wave function and to the energy of the ground
state.

3. Variational method

a. if a variational trial function is orthogonal to the exact eigenfunctions of all the states with energy E < A,
the variational principle pertains to the state with the lowest eigenvalue of energy, which satisfies E ≥ A.

b. cannot be used if perturbation is large.
c. if the variational wave function transforms according to the irreducible representation � of the symmetry

group of the Hamiltonian, the variational method will find an approximation to the lowest-energy state with
the wave function transforming according to �.

d. is applicable for the ground state only.
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4. Ritz method (Ĥ stands for the Hamiltonian, φ is a variational trial function, �i denote the basis functions)

a. is a variational method, in which the trial function has the form φ = ∑P
i=0 ci�i , where �i are the

eigenfunctions of the Hamiltonian, while ci are unknown coefficients.
b. is a variational method, in which the trial function has the form φ =∑P

i=0 ci�i , where�i are known basis
functions, while ci are unknown coefficients.

c. the optimal variational coefficients are found by solving the secular equations.
d. approximate eigenvalues of the Hamiltonian are obtained as solutions of the equation det

(
Hi j − εSi j

) = 0,

where Hi j =
〈
�i |Ĥ� j

〉
and Si j =

〈
�i |� j

〉
.

5. Ritz method (Ĥ stands for the Hamiltonian, φ is a variational trial function, �i denote the real basis functions,
P means the number of variational parameters)

a. the number of integrals Hi j =
〈
�i |Ĥ� j

〉
needed in computation is equal to P(P + 1).

b. functions �i have to be orthonormal.
c. the approximate eigenvalues of the Hamiltonian are computed by diagonalization of the Hamiltonian matrix:

Hi j =
〈
�i |Ĥ� j

〉
.

d. the matrix of elements Hi j is Hermitian and, its eigenvalues are always real numbers.

6. Perturbational approach38

a. ψk is an eigenfunction of Ĥ , while ψ
(
0
)

k is an eigenfunction of Ĥ
(
0
)
.

b. intermediate normalization means that in the equality ψk = c
(
0
)

k ψ

(
0
)

k + χ , the integral 〈χ |ψk〉 = 0, while

c
(
0
)

k = 1.

c. intermediate normalization means that in equality ψk = c
(
0
)

k ψ

(
0
)

k + χ , the integral

〈
χ |ψ

(
0
)

k

〉
= 0, while

c
(
0
)

k = 1.

d. Ek = E
(
0
)

k + E
(
1
)

k .

7. Perturbational approach (notation of question 6)

a. E
(
0
)

k + E
(
1
)

k =
〈
ψ

(
0
)

k |Ĥψ
(
0
)

k

〉
.

b. E
(
2
)

0 ≤ 0.

c. E
(
2
)

k ≤ 0.

d. E
(
2
)

k =∑∞
n(
=k)

∣∣∣Ĥ (1)
kn

∣∣∣2
E
(
0
)

k −E
(
0
)

n

.

8. Perturbational approach (notation of question 6)

a. from the intermediate normalization, it follows that

〈
ψ

(
n
)

k |ψ
(
0
)

k

〉
= 0 for n > 0.

b. E
(
0
)

0 + E
(
1
)

0 ≥ E0.

38 Ĥ means the Hamiltonian of the system, Ĥ
(
0
)

stands for the unperturbed Hamiltonian; Ĥ
(
1
)

denotes the pertur-

bation; ψk means the wave function of the perturbed state k;ψ
(
0
)

k denotes the wave function of the unperturbed

state k, with both functions normalized; Ek and E
(
0
)

k mean the corresponding energies; ψ
(
n
)

k and E
(
n
)

k stand for
the nth correction to the wave function and energy, respectively.
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c. |E
(
n−1

)
k | ≥ |E

(
n
)

k |.
d. to calculate E(2)0 , one has to know ψ

(2)
0 .

9. Perturbational approach (notation of question 6)

a. to compute E(2)0 , it is sufficient to know ψ
(n)
0 , n = 0, 1.

b. Ĥ (1)
kn is a real number.

c. from the Hermitian character of Ĥ
(
1
)
, it follows that Ĥ (1)∗

kn =
〈
ψ

(
0
)

n |Ĥ
(
1
)
ψ

(
0
)

k

〉
.

d.

〈
ψ

(
0
)

k |Ĥ
(
1
)
ψ

(
0
)

n

〉 〈
ψ

(
0
)

n |Ĥ
(
1
)
ψ

(
0
)

k

〉
≥ 0.

10. Perturbational approach (notation of question 6, λ stands for perturbational parameter in expansion of Ek and
ψk )

a. Hylleraas variational principle pertains to the inequality ε =
〈
φ|Ĥφ

〉
〈φ|φ〉 ≥ E0 with the variational trial function

φ proposed by Hylleraas.

b. the minimum of the Hylleraas functional is attained for the trial function equal to ψ
(
1
)

k , while the value of
this minimum is equal to the second order correction to energy.

c. if a series representing a physical quantity tends to∞, it cannot be applied in computation of this quantity.

d. if, for λ = 0, 7+ 0, 7i , the perturbational series Ek = E
(
0
)

k + λE
(
1
)

k + λ2 E
(
2
)

k ... diverges, this means that
it is also divergent for λ = 1.

Answers
1b,c,d, 2a,b,d, 3a,c, 4b,c,d, 5d, 6a,c, 7a,b,d, 8a,b, 9a,c,d, 10b,d



CHAPTER 6

Separation of Electronic and
Nuclear Motions

“Any separation is a link.”
Simone Weil

Where Are We?

We are on the most important branching out of the TREE.

An Example

A colleague shows us the gas phase absorption spectra separately: of the hydrogen atom, of the chlorine atom, and of
the hydrogen chloride recorded in the ultraviolet and visible (UV-VIS), infrared (IR) and microwave ranges. In the
IR range, neither the hydrogen atom nor the chlorine atom have any electromagnetic wave absorption. However, on
the other hand, the hydrogen chloride diatomic molecule that is formed by these two atoms has a very rich absorption
spectrum with a quasi-regular and mysterious structure shown in Fig. 6.6 on p. 286. If the theory given in the previous
chapters is correct, then it should explain every detail of such a strange spectrum. We also hope we will understand
why such a spectrum may appear.

What Is It All About?
Separation of the Center-of-Mass Motion (�) p. 261
Exact (Non-Adiabatic) Theory (��) p. 265
Adiabatic Approximation (�) p. 268
Born-Oppenheimer Approximation (�) p. 269

• ...And a Certain Superiority of Theory Over Experiment

Vibrations of a Rotating Molecule (�) p. 271

• One More Analogy
• What Vibrates, What Rotates?
• The Fundamental Character of the Adiabatic Approximation–PES

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00006-4
© 2014 Elsevier B.V. All rights reserved. 257
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Basic Principles of Electronic, Vibrational, and Rotational Spectroscopy (�) p. 278

• Vibrational Structure
• Rotational Structure

Approximate Separation of Rotations and Vibrations (�) p. 281
Understanding the IR Spectrum: HCl (��) p. 282

• Selection Rules
• Microwave Spectrum Gives the Internuclear Distance
• IR Spectrum and Isotopic Effect
• IR Spectrum Gives the Internuclear Distance
• Why We Have a Spectrum “Envelope”
• Intensity of Isotopomers’ Peaks

A Quasi-Harmonic Approximation (�) p. 287
Polyatomic Molecule (��) p. 289

• Kinetic Energy Expression
• Quasi-Rigid Model–Simplifying by Eckart Conditions
• Approximation: Decoupling of Rotations and Vibration
• Spherical, Symmetric, and Asymmetric Tops
• Separation of Translational, Rotational, and Vibrational Motions

Types of States (��) p. 296

• Repulsive Potential
• “Hook-like” Curves
• Continuum
• Wave Function “Measurement”

Adiabatic, Diabatic, and Non-Adiabatic Approaches (��) p. 302
Crossing of Potential Energy Curves for Diatomics (��) p. 305

• The Non-Crossing Rule
• Simulating the Harpooning Effect in the NaCl Molecule

Polyatomic Molecules and Conical Intersection (��) p. 310

• Branching Space and Seam Space
• Conical Intersection
• Berry Phase

Beyond the Adiabatic Approximation (�) p. 318

• Vibronic Coupling
• Consequences for the Quest of Superconductors
• Photostability of Proteins and DNA
• Muon-Catalyzed Nuclear Fusion
• “Russian Dolls” or a Molecule Within a Molecule

Nuclei are thousands of times heavier than electrons. As an example, let us take the hydrogen atom. From the
conservation of momentum law, it follows that the proton moves 1840 times slower than the electron. In a polyatomic
system, while a nucleus moves a little, an electron travels many times through the molecule. It seems that much can
be simplified when assuming electronic motion in a field created by immobile nuclei. This concept is behind what is
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called adiabatic approximation, in which the motions of the electrons and the nuclei are separated.1 Only after this
approximation is introduced can we obtain the fundamental concept of chemistry: the molecular structure in 3-D
space.

The separation of the electronic and nuclear motions will be demonstrated in detail by taking the example of a
diatomic molecule.

Why Is This Important?

The separation of the electronic and nuclear motions represents a fundamental approximation of quantum chemistry.
Without this, chemists would lose their basic model of the molecule: the 3-D structure with the nuclei occupying
some positions in 3-D space, with chemical bonds, etc. This is why this chapter occupies the central position on the
TREE.

What Is Needed?

• Postulates of quantum mechanics (Chapter 1)
• Separation of the center-of-mass motion (see Appendix I available at booksite.elsevier.com/978-0-444-59436-5

on p. e93)
• Rigid rotator (Chapter 4)
• Harmonic and Morse oscillators (Chapter 4)
• Conclusions from group theory (see Appendix C available at booksite.elsevier.com/978-0-444-59436-5 p. e17,

advised)
• Dipole moment (see Appendix X available at booksite.elsevier.com/978-0-444-59436-5 p. e169, occasionally

used)

Classical Works

A fundamental approximation (called the Born-Oppenheimer approximation) was introduced in a paper called “Zur
Quantentheorie der Molekeln” by Max Born and Julius Robert Oppenheimer in Annalen der Physik, 84, 457 (1927).
The approximation follows from the fact that nuclei are much heavier than electrons. � The conical intersection
problem was first recognized by three young and congenial Hungarians: Janos (later John) von Neumann and Jenó
Pál (later Eugene) Wigner in the papers “Über merkwürdige diskrete Eigenwerte” in Physikalische Zeitschrift, 30,
465 (1929), and “Über das Verhalten von Eigenwerten bei adiabatischen Prozessen” also published in Physikalische
Zeitschrift, 30, 467 (1929), and later in a paper “Crossing of Potential Surfaces” by Edward Teller published in
the Journal of Physical Chemistry 41, 109 (1937). � Gerhard Herzberg was the greatest spectroscopist of the 20th
century, author of the fundamental three-volume work: Spectra of Diatomic Molecules (1939), Infrared and Raman
Spectra of Polyatomic Molecules (1949) and Electronic Spectra of Polyatomic Molecules (1966). � The world’s
first computational papers using a rigorous approach that went beyond the Born-Oppenheimer approximation for
molecules were two articles by Włodzimierz Kołos and Lutosław Wolniewicz. The first was “The coupling between
electronic and nuclear motion and the relativistic effects in the ground state of the H2 molecule,” published in Acta
Physica Polonica, 20, 129 (1961). The second was “A complete non-relativistic treatment of the H2 molecule,”
published in Physics Letters, 2, 222 (1962). � The discovery of the conical intersection and the funnel effect in
photochemistry is attributed to Howard E. Zimmerman: Molecular Orbital Correlation Diagrams, Möbius Systems,
and Factors Controlling Ground- and Excited-State Reactions [Journal of the American Chemical Society, 88, 1566

1 This does not mean that electrons and nuclei move independently. We obtain two coupled equations: one for the
motion of the electrons in the field of the fixed nuclei, and the other for the motion of the nuclei in the potential
averaged over the electronic positions.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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(1966)] and to Josef Michl [Journal of Molecular Photochemistry, 4, 243 (1972)]. Important contributions in this
domain were also made by Lionel Salem and Christopher Longuet-Higgins.

John von Neumann (1903–1957), known as Jancsi
(then Johnny), was the wunderkind of a top Hun-
garian banker. (Jancsi showed off at receptions by
reciting from memory all the phone numbers after
reading a page of the phone book.) He attended
the famous Lutheran High School in Budapest, the
same one as Jenó Pál Wigner (who later used the
name Eugene). In 1926, von Neumann received his
chemistry engineering diploma; and in the same
year, he completed his Ph.D. in mathematics at
the University of Budapest. He finally emigrated
to the United States and founded the Princeton
Advanced Study Institute. John von Neumann was a
mathematical genius who contributed to the
mathematical foundations of quantum theory, com-
puters, and game theory.

von Neumann made a strange offer of a professor-
ship at the Advanced Study Institute to Stefan Banach
from the John Casimir University in Lwów. He handed
him a check with “1” handwritten on it and asked
Banach to add as many zeros as he wanted. “This is
not enough money to persuade me to leave Poland,”
answered mathematician Banach.

Edward Teller (1908–2004), American physicist of Hungarian origin
and professor at the George Washington University, the University of
Chicago, and the University of California. Teller left Hungary in 1926,
received his Ph.D. in 1930 at the University of Leipzig, and fled Nazi
Germany in 1935. Teller was the project leader of the U.S. hydrogen
bomb project in Los Alamos, believing that this was the way to over-
throw communism (“I am passionately opposed to killing, but I am even
more passionately fond of freedom”). The hydrogen bomb patent is
owned by Teller and Stanisław Ulam.

Eugene Paul Wigner (1902–1995), American chemist,
physicist and mathematician of Hungarian origin
and professor at Princeton University. At the age
of 11, Wigner, a schoolboy from Budapest, was
in a sanatorium in Austria with suspected tuber-
culosis. Lying for hours on a deck chair reading
books, he was seduced by the beauty of mathemat-
ics (fortunately, it turned out that he did not have
tuberculosis).

In 1915, Wigner entered the Lutheran High School
in Budapest. Fulfilling the wishes of his father, who
dreamed of having a successor in managing the famil-
ial tannery, Wigner graduated from the Technical Uni-
versity in Budapest as a chemist. In 1925, at the
Technical University in Berlin, he defended his Ph.D.
thesis on chemical kinetics “Bildung und Zerfall von
Molekülen,” under the supervision of Michael Polanyi,

a pioneer in the study of chemical reactions. In 1926
Wigner left the tannery.
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By chance he was advised by his colleague von
Neumann to focus on group theory (where he obtained
the most spectacular successes). Wigner was the first
to understand the main features of the nuclear forces.

In 1963 he won the Nobel Prize “for his contributions
to the theory of the atomic nucleus and elementary
particles, particularly through the discovery and appli-
cation of fundamental symmetry principles.”

Christopher Longuet-Higgins (1923–2004), professor
at the University of Sussex, Great Britain, began his
scientific career as a theoretical chemist. His main
achievements are connected with conical intersec-
tion, as well as with the introduction of permutational
groups in the theoretical explanation of the spectra of
flexible molecules.

Longuet-Higgins was elected the member of the
Royal Society of London for these contributions. He
turned to artificial intelligence at the age of 40, and in
1967, he founded the Department of Machine Intelli-
gence and Perception at the University of Edinburgh.
Longuet-Higgins investigated machine perception of
speech and music. His contribution to this field was
recognized by the award of an honorary doctorate in

Music by Sheffield University. Courtesy of Professor
John D.Roberts.

6.1 Separation of the Center-of-Mass Motion

Space-Fixed Coordinate System (SFCS)

Let us consider first a diatomic molecule with the nuclei labeled a, b, and n electrons. Let us
choose a Cartesian coordinate system in our laboratory (called the space-fixed coordinate system,
or SFCS) with the origin located at an arbitrarily chosen point and with arbitrary orientation of
the axes2. The nuclei have the following positions: Ra = (Xa, Ya, Za) and Rb = (Xb, Yb, Zb),
while electron i has the coordinates x ′i , y′i , z′i .

We write the Hamiltonian for the system (as discussed in Chapter 1):

Ĥ = − �
2

2Ma
�a − �

2

2Mb
�b −

n∑
i=1

�
2

2m
�′i + V , (6.1)

where the first two terms stand for the kinetic energy operators of the nuclei, the third term
corresponds to the kinetic energy of the electrons (m is the electron mass, and all Laplacians
are in the SFCS), and V denotes the Coulombic potential energy operator (interaction of all the

2 For example, right in the center of the Norwich market square.
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particles, nucleus-nucleus, nuclei-electrons, and electrons-electrons)3:

V = ZaZbe2

R
− Za

∑
i

e2

rai
− Zb

∑
i

e2

rbi
+
∑
i< j

e2

ri j
. (6.2)

While we are not interested in collisions of our molecule with a wall or similar obstruction,
we may consider a separation of the motion of the center of mass, and then forget about the
motion and focus on the rest (i.e., on the relative motion of the particles).

New Coordinates

The total mass of the molecule is M = Ma +Mb+mn. The components of the center-of-mass
position vector are

X = 1

M

(
Ma Xa + Mb Xb +

∑
i

mx ′i

)

Y = 1

M

(
MaYa + MbYb +

∑
i

my′i

)

Z = 1

M

(
Ma Za + Mb Zb +

∑
i

mz′i

)
.

Now, we decide to abandon this coordinate system (SFCS). Instead of the old coordi-
nates, we will choose a new set of 3n + 6 coordinates (see Appendix I available at booksite.
elsevier.com/978-0-444-59436-5 on p. e93, choice II):

• Three center-of-mass coordinates: X , Y , Z
• Three components of the vector R = Ra − Rb that point to nucleus a from nucleus b
• 3n electronic coordinates xi = x ′i − 1

2 (Xa + Xb), and similarly, for yi and zi , for i =
1, 2, . . .n, which show the electron’s position with respect to the geometric center4 of the
molecule.

Hamiltonian in the New Coordinates

The new coordinates have to be introduced into the Hamiltonian. To this end, we need the
second derivative operators in the old coordinates to be expressed by the new ones. To begin

3 Do not confuse coordinate Z with nuclear charge Z .
4 If the origin were chosen in the center of mass instead of the geometric center, V becomes mass-dependent

(J. Hinze, A. Alijah and L. Wolniewicz, Pol. J. Chem., 72, 1293 (1998); cf. also see Appendix I available at
booksite.elsevier.com/978-0-444-59436-5, example 2. We want to avoid this.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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with (similarly as in Appendix I available at booksite.elsevier.com/978-0-444-59436-5), let us
construct the first derivative operators:

∂

∂Xa
= ∂X

∂Xa

∂

∂X
+ ∂Y

∂Xa

∂

∂Y
+ ∂Z

∂Xa

∂

∂Z
+ ∂Rx

∂Xa

∂

∂Rx
+ ∂Ry

∂Xa

∂

∂Ry
+ ∂Rz

∂Xa

∂

∂Rz

+
∑

i

∂xi

∂Xa

∂

∂xi
+
∑

i

∂ yi

∂Xa

∂

∂ yi
+
∑

i

∂zi

∂Xa

∂

∂zi

= ∂X

∂Xa

∂

∂X
+ ∂Rx

∂Xa

∂

∂Rx
+
∑

i

∂xi

∂Xa

∂

∂xi
= Ma

M

∂

∂X
+ ∂

∂Rx
− 1

2

∑
i

∂

∂xi

and the same goes for the coordinates Ya and Za . For the nucleus b, the expression is a little bit
different: ∂

∂Xb
= Mb

M
∂
∂X − ∂

∂Rx
− 1

2

∑
i
∂
∂xi

.
For the first derivative operator with respect to the coordinates of the electron i , we obtain:

∂

∂x ′i
= ∂X

∂x ′i
∂

∂X
+ ∂Y

∂x ′i
∂

∂Y
+ ∂Z

∂x ′i
∂

∂Z
+ ∂Rx

∂x ′i
∂

∂Rx
+ ∂Ry

∂x ′i
∂

∂Ry
+ ∂Rz

∂x ′i
∂

∂Rz

+
∑

j

∂x j

∂x ′i
∂

∂x j
+
∑

j

∂ y j

∂x ′i
∂

∂ y j
+
∑

j

∂z j

∂x ′i
∂

∂z j

= ∂X

∂x ′i
∂

∂X
+ ∂xi

∂x ′i
∂

∂xi
= m

M

∂

∂X
+ ∂

∂xi

and the same goes for y′i and z′i .
Now, let us create the second derivative operators:

∂2

∂X2
a
=
(

Ma

M

∂

∂X
+ ∂

∂Rx
− 1

2

∑
i

∂

∂xi

)2

=
(

Ma

M

)2
∂2

∂X2 +
∂2

∂R2
x
+ 1

4

(∑
i

∂

∂xi

)2

+ 2
Ma

M

∂

∂X

∂

∂Rx
− ∂

∂Rx

∑
i

∂

∂xi
− Ma

M

∂

∂X

∑
i

∂

∂xi
,

∂2

∂X2
b

=
(

Mb

M

∂

∂X
− ∂

∂Rx
− 1

2

∑
i

∂

∂xi

)2

=
(

Mb

M

)2
∂2

∂X2 +
∂2

∂R2
x
+ 1

4

(∑
i

∂

∂xi

)2

−2
Mb

M

∂

∂X

∂

∂Rx
+ ∂

∂Rx

∑
i

∂

∂xi
− Mb

M

∂

∂X

∑
i

∂

∂xi
,

∂2

∂
(
x ′i
)2 =

(
m

M

∂

∂X
+ ∂

∂xi

)2

=
(m

M

)2 ∂2

∂X2 +
∂2

∂x2
i

+ 2
m

M

∂

∂X

∂

∂xi
.

After inserting all this into the Hamiltonian [Eq. (6.1)] we obtain the Hamiltonian expressed
in the new coordinates5:
5 The potential energy also has to be expressed using the new coordinates.

http://booksite.elsevier.com/978-0-444-59436-5
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Ĥ =
[
− �

2

2M
�XY Z

]
+ Ĥ0 + Ĥ ′, (6.3)

where the first term means the center-of-mass kinetic energy operator and Ĥ0 is the electronic
Hamiltonian (clamped nuclei Hamiltonian):

Ĥ0 = −
∑

i

�
2

2m
�i + V , (6.4)

while �i ≡ ∂2

∂x2
i
+ ∂2

∂ y2
i
+ ∂2

∂z2
i

and

Ĥ ′ = − �
2

2μ
�R + Ĥ ′′, (6.5)

with �R ≡ ∂2

∂R2
x
+ ∂2

∂R2
y
+ ∂2

∂R2
z
, where

Ĥ ′′ =
⎡
⎣− �

2

8μ

(∑
i

∇i

)2

+ �
2

2

(
1

Ma
− 1

Mb

)
∇R

∑
i

∇i

⎤
⎦ ,

and μ denotes the reduced mass of the two nuclei (μ−1 = M−1
a + M−1

b ).
The Ĥ0 does not contain the kinetic energy operator of the nuclei, but it does contain all

the other terms (this is why it is called the electronic or clamped nuclei Hamiltonian): the first
term stands for the kinetic energy operator of the electrons, and V means the potential energy
corresponding to the Coulombic interaction of all particles. The first term in the operator Ĥ ′
(i.e.,− �

2

2μ�R), denotes the kinetic energy operator of the nuclei6, while the operator Ĥ ′′ couples

the motions of the nuclei and electrons7.

6 What moves is a particle of reduced mass μ and coordinates Rx , Ry , and Rz . This means that the particle has the
position of nucleus a, whereas nucleus b is at the origin. Therefore, this term accounts for the vibrations of the
molecule (changes in length of R), as well as its rotations (changes in orientation of R).

7 The first of these two terms contains the reduced mass of the two nuclei, where ∇i denotes the nabla oper-
ator for electron i,∇i ≡ i ∂

∂xi
+ j ∂

∂ yi
+ k ∂

∂zi
with i, j, k–the unit vectors along the x-,y-, and z-axes. The

second term is nonzero only for the heteronuclear case and contains the mixed product of nablas: ∇R∇i with
∇R = i ∂

∂Rx
+ j ∂

∂Ry
+ k ∂

∂Rz
and Rx , Ry , Rz as the components of the vector R.
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After Separation of the Center-of-Mass Motion

After separation of the center-of-mass motion [the first term in Eq. (6.3) is gone; see Appendix I
available at booksite.elsevier.com/978-0-444-59436-5 on p. e93], we obtain the eigenvalue
problem of the Hamiltonian:

Ĥ = Ĥ0 + Ĥ ′. (6.6)

This is an exact result, fully equivalent to the Schrödinger equation.

6.2 Exact (Non-Adiabatic) Theory

The total wave function that describes both electrons and nuclei can be proposed in the following
form8 (N = ∞):

�(r,R) =
N∑
k

ψk(r; R) fk(R), (6.7)

where ψk(r; R) are the eigenfunctions of Ĥ0:

8 Where would such a form of the wave function come from?
If the problem were solved exactly, then the solution of the Schrödinger equation could be sought; e.g., by

using the Ritz method (p. 238). Then we have to decide what kind of basis set to use. We could use two auxiliary
complete basis sets: one that depended on the electronic coordinates {ψ̄k(r)}, and another that depended on the
nuclear coordinates {φ̄l (R)}. The complete basis set for the Hilbert space of our system could be constructed
as a Cartesian product {ψ̄k(r)} × {φ̄l (R)}; i.e., all possible product-like functions ψ̄k(r)φ̄l (R). Thus, the wave
function could be expanded in a series, as follows:

�(r,R) =
∑
kl

ckl ψ̄k(r)φ̄l (R) =
N∑
k

ψ̄k(r)

⎡
⎣∑

l

ckl φ̄l (R)

⎤
⎦

=
N∑
k

ψ̄k(r) fk(R),

where fk(R) =
∑

l ckl φ̄l (R) stands for a to-be-sought coefficient depending on R (rovibrational function). If we
were dealing with complete sets, then both ψ̄k and fk should not depend on anything else, since a sufficiently
long expansion of the terms ψ̄k(r)φ̄l (R) would be suitable to describe all possible distributions of the electrons
and the nuclei.

However, we are unable to manage the complete sets. Instead, we are able to take only a few terms in this
expansion. We would like them to describe the molecule reasonably well, and at the same time to have only one
such term. If so, it would be reasonable to introduce a parametric dependence of the function ψ̄k(r) on the position
of the nuclei, which in our case of a diatomic molecule means the internuclear distance. This is equivalent to
telling someone how the electrons behave when the internuclear distances have some specific values, and how
they behave when the distances change.

http://booksite.elsevier.com/978-0-444-59436-5


266 Chapter 6

Ĥ0(R)ψk(r; R) = E0
k (R)ψk(r; R) (6.8)

and depend parametrically9 on the internuclear distance R, and fk(R) are yet unknown rovi-
brational functions (describing the rotations and vibrations of the molecule).

Averaging Over Electronic Coordinates

First, let us write down the Schrödinger equation with the Hamiltonian [Eq. (6.6)] and the wave
function, as in Eq. (6.7):

(Ĥ0 + Ĥ ′)
N∑
l

ψl
(
r; R

)
fl(R) = E

N∑
l

ψl
(
r; R

)
fl(R). (6.9)

Let us multiply both sides by ψ∗k (r; R) and then integrate over the electronic coordinates r
(which will be stressed by the subscript “e”):

N∑
l

〈
ψk |(Ĥ0 + Ĥ ′)[ψl fl]

〉
e
= E

N∑
l

〈ψk |ψl〉e fl . (6.10)

On the right side of Eq. (6.10), we profit from the orthonormalization condition 〈ψk |ψl〉e =
δkl , and on the left side, we recall that ψk is an eigenfunction of Ĥ0:

E0
k fk +

N∑
l

〈
ψk |Ĥ ′[ψl fl]

〉
e
= E fk . (6.11)

Now, let us focus on the expression Ĥ ′(ψl fl) = − �
2

2μ�R(ψl fl)+ Ĥ ′′(ψl fl), which we have
in the integrand in Eq. (6.11). Let us concentrate on the first of these terms:

− �
2

2μ
�R(ψl fl) = − �

2

2μ
∇R∇R(ψl fl) = − �

2

2μ
∇R[ψl∇R fl + (∇Rψl) fl]

= − �
2

2μ
[∇Rψl∇R fl + ψl�R fl + (�Rψl) fl +∇Rψl∇R fl]

= − �
2

2μ
[2 (∇Rψl

) (∇R fl
)+ ψl�R fl + (�Rψl) fl]. (6.12)

9 For each value of R, we have a different formula for ψk .
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After inserting the result into
〈
ψk |Ĥ ′(ψl fl)

〉
e

and recalling Eq. (6.5), we have

〈
ψk |Ĥ ′[ψl fl]

〉
e
= 2

(
− �

2

2μ

)
〈ψk |∇Rψl〉e ∇R fl + 〈ψk |ψl〉e

(
− �

2

2μ

)
�R fl

+
〈
ψk |

(
− �

2

2μ

)
�Rψl

〉
e

fl +
〈
ψk |Ĥ ′′ψl

〉
e

fl

= (1− δkl
) (−�

2

μ

)
〈ψk |∇Rψl〉e ∇R fl − δkl

�
2

2μ
�R fl + H ′kl fl, (6.13)

with
H ′kl ≡

〈
ψk |Ĥ ′ψl

〉
e
.

At that point, we obtain the following form of Eq. (6.11):

E0
k fk +

N∑
l

[(
1− δkl

) (−�
2

μ

)
〈ψk |∇Rψl〉e ∇R fl − δkl

�
2

2μ
�R fl + H ′kl fl

]
= E fk .

Here, we have profited from the equality 〈ψl |∇Rψl〉e = 0, which follows from the differentiation
of the normalization condition10 for the function ψl .

Non-Adiabatic Nuclear Motion

Grouping all the terms with fl on the left side, we obtain a set of N equations:

[
− �

2

2μ
�R + E0

k (R)+ H ′kk(R)− E

]
fk = −

N∑
l(
=k)

�kl fl, (6.14)

for k = 1, 2, . . .N with the non-adiabatic coupling operators

�kl = −�
2

μ
〈ψk |∇Rψl〉e ∇R + H ′kl . (6.15)

Note that the operator H ′kl depends on the length of the vector R, but not on its direction.11

10 We assume that the phase of the wave functionψk(r; R) does not depend on R; i.e.,ψk(r; R) = ψ̄k(r; R) exp (iφ),
where ψ̄k is a real function and φ 
= φ(R). This immediately gives 〈ψk |∇Rψk〉e =

〈
ψ̄k |∇Rψ̄k

〉
e, which is zero,

from differentiating the normalization condition. Indeed, the normalization condition:
∫
ψ2

k dτe = 1. Hence,

∇R
∫
ψ2

k dτe = 0, or 2
∫
ψk∇Rψkdτe = 0. Without this approximation, we will surely have trouble.

11 This follows from the fact that we have in Ĥ ′ [see Eq. (6.5)] the products of nablas (i.e., scalar products). The
scalar products do not change upon rotation because both vectors involved rotate in the same way and the angle
between them does not change.
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Equation (6.14) is equivalent to the Schrödinger equation.
Equations (6.14) and (6.15) have been derived under the assumption that ψk of Eq. (6.7)

satisfies Eq. (6.8). If instead of ψk(r; R), we use a (generally non-orthogonal) complete set{
ψ̄k(r; R)

}
in Eq. (6.7), Eqs. (6.14) and (6.15) would change to

[
− �

2

2μ
�R + Ēk(R)+ H ′kk(R)− E

]
fk = −

N∑
l(
=k)

�kl fl, (6.16)

for k = 1, 2, . . .N with the non-adiabatic coupling operators

�kl = −�
2

μ

〈
ψ̄k |∇Rψ̄l

〉
e ∇R + H ′kl +

〈
ψ̄k |ψ̄l

〉
e

(
− �

2

2μ
�R

)
(6.17)

and Ēk(R) ≡
〈
ψ̄k |Ĥ0ψ̄k

〉
e
. Functions ψ̄k(r; R)may be chosen as the wave functions with some

chemical significance.

6.3 Adiabatic Approximation

If the curves E0
k (R) for different k are well separated in the energy scale, we may expect that

the coupling between them is small, and therefore all �lk for k 
= l may be set equal to zero.
This is called the adiabatic approximation. In this approximation, we obtain from Eq. (6.14):

[
− �

2

2μ
�R + E0

k (R)+ H ′kk(R)

]
fk(R) = E fk(R), (6.18)

where the diagonal correction H ′kk(R) is usually very small compared to E0
k (R).

In the adiabatic approximation, the wave function is approximated by a product

� ≈ ψk(r; R) fk(R) (6.19)

The function fk(R) depends explicitly not only on R, but also on the direction of vector R,
and therefore it will describe future vibrations of the molecule (changes of R), as well as its
rotations (changes of the direction of R).

A Simple Analogy

Let us pause a moment to get a sense of the adiabatic approximation.
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To some extent, the situation resembles an attempt to describe a tourist (an electron) and
the Alps (nuclei). Not only the tourist moves, but also the Alps, as has been quite convincingly
proved by geologists.12 The probability of encountering the tourist may be described by a “wave
function” computed for a fixed position of the mountains (shown by a map bought in a shop).
This is a very good approximation because when the tourist wanders over hundreds of miles, the
beloved Alps move a tiny distance, so the map seems to be perfect all the time. On the other hand,
the probability of having the Alps in a given configuration is described by the geologists’ “wave
function” f , saying e.g. what is the probability that the distance between the Matterhorn and the
Jungfrau is equal to R. When the tourist revisits the Alps after a period of time (say, a few million
years), the mountains will have changed (the new map bought in the shop will reflect this fact).
The probability of finding the tourist may again be computed from the new wave function, which
is valid for the new configuration of the mountains (a parametric dependence). Therefore, the
probability of finding the tourist in the spot indicated by the vector r at a given configuration of
the mountains R can be approximated by a product13 of the probability of finding the mountains
at this configuration | fk(R)|2dR and the probability |ψk(r;R)|2dr of finding the tourist in
the position shown by the vector r, when the mountains have this particular configuration R.
In the case of our molecule, this means the adiabatic approximation (a product-like form),
Eq. (6.19).

This parallel fails in one important way: the Alps do not move in the potential created by
tourists, the dominant geological processes are tourist-independent. Contrary to this, as we will
soon see, nuclear motion is dictated by the electrons through the potential averaged over the
electronic motion.

6.4 Born-Oppenheimer Approximation

In the adiabatic approximation, H ′kk =
∫
ψ∗k H ′ψkdτe represents a small correction to E0

k (R).
Neglecting this correction results in the Born-Oppenheimer approximation:

H ′kk = 0.

12 The continental plates collide like billiard balls in a kind of quasi-periodic oscillation. During the current oscillation,
the India plate, which moved at a record speed of about 20 cm a year, hit the Euroasiatic plate. This is why the
Himalayan mountains are so beautiful. The collision continues, and the Himalayas will be even more beautiful
someday. Europe was hit from the south by a few plates moving at only about 4 cm a year, and this is why Alps
are lower than Himalayas. While visiting the Atlantic coast of Maine, I wondered that the color of the rocks was
very similar to those I remembered from Brittany, in France. That was it! Once upon a time, the two coasts made a
common continent. Later, we had to rediscover America. The Wegener theory of continental plate tectonics, when
created in 1911, was viewed as absurd, although the mountain ranges suggested that some plates were colliding.

13 This is an approximation because in the non-adiabatic (i.e., fully correct) approach, the total wave function is a
superposition of many such products, corresponding to various electronic and rovibrational wave functions.
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Note that in the Born-Oppenheimer approximation, the potential energy for the motion
of the nuclei E0

k (R) is independent of the mass of the nuclei, whereas in the adiabatic
approximation, the potential energy E0

k (R)+ H ′kk(R) depends on the mass.

Julius Robert Oppenheimer (1904–1967), American
physicist and professor at the University of Califor-
nia in Berkeley, the California Institute of Technology
in Pasadena, and the Institute for Advanced Study in
Princeton. From 1943 to 1945, Oppenheimer headed
the Manhattan Project (atomic bomb).

From John Slater’s autobiography:
“Robert Oppenheimer was a very brilliant physics

undergraduate at Harvard during the 1920s, the period
when I was there on the faculty, and we all recognized
that he was a person of very unusual attainments.
Rather than going on for his graduate work at Har-
vard, he went to Germany, and worked with Born,

developing what has been known as the Born-
Oppenheimer approximation.”

. . . And a Certain Superiority of Theory Over Experiment

In experiments, every chemist finds his molecule confined close to a minimum of the electronic
energy hypersurface (most often of the ground state). A powerful theory might be able to predict
the results of experiments even for the nuclear configurations that are far from those that are
accessible for current experiments. This is the case with quantum mechanics, which is able to
describe in detail what would happen to the electronic structure14, if the nuclear configuration
were very strange; e.g., the internuclear distances were close to zero, if not exactly zero. Within
the Born-Oppenheimer approximation, the theoretician is free to put the nuclei wherever he
wishes. This means that we are able to discuss and then just to test “what would be if,” even if
this “if” were crazy. For example, some small internuclear distances are achievable at extremely
large pressures. At such pressures, some additional difficult experiments have to be performed
to tell us about the structure and processes. A theoretician just sets the small distances and
makes a computer run. This is really exceptional: we may set some conditions that are out of
reach of experiments (even very expensive ones), and we are able to tell with confidence and at
low cost what will be.

14 We just do not have any reason to doubt it.
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6.5 Vibrations of a Rotating Molecule

Our next step will be an attempt to separate rotations and oscillations within the adiabatic
approximation. To this end, the function fk(R) = fk(R, θ, φ) will be proposed as a product of
a function Y which will account for rotations (depending on θ, φ), and a certain function χk(R)

R
describing the oscillations i.e., dependent on R

fk(R) = Y (θ, φ)
χk(R)

R
. (6.20)

No additional approximation is introduced in this way. We say only that the isolated molecule
vibrates independently of whether it is oriented toward the Capricorn or Taurus constellations
(“space is isotropic”).15 The function χk(R) is yet unknown, and we are going to search for it;
therefore, dividing by R in (6.20) is meaningless.16

Now, we will try to separate the variables θ, φ from the variable R in Eq. (6.18); i.e., to obtain
two separate equations for them. First, let us define the quantity

Uk(R) = E0
k (R)+ H ′kk(R). (6.21)

After inserting the Laplacian (in spherical coordinates; see Appendix H available at booksite.
elsevier.com/978-0-444-59436-5 on p. e91) and the product [Eq. (6.20)] into Eq. (6.18), we
obtain the following series of transformations:[
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The result is fascinating. The left side depends on R only, and the right side only on θ and φ.
Both sides equal each other independently of the values of the variables. This can only happen
if each side is equal to a constant (λ), the same for each. Therefore, we have

−
(

R2

χk

∂2χk

∂R2

)
+ 2μ

�2 Uk(R)R
2 − 2μ

�2 E R2 = λ (6.22)

15 It is an assumption about “the space”, which is assumed not to be changed by the presence of the Capricorn,
Taurus, or other constellation.

16 In the case of polyatomics, the function fk(R)may be more complicated because some vibrations (e.g., a rotation
of the CH3 group) may contribute to the total angular momentum, which has to be conserved (this is related to
space isotropy; cf., p. 69).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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1

Y

(
1
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∂

∂θ
sin θ

∂Y

∂θ
+ 1

sin2 θ

∂2Y

∂φ2

)
= λ. (6.23)

Now, we are amazed to see that Eq. (6.23) is identical (cf., p. 199) to that which appeared
as a result of the transformation of the Schrödinger equation for a rigid rotator, Y denoting
the corresponding wave function. As we know from p. 200, this equation has a solution only
if λ = −J (J + 1), where J = 0, 1, 2, ... Since Y stands for the rigid rotator wave function,
we now concentrate exclusively on the function χk , which describes vibrations (changes in the
length of R).

After inserting the permitted values of λ into Eq. (6.22), we get

− �
2

2μ

(
∂2χk

∂R2

)
+Uk(R)χk − Eχk = − �

2

2μR2 J (J + 1)χk .

Let us write this equation in the form of the eigenvalue problem for the unidimensional
motion of a particle (we change the partial into the regular derivative) of mass μ:

(
− �

2

2μ

d2

dR2 + Vk J

)
χkv J (R) = Ekv Jχkv J (R) (6.24)

with potential energy (let us stress that R > 0)

Vk J (R) = Uk(R)+ J (J + 1)
�

2

2μR2 , (6.25)

which takes the effect of centrifugal force on the vibrational motion into account. The solution
χk , as well as the total energy Ek , have been labeled by two additional indices: the rotational
quantum number J (because the potential depends on it) and the numbering of the solutions
v = 0, 1, 2, . . .

The solutions of Eq. (6.24) describe the vibrations of the nuclei. The function Vk J =
E0

k (R) + H ′kk(R) + J (J + 1)�2/(2μR2) plays the role of the potential energy curve for
the motion of the nuclei.

The above equation, and therefore also

the very notion of the potential energy curve for the motion of the nuclei, appears only
after the adiabatic (the product-like wave function, and H ′kk preserved) or the Born-Oppen-
heimer (the product-like wave function, but H ′kk removed) approximation is applied. Only
in the Born-Oppenheimer approximation is the potential energy Uk(R)mass-independent;
e.g., the same for isotopomers H2, HD, and D2.
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If Vk J (R) were a parabola (as it is for the harmonic oscillator), the system would never
acquire the energy corresponding to the bottom of the parabola because the harmonic oscillator
energy levels (cf., p. 190) correspond to higher energy. The same pertains to Vk J of a more
complex shape.

6.5.1 One More Analogy

The fact that the electronic energy E0
k (R) plays the role of the potential energy for vibrations not

only represents the result of rather complex derivations, but is also natural and understandable.
The nuclei keep together thanks to the electronic “glue” (we will come back to this in Chapter
8). Let us imagine two metallic balls (nuclei) in a block of transparent gum (electronic cloud),
as shown in Fig. 6.1.

If we were interested in the motion of the balls, we would have to take the potential energy
as well as the kinetic energy into account. The potential energy would depend on the distance
R between the balls, in the same way as the gum’s elastic energy depends on the stretching
or squeezing the gum to produce a distance between the balls equal to R. Thus, the potential
energy for the motion of the balls (nuclei) has to be the potential energy of the gum (electronic
energy).17

Fig. 6.1. Two metallic balls in a block of gum. How will they vibrate? This will be dictated by the elastic properties of the gum.

17 The adiabatic approximation is of more general importance than the separation of the electronic and nuclear
motions. Its essence pertains to the problem of two coexisting time scales in some phenomena: fast and slow
scales. The examples below indicate that we have to do with an important and general philosophical approach:

• In Chapter 14 on chemical reactions, we will consider slow motion along a single coordinate, and fast motions
along other coordinates (in the configurational space of the nuclei). “Vibrationally adiabatic” approximation
will also be introduced, and the slow motion will proceed in the potential energy averaged over fast motions
and calculated at each fixed value of the slow coordinate.

• Similar reasoning was behind vibrational analysis in systems with hydrogen bonds [Y. Marechal
and A. Witkowski, Theor. Chim. Acta, 9, 116 (1967).] The authors selected a slow intermolecular motion
proceeding in the potential energy averaged over fast intramolecular motions.
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This situation corresponds to a non-rotating system. If we admit rotation, we would have to
take the effect of centrifugal force on the potential energy (or elastic properties) of the gum into
account. This effect is analogous to the second term in Eq. (6.25) for Vk J (R).

6.5.2 What Vibrates, What Rotates?

One may say that, as a result of averaging over electron coordinates, the electrons disappeared
from the theory. The only effect of their presence are numbers: the potential energy term Uk(R)
of Eq. (6.21). Equation (6.24) says that the vibrating and rotating objects are bare nuclei, which
seems strange because they certainly move somehow with electrons. Our intuition says that
what should vibrate and rotate are atoms, not nuclei. In our example with the gum, it is evident
that the iron balls should be a bit heavier since they pull the gum with them.

Where is this effect hidden? It has to be a part of the non-adiabatic effect, and can be taken
into account within the non-adiabatic procedure described on p. 265. It looks quite strange.
Such an obvious effect18 is hidden in a theory that is hardly used in computational practice,
because of its complexity?

If the excited electronic states are well separated from the ground electronic state k = 0,
it turned out that one may catch a good part of this effect for the ground state by using the
perturbation theory (see Chapter 5). It is possible to construct19 a set of more and more advanced
approximations for calculating the rovibrational levels. All of them stem from the following
equation for the vibrational motion of the nuclei, a generalization of Eq. (6.24):[

− 1

R2

d

dR

R2

2μ‖(R)
d

dR
+W0J (R)

]
χ0v J (R) = E0v Jχ0v J (R), (6.26)

where the operator on the left side corresponds to the kinetic energy of vibration given in
Eq. (6.24), but this time, instead of the constant reduced mass μ of the nuclei, we have the mass
denoted as μ||(R) that is R-dependent. The potential energy

W0J (R) = E0
0(R)+ H ′00(R)+

J (J + 1)

2μ⊥R2 + δEna(R) (6.27)

also resembles the potential energy of Eq. (6.25), but the reduced mass of the nuclei μ in the
centrifugal energy, Eq. (6.25), is replaced now by a function of R denoted by μ⊥(R). Visibly
the nuclei are “dressed” by electrons, and this dressing not only is R-dependent, which is
understandable, but also depends on what the nuclei are doing (vibration20 or rotation). There
is also a non-adiabatic increment δEna(R), which effectively takes into account the presence

18 The effect is certainly small, because the mass of the electrons that make a difference (move with the nucleus) are
about 1836 times smaller than the mass of the nucleus alone.

19 K. Pachucki and J. Komasa, J. Chem. Phys., 129, 34102 (2008).
20 The R-dependent μ was introduced by R.M. Herman and A. Asgharian, J. Chem. Phys., 45, 2433 (1966).
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Fig. 6.2. What vibrates and what rotates in the hydrogen molecule? The variable reduced masses μ|| and μ⊥ correspond to the
masses of the objects in the hydrogen molecule that vibrate (m||) and rotate (m⊥). Conclusion: at large distances move atoms, at
very short move the bare nuclei.

of higher states. We do not give here the formulas for δEna(R), μ‖ and μ⊥ (they all have been
derived by Pachucki and Komasa21).

The following sequence of approximations can be designed:

• The Born-Oppenheimer approximation: μ|| = μ⊥ = μ; W0J (R) = E0
0(R)+ J (J+1)

2μR2

• The adiabatic approximation: μ|| = μ⊥ = μ;W0J (R) = E0
0(R)+ H ′00(R)+ J (J+1)

2μR2

• The effective non-adiabatic approximation: μ||, μ⊥ taken as R-dependent; W0J (R) =
E0

0(R)+ H ′00(R)+ J (J+1)
2μ⊥R2 + δEna(R).

It is interesting to see what kind of object vibrates and rotates in the hydrogen molecule. As
one can see from Fig. 6.2, μ||(R = ∞) = μ⊥(R = ∞) = Mp + m, while μ‖(R = 0) =
μ⊥(R = 0) = Mp, where Mp stands for the mass of proton and m is the electron mass. Thus,
for large R, the hydrogen atoms vibrate and rotate, while for very small R - only bare protons
do. For finite nonzero values of R, the rotation-related effective atomic mass m⊥(R) changes
monotonically, while the vibration-related effective atomic mass m||(R) undergoes peculiar
changes exhibiting a maximum mass at about 4 a.u. (a bit larger than Mp+m) and additionally,
an impressive plateau of about Mp + 3

4 m just before going to m|| = Mp at R = 0. This is what
equations give; however, we have problems with rationalizing such things.

21 Equation (6.27) may be treated as the most general definition of the potential energy curve for the motion of the
nuclei.
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The approach reported is able to produce the non-adiabatic corrections to all rovibrational
levels corresponding to the ground electronic state.22

6.5.3 The Fundamental Character of the Adiabatic Approximation–PES

In the case of a polyatomic molecule with N atoms (N > 2), Vk J depends on 3N − 6 variables
determining the configuration of the nuclei. The function Vk J (R) therefore represents a surface
in (3N − 5)-dimensional space (a hypersurface). This potential energy (hyper)surface Vk J (R),
or PES, for the motion of the nuclei represents one of the most important ideas in chemistry.

This concept makes possible contact with what chemists call the spatial “structure” of the
molecule, identified with its nuclear configuration corresponding to the minimum of the
PES for the electronic ground state. It is only because of the adiabatic approximation, that
we may imagine the 3-D shape of a molecule as a configuration of its nuclei bound by an
electronic cloud (see Fig. 6.3). This object moves and rotates in space, and in addition, the
nuclei vibrate about their equilibrium positions with respect to other nuclei (which may be
visualized as a rotation-like motion close to the minimum of an energy valley).

Without the adiabatic approximation, questions about the molecular 3-D structure of the
benzene molecule could only be answered in a very enigmatic way. For example:

• The molecule does not have any particular 3-D shape.
• The motion of the electrons and nuclei is very complicated.
• Correlations of motion of all the particles exist (electron-electron, nucleus-nucleus, electron-

nucleus).
• These correlations are in general very difficult to elucidate.

Identical answers would be given if we were to ask about the structure of the DNA molecule.
Obviously, something is going wrong, and perhaps we should expect more help from theory.

For the benzene molecule, we could answer questions like: What is the mean value of the
carbon-carbon, carbon-proton, proton-proton, electron-electron, electron-proton, and electron-
carbon distances in the benzene molecule in its ground and excited states? Note that because all
identical particles are indistinguishable, the carbon-proton distance pertains to any carbon and
any proton, and so on. To discover that the benzene molecule is essentially a planar hexagonal
object would be very difficult. What could we say about a protein? A pile of paper with such
numbers would give us the true (though non-relativistic) picture of the benzene molecule, but
it would be useless, just as a map of the world with 1:1 scale would be useless for a tourist.
It is just too exact. If we relied on this, progress in the investigation of the molecular world

22 It is worth noting that for H2 and its lowest rovibrational level (to cite one example), making μ R-dependent
[i.e., using μ|| and μ⊥ and neglecting δEna(R)] gives 84% of the total non-adiabatic effect, while neglecting this
R-dependence [i.e., putting μ|| = μ⊥ = μ and taking δEna(R) into account gives 15%. These two effects seem
to be quite independent.
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Fig. 6.3. A 3-D model (called the “structure”) of a molecule allows us to focus attention on spatial and temporal relations that
are similar to those we know from the macroscopic world. Although the concept of “spatial structure” may occasionally fail, in
virtually all cases in chemistry and physics, we use a 3-D molecular model that resembles what is shown here for a particular
molecule (using a 2-D projection of the 3-D model). There are “balls” and “connecting sticks.” The balls represent atoms (of
various sizes, and the size characterizes the corresponding element), the sticks of different length are supposed to represent what
are called “chemical bonds.” What should be taken seriously, and what shouldn’t be? First, the scale. The real molecule is about
100000000 times smaller than the picture here. Second, the motion. This static model shows a kind of averaging over all the
snapshots of the real vibrating atoms. In Chapters 8 and 11, we will see that indeed the atoms of which the molecule is composed
keep together because of a pattern of interatomic chemical bonds (which characterizes the electronic state of the molecule) that to
some extent resemble sticks. An atom in a molecule is never spherically symmetric (cf., Chapter 11), but can be approximated by
its spherical core (“ball”). The particular molecule shown here has two tetraazaanulene macrocycles that coordinate two Ni2+ ions
(the largest spheres). The macrocycles are held together by two −(CH2)4− molecular links. Note that any atom of a given type
binds a certain number of its neighbors. The most important message is: if such structural information offered by the 3-D molecular
model were not available, it would not be possible to design and carry out the complex synthesis of the molecule. Courtesy of
Professor B. Korybut-Daszkiewicz.

would more or less stop. A radical approach in science, even if more rigorous, is very often
less fruitful or fertile. Science needs models, simpler than reality but capturing the essence of
it, which direct human thought toward much more fertile regions.

The adiabatic approximation offers a simple 3-D model of a molecule–an extremely useful
concept with great interpretative potential.

In later chapters of this book, this model will gradually be enriched by introducing the
notion of chemical bonds between some atoms, angles between consecutive chemical bonds,
electronic lone pairs, electronic pairs that form the chemical bonds, etc. Such a model inspires
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our imagination (. . . sometimes too much).23 This is the foundation of all chemistry, all organic
syntheses, conformational analysis, most of spectroscopy, etc. Without this beautiful model,
progress in chemistry would be extremely difficult.

6.6 Basic Principles of Electronic, Vibrational, and Rotational
Spectroscopy

6.6.1 Vibrational Structure

Equation (6.24) represents the basis of molecular spectroscopy and involves changing the molec-
ular electronic, vibrational, or rotational state of a diatomic molecule. Fig. 6.4 shows an exam-
ple how the curves Uk(R) [also E0

k (R)] may appear for three electronic states k = 0, 1, 2 of a
diatomic molecule. Two of these curves (k = 0, 2) have a typical for bonding states “hook-like”
shape. The third (k = 1) is also typical, but for repulsive electronic states.

It was assumed in Fig. 6.4 that J = 0 and therefore Vk J (R) = Uk(R). Next, Eq. (6.24) was
solved for U0(R) and a series of solutions χkv J = χ0v0 was found: χ000, χ010, χ020, . . . with
energies E000, E010, E020, . . . , respectively. Then, in a similar way, for k = 2, one has obtained

Fig. 6.4. The curves Vk J (R) for J = 0 [Vk0(R) = Uk (R)] for the electronic states k = 0, 1, 2 of a diatomic molecule (scheme).
The energy levels Ekv J for J = 0 corresponding to these curves are also shown. The electronic state k = 0 has four, k = 1 has
zero, and k = 2 has five vibrational energy levels.

23 We always have to remember that the useful model represents nothing more than a kind of pictorial representation
of a more complex and unknown reality.
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the series of solutions:χ200, χ210, χ220, . . .with the corresponding energies E200, E210, E220, . . .

This means that these two electronic levels (k = 0, 2) have a vibrational structure (v =
0, 1, 2, . . . ), the corresponding vibrational levels are shown in Fig. 6.4. Any attempt to find the
vibrational levels for the electronic state k = 1 would fail.

The pattern of the vibrational levels looks similar to those for the Morse oscillator (p. 192).
The low levels are nearly equidistant, reminding us of the results for the harmonic oscillator. The
corresponding wave functions also resemble those for the harmonic oscillator. Higher-energy
vibrational levels are getting closer and closer, as for the Morse potential. This is a consequence
of the anharmonicity of the potential–we are just approaching the dissociation limit where the
Uk(R) curves differ qualitatively from the harmonic potential.

6.6.2 Rotational Structure

What would happen if we took J = 1 instead of J = 0? This corresponds to the potential energy
curves Vk J (R) = Uk(R)+ J (J +1)�2/(2μR2), which in our case is Vk1(R) = Uk(R)+1(1+
1)�2/(2μR2) = Uk(R) + �

2/(μR2) for k = 0, 1, 2. The new curves therefore represent the
old curves plus the term �

2/(μR2), which is the same for all the curves. This corresponds
to a small modification of the curves for large R and a larger modification for small R (see
Fig. 6.5). The potential energy curves just go up a little bit on the left.24 Of course, this is why
the solution of Eq. (6.24) for these new curves will be similar to that which we had before; but
this tiny shift upward will result in a tiny shift upward of all the computed vibrational levels.
Therefore, the levels Ekv1 for v = 0, 1, 2, . . .will be a little higher than the corresponding Ekv0

for v = 0, 1, 2, . . . (this pertains to k = 0, 2, there will be no vibrational states for k = 1 ).
This means that each vibrational level v will have its own rotational structure corresponding to
J = 0, 1, 2, . . ..

.

.

.

.

.
Fig. 6.5. Potential energy curves in arbitrary units corresponding to a diatomic [Vk J (R), k is the electronic state quantum number]
for the rotational quantum numbers J = 0, 1, 2. One can see the bond weakening under rotational excitation.

24 With an accompanying small shift to the right the position of the minimum.
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Increasing J means that the potential energy curve becomes shallower25 At some lower J s
the molecule may accommodate all or part of the vibrational levels that exist for J = 0. It may
happen that after a high-energy rotational excitation (to a large J ), the potential energy curve
will be so shallow that no vibrational energy level will be possible. This means that the molecule
will undergo dissociation due to the excessive centrifugal force.

Separation Between Energy Levels

For molecules other than hydrides, the separation between rotational levels (Ekv J+1 − Ekv J )

is smaller by two to three orders of magnitude than the separation between vibrational levels
(Ek,v+1,J − Ekv J ), and the latter is smaller by one or two orders of magnitude when compared
to the separation of the electronic levels (Ek+1,v,J − Ekv J ).

This is why electronic excitation corresponds to the absorption of UV or visible light,
vibrational excitation to the absorption of infrared radiation, and rotational excitation to
the absorption of microwave radiation.

This is what is used in a microwave oven. Food (such as chicken) on a ceramic plate is
irradiated by microwaves. This causes rotational excitation of the water molecules26 that are
always present in food. The “rotating” water molecules cause a transfer of kinetic energy to
protein, similar to what would happen in traditional cooking. After removing the food from the
microwave, the chicken is hot, but the plate is cool (as there is nothing to rotate in the material
that makes it up).

In practice, we always have to do with the absorption or emission spectra of a specimen
from which we are trying to deduce the relative positions of the energy levels of the molecules
involved. We may conclude that in theoretical spectra computed in the center-of-mass system,
there will be allowed and forbidden energy intervals.27 There is no energy levels corresponding
to bound states in the forbidden intervals.28 In the allowed intervals, any region corresponds to an
electronic state, whose levels exhibit a pattern (i.e., clustering into vibrational series: one cluster
corresponding to v = 0, the second to v = 1, etc.). Within any cluster, we have rotational levels
corresponding to J = 0, 1, 2, . . .This follows from the fact that the distances between the levels
with different k are large, with different v are smaller, and with different J are even smaller.

25 The curve Vk J (R) becomes shallower and the system gets less stable, but for small J , the force constant para-
doxically (the second derivative at minimum, if any) increases; i.e., the system becomes stiffer due to rotation.

Indeed, the second derivative of the rotational energy is equal to J (J + 1) 3�
2

μR4 > 0 and, if the position of the

minimum of the new curve shifted only a bit (J not too large) with respect to the position of the minimum of
Uk(R), the force constant would increase due to the rotational excitation.

26 Such rotation is somewhat hindered in the solid phase.
27 In a space-fixed coordinate system (see p. e93), we always are dealing with a continuum of states (due to transla-

tions, see p. 69).
28 The non-bound states densely fill the total energy scale above the dissociation limit of the ground state.
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6.7 Approximate Separation of Rotations and Vibrations

Vibrations cannot be exactly separated from rotations for a very simple reason. During vibra-
tions, the length R of the molecule changes, which makes the moment of inertia I = μR2

change and influences the rotation of the molecule29 according to Eq. (6.25).
The separation is feasible only when making an approximation (e.g., when assuming the

mean value of the moment of inertia instead of the moment itself). Such a mean value is close
to I = μR2

e , where Re stands for the position of the minimum of the potential energy Vk0. So
we may decide to accept the potential [Eq. (6.25)] for the vibrations in the approximate form30:

Vk J (R) ≈ Uk(R)+ J (J + 1)
�

2

2μR2
e
.

Since the last term is a constant, this immediately gives the separation of the rotations from
the vibrational Eq. (6.24):(

− �
2

2μ

d2

dR2 +Uk(R)

)
χkv J (R) = E ′χkv J (R), (6.28)

where the constant

E ′ = Ekv J − Erot (J ),

Erot (J ) = J (J + 1)
�

2

2μR2
e
. (6.29)

Now, we may always write the potential Uk(R) as a number Uk(Re) plus the rest labeled by
Vvibr (R):

Uk(R) = Uk
(
Re
)+ Vvibr (R). (6.30)

Then, it is appropriate to call Uk(Re) the electronic energy Eel(k) (corresponding to the
equilibrium internuclear distance in electronic state k), while the function Vvibr (R) stands for
the vibrational potential satisfying Vvibr (Re) = 0. After introducing this into Eq. (6.28), we
obtain the equation for vibrations (in general, anharmonic):(

− �
2

2μ

d2

dR2 + Vvibr (R)

)
χkv J (R) = Evibr (v)χkv J (R),

where the constant Evibr (v) = E ′ − Eel , hence (after adding the translational energy–recalling
that we have separated the center-of-mass motion), we have the final approximation:

29 Let us recall the energetic pirouette of a dancer. Her graceful movements, stretching her arms out or aligning them
along her body, immediately translate into slow or fast rotational motion.

30 This looks reasonable for small amplitude vibrations only. However, this amplitude becomes larger under rotational
excitations. Thus, in principle, Re should increase if J increases and therefore the rotational energy is lower than
shown by the formula.
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Ekv J ≈ Etrans + Eel
(
k
)+ Evibr

(
v
)+ Erot

(
J
)
, (6.31)

where the corresponding quantum numbers are given in parentheses: the electronic (k), the
vibrational (v), and the rotational (J ).

6.8 Understanding the IR Spectrum: HCl

Assume that we have a diluted gas31 of HCl and we are testing its optical absorption in the
microwave region. It is worth noting that the H atom or the Cl atom by itself has zero absorption
in this range of spectrum. The spectrum of the HCl molecules represents a strange sequence of
double peaks in a peculiar quasi-periodic order. This means the absorption is a direct result of
making a molecule from these atoms. We will have to deal with some relative motion of the
two interacting atoms, which will be described by molecular vibrational and rotational states
and optical transitions between them (with the electronic state staying the same).

6.8.1 Selection Rules

Not all transitions are allowed. All selection rules stem ultimately from conservation laws.

The conservation of energy law says that only a photon of energy �ω that fits the difference
of energy levels can be absorbed.

This fitting is not enough, however. There also must be a coupling (oscillating with fre-
quency ω) between the electromagnetic field and the system. From the theory of interaction
of matter and electromagnetic field, we know that the most important coupling term is equal
to −μ̂ · E = −(μ̂xEx + μ̂yEy + μ̂zEz); cf. p. 97, where E is the oscillating electric field
vector of the electromagnetic field and μ̂ is the dipole moment operator. We will assume that
the electromagnetic wave propagates along the z-axis; therefore, Ez = 0 and only μ̂x and
μ̂y will count. The quantity E provides the necessary oscillations in time, while the absorp-
tion is measured by |c|2 with c = 〈�k |μ̂(r,R)�k′ 〉e,n , the coupling between the initial elec-
tronic rovibrational state �k(r, R) = ψk(r;R) fk(R) = ψk=0(r;R)χv=0(R)Y M

J (θ, φ), and
the final electronic rovibrational state �k′(r, R) = ψk′=0(r;R)χv′(R)Y M ′

J ′ (θ, φ). Where we
decided to be within the ground electronic state (k = k′ = 0) and start from the ground
vibrational state (v = 0), the symbol 〈|〉e,n denotes the integration over the coordinates

31 No intermolecular interaction will be assumed.
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of all the electrons (“e”) and nuclei (“n”).32 We will integrate first within c =
〈�k |μ̂�k′ 〉e,n over electronic coordinates: 〈ψ0(r;R)|μ̂(r,R)ψ0(r;R)〉e ≡ μ00(R) and get

c =
〈
χv=0(R)Y M

J (θ, φ)|μ00(R)χv′(R)Y
M ′
J ′ (θ, φ)

〉
n
. The quantityμ00(R) is the dipole moment

of the molecule in the ground electronic state and oriented in space along R.

In case μ00(R) = 0 (also in case μ00(R) · E = 0 for any R), there will be no absorption.
Thus, to get a nonzero absorption in rotational and vibrational (microwave or IR) spectra,
one has to do with polar molecules, at least for certain R. Therefore, all homonuclear
diatomics, although they have a rich structure of rovibrational levels, are unable to absorb
electromagnetic radiation in the microwave as well as in the IR range.

A vector in 3-D space may be defined in a Cartesian coordinate system by giving the x, y,
and z components, but also in the spherical coordinate system by giving R, θ, φ polar coor-
dinates. Now, let us write the dipole moment μ00(R) in spherical coordinates33: μ00(R) =√

8π
3 μ00(R)Y m

1 (θ, φ) (see p. e169) with m = ±1,m = 0 is excluded because it represents
μ00,z = 0, which is irrelevant in view of Ez = 0 (there is no coupling in such a case). Thus,

c =
〈
χv=0(R)Y

M
J (θ, φ)|μ00(R)χv′(R)Y

M ′
J ′ (θ, φ)

〉
n

=
√

8π

3
〈χ0(R)|μ00(R)χv′(R)〉R

〈
Y M

J |Y m
1 Y M ′

J ′
〉
θ,φ
,

where at each integral we have indicated the coordinates to integrate over. Now, introducing
the equilibrium internuclear distance Re (the position of the minimum of the potential energy
curve) and the displacement Q = R − Re, as well as expanding μ00(R) in the Taylor series:

μ00(R) = μ00(Re) +
(
∂μ00
∂R

)
R=Re

Q + . . . and neglecting the higher terms denoted as + . . .

32 When describing the electronic function, we have put explicitly the position in space of the nuclei (R) instead of
the usual notation with R (which does not tell us how the nuclear axis is oriented in space).

33

μ
(
10
)
= q R

√
4π

3
Y 0

1 = μ(R)
√

4π

3
Y 0

1 ,

μ
(
1,±1

)
= μ(R)

√
8π

3
Y±1

1 .
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one obtains:

c =
√

8π

3

[
μ00(Re) 〈χ0(R)|χv′(R)〉R +

(
∂μ00

∂R

)
R=Re

〈χ0(R)|Qχv′(R)〉R
]

×
〈
Y M

J |Y m
1 Y M ′

J ′
〉
θ,φ
= 0

+
√

8π

3

(
∂μ00

∂R

)
R=Re

〈χ0(R)|Qχv′(R)〉R
〈
Y M

J |Y±1
1 Y M ′

J ′
〉
θ,φ
.

There is only one such wave function χv′ of the harmonic oscillator, for which
〈χ0(R)|Qχv′(R)〉R 
= 0: it happens only for34 v′ = 1.

We obtain the selection rule for the IR spectroscopy: it is necessary that during the vibration,
the dipole moment changes. The main effect of the IR absorption from the v = 0 state is
that the vibrational quantum number has to change from 0 to 1.

The integral
〈
Y M

J |Y±1
1 Y M ′

J ′
〉
θ,φ

is nonzero only if35 M ′ = M−m, J ′ = J±1. This integral has

to do with conservation of the total angular momentum and with the conservation of the parity
of the system. Any photon has the spin quantum number36 s = 1 (cf. p. 26), which means that
besides its energy, it carries the angular momentum: � or−� (right or left circular polarizations
of the photon, the electric field E rotating within the xy plane). After absorption the photon
disappears, but it does not matter: the total angular momentum has to be conserved whatever
happens. Therefore, the total system: molecule+photon, before as well as after absorption, has
to have the total angular momentum with the quantum number equal to37 |J − s| , J , J + s i.e.,
J − 1, J , J + 1. The second possibility (with J ) would mean that in the IR spectroscopy, the
violation of parity occurs.38 Indeed, the parity of Y M

J is equal39 to (− 1)J . Therefore, the case
J ′ = J in view of parity of Y±1

1 would mean that this is an odd function to integrate, which
would make the integral equal to zero.40 Thus,

34 Simply, Qχ0(R) is proportional to the Hermite polynomial H1; i.e., is proportional to χ1(R). Due to the orthonor-
mal character of all χv , this gives v = 1 as the only possibility.

35 The rule M ′ = M − m follows from
∫ 2π

0 exp[i(−M + m + M ′)φ]dφ = 2πδM ′,M−m .
36 With two polarizations: ms = 1 or ms = −1, the polarization ms = 0 is excluded due to the zero mass.
37 We will describe this problem of quantum-mechanical adding of two angular momenta in a more general way on

p. 343.
38 The conservation of parity is violated in nature, but this effect is much too small to be seen in the analyzed

spectrum.
39 Recall the s,p,d, ... orbitals of the hydrogen atom. They correspond to Y m

l , l = 0, 1, 2, . . . , respectively, and they
are of even (l = 0, 2) or odd parity (l = 1).

40 This is why we do not have the peak (“missing”): v = 0, J = 0→ v = 1, J = 0.
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the selection rule for the IR and for the microwave spectroscopy reads as:
No photon absorption can happen unless �J = ±1.

6.8.2 Microwave Spectrum Gives the Internuclear Distance

The lowest energy needed to excite the system would be achieved by changing J only; the related
frequencies (for transitions that are allowed by selection rules41: kv J = 00J → 00(J+1), J =
0, 1, 2, . . .) are in the range of microwaves. From Eq. (6.29), we get the theoretical estimation
of the transition energy hν = hcν̄ = (J + 1)(J + 2) �

2

2μR2
e
− J (J + 1) �

2

2μR2
e
= 2(J + 1) �

2

2μR2
e
=

(J + 1)2B. Using the recorded microwave spectrum, we may estimate from this formula the
equilibrium interatomic distance for HCl. For the consecutive J , we get 1.29 Å, independently
of J (not too large though)42. Thus, from the microwave spectrum of HCl, we can read the
“interatomic distance.” We may compare this distance with, say, the position of minimum of
the computed potential energy curve U0(Re) of Eq. (6.30).

6.8.3 IR Spectrum and Isotopic Effect

What about the IR region? Fig. 6.6a gives the recorded absorption.
First, why are there these strange doublets in the IR spectrum for HCl? Well, the reason is

quite trivial: two natural chlorine isotopes: 35Cl and 37Cl, which are always present in the natural
specimen (with proportion 3:1). The H35Cl molecule rotates (as well as oscillates) differently
than the H37Cl because of the reduced mass difference [see Eq. (6.29)]. This difference of μ is
very small, since what decides inμ is the small mass of the proton43. Thus, these two molecules
will correspond to two spectra that are similar, but shifted a bit with respect to one another on
the frequency axis, the heavier isotope spectrum corresponding to a bit lower frequency.

Fig. 6.6a can be understood with the help of Eq. (6.28), which shows us a model of the
phenomena taking place. At room temperature, most of the molecules (Boltzmann law) are in
their ground electronic and vibrational states (k = 0, v = 0). IR quanta are unable to change
quantum number k, but they have sufficient energy to change v and J quantum numbers. Fig. 6.6a
shows what in fact has been recorded. From the transition selection rules (see above), we have
�v = 1−0 = 1 and either the transitions of the kind�J = (J +1)− J = +1 (what is known
as the R branch, right side of the spectrum) or of the kind �J = J − (J + 1) = −1 (the P
branch, left side).

41 For more about this, see Appendix C available at booksite.elsevier.com/978-0-444-59436-5.
42 This is because the minimum of the potential energy curve V0J shifts for large J .
43 The presence of a deuterium-substituted molecule would have much more serious consequences (a larger shift

of the spectrum), because what first of all counts for the reduced mass is the light atom. And the reduced mass
controls rotation and vibration.

http://booksite.elsevier.com/978-0-444-59436-5
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(a)

(b)

Fig. 6.6. What can we learn about the HCl molecule from its IR spectrum? (a) The IR spectrum (each doublet results from two
chlorine isotopes: 35Cl and 37Cl present in the specimen). (b) The central position in the spectrum (between R and P branches)
seems to be missing because the transition v = 0, J = 0 → v = 1, J = 0 is forbidden by the selection rules (as described
in the text), and its hypothetical position can be determined with high precision as the mean value of the two transitions shown:
J = 0 → J = 1 and J = 1→ J = 0. This allows us to compute the force constant of the HCl bond. The energy difference of
the same two quanta allows us to estimate the moment of inertia, and therefore the H…Cl distance. Note that the rotational levels
corresponding to the vibrational state v = 1 are closer to each other than those for v = 0. This is due to the wider and wider well
and longer and longer equilibrium distance corresponding to the rotationally corrected potential for the motion of the nuclei.

6.8.4 IR Spectrum Gives the Internuclear Distance

The remarkable regularity of the spectrum comes from the fact that the transition energy differ-
ence (of the nearest-neighbor peak positions) in a given branch is:

• For the R branch: Eexcit,J = hν = hν0 + (J + 1)(J + 2) �
2

2μR2
e
− J (J + 1) �

2

2μR2
e
=

hν0 + (J + 1)2B and Eexcit,J+1 − Eexcit,J = (J + 2)2B − (J + 1)2B = 2B.
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• For the P branch: Eexcit,J = hν = hν0 + J (J + 1) �
2

2μR2
e
− (J − 1)J �

2

2μR2
e
= hν0 + J2B

and Eexcit,J − Eexcit,J−1 = J2B − (J − 1)2B = 2B.

From the known distance 2B, we can compute the estimation for the equilibrium distance
Re. We see that they are indeed quite equidistant in the spectrum for the R branch and for the
P branch separately, but there is a small difference in the Bs for these branches. Is the theory
described wrong? No, only our oversimplified theory fails a little. The B for the P branch is a
bit larger because the mean interatomic distance gets larger for larger J (due to the centrifugal
force).

6.8.5 Why We Have a Spectrum “Envelope”

What about the overall shape of the peaks’ intensity (“the envelope”) of the R and P branches? It
looks quite strange: as if the transition from the levels with v = 0, J = 2 and v = 0, J = 3 had
the largest intensity. Why? The rotational levels are so close that they are significantly populated
at a given temperature. In a thermal equilibrium, the population of the levels by HCl molecules
is proportional to the degeneracy of the level number J times the Boltzmann factor [i.e., to
p(J ; T ) = (2J + 1) exp[− J (J+1)B

kB T ]]. Let us find for which J the probability44 p(J ; T ) attains

a maximum: d p
dJ = 0 = 2 exp[− J (J+1)B

kB T ] − (2J + 1)
(
2J+1

)
B

kB T exp[− J (J+1)B
kB T ], which gives for

Jopt the equation 2− (2Jopt + 1)2 B
kB T = 0, or (2Jopt + 1)2 = 2kB T

B . For T = 300 K, this gives
Jopt = 2.7; i.e., between J = 2 and J = 3. It looks as this is just what we see. We may say,
therefore, that the spectrum shown has been recorded close to room temperature.

6.8.6 Intensity of Isotopomers’ Peaks

One problem still remains. Since the isotopes 35Cl and 37Cl occur with the ratio 3:1, we might
expect a similar intensity ratio of the two spectra. Why, therefore, do we have the ratio (Fig. 6.6a)
looking as something like 4:3 (for low J )? There are two possible explanations: heavier rotator
and heavier oscillator have lower energies and their levels are more populated at nonzero tem-
peratures (however the effect is opposite), and/or this spectrum has too low a resolution, and we
are comparing the maxima, while we should be comparing the integral intensity of the peaks
(this means the area under the signal recorded). It turns out that in a higher-resolution spectra,
for the integral intensities, we indeed see the ratio 3:1.

Thus, we may say that we understand the spectrum of HCl given in Fig. 6.6a.

6.9 A Quasi-Harmonic Approximation

The detailed form of Vvibr (R) is obtained from Uk(R) of Eq. (6.30) and therefore from the
solution of the Schrödinger Eq. (6.24) with the clamped nuclei Hamiltonian. In principle, there

44 It is not normalized to unity, but that does not matter here.
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is no other solution but to solve Eq. (6.28) numerically. It is tempting, however, to get an idea
of what would happen if a harmonic approximation were applied; i.e., when a harmonic spring
was installed between both vibrating atoms. Such a model is very popular when discussing
molecular vibrations. There is a unexpected complication though: such a spring cannot exist
even in principle. Indeed, even if we constructed a spring that elongates according to Hooke’s
law, one cannot ensure the same will occur for shrinking. It is true that at the beginning, the
spring may fulfill the harmonic law for shrinking as well, but when R → 0+, the two nuclei
just bump into each other and the energy goes to infinity instead of being parabolic. For the
spring to be strictly harmonic, we have to admit R < 0, which is forbidden because R means a
distance. Fig. 6.7 shows the difference between the harmonic potential and the quasi-harmonic
approximation for Eq. (6.28).

(a)

(b) (c)

Fig. 6.7. The difference between harmonic and quasi-harmonic approximations for a diatomic molecule. (a) The potential energy
for the harmonic oscillator. (b) The harmonic approximation to the oscillator potential Vvibr (R) for a diatomic molecule is not
realistic since at R = 0 (and at R < 0), the energy is finite, whereas it should go asymptotically to infinity when R tends to 0. (c) A
more realistic (quasi-harmonic) approximation is as follows: the potential is harmonic up to R = 0, and for negative R, it goes to
infinity. The difference between the harmonic and quasi-harmonic approximations pertains to such high energies (high oscillation
amplitudes), that it is practically of negligible importance. In cases b and c, there is a range of small amplitudes where the harmonic
approximation is applicable.
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What do we do? Well, sticking to principles is always the best choice.45 Yet, even in the case
of the potential wall shown in Fig. 6.7c, we have an analytical solution.46 The solution is quite
complex, but it gets much simpler assuming V0

hν ≡ α�v, where v = 0, 1, 2, . . . stands for the
vibrational quantum number that we are going to consider, and V0 ≡ Vvibr (0). This means that
we limit ourselves to those vibrational states that are well below V0. This is quite satisfactory
because the hypothetical bump of the two nuclei would occur at vast (even unrealistic) V0. In
such a case, the vibrational energy is equal to Ev = hν

(
v′ + 1

2

)
, where the modified “quantum

number” v′ = v + εv with a tiny modification:

εv = 1√
2π

1

v!
(
4α
)v+ 1

2 exp
(−2α

)
.

The corresponding wave functions very much resemble those of the harmonic oscillator,
except that for R ≤ 0, they are equal to zero. The strictly harmonic approximation results in
εv = 0, and therefore, Ev = hν

(
v + 1

2

)
; see Chapter 4.

Conclusion: The quasi-harmonic approximation has almost the same result as the (less real-
istic) harmonic one.

6.10 Polyatomic Molecule

6.10.1 Kinetic Energy Expression

A similar procedure can be carried out for a polyatomic molecule.
Let us consider an SFCS (see Appendix I available at booksite.elsevier.com/978-0-444-

59436-5 on p. e93), and vector RC M indicating the center of mass of a molecule composed of
M atoms; see Fig. 6.8. Let us construct a Cartesian coordinate system (a body-fixed coordinate
system, or BFCS) with the origin in the center of mass and the axes parallel to those of the SFCS
(the third possibility in see Appendix I available at booksite.elsevier.com/978-0-444-59436-5).

In the BFCS, an atom α of mass47 Mα is indicated by the vector rα , its equilibrium position48

by aα , and the vector of displacement is ξα = rα − aα . If the molecule were rigid and did not
rotate in the SFCS, then the velocity of the atomαwould be equal to Vα = d

dt (RC M+rα) = ṘC M

(dots mean time derivatives), because the vector rα , indicating the atom from the BFCS, would
not change at all. If, in addition, the molecule, still preserving its rigidity, rotated about its
center of mass with angular velocity ω (the vector having the direction of the rotation axis,

45 Let me stress once more that the problem appears when making the quasi-harmonic approximation, not in the real
system we have.

46 E. Merzbacher, Quantum mechanics, Wiley, New York, 2d edition (1970). The solution we are talking about has
to be extracted from a more general problem in this reference. The potential energy used in the reference also has
its symmetric counterpart for R < 0. Hence, the solution needed here corresponds to the antisymmetric solutions
in the more general case (only for such solutions where the wave function is equal to zero for R = 0).

47 What this mass means was discussed earlier in this chapter.
48 We assume that such a position exists. If there are several equilibrium positions, we just choose one of them.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 6.8. SFCS and BFCS. (a) SFCS is a Cartesian coordinate system arbitrarily chosen in space (left). The origin of the BFCS is
located in the center of mass of the molecule (right). The center of mass is shown by the vector RC M from the SFCS. The nuclei of
the atoms are indicated by vectors r1, r2, r3 . . . from the BFCS. Panel (b) shows what happens to the velocity of atom α, when the
system is rotating with the angular velocity given as vector ω. In such a case, the atom acquires additional velocity ω × rα . Panel
(c) shows that if the molecule vibrates, then atomic positions rα differ from the equilibrium positions aα by the displacements ξα .

right-handed screw orientation, and length equal to the angular velocity in radians per second),
then the velocity of the atom α would equal49 Vα = ṘC M + (ω× rα). However, our molecule
is not rigid; everything moves inside it (let us call these motions “vibrations”50). Note that no
restriction was made yet with respect to the displacements ξα - they could be some giant internal
motions. Then, the velocity of the atom α with respect to the SFCS is

Vα = ṘC M +
(
ω × rα

)+ ξ̇α. (6.32)

49 |ω × rα | = ωrα sin θ , where θ stands for the angle axis/vector rα . If the atom α is on the rotation axis, this term
vanishes (θ = 0 or π ). In other cases, the rotation radius is equal to rα sin θ .

50 Such a “vibration” may mean an vibration of the OH bond, but also a rotation of the −CH3 group or a large
displacement of a molecular fragment.
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When these velocities Vα are inserted into the kinetic energy T of the molecule calculated
in the SFCS, then we get

T = 1

2

∑
α

Mα

(
Vα

)2 = 1

2

(
ṘC M

)2∑
α

Mα + 1

2

∑
α

Mα

(
ω × rα

)2 + 1

2

∑
α

Mα

(
ξ̇α
)2

+ ṘC M ·
[
ω ×

(∑
α

Mαrα

)]
+ ṘC M ·

∑
α

Mα ξ̇α +
∑
α

Mα

(
ω × rα

) · ξ̇α.
The first three (“diagonal”) terms have a clear interpretation. These are the kinetic energy

of the center of mass, the kinetic energy of rotation, and the kinetic energy of vibrations. The
last three terms (“non-diagonal”) denote the roto-translational, vibro-translational, and vibro-
rotational couplings, respectively.

6.10.2 Quasi-Rigid Model–Simplifying by Eckart Conditions

There is a little problem with the expression for the kinetic energy: we have a redundancy in
the coordinates. Indeed, we have three coordinates for defining translation (RC M), three that
determine rotation (ω), and on top of that M vectors rα . This is too many: six are redundant.
Using such coordinates would be very annoying because we would not be sure whether they
are consistent.

We may impose six relations among the coordinates and in this way (if they are correct) get
rid of the redundancy. The first three relations are evident because the origin of the BFCS is
simply the center of mass. Therefore, ∑

α

Mαrα = 0, (6.33)

which as we assume is also true when the atoms occupy equilibrium positions∑
α

Mαaα = 0.

Hence, we obtain a useful relation∑
α

Mα

(
rα − aα

) = 0,

∑
α

Mαξα = 0,

which, after differentiation with respect to time, becomes∑
α

Mα ξ̇α = 0. (6.34)
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If there were several sets of aα’s (i.e., several minima of the potential energy), we would have
a problem. This is one of the reasons we need the assumption of the quasi-rigid molecule.

Inserting Eqs. (6.33) and (6.34) into the kinetic energy expression makes the roto-translational
and vibro-translational couplings vanish. Thus, we have

T = 1

2

(
ṘC M

)2∑
α

Mα + 1

2

∑
α

Mα

(
ω × rα

)2 + 1

2

∑
α

Mα

(
ξ̇α
)2

+
∑
α

Mα

(
ω × rα

) · ξ̇α.
Noting that rα = aα + ξα and using the relation51 (A × B) · C = A · (B× C

)
, we obtain

immediately

T = 1

2

(
ṘC M

)2∑
α

Mα + 1

2

∑
α

Mα

(
ω × rα

)2 + 1

2

∑
α

Mα

(
ξ̇α
)2

+ω·
∑
α

Mα

(
aα×ξ̇α

)+ ω ·∑
α

Mα

(
ξα×ξ̇α

)
.

We completely get rid of the redundancy if we agree the second Eckart condition52 is intro-
duced (equivalent to three conditions for the coordinates):∑

α

Mα

(
aα×ξ̇α

) = 0. (6.35)

The condition means that we do not expect the internal motion to generate any angular
momentum.53 This completes our final expression for the kinetic energy T of a polyatomic
quasi-rigid molecule

T = Ttrans + Trot + Tvibr + TCoriolis . (6.36)

The kinetic energy in an SFCS is composed of:

• The kinetic energy of the center of mass (translational energy), Ttrans = 1
2

(
ṘC M

)2∑
α Mα .

• The rotational energy of the whole molecule, Trot = 1
2

∑
α Mα

(
ω × rα

)2.

• The kinetic energy of the internal motions (“vibrations”), Tvibr = 1
2

∑
α Mα

(
ξ̇α
)2

.

51 These are two ways of calculating the volume of the parallelepiped according to the formula: surface of the base
times the height.

52 Carl Eckart, professor at California Institute of Technology, contributed to the birth of quantum mechanics [e.g.,
C. Eckart, Phys. Rev., 28, 711 (1926)].

53 The problem is whether indeed we do not generate any momentum by displacing the nuclei from their equilibrium
positions. A flexible molecule may have quite a number of different equilibrium positions (see Chapter 7). We
cannot expect all of them to satisfy Eq. (6.35), where one of these equilibrium positions is treated as a reference.
Eq. (6.35) means that we restrict the molecular vibrations to have only small amplitudes about a single equilibrium
position (quasi-rigid model).
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• The last term, usually very small, is known as Coriolis energy54, TCoriolis =
ω·∑α Mα

(
ξα × ξ̇α

)
. It couples the internal motions (“vibrations”) within the molecule

with its rotation.

After the Eckart conditions are introduced, all the coordinates (i.e., the components of the
vectors RC M ,ω and all ξα), can be treated as independent.

6.10.3 Approximation: Decoupling of Rotation and Vibration

Since the Coriolis term is small, in the first approximation we may decide to neglect it. Also,
when assuming small vibrational amplitudes ξα , which is a reasonable approximation in most
cases, we may replace rα by the corresponding equilibrium positions aα in the rotational term
of Eq. (6.35):

∑
α Mα(ω × rα)2 ≈ ∑α Mα(ω × aα)2, in full analogy with Eq. (6.29). After

these two approximations have been made, the kinetic energy represents the sum of the three
independent terms (i.e., each depending on different variables)

T ≈ Ttrans + Trot + Tvibr (6.37)

with Trot ≈ 1
2

∑
α Mα(ω × aα)2.

6.10.4 Spherical, Symmetric, and Asymmetric Tops

Equation (6.37) may serve to construct the corresponding kinetic energy operator for a
polyatomic molecule. There is no problem (see Chapter 1) with the translational term:
− �

2

2
∑
α Mα

�RC M ; the vibrational term will be treated in Chapter 7, p. 355.

There is a problem with the rotational term. A rigid body (the equilibrium atomic positions
aα are used), such as the benzene molecule, rotates, but due to symmetry, it may have some
special axes characterizing the moments of inertia. The moment of inertia represents a tensor
of rank 3 with the following components:⎧⎨

⎩
∑
α Mα(a2

y,α + a2
z,α)

∑
α Mαax,αay,α

∑
α Mαax,αaz,α∑

α Mαax,αay,α
∑
α Mα(a2

x,α + a2
z,α)

∑
α Mαay,αaz,α∑

α Mαax,αaz,α
∑
α Mαay,αaz,α

∑
α Mα(a2

x,α + a2
y,α)

⎫⎬
⎭ ,

to be computed in the BFCS (see Appendix I available at booksite.elsevier.com/
978-0-444-59436-5 on p. e93). The diagonalization of the matrix (see Appendix K available at
booksite.elsevier.com/978-0-444-59436-5 on p. e105) corresponds to a certain rotation of the
BFCS to a coordinate system rotating with the molecule (RMCS), and gives as the eigenvalues
Ixx , Iyy, Izz .

54 Gaspard Gustav de Coriolis (1792 − 1843), was a French engineer and mathematician and director of the Ecole
Polytechnique in Paris. In 1835, Coriolis introduced the notion of work, the equivalence of work and energy, and
also a coupling of rotation and vibration.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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When Ixx = Iyy = Izz , the rotating body is called a spherical rotator or a spherical top
(example: methane molecule); when Ixx = Iyy 
= Izz , it is called a symmetric top (exam-
ples: benzene, ammonia molecules); when Ixx 
= Iyy 
= Izz , then the top is asymmetric
(example: water molecule).

Fig. 6.9 gives four classes of the rotators (tops).
Then, the classical expression for the kinetic energy of rotation takes the form55

1

2

∑
α

Mα

(
ω × aα

)2 = 1

2

(
Ixxω

2
x + Iyyω

2
y + Izzω

2
z

)
= J 2

x

2Ixx
+ J 2

y

2Iyy
+ J 2

z

2Izz
, (6.38)

(a)

(b)

(c)

(d)

Fig. 6.9. Examples of four classes of tops (rotators). The numbers Ixx , Iyy , Izz represent the eigenvalues of the tensor of inertia
computed in a BFCS. There are four possibilities: (a) a linear rotator (Ixx = Iyy = 0, Izz 
= 0); e.g., a diatomic or CO2 molecule;
(b) a spherical rotator (Ixx = Iyy = Izz); e.g., a sphere, a cube, a regular tetrahedron, or a methane molecule; (c) a symmetric
rotator (Ixx = Iyy 
= Izz); e.g., a cylinder, a rectangular parallelepiped with square base, ammonia or benzene molecule; (d) an
asymmetric rotator (Ixx 
= Iyy 
= Izz); e.g., a general rectangular parallelepiped, a hammer, or water molecule.

55 H. Goldstein, Classical Mechanics, 2d edition, Addison-Wesley (1980).
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where ωx , ωy , and ωz stand for the components of ω in the RMCS, and Jx , Jy , and Jz represent
the components of angular momentum also computed in the RMCS.56

It is not straightforward to write down the corresponding kinetic energy operator. The reason
is that in the above expression, we have curvilinear coordinates (because of the rotation from
BFCS to RMCS57), whereas the quantum mechanical operators were introduced only for the
Cartesian coordinates (Chapter 1, p. 18). How do we write an operator expressed in some
curvilinear coordinates qi and the corresponding momenta pi ? Boris Podolsky solved this
problem,58 and the result is

T̂ = 1

2
g−

1
2 p̂T g

1
2 G−1p̂, (6.39)

where p̂i = −i� ∂
∂qi
,G represents a symmetric matrix (metric tensor) of the elements grs ,

defined by the square of the length element ds2 ≡ ∑r
∑

s grsdqr dqs , with g = det G and
grs(g and all grs being in general some functions of qr ).

6.10.5 Separation of Translational, Rotational, and Vibrational Motions

Equation (6.39) represents the kinetic energy operator. To obtain the corresponding Hamiltonian,
we have to add to this energy the potential energy for the motion of the nuclei, Uk , where k labels
the electronic state. The last energy depends uniquely on the variables ξα that describe atomic
vibrations and corresponds to the electronic energy Uk(R) of Eq. (6.30), except that instead of
the variable R, which pertains to the oscillation, we have the components of the vectors ξα .
Then, in full analogy with Eq. (6.30), we may write

Uk(ξ1, ξ2, . . .ξM) = Uk(0, 0, . . .0)+ Vk,vibr (ξ1, ξ2, . . .ξM),

where the number Uk(0, 0, . . . 0) = Eel(k) may be called the electronic energy in state k, and
Vk,vibr (0, 0, . . . 0) = 0.

Since (after the approximations are made) the translational, rotational, and vibrational (inter-
nal motion) operators depend on their own variables, after separation the total wave function
represents a product of three eigenfunctions (translational, rotational, and vibrational) and the
total energy is the sum of the translational, rotational, and vibrational energies [fully analogous
with Eq. (6.31)]:

56 We recall from classical mechanics that an expression for rotational motion results from the corresponding one
for translational motion by replacing mass by moment of inertia, momentum by angular momentum, and velocity
by angular velocity. Therefore, the middle part of the above formula for kinetic energy represents an analog of
mv2

2 and the last part is an analog of p2

2m .
57 The rotation is carried out by performing three successive rotations by what are known as Euler angles. For details,

see Fig. 14.5, as well as R.N. Zare, Angular Momentum, Wiley, New York (1988), p. 78.
58 B. Podolsky, Phys. Rev., 32, 812 (1928).



296 Chapter 6

E ≈ Etrans + Eel(k)+ Erot (J )+ Evibr (v1, v2, . . . v3M−6). (6.40)

where k denotes the electronic state, J the rotational quantum number, and vi are the vibrational
quantum numbers that describe the vibrational excitations (in Chapter 7, we will see a harmonic
approximation for these oscillations).

6.11 Types of States

6.11.1 Repulsive Potential

If we try to solve Eq. (6.28) for vibrations with a repulsive potential, we would not find any
solution of class Q. Among continuous, but non-square-integrable, functions, we would find an
infinite number of eigenfunctions, and the corresponding eigenvalues would form a continuum,
Fig. 6.10a. These eigenvalues reflect the fact that the system has dissociated and its dissociation
products may have any kinetic energy larger than the dissociation limit (i.e., when having
dissociated fragments with no kinetic energy). Any collision of two fragments (that correspond
to the repulsive electronic state) will finally result in the fragments flying off. Imagine that the
two fragments are located at a distance R0, with corresponding total energy E , and that the
system is allowed to relax according to the potential energy shown in Fig. 6.10a. The system
slides down the potential energy curve (i.e., the potential energy lowers) and, since the total
energy is conserved, its kinetic energy increases accordingly. Finally, the potential energy curve
flattens, attaining E A + EB , where E A denotes the internal energy of the fragment A (a similar
thing happens for B). The final kinetic energy is equal to E − (E A + EB) in SFCS.

6.11.2 “Hook-like” Curves

Another typical potential energy curve is shown in Fig. 6.10b and has the shape of a hook.
Solving Eq. (6.28) for such a curve usually59 gives a series of bound states; i.e., with their wave
functions (Fig. 6.11) concentrated in a finite region of space and exponentially vanishing on
leaving it. Fig. 6.10 shows the three discrete energy levels found and the continuum of states
above the dissociation limit, similar to the curve in Fig. 6.10a. The continuum has, in principle,
the same origin as before (any kinetic energy of the fragments).

Thus, the overall picture is that a system may have some bound states, but above the dis-
sociation limit, it can also acquire any energy and the corresponding wave functions are non-
normalizable (non-square-integrable).

59 This applies to a sufficiently deep and wide potential energy well.
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Fig. 6.10. An example of three different electronic states. (a) Repulsive state (no vibrational states, a ball representing the nuclear
configuration will slide down resulting in dissociation); (b) three bound vibrational states (the ball will oscillate within the well);
(c) one bound vibrational state (the ball oscillates) and one metastable vibrational state (the ball oscillates for some time and then
goes to infinity, which means dissociation). A continuum of allowed states (shadowed area) with nonzero kinetic energy of the
dissociation products is above the dissociation limit.

6.11.3 Continuum

The continuum may have a quite complex structure. First of all, the number of states per energy
unit depends, in general, on the position on the energy scale where this energy unit is located.
Thus, the continuum may be characterized by the density of states (the number of states per
unit energy) as a function of energy. This may cause some confusion because the number of
continuum states in any energy section is infinite. The problem is, however, that the infinities
differ: some are “more infinite than others.” The continuum does not mean a banality of the states
involved (Fig. 6.10c). The continuum extends over the dissociation limit, irrespective what kind
of potential energy curve one has for finite values of R. In cases similar to that of Fig. 6.10c,
the continuum will exist independently of how wide and high the barrier is. But, the barrier
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Fig. 6.11. The bound, continuum, and resonance (metastable) states of an anharmonic oscillator. Two discrete bound states are
shown (energy levels and wave functions) in the lower part of the image. The continuum (shaded area) extends above the dissociation
limit; i.e., the system may have any of the energies above the limit. There is one resonance state in the continuum, which corresponds
to the third level in the potential energy well of the oscillator. Within the well, the wave function is very similar to the third state
of the harmonic oscillator, but there are differences. One is that the function has some low-amplitude oscillations on the right side.
They indicate that the function is non-normalizable and that the system will dissociate sooner or later.

may be so wide that the system will have no idea about any “extra-barrier life,” and therefore it
will have its “quasi-discrete” states with the energy higher than the dissociation limit. Yet, these
states despite its similarity to bound states belong to the continuum (are non-normalizable).
Such states are metastable and are called resonances (cf. p. 182), or encounter complexes. The
system in a metastable state will sooner or later dissociate, but before this happens it may have
a quite successful long life. Fig. 6.11. shows how the metastable and stationary states differ: the
metastable ones do not vanish in infinity.

Fig. 6.12 shows what happens to the Vk J (R) curves, if J increases. A simple model potential
Uk(R) has been chosen for this illustration. As shown in Fig. 6.12, rotational excitations may
lead to a qualitative change of the potential energy curve for the motion of the nuclei. Rotational
excitations destabilize the system, but in a specific way. First, they always introduce a barrier for
dissociation (centrifugal barrier), but despite of that, the dissociation becomes easier due to a
large “pushing up” of the well region. Second, by increasing the energy for small distances, the
rotational excitations either make some vibrational levels disappear or may change the character
of the levels from stationary ones to metastable vibrational states (vibrational resonances in the
continuum). Third, as one can see from Fig. 6.12, the equilibrium distance increases upon
rotational excitations.
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Fig. 6.12. A rotational excitation may lead to creating resonance states. As an illustration, a potential energy curve Vk J (R) has
been chosen that resembles what we would see for two water molecules bound by the hydrogen bond. Its first component Uk (R) is

taken in the form of the so-called Lennard-Jones potential (cf., p. 347) Uk (R) = εk

[(
R0k
R

)12 − 2
(

R0k
R

)6
]

, with the parameters

for the electronic ground state (k = 0): ε0 = 6 kcal/mol and R00 = 4 a.u. and the corresponding reduced mass μ = 16560 a.u.,
the parameter ε0 stands for the well depth, and the R00 denotes the position of the well minimum. Panels (a), (b), (c), and (d)
correspond to Vk J (R) = Uk (R) + J (J + 1)�2/(2μR2) with J = 0, 10, 15, 20, respectively. The larger J is, the shallower the
well: the rotation weakens the bond, but in a peculiar way. Due to the centrifugal force, the metastable resonance states appear.
These are the “normal” vibrational states pushed up by the centrifugal energy beyond the energy of the dissociation limit. For
J = 20, already all states (including the potential resonances) belong to the continuum.

Besides the typical continuum states, which result from the fact that the dissociation prod-
ucts fly slower or faster, one may have also the continuum metastable or resonance states,
which resemble the bound states.

The human mind wants to translate such situations into simple pictures, which help us under-
stand what happens. Fig. 6.13 shows an analogy associated with astronomy: the Earth and the
Moon are in a bound state and the Earth and an asteroid are in a “primitive,” continuum-like
state, but if it happens that an asteroid went around the Earth several times and then flew away
into space, then one has to do with an analog of a metastable or resonance state (characterized
by a finite and nonzero lifetime).
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(a)

(b)

(c)

Fig. 6.13. Continuum, bound, and resonance states–an analogy involving the “states” of the Earth and an interacting body. (a) A
“primitive” continuum state: an asteroid flies by the Earth and changes trajectory; (b) a bound state: the Moon is orbiting around
the Earth; (c) a resonance state: the asteroid was orbiting several times about the Earth and then flew away.

The Schrödinger equation Hψ = Eψ is time-independent; therefore, its solutions do not
inform us about the sequence of events, but only about all the possible events with their proba-
bility amplitudes.60 This is why the wave function for the metastable state of Fig. 6.11 exhibits
oscillations at large x : they inform us about a possibility of dissociation.

60 As Einstein said: “The only reason for time is so that everything does not happen at once.” The time-independent
Schrödinger equation behaves as if “everything would happen at once.”
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6.11.4 Wave Function “Measurement”

Could we know the vibrational wave function in a given electronic and rotational state? It seemed
that such a question could only be answered by quantum mechanical calculations. It turned
out,61 however, that the answer can also come from experimentation. In this experiment, three
states are involved: the electronic ground state (G), an electronic excited state M , in particular
its vibrational state. This state will be measured, and the third electronic state of a repulsive
character (RE P) that helps as a detector; see Fig. 6.14.

Fig. 6.14. A “measurement” of the wave functionψv , or more exactly of the corresponding probability density |ψv |2. A molecule
is excited from its electronic ground state G to a certain vibrational stateψv in the electronic excited state M . From M , the molecule
undergoes a fluorescence transition to the state RE P . Since the RE P state is of repulsive character, the potential energy transforms
into kinetic energy (the total energy being preserved). By measuring the kinetic energy of the dissociation products, one is able to
calculate their starting potential energy (i.e., how high they were on the RE P curve). This enables us to calculate |ψv |2.

61 W. Koot, P.H.P. Post, W.J. van der Zande, and J. Los, Zeit. Physik D, 10, 233 (1988). The experimental data pertain
to the hydrogen molecule.
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James Franck (1882–1964), German physicist and
professor at the Kaiser Wilhelm Institut für Physikali-
sche Chemie in Berlin, then at the University of Göt-
tingen. Then at John Hopkins University in Baltimore,
Maryland, and from 1938 to 1949 at the University
of Chicago. Frank also participated in the Manhat-
tan Project. As a freshman at the Department of
Law at the University of Heidelberg, he made the
acquaintance of the student Max Born. Born per-
suaded him to resign from his planned career as
a lawyer and pursue studies in chemistry, geology,
and then physics. In 1914, Franck and his colleague
Gustav Hertz used electrons to bombard mercury
atoms. The young researchers noted that electrons
lose 4.9 eV of their kinetic energy after colliding with
mercury atoms. This excess energy is then released
by emitting a UV photon. This was the first experi-
mental demonstration that atoms have the electronic
energy levels foreseen by Niels Bohr. Both scientists
earned the Nobel Prize in 1925 for their work. The
fact that, during World War I, Franck was twice dec-
orated with the Iron Cross was the reason that he
was one of the few Jews whom the Germans toler-
ated in academia. Franck, a citizen of the Third Reich,
illegally deposited his Nobel Prize medal (with his

engraved name) in the Niels Bohr Institute in Copen-
hagen, Denmark. When in April 1940, the attacking
German troops marched through the streets of the
Danish capital, George de Hevesy (a future Nobel
laureate, 1943) was hiding the golden medal in a
strange and very chemical way–he dissolved it in
aqua regia. The bottle safely stayed on the shelf the
whole occupation period under the nose of the Ger-
mans. After the war, the Nobel Committee exchanged
the bottle for a new medal for Franck.

Edward Condon (1902–1974), Ameri-
can physicist and one of the pioneers
of quantum theory in the United
States. In 1928, Condon and Gur-
ney discovered the tunneling. More
widely known is his second great
achievement–the Franck-Condon
rule (discussed later in this chapter).
During the WW2 he participated in
the Manhattan project.

We excite the molecule from the
ground vibrational state of G to a
certain vibrational state ψv of M
using a laser. Then the molecule
undergoes a spontaneous fluores-
cence transition to RE P . The elec-
tronic state changes so fast that the
nuclei have no time to move (the
Franck-Condon rule). Whatever

falls (vertically, because of the Franck-Condon rule) on the RE P state as a result of fluores-
cence dissociates because this state is repulsive. The kinetic energy of the dissociation products
depends on the internuclear distance R when the fluorescence took place (i.e., on the length of
the slide the system had down the RE P). How often such an R occurs depends on |ψv(R)|2.
Therefore, investigating the kinetic energy of the dissociation products gives |ψv|2.

6.12 Adiabatic, Diabatic, and Non-Adiabatic Approaches

Let us summarize the diabatic, adiabatic, and non-adiabatic concepts, as shown in Fig. 6.15.
Adiabatic case. Suppose that we have a Hamiltonian Ĥ(r;R) that depends on the electronic

coordinates r and parametrically depends on the configuration of the nuclei R. In practical
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(a)

diabatic

(c)    

adiabatic

non-adiabatic

(b)

diabatic

(d)

Fig. 6.15. The diabatic, adiabatic, and non-adiabatic approaches to the motion of nuclei (a schematic view). (a) A state that
preserves the chemical structure for any molecular geometry is called diabatic (e.g., is always ionic, or always covalent). The
energies of these states are calculated as the mean values of the clamped nuclei Hamiltonian. In the lower-energy state, the system
is represented by a white ball (say, in the ionic state); in the second, the system is represented by the black ball (say, a covalent
structure). These balls vibrate all the time in the corresponding wells, preserving the chemical structure. (b) It may happen that
two diabatic states cross. If the nuclear motion is fast, the electrons are unable to adjust and the nuclear motion may take place
on the diabatic curves (i.e., the bond pattern does not change during this motion). (c) The adiabatic approach, where the diabatic
states mix (mainly at a crossing region). Each of the adiabatic states is an eigenfunction of the clamped nuclei Hamiltonian. If
the nuclear motion is slow, the electrons are able to adjust to it instantaneously and the system follows the lower adiabatic curve.
The bond pattern changes qualitatively during this motion (black ball changes to white ball; e.g., the system undergoes a transition
from covalent to ionic). The total wave function is a product of the adiabatic electronic state and a rovibrational wave function.
(d) The non-adiabatic approach. In this particular case, three diabatic curves come into play. The total wave function is the sum of
three functions (their contributions are geometry-dependent, a larger ball means a larger contribution), each function is a product
of a diabatic electronic state times a rovibrational wave function. The system is shown at two geometries. Changing the nuclear
geometry, it is as if the system has moved on three diabatic surfaces at the same time. This motion is accompanied by changing the
proportions (visualized by the size of the balls) of the electronic diabatic states composing it.

applications, most often Ĥ(r;R) ≡ Ĥ0(r;R), the electronic clamped nuclei Hamiltonian cor-
responding to Eq. (6.8) and generalized to polyatomic molecules. The eigenfunctions ψ(r;R)
and the eigenvalues Ei (R) of the Hamiltonian Ĥ(r;R) are called adiabatic (see Fig. 6.15). If
we take Ĥ = Ĥ0(r;R), then in the adiabatic approximation (p. 268), the total wave function is
represented by a product

�(r,R) = ψ(r;R) f (R), (6.41)

where f (R) is a rovibrational wave function that describes the rotations and vibrations of the
system.

Diabatic case. Imagine now a basis set ψ̄i (r;R), i = 1, 2, 3, . . .M of some particular elec-
tronic wave functions (we will call them diabatic) that also depend parametrically on R. There
are two reasons for considering such a basis set. The first is that we are going to solve the
Schrödinger equation Ĥ�i = Ei�i by using the Ritz method (Chapter 5) and we need a basis
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set of the expansion functions:

ψ(r;R) ≈
M∑
i

ci ψ̄i (r;R). (6.42)

The second reason pertains to chemical interpretation: usually any of the diabatic wave func-
tions are chosen as corresponding to a particular electronic distribution (chemical bond pat-
tern) in the system,62 and from Eq. (6.42), we may recognize what kind of chemical structure
dominates�. Thus, using the diabatic basis, there is a chance of gaining insight into the chem-
istry going on in the system.63

The wave functions ψ̄i are in general non-orthogonal (we assume them to be normalized).
For each of them, we may compute the mean value of the energy (the integration is over the
electronic coordinates) as follows:

Ēi (R) = 〈ψ̄i |Ĥ(R)ψ̄i 〉, (6.43)

and we will call it the diabatic energy.
The key point is that we may compare the eigenvalues and eigenfunctions of Ĥ(R); i.e., the

adiabatic states with Ēi and ψ̄i , respectively. If the diabatic states are chosen in a realistic way,
they are supposed to be close to the adiabatic states for most configurations R (see Figs. 6.15a–c).
These relations will be discussed shortly.

Non-adiabatic case. The diabatic states or the adiabatic states may be used to construct the
basis set for the motion of the electrons and nuclei in the non-adiabatic approach. Such a basis
function is taken as a product of the electronic (diabatic or adiabatic) wave function and of
a rovibrational wave function that depends on R. In a non-adiabatic approach, the total wave
function is a superposition of these product-like contributions:

�(r;R) =
∑

k

ψ̄k(r;R) fk(R). (6.44)

62 Let us take the example of the NaCl molecule: ψ̄1 may describe the ionic Na+Cl− distribution, while ψ̄2 may
correspond to the covalent bond Na–Cl. The adiabatic wave function ψ(r;R) of the NaCl molecule may be taken
as a superposition of ψ̄1 and ψ̄2. The valence bond (VB) wave functions (VB structures) described in Chapter 10
may be viewed as diabatic states.

63 This is very important for chemical reactions, in which a chemical structure undergoes an abrupt change. In
chemical reactions, large changes of nuclear configuration are accompanied by motions of electrons; i.e., large
changes in the chemical bond pattern [a qualitative change of ci of Eq. (6.42)]. Such a definition leaves us liberty
in the choice of diabatic states. This liberty can be substantially reduced by the following. Let us take two adiabatic
states that dissociate to different products, well separated on the energy scale. However, for some reason, the two
adiabatic energies are getting closer for some finite values of R. For each value of R, we define a space spanned
by the two adiabatic functions for that R. Let us find in this space two normalized functions that maximize the
absolute value of the overlap integral with the two dissociation states. These two (usually non-orthogonal) states
may be called diabatic.
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This sum means that in the non-adiabatic approach, the motion of the system involves many
potential energy surfaces at the same time (see Fig. 6.15d).

The diabatic and the adiabatic electronic states are simply two choices of the basis set in non-
adiabatic calculations. If the sets were complete, the results would be identical. The first choice
underlines the importance of the chemical bond pattern and the interplay among such patterns.
The second basis set highlights the order of the eigenvalues of Ĥ(R) (the lower/higher-energy
adiabatic state).64

6.13 Crossing of Potential Energy Curves for Diatomics

6.13.1 The Non-Crossing Rule

Can the adiabatic curves E0
k (R) cross when R changes?

To solve this problem in detail, let us limit ourselves to the simplest situation: the two-
state model (see Appendix D available at booksite.elsevier.com/978-0-444-59436-5). Let us
consider a diatomic molecule and such an internuclear distance R0 that the two electronic
adiabatic states65 ψ1(r; R0) and ψ2(r; R0) correspond to the non-degenerate (but close in the
energy scale) eigenvalues of the clamped nuclei Hamiltonian Ĥ0(R0):

Ĥ0(R0)ψi (r; R0) = Ei (R0)ψi (r; R0), i = 1, 2.

Since Ĥ0 is Hermitian and E1 
= E2, we have the orthogonality of ψ1(r; R0) andψ2(r; R0) :
〈ψ1|ψ2〉 = 0.

Now, we are interested in solving

Ĥ0(R)ψ(r; R) = Eψ(r; R)

for R in the vicinity of R0 and ask whether it is possible for the energy eigenvalues to cross.
The eigenfunctions of Ĥ0 will be sought as linear combinations of ψ1 and ψ2:

ψ(r; R) = c1(R)ψ1(r; R0)+ c2(R)ψ2(r; R0). (6.45)

Note that for this distance R

Ĥ0(R) = Ĥ0(R0)+ V (R), (6.46)

and V (R) is certainly small because R is close to R0 and V (R0) = 0. Using the Ritz method
(Chapter 5, see Appendix D, case III), we arrive at two adiabatic solutions, and the corresponding

64 In polyatomic systems, there is a serious problem with the adiabatic basis (this is why the diabatic functions
are preferred). As we will see later, the adiabatic electronic wave function is multivalued, and the corresponding
rovibrational wave function, having to compensate for this (because the total wave function must be single-valued),
also has to be multivalued.

65 These states are adiabatic only for R = R0, but when considering R 
= R0, they may be viewed as diabatic
(because they are not the eigenfunctions for that R).

http://booksite.elsevier.com/978-0-444-59436-5
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energies read as

E±(R) = Ē1 + Ē2

2
±
√(

Ē1 − Ē2

2

)2

+ |V12|2, (6.47)

where Vi j (R) ≡
〈
ψi |V̂ (R)ψ j

〉
and

Ēi (R) =
〈
ψi (r; R0)|Ĥ0(R)ψi (r; R0)

〉
= Ei (R)+ Vii (R). (6.48)

The crossing of the energy curves at a given R means that E+ = E−, and from this, it
follows that the expression under the square root symbol has to equal zero. Since, however,
the expression is the sum of two squares, the crossing needs two conditions to be satisfied
simultaneously:

Ē1 − Ē2 = 0, (6.49)

|V12| = 0. (6.50)

Two conditions, and a single parameter R to change. If you adjust the parameter to fulfill the first
condition, the second one is violated, and vice versa. The crossing E+ = E− may occur only
when, for some reason; e.g., because of the symmetry, the coupling constant is automatically
equal to zero, |V12| = 0, for all R. Then, we have only a single condition to be fulfilled,
and it can be satisfied by changing the parameter R; i.e., crossing can occur. The condition

|V12| = 0 is equivalent to |H12| ≡
〈
ψ1|Ĥ0(R)ψ2

〉
= 0, because Ĥ0(R) = Ĥ0(R0) + V̂ , and〈

ψ1|Ĥ0(R0)ψ2

〉
= 0 due to the orthogonality of both eigenfunctions of Ĥ0(R0).

Now we will refer to group theory (see Appendix C available at booksite.elsevier.com/
978-0-444-59436-5, p. e17). The Hamiltonian represents a fully symmetric object, whereas the
wave functionsψ1 andψ2 are not necessarily fully symmetric because they may belong to other
irreducible representations of the symmetry group. Therefore, in order to make the integral
|H12| = |V12| = 0, it is sufficient that ψ1 and ψ2 transform according to different irreducible
representations (have different symmetries).66 Thus,

the adiabatic curves cannot cross if the corresponding wave functions have the same
symmetry.

What will happen if such curves are heading for something that looks like an inevitable
crossing? Such cases are quite characteristic and look like an avoided crossing. The two curves
look as if they repel each other and avoid the crossing.

66 H12 transforms according to the representation being the direct product of three irreducible representations: that
of ψ1, that of ψ2, and that of Ĥ (the last is, however, fully symmetric, and therefore, does not count in this direct
product). In order to have H12 
= 0, this direct product, after decomposition into irreducible representations, has
to contain a fully symmetric irreducible representation. This, however, is possible only whenψ1 andψ2 transform
according to the same irreducible representation.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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If two states of a diatomic molecule correspond to different symmetries, then the corre-
sponding potential energy curves can cross.

6.13.2 Simulating the Harpooning Effect in the NaCl Molecule

Our goal now is to show, in an example, what happens to adiabatic states (eigenstates of Ĥ(R)),
if two diabatic energy curves (mean values of the Hamiltonian with the diabatic functions) do
cross. Although we are not aiming at an accurate description of the NaCl molecule (we prefer
simplicity and generality), we will try to construct a toy (a model) that mimics this particular
system.

The sodium atom has 11 electrons (the electronic configuration67: 1s22s22p63s1), and the
chlorine atom contains 17 electrons (1s22s22p63s23p5). The solution of the Schrödinger equa-
tion for 28 electrons is difficult. But we are not looking for trouble. Note that with NaCl, the real
star is a single electron that goes from the sodium to the chlorine atom, making Na+ and Cl− ions.
The ions attract each other by the Coulombic force and form the familiar ionic bond. But there
is a problem. What is of lower energy: the two non-interacting atoms Na and Cl or the two non-
interacting ions Na+ and Cl−? The ionization energy of sodium is I = 495.8 kJ/mol = 0.1888
a.u., whereas the electron affinity of chlorine is only A = 349 kJ/mol = 0.1329 a.u. This
means that the NaCl molecule in its ground state dissociates into atoms, not ions.

To keep the story simple, let us limit ourselves to the single electron mentioned above.68

First, let us define the two diabatic states (the basis set) of the system: only the 3s orbital of
Na (when the electron resides on Na; we have atoms) denoted by |3s〉 and the 3p orbital of Cl
(when the electron is on Cl; we have ions) |3p〉. Now, what about the Hamiltonian Ĥ? Well, a
reasonable model Hamiltonian may be taken as69

Ĥ(r; R) = −I |3s〉 〈3s| − A |3p〉 〈3p| − 1

R
|3p〉 〈3p| + exp

(−R
)
.

Indeed, the mean values of Ĥ in the |3s〉 and |3p〉 states are equal to

Ē1(R) ≡ H11 =
〈
3s|Ĥ(3s)

〉
= −I − AS2 − 1

R
S2 + exp

(−R
)
,

Ē2(R) ≡ H22 =
〈
3p|Ĥ(3p)

〉
= −I S2 − A − 1

R
+ exp

(−R
)
,

where (assuming the diabatic functions to be real) the overlap integral S ≡ 〈3s|3p〉 = 〈3p|3s〉.
First of all, this Hamiltonian gives the correct energy limits Ē1(R) = −I and Ē2(R) = −A,
when R → ∞ (the electron binding energy by the sodium and by the chlorine for dissocia-
tion into atoms and ions, respectively), which is already very important. The term exp (−R)

67 What these configurations really mean is explained in Chapter 8.
68 The other electrons in our approach will only influence the numerical values of the interaction parameters.
69 r stands for the coordinates of the electron, and for the diatomic molecule, R replaces R.
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mimics the repulsion of the inner shells of both atoms70 and guarantees that the energies go up
(which they should) at R → 0. Note also that the Ē1(R) and Ē2(R) curves indeed mimic the
approaching Na and Cl, and Na+ and Cl−, respectively, because in Ē2(R), there is a Coulomb
term − 1

R , while in Ē1(R), such an interaction practically disappears for large R. All this gives

us a certain confidence that our Hamiltonian Ĥ grasps the most important physical effects for
the NaCl molecule. The resulting non-diagonal element of the Hamiltonian reads as:

〈
3s|Ĥ(3p)

〉
≡ H12 = S

[
−I − A − 1

R
+ exp

(−R
)]
.

As to S, we could in principle calculate it by taking some approximate atomic orbitals,
but our goal is less ambitious than that. Let us simply set S = R exp (−R/2). Why? Since
S = 〈3s|3p〉 = 0, if R → ∞ or if R → 0, and S > 0 for other values of R, then at least our
formula takes care of this. In addition, Figs. 6.16a–b show that such a formula for S also gives a
quite reasonable set of diabatic curves Ē1(R) and Ē2(R): both curves have a single minimum,
the minimum for the ionic curve is at about 5.23 a.u., close to the experimental value of 5.33
a.u., and the binding energy is 0.11 a.u. (0.13 for the adiabatic case, see below), and it is also
close to the experimental value of 0.15 a.u. Thus, our model to a reasonable extent resembles
the real NaCl molecule.

Our goal is the adiabatic energies computed using the diabatic basis chosen, Eq. (6.42). see
Appendix D available at booksite.elsevier.com/978-0-444-59436-5 (general case) gives the
eigenvalues [E+(R) and E−(R)] and the eigenfunctions (ψ+ andψ−). Figs. 6.16c–d, show the
adiabatic compared to the diabatic curves. The avoided crossing at about 17.9 a.u. is the most
important. If the two atoms begin to approach (shown in light gray in Fig. 6.16a), the energy
does not change too much (flat energy curve), but if the ions do the same, the energy goes down
because of the long-range Coulombic attraction (dark gray). Thus, the two adiabatic curves (that
nearly coincide with the two diabatic curves, especially for large R) are going to cross each
other Figs. 6.16a–b but the two states have the same symmetry with respect to the molecular
axis (as witnessed by S 
= 0) and, therefore, the crossing cannot occur, as shown in Fig. 6.16d.
As a result, the two curves avoid the crossing and, as shown in Figs. 6.16c–f, the “atomic”
curve switches to the “ionic” curve and vice versa. This switching means an electron jumping
from Na to Cl and, therefore, formation of the ions Na+ and Cl− (then the ions approach fast
- this is the harpooning effect, introduced to chemistry by Michael Polanyi). This jump occurs
at long distances, of the order of 9 Å.

Is this jump inevitable?

70 It prevents the two cores collapsing; cf. Chapter 13.

http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 6.16. A simple one-electron model of electron transfer in the NaCl molecule. (a) The mean values of the Hamiltonian with
two diabatic states: one (light gray) being the 3s atomic orbital of the sodium atom (atomic curve), the second (dark gray) the 2p
atomic orbital of the chlorine atom (ionic curve). The two diabatic curves intersect. (b) A closer view of the intersection. (c) The
two diabatic curves [gray, as in (a,b)] and the two adiabatic curves (black), the lower-energy (solid), the higher-energy (dashed).
Although the drawing looks like intersection, in fact the adiabatic curves “repel” each other, as shown in (d). (e) Each of the adiabatic
states is a linear combination of two diabatic states (atomic and ionic). The ratio c1/c2 of the coefficients for the lower-energy
(solid line) and higher-energy states (dashed line), c1 is the contribution of the atomic function, c2 – of the ionic function. As we
can see, the lower-energy (higher-energy) adiabatic state is definitely atomic (ionic) for R > 17.9 a.u. and definitely ionic (atomic)
for smaller R in the vicinity of the avoided crossing. (f) The ratio c1/c2 very close to the avoided crossing point. As we can see, at
this point, one of the adiabatic states is the sum, and the other the difference of the two diabatic states.

If the electron is able to adapt instantaneously to the position of the nuclei (slow nuclear
motion), the system follows the adiabatic curve. If the nuclear motion is very fast, the system
follows the diabatic curve and no electron transfer takes place. The electron transfer is more
probable if the gap 2|H12| between E+(R) and E−(R) is large.
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In our model, for large distances, the adiabatic are practically identical with the diabatic
states, except in the avoided crossing region (see Figs. 6.16c–d).

6.14 Polyatomic Molecules and Conical Intersection

Crossing for Polyatomics

The non-crossing rule for a diatomic molecule was based on Eq. (6.47). To achieve the cross-
ing, we had to make vanish two independent terms with only one parameter (the internuclear
distance R) to vary. It is important to note that in the case of a polyatomic molecule, the formula
would be the same, but the number of parameters would be larger: 3M − 6 in a molecule with
M nuclei. For M = 3, therefore, one has already three such parameters. No doubt even for a
three-atomic molecule, we would be able to make the two terms equal to zero and, therefore,
achieve E+ = E−; i.e., the crossing of the two diabatic hypersurfaces would occur.

Let us investigate this possibility, which, for reasons that will become clear later, is called
conical intersection. We will approach this concept by a few steps.

Cartesian System of 3M Coordinates (O3M)

All the quantities in Eq. (6.47) depend on n = 3M − 6 coordinates of the nuclei. These
coordinates may be chosen in many different ways; the only thing we should bother about is
that they have to determine the positions of M point objects. Just to begin, let us construct a
Cartesian system of 3M coordinates (O3M). Let us locate (Fig. 6.17) nucleus 1 at the origin (in
this way, we eliminate three degrees of freedom connected with the translation of the system),
and nucleus 2 will occupy the point x2 on the x-axis; i.e., y2 = z2 = 0. In this way, we have
eliminated two rotations of the system. The total system may still be rotated about the x-axis.

Fig. 6.17. The Cartesian coordinate system O3M and the atoms 1, 2, and 3 with their fixed positions.
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This last possibility can be eliminated when we decide to locate the nucleus 3 in the plane x, y
(i.e., the coordinate z3 = 0).

Thus, six degrees of freedom have been eliminated from the 3M coordinates. The other nuclei
may be indicated by vectors (xi , yi , zi ) for i = 4, 5, . . .M . As we can see, there has been a lot
of arbitrariness in these choices.71

Cartesian System of 3M − 6 Coordinates (O3M−6)

This choice of coordinate system may be viewed a little differently. We may construct a Cartesian
coordinate system with the origin at atom 1 and the axes x2, x3, and y3 (see Fig. 6.17), and
xi , yi , and zi for i = 4, 5, . . .M . Thus, we have a Cartesian coordinate system (O3M−6) with
3 + 3(M − 3) = 3M − 6 = n axes, which may be labeled (in the sequence given above) in a
uniform way: x̄i , i = 1, 2, . . . n. A single point R = (x̄1, x̄2, . . .x̄3M−6) in this n-dimensional
space determines the positions of all M nuclei of the system. If necessary, all these coordinates
may be expressed by the old ones, but it will not be because our goal is different.

Two Special Vectors in the O3M−6 Space

Let us consider two functions Ē1 − Ē2 and V12 of the configuration of the nuclei R =
(x̄1, x̄2, . . . x̄3M−6); i.e., with domain being the O3M−6 space. Now, let us construct two vectors
in O3M−6:

∇(Ē1 − Ē2) =
3M−6∑

i=1

ii

(
∂(Ē1 − Ē2)

∂ x̄i

)
0
,

∇V12 =
3M−6∑

i=1

ii

(
∂V12

∂ x̄i

)
0
,

where ii stands for the unit vector along axis x̄i , while the derivatives are calculated in a point
of the configurational space for which√(

Ē1 − Ē2

2

)2

+ |V12|2 = 0;

i.e., where according to Eq. (6.47), one has the intersection of the adiabatic hypersurfaces.

6.14.1 Branching Space and Seam Space

We may introduce any coordinate system. We are free to do this because our object (molecule)
stays immobile, but our way of determining the nuclear coordinates changes. We will change

71 By the way, if the molecule were diatomic, the third rotation need not be determined and the number of variables
would be equal to n = 3× 2− 5 = 1.
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the coordinate system in n-dimensional space once more. This new coordinate system is formed
from the old one (O3M−6) by rotation.

The rotation will be done in such a way as to make the plane determined by the two first
axes (x̄1 i x̄2) of the old coordinate system coincide with the plane determined by the two
vectors: ∇(Ē1 − Ē2) oraz ∇(V12),

Let us denote the coordinates in the rotated coordinate system by ξi , i = 1, 2, . . . , n. The new
coordinates can, of course, be expressed as some linear combinations of the old ones, but these
details need not concern us. The most important thing is that we have the axes of the coordinates
ξ1 and ξ2, which determine the same plane as the vectors ∇ (Ē1 − Ē2

)
and ∇V12. This plane

is known as the branching space (plane). The space of all vectors
(
0.0, ξ3 . . . ξ3M−6

)
is called

the seam space. The directions ∇ (Ē1 − Ē2
)

and ∇V12 need not be orthogonal, although they
look this way in illustrations shown in the literature.72

Now we are all set to define the conical intersection.

6.14.2 Conical Intersection

Why has this slightly weird coordinate system been chosen? We see from the formula [Eq. (6.47)]
for E+ and E− that ξ1 and ξ2 correspond to the fastest change of the first term and the second
term under the square-root sign, respectively.73

Any change of other coordinates (along the axes orthogonal to the plane ξ1ξ2) does not
influence the value of the square root; i.e., it does not change the difference between E+
and E− (although the values of E+ and E− change).

Therefore, the hypersurface E+ intersects with the hypersurface E−, and their common part
(i.e., the seam space) are all those vectors of the n-dimensional space that fulfill the condi-
tion: ξ1 = 0 and ξ2 = 0. The intersection represents a (n − 2)−dimensional subspace of
the n-dimensional space of the nuclear configurations.74 When we withdraw from the point

72 See F. Bernardi, M. Olivucci, and M.A. Robb, Chem. Soc. Rev., 25, 321 (1996). The authors confirmed to me that
the angle between these vectors is often quite small.

73 Let us take a scalar field V and calculate its value at the point r0 + r, where we assume |r| � 1. From the Taylor

expansion, we have with good accuracy, V
(
r0 + r

) = V (r0)+
(∇V

)
r=r0
· r = V (r0)+

∣∣∣(∇V
)
r=r0

∣∣∣ · r cos θ . We

obtain the largest absolute value of the increment of V for θ = 0 and θ = 180◦ i.e., along the vector
(∇V

)
r=r0

.
74 If the axes ξ1 and ξ2 were chosen in another way on the plane determined by the vectors ∇ (Ē1 − Ē2

)
and ∇V12,

the conical intersection would be described in a similar simple way. If, however, the axes were chosen outside the
plane, it may happen that moving along more than just two axes, they would split into E+ and E−. Our choice
stresses that the intersection of E+ and E− represents a

(
n − 2

)− dimensional subspace (seam space).
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(a)

(b)

(c)

Fig. 6.18. Conical intersection (scheme). E represents the electronic energy as a function of coordinates of the nuclei:
ξ1, ξ2, ξ3, ξ4, . . .ξ3M−6. This shows only the coordinates ξ1 and ξ2, which define what is known as the branching space ξ1ξ2,
while the space of all vectors

(
0, 0, ξ3, ξ4, . . . ξ3M−6

)
known as the seam space is not shown in panel (a) or (b). (a) Section of the

cones along ξ1 at a given point of the seam space; the equality E+ = E− holds for the conical intersection point. (b) The vectors
∇(Ē1 − Ē2) and ∇V12 span the branching plane (the horizontal plane; both vectors are calculated at the conical intersection). The
upper cone E+ and the lower cone E− correspond to Eq. (6.47), and each consists of two diabatic surfaces (gray and white). (c)
Staying at the branching point (0, 0), but moving in the seam space, one remains all the time in the conical intersection, but the
cones look different (different cone openings) and the energy E+ = E− changes (solid line).

(0, 0, ξ3, ξ4, . . . ξ3M−6) by changing the coordinates ξ1 and/or ξ2, a difference between E+ and
E− appears. For small increments dξ1, the changes in the energies E+ and E− are proportional
to dξ1 and for E+ and E− differ in sign. This means that the hypersurfaces E+ and E− as
functions of ξ1 (at ξ2 = 0 and fixed other coordinates) have the shapes shown in Fig. 6.18a. For
ξ2, the situation is similar, but the cone may differ by its angle. From this, it follows that
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the ground and excited state hypersurfaces intersect with each other (the intersection set
represents the subspace of all vectors (0, 0, ξ3, ξ4, . . . , ξn)) and split when we go out of
the intersection point according to the cone rule; i.e., E+ and E− change linearly when
moving in the plane ξ1, ξ2 from the point (0, 0).

This is called the conical intersection (see Fig. 6.18b). The cone opening angle is in general
different for different points of the seam space (see Fig. 6.18c).

The conical intersection plays a fundamental role in the theory of chemical reactions
(Chapter 14). The lower (ground-state) as well as the higher (excited-state) hypersurfaces are
composed of two diabatic parts, which in polyatomics correspond to different patterns of chemi-
cal bonds. This means that the system (represented by a point) when moving on the ground-state
adiabatic hypersurface toward the join of the two parts, passes near the conical intersection point,
over the energy barrier, and goes to the products. This is the essence of a chemical reaction.

6.14.3 Berry Phase

We will focus on the adiabatic wave functions close to the conical intersection. Our goal will
be to show something strange, that

when going around the conical intersection point in the configurational space, the electronic
wave function changes its phase; and after coming back to the starting point, this change
results in the opposite sign of the function.

First, let us prepare an itinerary in the configuration space around the conical intersection.
We need a parameter, which will be an angle α and will define our position during our trip

around the point. Let us introduce some abbreviations in Eq. (6.47):� ≡ Ē1−Ē2
2 , h ≡ V12, and

define α in the following way:

sin α = �/ρ,
cosα = h/ρ,

where ρ =
√
�2 + h2.

We will move around the conical intersection within the plane given by the vectors ∇�
and ∇h (branching plane). The conical intersection point is defined by |∇�| = |∇h| = 0.
Changing α from 0 to 2π , we have to go, at a distance ρ(α), once through a maximum of h (say,
in the direction of the maximum gradient ∇h), and once through its minimum−h (the opposite
direction). This is ensured by cosα = h/ρ. Similarly, we have a single maximum and a single
minimum of ∇� (as must happen when going around), when assuming that sin α = �/ρ. We
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do not need more information about our itinerary because we are interested in how the wave
function changes after making a complete trip (i.e., 360◦ around the conical intersection and
returning to the starting point).

The adiabatic energies are given in Eq. (6.47) and the corresponding coefficients of the dia-
batic states are reported in Appendix D available at booksite.elsevier.com/978-0-444-59436-5
(the first, most general case):(

c1

c2

)
±
= 1

h

[
�±

√
�2 + h2

]
= tan α ± 1

cosα
.

Thus,

c1,+
c2,+
= sin α + 1

cosα
=
(
sin α

2 + cos α2
)2

cos2 α
2 − sin2 α

2

=
(
sin α

2 + cos α2
)

(
cos α2 − sin α

2

) ,
c1,−
c2,−
= sin α − 1

cosα
= −

(
cos α2 − sin α

2

)2
cos2 α

2 − sin2 α
2

= −
(
cos α2 − sin α

2

)
(
cos α2 + sin α

2

) .
To specify the coefficients inψ+ = c1,+ψ1+c2,+ψ2 andψ− = c1,−ψ1+c2,−ψ2, withψ1 and

ψ2 denoting the diabatic states, we have to take the two normalization conditions into account:
c2

1,++c2
2,+ = 1, c2

1,−+c2
2,− = 1 and the orthogonality ofψ+ andψ− : c1,+c1,−+c2,+c2,− = 0.

After a little algebra, we get

c1,+ = 1√
2

(
cos

α

2
+ sin

α

2

)
,

c2,+ = 1√
2

(
cos

α

2
− sin

α

2

)
.

c1,− = − 1√
2

(
cos

α

2
− sin

α

2

)
,

c2,− = 1√
2

(
cos

α

2
+ sin

α

2

)
.

Now, let us consider the wave functionsψ+ andψ− at the angleα and at the angleα+2π . Note
that cos α+2π

2 = cos
(
α
2 + π

) = − cos α2 and sin α+2π
2 = sin

(
α
2 + π

) = − sin α
2 . Therefore,

both the electronic functions ψ+ and ψ− have to change their signs after the journey (i.e., the
“geometric” phase or Berry phase); that is,

ψ+(α + 2π) = −ψ+(α)
and

ψ−(α + 2π) = −ψ−(α).
This is how the conical intersection is usually detected.

http://booksite.elsevier.com/978-0-444-59436-5
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Since the total wave function has to be single-valued, this means the function that describes
the motion of the nuclei (and multiplies the electronic function) has to compensate for that
change and also undergo a change of sign.

The Berry phase has some interesting analogy to gymnastics; (see p. 902).

The Role of the Conical Intersection–Non-radiative Transitions and Photochemical Reactions

The conical intersection was underestimated for a long time. However, photochemistry demon-
strated that it happens much more frequently than expected. Laser light may excite a molecule
from its ground state to an excited electronic state (Fig. 6.19).

Let us assume that the nuclei in the electronic ground state have their optimal positions
characterized by point 1 in the configurational space (they vibrate in its neighborhood but let
us ignore the quantum nature of these vibrations75).

The change of electronic state takes place so fast that the nuclei do not have enough time
to move. Thus the positions of the nuclei in the excited state are identical to those in the
ground state (Franck-Condon rule).

Point 2 (FC) in Fig. 6.19 shows the very essence of the Franck-Condon rule–a vertical
transition. The corresponding nuclear configuration may differ quite significantly from the
nearest potential energy minimum (point 3) in the excited-state PES. In a few femtoseconds, the
system slides down from FC to the neighborhood of point 3, transforming its potential energy
into kinetic energy. Usually point 3 is separated from the conical intersection configuration 5
by a barrier with the corresponding potential energy saddle point 4 (“transition state”). Behind
the saddle point, there is usually an energy valley76 with a deep funnel ending in the conical
intersection configuration (point 5). As soon as the system overcomes the barrier at the transition
state (4), by going over it or by tunneling, it will be sucked in by the conical intersection attractor
with almost 100% probability.

The system goes through the “funnel” to the electronic ground-state hypersurface with
probability 1.

75 Electronic energy hypersurfaces represent the PES for the motion of the nuclei. In the quantum mechanical picture,
only some energies will be allowed: we will have the vibrational and rotational energy levels, as for diatomics.
The same energy levels corresponding to E+ may be close in the energy scale to those of E−. Moreover, it may
happen that the vibrational wave functions of two such levels may overlap significantly in space, which means
that there is a significant probability that the system will undergo a transition from one to the other vibrational
state. In short, in the quantum mechanical picture, the motion of the system is not necessarily bound to a single
PES, but the two PESs are quite penetrable.

76 This is on the excited-state PES.
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Fig. 6.19. Non-radiative transitions explained by the photochemical funnel effect (related to the conical intersection). This shows
the electronic energy as a function of the coordinates ξ1 and ξ2 within the branching space. a) There are two adiabatic surfaces:
the lower one corresponds to the ground electronic state (E−), and the upper one pertains the excited electronic state (E+).
Each of the surfaces is composed of two parts corresponding originally to the diabatic states: the darker one corresponds to the
electronic structure of the reactants, the lighter one corresponds to the electronic structure of the products. The spheres indicate some
particular configuration of the nuclei. Sphere 1 indicates the reactants, and the arrow symbolizes a photoexcitation by absorption
of a photon with the appropriate energy hν = �ω. The excitation takes place instantaneously at a fixed reactants’ configuration
(Franck-Condon rule), but the electronic excited state corresponds already to the products, and the forces acting on the nuclei
correspond to the excited surface slope at the point labeled FC (sphere 2). The forces make the system move towards the minimum
(sphere 3). If the kinetic energy acquired is large enough to overcome the barrier (sphere 4), the system enters the funnel, inevitably
reaches the conical intersection point (sphere 5), and in a radiationless process, begins moving on the ground-state adiabatic
hypersurface. The system may end up at different products (spheres 6a and 6b), or it may go back to the configuration of the reactants
(sphere 1).

Then the system will continue its path in the ground-state PES, E−, going either toward
products 6a or 6b, or going back to point 1 (non-reactive path).

Of course, the total energy has to be conserved. The non-radiative process described will take
place if the system finds a way to dissipate its energy; i.e., to transfer an excess of electronic
energy into the vibrational, rotational, and translational degrees of freedom of its own or neigh-
boring molecules (e.g., of the solvent).77

77 The energy is usually distributed among the degrees of freedom in an unequal way.
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We may ask whether we will find some other conical intersections in the ground-state PES.
In general, the answer is positive. There are at least two reasons for this.

In the simplest case, the conical intersection represents the dilemma of an atom C (approach-
ing molecule AB): attach to A or attach to B?

Thus, any encounter of three atoms causes a conical intersection (we will come back to this
in Chapter 14). In each case, the important thing is a configuration of nuclei, where a small
variation may lead to distinct sets of chemical bonds. Similar “pivot points” may happen for
four, five, six, or more atoms. Thus, we will encounter not only the minima, maxima, and saddle
points, but also the conical intersection points when traveling in the ground-state PES.

The second reason is the permutational symmetry. Very often, the system contains the same
kinds of nuclei. Any exchange of the positions of such nuclei moves the point representing the
system in configuration space to some distant regions, whereas the energy does not change at all.
Therefore, any PES has to exhibit the corresponding permutational symmetry. All the details of
PES will repeat M ! times for a system with M identical nuclei. This will multiply the number
of conical intersections.

More information about conical intersection will be given in Chapter 14, when we will be
equipped with the theoretical tools to describe how the electronic structure changes during
chemical reactions.

6.15 Beyond the Adiabatic Approximation

6.15.1 Vibronic Coupling

In polyatomic molecules, a diabatic state represents a product of an electronic wave function

ψ

(
�1
)

i and a rovibrational function78 f
(
�2
)

v ; i.e., a rovibronic state:

ψ

(
�1
)

i

(
r;R) f

(
�2
)

v (R), (6.51)

where the upper indices are related to the irreducible representations of the symmetry group
of the clamped-nuclei Hamiltonian that the functions belong to (i.e., according to which the
corresponding functions transform; see Appendix C available at booksite.elsevier.com/978-0-
444-59436-5, p. e17). If one considers the electronic and the vibrational states only79 Eq. (6.51)
denotes a vibronic state. The product function transforms according to the direct product
representation �1 × �2.

78 This function describes rotations and vibrations of the molecule.
79 For the sake of simplicity, we are skipping the rotational wave function.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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If one is interested in those solutions of the Schrödinger equation, which belong
to the irreducible representation �, the function ψ(�1)

i (r;R) f (�2)
v (R) is useful as a basis func-

tion only if �1 × �2 contains �. For the same reason, another basis function may be useful
ψ
(�3)

i ′ (r;R) f (�4)

v′ (R), as well as other similar functions:

ψ
(
�
)
= ci1ψ

(
�1
)

i

(
r;R) f

(
�2
)

1 (R)+ ci ′2ψ
(
�3
)

i ′
(
r;R) f

(
�4
)

2 (R)+ · · · (6.52)

If, say, coefficients ci1 and ci ′2 are large, an effective superposition of the two vibronic
states is taking place, which is known as vibronic coupling.

We are, therefore, beyond the adiabatic approximation (which requires a single vibronic state,
a product function) and the very notion of the single potential energy hypersurface for the motion
of the nuclei becomes irrelevant. In the adiabatic approximation, the electronic wave function
is computed from Eq. (6.8) with the clamped nuclei Hamiltonian; i.e., the electronic wave
function does not depend on what the nuclei are doing, but only where they are. In other words,
the electronic structure is determined [by finding a suitable ψ(�1)

i (r;R) through solution of the
Schrödinger equation] at fixed position R of the nuclei. This implies that in this approximation,
the electrons always have enough time to adjust themselves to any instantaneous position of the
nuclei. One may say that in a sense, the electrons and the nuclei are perfectly correlated in their
motion: electrons follow the nuclei. Therefore,

a non-adiabatic behavior (or vibronic coupling) means a weakening of this perfect correla-
tion, which is equivalent to saying that it may happen that the electrons do not have enough
time to follow a (too-fast) motion of the nuclei.

This weakening is usually allowed by taking a linear combination of Eq. (6.52), which may
be thought as a kind of frustration for electrons which vibration (“type of motion”) of the nuclei
to follow. If �1 
= �3 and �2 
= �4, one may say that we have to do with such an electronic

state, which resembles ψ
(
�1
)

i , when the molecule participates in a vibration of symmetry �2

and resembles ψ
(
�3
)

i ′ , when the molecule vibrates according to �4.
This idea may be illustrated by the following examples.

Example 1: Dipole-Bound Electron
Imagine a molecular dipole. One may think of it as having a+ and a− pole. We are interested

in its + pole, because now we consider an extra electron, which will be bound with the dipole
by the + pole-electron attraction. Obviously, such an attraction should depend on the dipole
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(a)

(b)

Fig. 6.20. A strange situation: An electron is unable to follow the motion of the nuclei (we are beyond the adiabatic approximation,
a non-adiabatic case). (a) Some molecular dipoles with a sufficiently large dipole moment may bind an extra electron (a cloud on
the right), which in such a case is far from the dipole and is attracted by its pole. The positive pole plays a role of a pseudonucleus
for the extra electron. (b) When the dipole starts to rotate (a state with a nonzero angular momentum), the electron follows the
motion of the pole. This is, however, difficult for high angular momenta (the electron has not enough time to adapt its position right
toward the pole), and it is even harder because the centrifugal force pushes the extra electron farther away.

moment of the dipolar molecule. How strong must a point dipole be to be able to bind an
electron? This question has been already asked, and the answer80 is that this happens for the
pointlike dipole moment larger than81 1.625 D. If the dipole itself represents an electronic closed
shell molecule, the extra electron is usually very far (see Fig. 6.20a), even at distances of the
order of 50 Å.

Now imagine the dipole starts to rotate (see Fig. 6.20b). At small angular momentum, the
electron supposedly does not have any problem with following the motion of the positive pole.
For larger angular momenta, the electron speeds up, its distance to the dipole increases due to
the centrifugal force, and when this happens, it gets harder and harder to follow the motion
of the positive pole. The electron does not have enough time. This means a larger and larger
non-adiabatic correction.

Example 2: Hydrogen Molecule

Let us form two diabatic states: ψ(�1)
i (r; R) corresponding to the double occupation of the

bonding orbital 1sa + 1sb and the other, ψ(�3)

i ′ (r; R), corresponding to the double occupation
of the bonding excited orbital 2sa + 2sb. In this case, we will take �3 = �1 (it does not mean

80 E. Fermi and E. Teller, Phys. Rev., 47, 399 (1947).
81 For non-pointlike dipoles, one may expect this limiting value to be less important, since the essence of the problem

is binding an electron by a positive charge. This, however, happens even for marginally small positive charges
(see the hydrogen-like atom).
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the f functions are the same). The rovibrational function will be taken as (we assume the
vibrational and rotational ground state) f (�2)

1 (R) = χ1(R)Y 0
0 (θ, φ) = χ1(R), but f (�4)

2 (R) =
χ2(R)Y 0

0 (θ, φ) = χ2(R). The vibrational ground state χ1(R) has its maximum at R = R1s ,
where the minimum of the potential energy curve E1s(R) is, while χ2(R) has its maximum at
R = R2s > R1s , where the potential energy curve E2s(R) exhibits the minimum. The mixing
coefficients ci1 and ci2 will obviously depend on R. For R = R1s , we will have ci1 � ci2,
because the ground-state bonding orbital will describe well the electronic charge distribution,
and for this R, the 2sa+2sb orbital will have a very high energy (the size of the 2s orbitals does not
fit the distance). However, when R increases, the energy corresponding to 1sa+1sb will increase,
while the energy corresponding 2sa + 2sb will decrease (because of better fitting). This will
result in a more important value of |ci2| and a bit smaller value of |ci1| than it was for R = R1s .
There is, therefore, a coupling of vibration with the electronic state–a vibronic coupling.

Example 3: Harpooning Effect
The harpooning effect from p. 308 represents also an example of a vibronic coupling, if the

two diabatic states: the ionic one ψ(�1)
i (r; R) and the neutral one ψ(�3)

i ′ (r; R) are considered
with their corresponding vibrational states.

Example 4: Benzene
Let us take a benzene molecule. Chemists have realized for a long time that all CC bonds in

this molecule are equivalent (some quantum chemical arguments for this view were presented
on p. 167). The benzene molecule does not represent a static hexagonal object. The molecule
undergoes 3M − 6 = 30 vibrations (normal modes, which will be discussed in Chapter 7).

One of these modes, say, described by the vibrational wave function f
(
�2
)

v (R), resembles a
kind of ring pulsing (“breathing”), and during these vibrations, the electronic wave function

ψ

(
�1
)

i (r;R) describes the six equivalent CC bonds. There is also another vibrational mode corre-

sponding the vibrational function f
(
�4
)

v′ (R), that, in its certain phase, corresponds to shortening
of the two opposite CC bonds and lengthening of the four other CC bonds. During such a
motion, the electronic structure changes and will correspond to what is known as the Dewar
structure:

(the shortened bonds will resemble double bonds, and the others will resemble single bonds),

corresponding to the electronic wave function ψ(�3)

i ′ (r;R). There will be much more such
possibilities what is symbolized in Eq. (6.52) by “. . .”.

The rovibrational functions f (�2)
v (R) and f (�4)

v′ (R) must exhibit a strong asymmetry with
respect to the equilibrium point (vibronic anharmonicity). Indeed, it is natural that the
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abovementioned Dewar structure is energetically favored for the vibrational deviations that
shorten the to-be-double CC bond and becomes unfavorable for the opposite deviations.

6.15.2 Consequences for the Quest of Superconductors

Superconductivity, discovered by a Dutch scholar Heike Kammerlingh Onnes in 1911, is cer-
tainly a fascinating phenomenon. In some substances (like originally in mercury, tin, and lead),
measurement of the electric conductivity as a function of lowering the temperature ended up by
an abrupt decrease (below a critical temperature) of the electric resistance to zero value. Such a
property would be great for operating technical devices or sending electric energy at large dis-
tances. The problem is that the critical temperature turned out to be extremely low–until 1987, it
was always lower than about 23 K. The situation changed after discovery of what is now known
as high-temperature superconductors (HTS) by J. George Bednorz and K. Alex Müller in 1987.
Nowadays, after discovering hundreds of new HTSs, the highest critical temperature found is
equal to about 164 K. In virtually all cases, it turned out that the HTSs have a characteristic
atomic layer structure with alternating copper and oxygen atoms.

The “Magic” Cu–O Distance

No current theory explains properly the phenomena exhibited by HTSs. There are several
theoretical concepts, but their striking weakness is that they provide no indication as to the
class of promising materials that one should look for the HTS. After decades of research, an
intriguing conclusion has been however found, that the closer the Cu–O distance to a “magic
value” RCu−O = 1.922 Å is, the higher the corresponding critical temperature is.82 This
remarkable correlation went virtually unnoticed by the solid-state physics community for a
long time.

How could such a precise criterion work? Well, this strongly suggests that something impor-
tant happens at distance RCu−O = 1.922 Å, but for some reason, it does not when it is away
from this value.

Primum non Nocere...83

Why does a bulb emit light? It happens because the motion of the electrons in a thin wire
inside the bulb meets a resistance of chaotic vibrations of the nuclei. The kinetic energy of the
electrons (resulting from the electric power plant operation for our money) goes partially for
making collisions with the nuclei. These collisions lead to high-energy electronic states, which
emit light when relaxing. In principle, this is why we pay our electric bill.

82 C.N.R. Rao and A.K. Ganguli, Chem. Soc. Review, 24, 1 (1995).
83 “First, do no harm”–a phrase attributed to Greek physician Hippocrates (460–370 B.C.) as a suggested minimum

standard for medical doctors.
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And what if the nuclear motion, instead of interfering, helped electrons to move? Well,
then the resistance would drop, just similarly as it does in superconductivity. Maybe there is
something in it.

In 1993, Jeremy K. Burdett postulated some possible reason for superconductivity.84 His
hypothesis is related to a crossing of potential energy curves, precisely the subject of our earlier
interest. According to Burdett, the “magic Cu–O distance” possibly corresponds to a crossing
of two close-in-energy electronic diabatic states: a diabatic state characterized by the electron
holes mainly on the copper atoms and another one with the electron holes mainly on the oxygen
atoms. Thus, these two states differ by the electronic charge distribution85, similarly as it was
in NaCl (see p. 308). However, unlike as it was for NaCl, the minima, according to Burdett, do
not differ much (if at all) in energy. Another important difference is that for NaCl, the crossing
takes place for the Na-Cl distances that are several times larger than the nearest neighbor Na-Cl
distance in the crystal of the rock salt, while for the HTSs, the Cu-O distance in crystals is close
to the corresponding crossing point. This means that atomic vibrations may cause oscillating
about the crossing point. As usually, from crossing of the diabatic curves, two adiabatic states
appear: the ground state with the double minimum and an excited state (see Fig. 6.21).

Burdett’s main point is the coupling of the ground vibrational state with the two diabatic
electronic states. It is during such vibrations that a dramatic change of the electronic charge
distribution is supposed to take place (strong vibronic coupling). The position of the vibrational
level on the energy scale is said to be critical for superconductivity. If the position is substantially
lower than the energy of the top of the barrier (Fig. 6.21b), one has to do with either of the
two states localized in a given well. This corresponds to no communication between the wells,
and we have to deal with either of the two different charge distributions (a “mixed-valence”
compound). If, on the other hand, the vibrational level has large energy (Fig. 6.21c), high above
the barrier top energy, one receives an averaged charge distribution, which does not change much
during vibrations. According to Burdett, the superconductivity appears, when the vibrational
level is close to the same energy as that of the top of the barrier (Fig. 6.21d), this causes a strong
coupling of the two diabatic electronic states through the vibrational state.

Relevant Vibrations

It is natural to imagine that the electron transfer between two atoms (of type A) may be accom-
plished by a mediator–a third object, say atom B. This is why research began from studies of
the effectivity of the transfer of an extra electron in the ABA− system, like Na+ F− Na0

(i.e., A ≡ Na+, A− ≡ Na0, B ≡ F−), when B oscillates between atoms A. Therefore, the

84 J.K. Burdett, Inorg. Chem., 32, 3915 (1993).
85 Most probably, the key phenomena take place in the copper-oxygen layers and may be described as a reversible

reaction Cu3+ + O2− � Cu2+· + O−· or Cu2+· + O2− � Cu+ + O−· (a dot means an unpaired electron).
The presence of the unpaired electrons implies some ferro- or/and antiferromagnetic properties of these materials,
which indeed have been discovered in the HTS phenomenon.
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Fig. 6.21. Burdett’s concept of superconductivity (scheme). (a) Two electronic diabatic energy curves (of comparable energies
corresponding to their equilibrium positions) cross, resulting in two adiabatic energy curves (the ground and excited states, b,c,d).
The diabatic states differ widely by the electronic charge distribution: one of them, denoted by the symbol Cu, corresponds to
the electron holes on the copper atoms, while the second one, denoted by O, has such holes on the oxygen atoms. According to
Burdett, the superconductivity has to do with the position of the lowest vibrational level of the ground electronic state. (b) The
level is too low in energy, the vibrations are localized (either in the left- or in the right side potential energy well; this is equivalent
to a quasi-degeneracy of the sum and difference of the delocalized vibrational states). The tunneling is marginal because of the
exponential decay of the localized vibrational wave functions in the separating barrier. One has to do with an insulator in either
of two coexisting states differing by the electronic charge distribution (“oxidation states”)–what is known as a mixed valence
compound. (c) The level is too high in energy, and the vibrations are fully delocalized and proceed in the global potential energy
well. The well details do not count for much; one has to do with a state similar to averaging of the two states (“a metallic state”);
i.e., both Cu and O have some averaged oxidation states when vibration occurs. (d) A “magic” position of the vibrational state,
right at the height of the barrier. One may see this as two localized vibrational states that can tunnel easily through the barrier. The
vibrations change the oxidation states of Cu and O; i.e., cause the electron transfer.

interesting vibration should be similar to an antisymmetric stretching vibration. In such a case,
B transports an electron between the A centers. We may consider this vibration at various AA
distances. If one assumes Burdett’s concept, the following questions, related to the possible
materials involved86, appear:

• What would we get as the electronic charge distribution if we assume optimization of the AA
distance (still keeping the constraint of linearity of ABA)? Would we get a symmetrization of

86 Which type of chemical compounds are most promising HTSs?
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the charge distribution, as in Na+ 1
2 F− Na+ 1

2 (“averaged oxidation state”), or we would
rather obtain an asymmetric distribution like Na+ F− Na0 or Na0 F− Na+ (“mixed valence
compound”).

• How do the above possibilities depend on the chemical character of A and B?

Where Can We Expect Superconductivity?

Well, we do not know the answer, but there are some indications. It turned out that in the vibronic
coupling87,

• Chemical identity of A and B is very important; the strongest vibronic coupling corresponds
to halogens and hydrogen (A,B ≡ F,Cl,Br, I,H).

• The strongest vibronic coupling corresponds to A=B (with the maximum for A,B ≡ F),
although this condition is not the most important one.

• To exhibit the electronic instability under oscillation of B in the ABA− radical,

– A and B must be strongly electronegative (this may explain why oxygen is present in
all the HTSs).

– A and B must form a strong covalent bond, whereas a large overlap of the corresponding
orbitals88 is more important than the equality of their energies (cf. p. 430, Chapter 8).

6.15.3 Photostability of Proteins and DNA

How does it happen that life flourishes under protection of the Sun, whereas it is well known
the star emits some deadly radiation like charged particles and UV photons? We have two main
protecting targets: one is Earth’s magnetic field, and the second is Earth’s atmosphere. Despite
the atmospheric protection, some important part of the UV radiation attains the surface of the
Earth. Substances usually are not transparent for the UV, whereas absorption of a UV photon
is often harmful for chemical bonds, making their dissociation or/and creating other bonds.
This is desirable for producing the vitamin D3 in our body, but in many cases, it ends badly.
For example, some substances, like DNA or some important proteins, have to be completely
protected because their destruction would destroy the basis of life itself. Therefore, how do these
substances function so efficiently in the vibrant life processes? What represents an additional
target that protects them so well?

It turns out that this wonder target is the ubiquitous hydrogen bond, an important factor
determining the 3-D shape of both DNA and proteins (see p. 870). The hydrogen bond X −
H . . . Y (see p. 863) has some special features that also concern its UV properties, and this

87 W. Grochala, R. Konecny, and R. Hoffmann, Chem. Phys., 265, 153 (2001); W. Grochala, R. Hoffmann, New J.
Chem., 25, 108 (2001); W. Grochala and R. Hoffmann, J. Phys. Chem. A, 104, 9740 (2000); W. Grochala and R.
Hoffmann, Pol. J. Chem., 75, 1603 (2001); W. Grochala, R. Hoffmann, and P.P. Edwards, Chem. Eur. J., 9, 575
(2003); W. Grochala, J. Mater. Chem., 19, 6949 (2009).

88 For HTSs, these orbitals are 2p of oxygen and 3d of copper.
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holds independently which electronegative atoms XY are involved. The explanation of the
UV protection mechanism of the hydrogen bond given below comes from Sobolewski and
Domcke.89

Fig. 6.22 shows three electronic energy hypersurfaces for the hydrogen bond X − H . . .Y ,
visualized as sections along the proton position coordinate that describes the position of the
proton in the hydrogen bridge. The ground state S0 (light gray) represents a diabatic state corre-
sponding to the resonance structure X − H . . . Y , in which two electrons are at X and two at Y .
The energy of this singlet state has a minimum for the proton position close to X . An absorption
of the UV photon makes the transition of the system to the lowest-energy singlet excited state
(1L E , dark gray) with its electronic structure denoted as

(
X − H . . .Y

)∗. Most important, its
energy curve intersects another singlet excited state, which corresponds to the electron transfer
from X to Y (1CT , black). The resulting conical intersection of the states 1L E and 1CT is

proton position

Fig. 6.22. The hydrogen bond is UV stable because of the mobility of the bridging proton. The image shows the electronic
energy as a function of the proton position in the hydrogen bond X − H . . . Y (another coordinate that measures deviation of
the proton from the XY axis is also marked). The electronic ground state S0 energy curve (light gray) corresponds to the “four-
electron” diabatic wave function corresponding to the bond pattern X − H . . . Y . A UV transition to the lowest excited singlet state(
X − H . . . Y

)∗
(1 L E , dark gray) is shown by a vertical arrow. The electronic energy curve for this state intersects (the conical

intersection is shown as two cones) a singlet diabatic state (1CT , black) that corresponds to a transfer of an electron from X to Y . The
excitation energy is sufficiently large to allow the system to attain the black curve corresponding to the structure (X − H)+ . . . Y−.
After passing the conical intersection, one deals with a vibrationally excited state, which is symbolized by

[
(X − H)+ . . . Y−

]
hot .

The proton continues its motion towards Y and the structure begins to be of the radical-ionic type: X• . . . (H − Y )•. The system
meets the second conical intersection, which allows it to attain the ground state (light gray). This time, the proton moves towards
X , while its electronic energy changes to the vibrational energy of the molecule and the surrounding water. Thus, the UV photon
does not harm chemical bonds, its energy goes instead to heating the surrounding water.

89 A. Sobolewski and W. Domcke, Chem. Phys. Chem., 7, 561 (2006).
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shown as a double cone. The photon energy is large enough that the system reaches the conical
intersection point and ends up on the black energy curve, which means a single electron transfer
symbolized by (X − H)+ . . .Y−. Since the minimum of the black curve is shifted far to the
right, after going out from the conical intersection, one has to do with a vibrational excited
state denoted as an ionic “hot” structure:

[
(X − H)+ . . .Y−

]
hot . The system slides down the

black curve changing high potential energy to the vibrational energy and kinetic energy of the
surrounding water molecules. This sliding down means that as the proton moves to the right,
the system remains all the time in the ionic state. This, however, means there is an ion-radical
structure of the type: X• . . . (H−Y )•. When sliding down, the system meets the second conical
intersection, which makes it possible to continue the motion on the ground-state curve (light
gray). At this value of the proton position, one has the “hot” structure. [X−…H− Y+]hot. Now
the sliding down means going left (the proton comes back) and transferring the vibrational
energy to the water.

Therefore, the net result is the following: the absorption of the UV photon, after some
bouncing of the proton in the hydrogen bridge, results in heating the surrounding water,
while the hydrogen bond stays safe in its ground state.

6.15.4 Muon-Catalyzed Nuclear Fusion

Some molecules look really peculiar. They may contain a muon instead of an electron. A muon
is an unstable particle with the charge of an electron and mass equal to 207 electronic masses.90

For such a mass, assuming that nuclei are infinitely heavier than muon looks like a very bad
approximation. Therefore, the calculations need to be non-adiabatic. The first computations for
muonic molecules were performed by Kołos, Roothaan, and Sack91 in 1960. The idea behind
the project was muon-catalyzed fusion of deuterium (d) and tritium (t); the abbreviations here
pertain to the nuclei only. This fascinating problem was proposed by Andrei Sakharov. Its
essence is as follows.

90 The muon was discovered in 1937 by C.D. Anderson and S.H. Neddermeyer. Its lifetime is about 2.2 · 10−6 s.
The muons belong to the lepton family (with the electron and τ particle, the latter with a mass equal to about
3640 electronic masses). Nature created, for some unknown reasons, “more massive electrons”. When the nuclear
physicist Isidor Rabi was told about the incredible mass of the τ particle, he dramatically shouted: “Who ordered
that?!”.

91 W. Kołos, C.C.J. Roothaan, R.A. Sack, Rev. Mod. Phys., 32, 205 (1960).
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Andrei Dimitriy Sakharov
(1921–1989) Russian physi-
cist and father of the Soviet
hydrogen bomb. During the
final celebration of the H bomb
project, Sakharov expressed
his hope that the bombs
would never be used. A Soviet
general answered coldly that it
was not scientists’ business to
decide such things. This was a
turning point for Sakharov, and
he began his fight against the
totalitarian system.

The idea of muon-induced
fusion was conceived by
Sakharov in 1945, in his first

scientific paper, under the supervision of
Tamm. In 1957, David Jackson realized
that muons may serve as catalysts.

If the electron in the
molecule dte is replaced
by a muon, immediately
the dimension of the
molecule decreases by a
factor of about 200. How
is this possible?

Well, the radius of the
first Bohr orbit in the hy-
drogen atom (see, p. 202)
is equal to a0 = �

2

μe2 . After
introducing atomic units,
this formula becomes a0 =
1
μ

, and when we take into
account that the reduced

mass μ ≈ m (m stands for the electron mass), we get a0 ≈ 1. This approximation works
for the electron because in reality, μ = 0.9995m. If, in the hydrogen atom, we have a muon
instead of an electron, then μ would equal about 250 m. This, however, means that such a
“muon Bohr radius” would be about 250 times smaller. Nuclear forces begin to operate at such
a small internuclear separation (strong interactions; see Fig. 6.23a), and are able to overcome
the Coulombic barrier and stick the nuclei together by nuclear fusion. The muon, however, is
released, and may serve as a catalyst in the next nuclear reaction.

Deuteron and tritium bound together represent a helium nucleus. One muon may participate
in about 200–300 such muon-catalyzed fusion processes.92 Everybody knows how much effort
and money has been spent for decades (for the moment in vain) to ignite the nuclear synthesis
d+ t→ He. Muon-catalyzed fusion might be an alternative solution. If the muon project were
successful, humanity would have access to a practically unlimited source of energy. Unfortu-
nately, theoretical investigations suggest that the experimental yield already achieved is about
the maximum theoretical value.93

92 The commercial viability of this process will not be an option unless we can demonstrate 900 fusion events for
each muon. About 10 g of deuterium and 15 g of tritium fusion would then be sufficient to supply the average
person with electricity for life.

93 This has been the subject of a joint Polish-American project. More about this may be found in K. Szalewicz, S.
Alexander, P. Froelich, S. Haywood, B. Jeziorski, W. Kołos, H.J. Monkhorst, A. Scrinzi, C. Stodden, A. Velenik,
and X. Zhao, in Muon Catalyzed Fusion, eds. S.E. Jones, J. Rafelski, H.J. Monkhorst, AIP Conference Proceedings,
181, 254 (1989).
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(a)

(b) (c)

Fig. 6.23. (a) The interaction energy potential of d and t as a function of the interparticle distance (R), taking the nuclear
forces into account (an outline). At large R, of the order of nanometers, we have Coulombic repulsion, at distances of the order
of femtometers the internuclear attractive forces (called the strong interaction) are switched on and overcome the Coulombic
repulsion. At a distance of a fraction of a femtometer, again we have a repulsion. (b) “Russian dolls” (outline): the analogs of H2
and H+2 .

6.15.5 “Russian Dolls,” or a Molecule Within Molecule

Scrinzi and Szalewicz94 carried out non-adiabatic calculations (p. 265) for a system of six
particles: proton (p), deuterium (d), tritium (t), muon (μ), and two electrons (e) interacting by
Coulombic forces (i.e., no nuclear forces are assumed). It is not easy to predict the structure of
the system. It turned out that the resulting structure is a kind of “Russian doll”95 (see Fig. 6.23b):
the muon has acted according to its mass (see above) and created tdμwith a dimension of about
0.02 Å. This system may be viewed as a partly split nucleus of charge +1 or, alternatively,
as a mini-model of the hydrogen molecular ion (scaled at 1:200). The “nucleus” serves as a
partner to the proton, and both create a system similar to the hydrogen molecule, in which the
two electrons play their usual binding role and the internuclear distance is about 0.7 Å. It turns
out that the nonzero dimension of the “nucleus” makes a difference, and the energies computed

94 A. Scrinzi and K. Szalewicz, Phys. Rev. A, 39, 4983 (1989).
95 (((woman @ woman)@ woman)@ )
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with and without an approximation of the pointlike nucleus differ. The difference is tiny (about
0.20 meV), but it is there.

It is quite remarkable that such small effects are responsible for the fate of the total system.
The authors report that the relaxation of the “nucleus” dtμ (from the excited state to the ground
state96) causes the ionization of the system: one of the electrons flies off. Such an effect, however,
may excite those who study this phenomenon. How is it possible? The “nucleus” is terribly small
when seen by an electron orbiting far away. How could the electron detect that the nucleus has
changed its state and that it has no future in the molecule? Here, however, our intuition fails. For
the electron, the most frequently visited regions of the molecule are nuclei. We will see this in
Chapter 8 (p. 444), but even the 1s state of the hydrogen atom (the maximum of the orbital is at
the nucleus; see p. 201) suggests the same. Therefore, no wonder the electron could recognize
that something has abruptly changed on one of the nuclei and (being already excited) it received
much more freedom–so much, in fact, that it could leave the molecule.

We may pose an interesting question: Does the “Russian doll” represent the global minimum
of the particle system? We may imagine that the proton changes its position with the deuterium
or tritium; i.e., new isomers (isotopomers97) appear. The authors did not study this question98,
but they investigated substituting the proton with deuterium and tritium (and obtained similar
results).

Scrinzi and Szalewicz also performed some calculations for an analog of H+2 : proton, deu-
terium, tritium, muon, and electron. Here, the “Russian doll” looks wonderful (Fig. 6.23c); it is
a four-level object:

• The molecular ion (the analog of H+2 ) is composed of three objects: the proton, the “split
nucleus” of charge +1 and the electron.

• The “split nucleus” is also composed of three objects: d,t,μ (a mini-model of H+2 ).
• The tritium is composed of three nucleons: the proton and the two neutrons.
• Each of the nucleons is composed of three quarks (called the valence quarks).

96 A. Scrinzi and K. Szalewicz, Phys. Rev. A., 39, 2855 (1989). The dtμ ion is created in the rovibrational state
J = 1, v = 1, and then the system spontaneously goes to the lower energy 01 or 00 state. The energy excess
causes one electron to leave the system (ionization). This is an analog of the Auger effect in spectroscopy.

97 The situation is quite typical, although we very rarely think this way. Some people say that they observe two different
systems, whereas others say that they see two states of the same system. This begins with the hydrogen atom–it
looks different in its 1s and 3pz states. We can easily distinguish two different conformations of cyclohexane, two
isomers of butane, and some chemists would say these are different substances. Going much further, N2 and CO
represent two different molecules, or is one of them nothing but an excited state of the other? However strange it
may sound for a chemist, N2 represents an excited state of CO because we may imagine a nuclear reaction of the
displacement of a proton from one nitrogen to the other (and the energy curve per nucleon as a function of the
atomic mass is convex). Such a point of view is better for viewing each object as a “new animal”: it enables us to
see and use some relations among these animals.

98 They focused their attention on tdμ.
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Summary

• In the adiabatic and the Born-Oppenheimer approximations, the total wave function is taken as a product � =
ψk(r; R) fk(R) of the function fk(R), which describes the motion of the nuclei (vibrations and rotations) and
the function ψk(r; R) that pertains to the motion of electrons (and depends parametrically on the configuration
of the nuclei; here, we give the formulas for a diatomic molecule). This approximation relies on the fact that the
nuclei are thousands of times heavier than the electrons.

• The function ψk(r; R) represents an eigenfunction of the electronic Hamiltonian Ĥ0(R); i.e., the Hamiltonian

Ĥ , in which the kinetic energy operator for the nuclei is assumed to be zero (the clamped nuclei Hamiltonian)
• The eigenvalue of the clamped nuclei Hamiltonian depends on positions of the nuclei and in the Born-

Oppenheimer approximation, it is mass-independent. This energy as a function of the configuration of the
nuclei represents the potential energy for the motion of the nuclei (Potential Energy Surface, or PES).

• The function fk(R) is a product of a spherical harmonic99 Y M
J that describes the rotations of the molecule (J

and M stand for the corresponding quantum numbers) and a function that describes the vibrations of the nuclei.
• The diagram of the energy levels shown in Fig. 6.4 represents the basis of molecular spectroscopy. The diagram

may be summarized in the following way:

– The energy levels form some series separated by energy gaps, with no discrete levels. Each series corresponds
to a single electronic state k, and the individual levels pertain to various vibrational and rotational states of
the molecule in electronic state k.

– Within the series for a given electronic state, there are groups of energy levels, each group characterized
by a distinct vibrational quantum number (v = 0, 1, 2, . . . ), and within the group, the states of higher and
higher energies correspond to the increasing rotational quantum number J .

– The energy levels fulfill some general relations:

∗ Increasing k corresponds to an electronic excitation of the molecule (UV-VIS, ultraviolet and visible
spectrum).

∗ Increasing v pertains to a vibrational excitation of the molecule, and requires the energy to be smaller
by one or two orders of magnitude than an electronic excitation (IR, infrared spectrum).

∗ Increasing J is associated with energy smaller by one or two orders of magnitude than a vibrational
excitation (microwaves).

• Above the dissociation limit, one is dealing with a continuum of states of the dissociation products with kinetic
energy. In such a continuum, one may have also the resonance states, which may have wave functions that
resemble those of stationary states but differ from them by having finite lifetimes.

• The electronic wave functions ψk(r; R) correspond to the energy eigenstates E0
k (R), which are functions of

R. The energy curves100 E0
k (R) for different electronic states k may cross each other, unless the molecule is

diatomic and the two electronic states have the same symmetry.101 In such a case, we have what is known as
an avoided crossing (see Figs. 6.15 and 6.16).

• The adiabatic states represent the eigenfunctions of Ĥ0(R). If electrons have enough time to follow the nuclei,
we may apply the adiabatic function (which may change its chemical character when varying R). The diabatic
states are not the eigenfunctions of Ĥ0(R) and preserve their chemical character when changing R. If electrons
are too slow to follow the nuclei, changing R may result in keeping the same chemical character of the solution
(diabatic state). In the adiabatic and diabatic approaches, the motion of the nuclei is described using a single
PES.

• The non-adiabatic approach requires using several or many PESs when describing motion of the nuclei. The total
wave function is a linear combination of the rovibronic functions with different and R-dependent amplitudes.

99 This refers to the eigenfunction for the rigid rotator.
100 These curves are expressed as functions of R.
101 That is, they transform according to the same irreducible representation.
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• For polyatomic molecules, the energy hypersurfaces E0
k (R) can cross. The most important is the conical inter-

section (Fig. 6.19) of the two (I and II) diabatic hypersurfaces; i.e., those that (each individually) preserve a
given pattern of chemical bonds. This intersection results in two adiabatic hypersurfaces (“lower PES and upper
PES”). Each of the adiabatic hypersurfaces consists of two parts: one belonging to I and the second to II. Using
a suitable coordinate system in the configurational space, we obtain the adiabatic hypersurface splitting (the
difference of E− and E+)when changing two coordinates (ξ1 and ξ2) only (the branching plane). The splitting
begins by a linear dependence on ξ1 and ξ2, which gives a sort of cone (hence the name conical intersection).
The other coordinates (the seam space) alone are unable to cause the splitting, although they may influence the
opening angle of the cone.

• Conical intersection plays a prominent role in the photochemical reactions because the excited molecule slides
down the upper adiabatic hypersurface to the funnel (just the conical intersection point) and then, with a yield
close to 100%, lands on the lower adiabatic hypersurface (assuming that there is a mechanism for dissipation
of the excess energy).

• The vibronic effects are the basis of many important phenomena.

Main Concepts, New Terms

adiabatic approach (p. 302)
adiabatic approximation (p. 268)
asymmetric top (p. 293)
avoided crossing (p. 306)
Berry phase (p. 314)
BFCS (p. 289)
Born-Oppenheimer approximation (p. 272)
branching plane (p. 312)
branching space (p. 311)
clamped nuclei Hamiltonian (p. 264)
conical intersection (p. 312)
continuum states (p. 297)
Coriolis energy (p. 293)
diabatic approach (p. 303)
diagonal correction for the motion of the nuclei (p. 268)
dipole-bound electron (p. 320)
Eckart conditions (p. 293)
electronic energy (p. 266)
electronic Hamiltonian (p. 264)
electronic-vibrational-rotational spectroscopy (p. 278)
Franck-Condon rule (p. 316)
funnel effect (p. 316)
harpooning effect (p. 308)
HTS (p. 322)
infrared spectrum (p. 280)
microwave spectrum (p. 280)
molecular structure (p. 276)
moment of inertia (p. 295)
muon-catalyzed fusion (p. 327)

non-adiabatic approach (p. 302)
non-bound metastable states (p. 297)
non-bound states (p. 297)
non-crossing rule (p. 310)
non-radiative transitions (p. 317)
nuclear fusion (p. 327)
PES (p. 331)
photochemical reaction (p. 317)
photostability (p. 325)
potential energy curve (p. 272)
potential energy (hyper)surface (p. 276)
quasi-harmonic approximation (p. 287)
RMCS (p. 293)
rotational energy (p. 279)
rotational structure (p. 280)
roto-translational coupling (p. 291)
seam space (p. 311)
SFCS (p. 261)
spherical top (p. 294)
superconductors (p. 322)
symmetric top (p. 293)
UV-VIS spectrum (p. 280)
vibrational energy (p. 281)
vibrational function (p. 279)
vibrational structure (p. 279)
vibronic coupling (p. 318)
vibro-translational coupling (p. 291)
vibro-rotational coupling (p. 291)
wave function “measurement” (p. 301)
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From the Research Front

For the hydrogen molecule, one may currently get a very high accuracy in predicting rovibrational levels. For example,

exact analytic formulas have been derived102 that allow one to compute the Born-Oppenheimer potential with the
uncertainty smaller than 10−9 cm−1 and add the correction for the nonzero size of each nucleus (the latter correction
shifts the rovibrational energy levels by less than 10−4 cm−1 in all cases). The approach presented on p. 275 is
able to produce the adiabatic diagonal correction, and the non-adiabatic corrections for all rovibrational states of the
ground electronic state with the accuracy better than 10−4 cm−1. One is able to test the accuracy of not only the
theory given in this chapter, but also of its most sophisticated extensions, including quantum electrodynamics (QED).
One may say that virtually for the first time, QED can be confronted with the most accurate experiments beyond the
traditional territory of the free electron and simple atoms (hydrogen, helium, lithium); i.e., for systems with more
than one nucleus. For the hydrogen molecule, one starts with an accurate solution to the Schrödinger equation103

and then, circumventing the Dirac equation, one includes all the relativistic Breit-Pauli terms [all terms of the order

of
(

1
c

)2
, the terms of the order of 1

c vanish, where 137.0359991 a.u.] and later, the complete QED corrections of the

order of
(

1
c

)3
and the leading terms of

(
1
c

)4
. Just to show the accuracy achieved for the hydrogen molecule, for the

J = 0→ 1 rotational excitation, the theory gives104 118.486812(9) cm−1, while the most accurate experiment to
date105 gives 118.48684(10) cm−1. Some theories trying to explain the presence of black matter need the nuclear
forces operating at larger distances than they are traditionally believed to do. If these theories were true, there would
be no such agreement between the theory and experiment, and we would see a larger difference.

Ad Futurum

The computational effort needed to calculate the PES for an M atomic molecule is proportional to 103M−6. This
strong dependence suggests that, for the next 20 years, it would be unrealistic to expect high-quality PES computations
for M > 10. However, experimental chemistry offers high-precision results for molecules with hundreds of atoms.
It seems inevitable that it will be possible to freeze the coordinates of many atoms. There are good reasons for such
an approach: indeed, most atoms play the role of spectators in chemical processes. It may be that limiting ourselves
to, say, 10 atoms will make the computation of rovibrational spectra feasible.

Additional Literature
J. Hinze, A. Alijah, and L. Wolniewicz, “Understanding the adiabatic approximation; the accurate data of H2
transferred to H3”, Pol. J. Chem., 72, 1293 (1998).

The paper reports the derivation of the equation of motion for a polyatomic molecule. As the origin of the BFCS,
unlike in this chapter, the center of mass was chosen106.

W. Kołos, “Adiabatic approximation and its accuracy,” Advan. Quantum Chem., 5, 99 (1970).

102 K. Pachucki, Phys. Rev. A, 82, 032509 (2010).
103 The center of mass rests at the origin. The solution of the Schrödinger equation is achieved numerically; i.e., the

non-adiabatic treatment is applied with very high and controlled accuracy.
104 J. Komasa, K. Piszczatowski, G. Łach, M. Przybytek, B. Jeziorski, and K. Pachucki, J. Chem. Theor. Comput.,

7, 3105 (2011).
105 D.E. Jennings, S.L. Bragg, and J.W. Brault, Astrophys. J., 282, L85 (1984). The uncertainty in parentheses is

given in the units of the last digit reported.
106 We have chosen the center of the ab bond.
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F. Bernardi, M. Olivucci, and M. A. Robb, “Potential energy surface crossings in organic photochemistry,” Chem.
Soc. Rev. 321–328 (1996).

W. Domcke, D. R.Yarkony, and H. Köppel (eds.), “Conical intersections: Electronic structure, dynamics, and spec-
troscopy,” Advanced Series in Physical Chemistry, Vol. 15, World Scientific Publishing, Singapore (2004).

Questions

1. The non-adiabatic theory for a diatomic (r denotes the electronic coordinates, R stands for the vector connecting
nucleus b with nucleus a, R ≡ |R|, N means the number of electrons, m is the electron mass, V represents the
Coulombic interaction of all particles, μ is the reduced mass of the two nuclei of masses Ma and Mb).

a. the total wave function can be represented as�(r,R) =∑k ψk(r; R) fk(R), where the functionsψk form
a complete set in the Hilbert space for electrons (at a given R), and fk are the coefficients depending on R

b. in the expression �(r,R) =∑k ψk(r; R) fk(R) the functions fk(R) describe rotations and vibrations of
the molecule

c. as functions ψk(r; R) one may assume the eigenfunctions of the electronic Hamiltonian
d. may provide only some approximation of the solution to the Schrödinger equation

2. Adiabatic approximation (notation as in question 1).

a. is also known as the Born-Oppenheimer approximation
b. the electronic Hamiltonian can be obtained from the total Hamiltonian by neglecting the kinetic energy

operator for the nuclei
c. in the adiabatic approximation the total wave function represents a productψk(r;R) fk(R), whereψk(r;R)

stands for the eigenfunction of the clamped nuclei Hamiltonian for the configuration of the nuclei given
by R, while fk(R) denotes the wave function for the motion of the nuclei

d. E0
k as a function of R represents the eigenvalue of the clamped nuclei Hamiltonian that corresponds to the

wave function ψk(r;R).
3. A diatomic in the adiabatic approximation, the origin of the coordinate system is in the geometric center of the

molecule (at R/2). The nuclei vibrate in the potential:

a. E0
k (R)+ J (J + 1) �

2

2μR2

b.
〈
ψk |Ĥψk

〉
+ (2J + 1) �

2

2μR2

c. E0
k (R)+ H ′kk + J (J + 1) �

2

2μR2

d.
〈
ψk |Ĥψk

〉
+ J (J + 1) �

2

2μR2

4. The potential energy curves for the motion of the nuclei for electronic states computed at the Born-Oppenheimer
approximation for diatomics

a. may not intersect
b. have to intersect at an internuclear distance
c. cannot intersect, if the corresponding eigenfunctions belong to the same irreducible representation of the

symmetry group of the Hamiltonian
d. may intersect, if the corresponding wave functions are of different symmetry.

5. The potential energy for the motion of the nuclei in the Born-Oppenheimer approximation:

a. contains the eigenvalue of the clamped nuclei Hamiltonian
b. as a function of the configuration of the nuclei may exhibit many minima
c. contains the electronic energy
d. does not change after rotational excitations
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6. Due to the rotational excitation J → (J + 1) of a diatomic of bond length R

a. one has to add to the potential energy a term proportional to (2J + 1)R2

b. the potential energy for vibrations changes
c. the molecule may dissociate due to the centrifugal force
d. the momentum of the molecule increases

7. The adiabatic approximation

a. takes into account the finite mass of the nuclei
b. means the total wave function being a product of the electronic wave function and a wave function that

describes the motion of the nuclei
c. as a consequence leads to the concept of a spatial shape of a molecule
d. is better satisfied by a molecule with muons instead of electrons.

8. Basics of spectroscopy within the Born-Oppenheimer approximation.

a. the electronic structure changes after absorbing microwaves
b. to excite vibrational levels (preserving the electronic state) one needs the IR radiation
c. a red sweater witnesses about a dye that absorbs red light
d. microwaves can excite rotations of polar molecules.

9. At the conical intersection, the following directions in the space of the nuclear configurations make splitting of
E+ and E−
a. ∇(Ē1 − Ē2) and ∇(V12)

b. ∇( Ē1+Ē2
2 ) and ∇(V12)

c. ∇( Ē1−Ē2
2 ) and ∇(V12)

d. any direction in the branching space.

10. At the conical intersection the opening angle of the cone

a. equals zero
b. in general differs along the directions of ∇(Ē1 − Ē2) and ∇(V12)

c. depends on the point of the seam space
d. in the Born-Oppenheimer approximation is the same for different isotopomers.

Answers

1a,b,c, 2b,c,d, 3c,d, 4a,c,d, 5a,b,c 6b,c, 7b,c, 8b,d, 9a,c,d 10b,c,d





CHAPTER 7

Motion of Nuclei

“If you are out to describe the truth, leave elegance to the tailor.”
Albert Einstein

Where Are We?

We are on the most important side branch of the TREE.

An Example

Which of the conformations shown in Fig. 7.1 is more stable: the “boat” or “chair” of cyclohexane C6H12? How do
particular conformations look in detail (symmetry, interatomic distances, bond angles), when the electronic energy as
a function of the positions of the nuclei attains a minimum value? How will the boat and chair conformations change
if one of the hydrogen atoms is replaced by the benzyl substituent C6H5–? What is the most stable conformation of
the trimer C6H11–

(
CH2

)
3 –C6H10–

(
CH2

)
3 –C6H11?

What Is It All About?

Rovibrational Spectra–An Example of Accurate Calculations: Atom–Diatomic Molecule (��) p. 340

• Coordinate System and Hamiltonian
• Anisotropy of the Potential V
• Adding the Angular Momenta in Quantum Mechanics
• Application of the Ritz Method

Force Fields (FF) (♠ �) p. 345
Local Molecular Mechanics (MM) (�) p. 349

• Bonds That Cannot Break
• Bonds That Can Break

Global Molecular Mechanics (��) p. 352

• Multiple Minima Catastrophe
• Does the Global Minimum Count?

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00007-6
© 2014 Elsevier B.V. All rights reserved. 337

http://dx.doi.org/10.1016/B978-0-444-59436-5.00007-6
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(a)

(b)

Fig. 7.1. The chair (a) and boat (b) conformations of cyclohexane. These geometries (obtained from arbitrary starting
conformations) are optimized in the force field, which we will define in this chapter. The force field indicates, in accordance with
experimental results, that the chair conformation is the more stable by about 5.9 kcal/mol. Thus, we obtain all the details of the
atomic positions (bond lengths, bond angles, etc.). Note that the chair conformation obtained exhibits D3d symmetry, while the boat
conformation corresponds to D2 (the boat has somewhat warped planks because of repulsion of the two upper hydrogen atoms).

Small Amplitude Harmonic Motion–Normal Modes (�) p. 355

• Theory of Normal Modes
• Zero-Vibration Energy

Molecular Dynamics (MD) (♠ �) p. 364

• What Does MD Offer Us?
• What Should We Worry About?
• MD of Non-Equilibrium Processes
• Quantum-Classical MD

Simulated Annealing (♠ �) p. 370
Langevin Dynamics (♠ �) p. 371
Monte Carlo Dynamics (♠ �) p. 371
Car-Parrinello Dynamics (♠ � ) p. 377
Cellular Automata (�) p. 381

As shown in Chapter 6, the solution of the Schrödinger equation in the Born-Oppenheimer approximation can be
divided into two tasks: the problem of electronic motion in the field of the clamped nuclei (this will be the subject
of the next chapters) and the problem of nuclear motion in potential energy determined by electronic energy.

The ground-state electronic energy E0
k (R) of Eq. (6.8) (where k = 0 means the ground state) will be denoted

in short as V (R), where R represents the vector of the nuclear positions.
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The function V (R) has quite a complex structure and exhibits many basins of stable conformations (as well as
many maxima and saddle points).

The problem of the shape of V (R), as well as of the nuclear motion on the V (R) potential energy hypersurface,
will be the subject of this chapter. It will be seen that electronic energy can be computed with high accuracy as a
function of R only for very simple systems (such as an atom plus a diatomic molecule system), for which quite a lot
of detailed information can be obtained.

In practice, for large molecules, we are limited to only some approximations to V (R) called force fields. After
accepting such an approximation, we encounter the problem of optimization of the positions of the nuclei; i.e.,
of obtaining the most stable molecular conformation (or configuration1). The geometry of such a conformation is
usually identified with a minimum on the electronic energy hypersurface, playing the role of the potential energy for
the nuclei. Finding the stable conformation from a starting geometry of the nuclear framework is the subject of local
molecular mechanics. In practice, we have the problem of having a huge number of such minima. The real challenge
in such a case is finding the most stable structure, usually corresponding to the global minimum (global molecular
mechanics) of V (R).

Molecular mechanics does not deal with nuclear motion as a function of time, as well as with the kinetic energy of
the system (related to its temperature). This is the subject of molecular dynamics, which means solving the Newton
equation of motion for all the nuclei of the system interacting through potential energy V (R). Various approaches to
this question (of general importance) will be presented at the end of the chapter.

Why Is This Important?
The spatial structure of molecules in atomic resolution represents the most important information that decides about
the chemical and physical properties of substances. Such key information is offered by a few experimental methods
only: X-ray diffraction analysis, the neutron diffraction analysis and the nuclear magnetic resonance technique. Both
types of diffraction analysis require crystals of good quality. Theory not only offers a much less expensive alternative
(by minimizing E0

0(R) ≡ V (R)), but in addition, it often reveals many additional structural details that explain the
experimental results.

What Is Needed?

• Laplacian in spherical coordinates (Appendix H available at booksite.elsevier.com/978-0-444-59436-5, p. e91,
recommended)

• Angular momentum operator and spherical harmonics (Chapter 4, recommended)
• Harmonic oscillator (p. 186)
• Ritz method (Appendix L available at booksite.elsevier.com/978-0-444-59436-5, p. e107)
• Matrix diagonalization (Appendix K available at booksite.elsevier.com/978-0-444-59436-5, p. e105)
• Newton equation of motion
• Chapter 8 (an exception: the Car-Parrinello method needs some results which will be given in Chapter 8,

marginally important)
• Entropy, free energy, sum of states

Classical Works

There is no more classical work on dynamics than Sir Issac Newton’s monumental Philosophiae Naturalis Principia
Mathematica, published in 1687 by Cambridge University Press. � The idea of the force field was first presented by

1 Two conformations correspond to the same pattern of chemical bonds and differ by rotations of the fragments
about some of these bonds. On the contrary, going from one configuration to another may mean changing the
chemical bonds.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Mordechai Bixon and Shneior Lifson in an article called “Potential functions and conformations in cycloalkanes,”
Tetrahedron 23, 769 (1967). � The paper by Berni Julian Alder and Thomas Everett Wainwright, “Phase transition
for a hard sphere system,” Journal of Chemical Physics, 27, 1208 (1957), is treated as the beginning of the molecular
dynamics. � The work by Aneesur Rahman, “Correlations in the motion of atoms in liquid argon,” published in
Physical Review, A136, 405 (1964), used for the first time a realistic interatomic potential (for 864 atoms). � The
molecular dynamics of a small protein was first described in a paper by Andy McCammon, Bruce Gelin, and Martin
Karplus called “Dynamics of folded proteins,” Nature, 267, 585 (1977). � The simulated annealing method is believed
to have been used first by Scott Kirkpatrick, Charles D. Gellat, and Mario P. Vecchi in “Optimization by simulated
annealing,” Science, 220, 671 (1983). � The Metropolis criterion for the choice of the current configuration in the
Monte Carlo method was given by Nicolas Constantine Metropolis, Arianna W. Rosenbluth, Marshal N. Rosenbluth,
Augusta H. Teller, and Edward Teller in “Equations of state calculations by fast-computing machines,” in Journal
of Chemical Physics, 21, 1087 (1953). � The Monte Carlo method was used first by Enrico Fermi, John R. Pasta,
and Stanisław Marcin Ulam during their time at Los Alamos (Studies of Nonlinear Problems, vol. 1, Los Alamos
Reports, LA-1940). Ulam is also the discoverer of cellular automata.

Isaac Newton (1643–1727), English physicist,
astronomer and mathematician, and professor at
Cambridge University. In 1672, he became a mem-
ber of the Royal Society of London, and in 1699,
he became the director of the Royal Mint, who was
said to be merciless to the forgers. In 1705, Newton
became a Lord. In the opus magnum mentioned
above, he developed the notions of space, time,
mass, and force, gave three principles of dynamics
and the law of gravity and showed that the latter
pertains to problems that differ enormously in their
scale (e.g., the famous apple and the planets).
Newton is also a founder of differential and integral
calculus (independently from G.W. Leibnitz).

In addition, Newton made some fundamental
discoveries in optics. Among other things, he was
the first to think that light is composed of particles.
The first portrait of Newton (at the age of 46)
by Godfrey Kneller is shown here. Readers are

encouraged to consult the excellent book Isaac
Newton, by G.E. Christianson (Oxford University
Press, New York, 1996).

7.1 Rovibrational Spectra–An Example of Accurate Calculations:
Atom–Diatomic Molecule

One of the consequences of adiabatic approximation is the potential energy hypersurface V (R)
for the motion of nuclei. To obtain the wave function for the motion of nuclei (and then to
construct the total product-like wave function for the motion of electrons and nuclei), we have
to solve the Schrödinger equation with V (R) as the potential energy. This is what this hyper-
surface is for. We will find rovibrational energy levels and the corresponding wave functions,
which will allow us to obtain rovibrational spectra (frequencies and intensities) to compare with
experimental results.
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7.1.1 Coordinate System and Hamiltonian

Let us consider a diatomic molecule AB plus a weakly interacting atom C (e.g., H–H · · ·Ar
or CO · · ·He), the total system in its electronic ground state. Let us center the origin of the
body-fixed coordinate system2 (with the axes oriented as in the space-fixed coordinate system;
see Appendix I available at booksite.elsevier.com/978-0-444-59436-5, p. e93) in the center of
mass of AB. The problem, therefore, involves 3× 3− 3 = 6 dimensions.

However strange it may sound, six is too much for contemporary (otherwise impressive)
computer techniques. Let us subtract one dimension by assuming that no vibrations of AB occur
(rigid rotator). The five-dimensional
problem becomes manageable. The
assumption about the stiffness of AB
now also pays off because we imme-
diately exclude two possible chem-
ical reactions C + AB → CA +
B and C+AB→ CB+A, and there-
fore admit a limited set of nuclear
configurations–only those that cor-
respond to a weakly bound com-
plex C + AB. This approximation is

Carl Gustav Jacob Jacobi
(1804–1851), German mathe-
matical genius and the son of a
banker, graduated from school
at the age of 12, professor at
Koenigsberg University. Jacobi
made important contributions to
number theory, elliptic functions,
partial differential equations, and
analytical mechanics. The crater
Jacobi on the Moon is named
after him.

expected to work better when the AB molecule is stiffer; i.e., it has a larger force constant (and
therefore a larger vibration frequency).3

We will introduce the Jacobi coordinates (Fig. 7.2; cf. p. 897): three components of vector
R pointing to C from the origin of the coordinate system (the length R and angles � and �,

and both angles denoted by R̂) and the angles θ, φ show the orientation r̂ of vector r = →
AB. All

together there are five coordinates–as there should be.
Now let us write down the Hamiltonian for the motion of the nuclei in the Jacobi coordinate

system (with the stiff AB molecule with AB equilibrium distance equal to req )4:

Ĥ = − �
2

2μR2

d

d R
R2 d

d R
+ l̂2

2μR2 +
ĵ2

2μABr2
eq
+ V ,

2 Any coordinate system is equally good from the point of view of mathematics, but its particular choice may make
the solution easy or difficult. In the case of a weak C · · ·AB interaction (the current case), the proposed choice of
the origin is one of the natural ones.

3 A certain measure of this might be the ratio of the dissociation energy of AB to the dissociation energy of C · · ·AB.
The higher the ratio, the better our model will be.

4 This is as proposed in S. Bratož and M.L. Martin, J. Chem. Phys., 42, 1051 (1965).

http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 7.2. The Jacobi coordinates for the C · · ·AB system. The origin is in the center of mass of AB (and the distance AB is
constant and equal to req ). The positions of atoms A and B are fixed by giving the angles θ, φ. The position of atom C is determined

by three coordinates: R,� and �. There are five coordinates: R,�,�, θ, φ or R, R̂, and r̂.

where l̂2 denotes the operator of the square of the angular momentum of the atom C, ĵ2 stands
for the square of the angular momentum (cf., p. 199) of the molecule AB:

l̂2 = −�
2
[

1

sin�

∂

∂�
sin�

∂

∂�
+ 1

sin2�

∂2

∂�2

]

ĵ2 = −�
2
[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2θ

∂2

∂φ2

]
,

μ is the reduced mass of C and the mass of (A+B), μAB denotes the reduced mass of A and,
B, and V stands for the potential energy of the nuclear motion.

The expression for Ĥ is quite understandable. First of all, we have in Ĥ five coordinates, as
there should be: R, two angular coordinates hidden in the symbol R̂; and two angular coordinates
symbolized by r̂. The four angular coordinates enter the operators of the squares of the two
angular momenta. The first three terms in Ĥ describe the kinetic energy, and V is the potential
energy (the electronic ground state energy depends on the nuclear coordinates). The kinetic
energy operator describes the radial motion of C with respect to the origin (first term), the
rotation of C about the origin (second term), and the rotation of AB about the origin (third term).

7.1.2 Anisotropy of the Potential V

How can we figure out the shape of V ? Let us first make a section of V . If we freeze the motion of
AB,5 the atom C would have (concerning the interaction energy) a sort of energetic well around
AB wrapping the AB molecule, caused by the C · · ·AB van der Waals interaction. The bottom

5 That is, the angles θ i φ are fixed.
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of the well would be very distant from the molecule (van der Waals equilibrium distance), while
the shape determined by the bottom points would resemble the shape of AB; i.e., it would be a
little elongated. The depth of the well would vary depending on its orientation with respect to
the origin.

If V were isotropic (i.e., if atom C would have C · · ·AB interaction energy independent6

of r̂), then of course we might say that there is no coupling between the rotation of C and the
rotation of AB. We would have then a separate conservation law for the first and the second
angular momentum and the corresponding commutation rules (cf. Chapter 2 and Appendix F
available at booksite.elsevier.com/978-0-444-59436-5):[

Ĥ , l̂2
]
=
[

Ĥ , ĵ2
]
= 0,[

Ĥ , l̂z

]
=
[

Ĥ , ĵz

]
= 0.

Therefore, the wave function of the total system would be the eigenfunction of l̂2 and l̂z as
well as of ĵ2 and ĵz . The corresponding quantum numbers l = 0, 1, 2, . . . and j = 0, 1, 2, . . .
which determine the eigenvalues of the squares of the angular momenta l̂2 and ĵ2, as well as
the corresponding quantum numbers ml = −l,−l+1, . . ., l and m j = − j,− j + 1, . . ., j ,
which determine the projections of the corresponding angular momenta on the z-axis, would be
legal7 quantum numbers (the full analogy with the rigid rotator is discussed in Chapter 4). The
rovibrational levels could be labeled using pairs of quantum numbers: (l, j). In the absence of
an external field (no privileged orientation in space), any such level would be (2l + 1)(2 j + 1)-
tuply degenerate, since this is the number of different projections of both angular momenta on
the z axis.

7.1.3 Adding the Angular Momenta in Quantum Mechanics

However, V is not isotropic (although the anisotropy is small). What then? Then, of all angular
momenta, only the total angular momentum J = l+ j is conserved (the conservation law results
from the very foundations of physics; cf. Chapter 2).8 Therefore, the vectors l and j, when added
to J, would make all allowed angles: from minimum angle (the quantum number J = l + j),
through larger angles9 and the corresponding quantum numbers J = l + j − 1, l + j − 2, etc.,
up to the maximum angle, corresponding to J = |l − j |). Therefore,

6 That is, the bottom of the well would be a sphere centered in the center of mass of AB, and the well depth would
be independent of the orientation.

7 We used to say “good” instead of “legal.”
8 Of course, the momentum has also been conserved in the isotropic case, but in this case, the energy was identical

independently of the quantum number J (resulting from different angles between l and j).
9 The projections of the angular momenta are quantized.

http://booksite.elsevier.com/978-0-444-59436-5
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the number of all possible values of J (each corresponding to a different energy) is equal
to the number of projections of the shortera of the vectors l and j on the longer one, i.e.,

J = (l + j), (l + j − 1), . . . , |l − j |. (7.1)

For a given J , there are 2J +1 projections of J on the z-axis (because |MJ | ≤ J ); without
any external field, all these projections correspond to identical energies.
a In the case of two vectors of the same length, the role of the shorter vector may be taken by either of them.

Check that the number of all possible eigenstates is equal to (2l + 1)(2 j + 1); i.e., exactly
what we had in the isotropic case. For example, for l = 1 and j = 1, the degeneracy in the
isotropic case is equal to (2l+1)(2 j+1) = 9, while for anisotropic V , we would deal with five
states for J = 2 (all of the same energy), three states corresponding to J = 1 (the same energy,
but different from J = 2), and a single state with J = 0 (still another value of energy)–nine
states altogether. This means that switching anisotropy partially removed the degeneracy of the
isotropic level (l, j) and gave the levels characterized by quantum number J .

7.1.4 Application of the Ritz Method

We will use the Ritz variational method (see Chapter 5, p. 238) to solve the Schrödinger equation.
What should we propose as the expansion functions? It is usually recommended that we proceed
systematically and choose first a complete set of functions depending on R, then a complete
set depending on R̂, and finally a complete set that depends on the r̂ variables. Next, one may
create the complete set depending on all five variables (these functions will be used in the Ritz
variational procedure) by taking all possible products of the three functions depending on R, R̂,
and r̂. There is no problem with the complete sets that have to depend on R̂ and r̂, as these
may serve the spherical harmonics (the wave functions for the rigid rotator) {Y m

l

(
�,�

)} and

{Y m′
l ′
(
θ, φ

)}, while for the variable R, we may propose the set of harmonic oscillator wave
functions {χv(R)}.10 Therefore, we may use as the variational function11:

	
(
R,�,�, θ, φ

) =∑ cvlml ′m′χv(R)Y
m
l

(
�,�

)
Y m′

l ′
(
θ, φ

)
,

10 See Chapter 4. Of course, our system does not represent any harmonic oscillator, but what counts is that the
harmonic oscillator wave functions form a complete set (as the eigenfunctions of a Hermitian operator).

11 The products Y m
l

(
�,�

)
Y m′

l ′
(
θ, φ

)
may be used to produce linear combinations that are automatically the eigen-

functions of Ĵ 2 and Ĵz , and have the proper parity (see Chapter 2). This may be achieved by using the Clebsch-
Gordan coefficients (D.M. Brink and G.R. Satchler, Angular Momentum, Clarendon, Oxford, 1975). The good
news is that this way, we can obtain a smaller matrix for diagonalization in the Ritz procedure. The bad news is
that the matrix elements will contain more terms to be computed. The method described here will give the same
result as using the Clebsch-Gordan coefficients because the eigenfunctions of the Hamiltonian obtained within
the Ritz method will automatically be the eigenfunctions of Ĵ 2 i Ĵz , as well as having the proper parity.
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where c are the variational coefficients and the summation goes over the v, l,m, l ′,m′ indices.
The summation limits have to be finite in practical applications; therefore, the summations go to
some maximum values of v, l, and l ′ (m and m′ vary from−l to l and from−l ′ to+l ′). We hope
(as always in quantum chemistry) that the numerical results of a demanded accuracy will not
depend on these limits. Then, as usual, the Hamiltonian matrix is computed and diagonalized
(see p. e105), and the eigenvalues E J , as well as the eigenfunctions ψJ ,MJ of the ground and
excited states, are found. Each of the eigenfunctions will correspond to some J ,MJ and to a
certain parity. The problem is solved.

7.2 Force Fields (FF)

The middle of the twentieth century marked the end of a long period of determining the building
blocks of chemistry: chemical elements, chemical bonds, and bond angles. The lists of these are
not definitely closed, but future changes will be more cosmetic than fundamental. This made
it possible to go one step further and begin to rationalize the structure of molecular systems,
as well as to foresee the structural features of the compounds to be synthesized. The crucial
concept is based on the Born-Oppenheimer approximation and on the theory of chemical bonds
and resulted in the spatial structure of molecules. The great power of such an approach was
first proved by the construction of the DNA double helix model by Watson and Crick. The first
DNA model was built from iron spheres, wires, and tubes.

James Dewey Watson, born 1928, American
biologist and professor at Harvard University.
Francis Harry Compton Crick (1916–2004), British
physicist and professor at the Salk Institute in San
Diego. Both scholars won the 1962 Nobel Prize
for “their discoveries concerning the molecular
structure of nucleic acids and its significance for
information transfer in living material.” At the end
of their historic paper, J.D. Watson, F.H.C. Crick,

Nature, 737 (1953) (which was only about 800
words long) the famous enigmatic but crucial sen-
tence appears: “It has not escaped our notice that
the specific pairing we have postulated immedi-
ately suggests a possible copying mechanism for
the genetic material.” The story behind the discov-
ery is described in a colorful and non-conventional
way by Watson in his book Double Helix: A Personal
Account of the Discovery of the Structure of DNA.
Touchstone Books, 2001, Kent.
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This approach created problems, though: one of the founders of force fields, Michael Levitt,
recalls12 that a model of a Transfer Ribonucleic Acid (tRNA) fragment constructed by him with
2000 atoms weighted more than 50 kg.

The experience accumulated paid off by proposing some approximate expressions for elec-
tronic energy, which is, as we know from Chapter 6, the potential energy of the motion of the
nuclei. This is what we are going to talk about next.

Suppose that we have a molecule (a set of molecules can be treated in a similar way). We will
introduce the force field, which will be a scalar field–a function V (R) of the nuclear coordinates
R. The function V (R) represents a generalization (from one dimension to 3N − 6 dimensions)
of the function E0

0

(
R
)

of Eq. (6.8) on p. 266. The force acting on atom j occupying position
x j , y j , z j is computed as the components of the vector F j = −∇ j V , where

∇ j = i · ∂
∂x j
+ j · ∂

∂ y j
+ k · ∂

∂z j
, (7.2)

with i, j, k denoting the unit vectors along x, y, z, respectively.

Force Field
A force field represents a mathematical expression V (R) for electronic energy as a function
of the nuclear configuration R. Its gradient gives the forces acting on the atoms.

Of course, if we had to write down this scalar field accurately, we would have to solve (with
an accuracy of about 1 kcal/mol) the electronic Schrödinger equation 6.8 for every configuration
R of the nuclei and take the lowest eigenvalue [i.e., an analog of E0

0(R)] as V (R). This would
take so much time, even for small systems composed of a few atoms, that we would abandon
this method with great relief. Even if such a calculation required huge computation time, it
would give results that would have been quite simple in their overall features (assuming that the
molecule has a pattern of chemical bonds). It just would turn out that V could be approximated
by the following model function:

• Chemical bonds. V (R) would be close to minimal if any chemical bond between atoms X
and Y had a certain characteristic reference length r0 that would depend on the chemical
character of the atoms X and Y . If the bond length were changed (shortened or elongated) to
a certain value r , then the energy would increase according to the harmonic law (with force
constant kXY ) and then some deviations from the harmonic approximation would appear.13

A harmonic term of the kind 1
2 kXY

(
r − r0

)2 incorporated additively into V replaces the true
anharmonic dependence by a harmonic approximation (assumption of small amplitudes)
as if the two atoms had been bound by a harmonic spring (in the formula, the atomic

12 M. Levitt, Nature Struct. Biol., 8, 392 (2001).
13 These deviations from harmonicity (i.e., from the proportionality of force and displacement) are related to the

smaller and smaller force needed to elongate the bond and the larger and larger force needed to shorten the bond.
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indices at symbols of distances have been omitted). The most important feature is that the
same formula 1

2 kXY
(
r − r0

)2 is used for all chemical bonds X − Y , independently of some
particular chemical neighborhood of a given X −Y bond. For example, one assumes that a
non-distorted single C–C bond14 has a characteristic reference length r0 = 1.523 Å and a
characteristic force constant kXY = 317 kcal

mol Å
2 ; similarly, some distinct parameters pertain

to the C==C bond: r0 = 1.337 Å, kXY = 690 kcal

mol Å
2 , etc.15

• Bond angles. While preserving the distances r in the A–B and B–C bonds, we may change
the bond angle α = A–B–C, and thus change the A· · ·C distance. A corresponding change
of V has to be associated with such a change. The energy has to increase when the angle
α deviates from a characteristic reference value α0. The harmonic part of such a change
may be modeled by 1

2 kXY Z
(
α − α0

)2 (the indices for angles are omitted), which is equiv-
alent to setting a corresponding harmonic spring for the bond angle and requires small
amplitudes |α − α0|. The kXY Z are assumed to be “universal”; i.e., they depend on the
chemical character of the X , Y , Z atoms, and do not depend on other details, such as
the neighborhood of these atoms. For example, for the angle C–C–C α0 = 109.470 and
kXY Z = 0.0099 kcal

mol degree2 (for all C–C–C fragments of the molecule), which means that

changing the C· · ·C distance by varying angle is about an order of magnitude easier than
changing a CC bond length.

• The van der Waals interaction. Two atoms X and Y, that do not form a chemical bond
X–Y, as well as not participating in any sequence of bonds X–A–Y, still interact. There is
nothing in the formulas introduced above that would prevent X and Y collapsing without
any change of V . However, when two such
atoms approach at a distance smaller than
the sum of their radii (the van der Waals
radii; see p. 859), then V had to increase
greatly.16 On the other hand, at large
interatomic distances, the two atoms have
to attract each other by the dispersion inter-
action vanishing as r−6 (cf. Chapter 13,
p. 822). Hence, there is an equilibrium
distance r0, at which the interaction energy

John E. Lennard-Jones
(1894–1954), professor
of theoretical chemistry
of the University of Cam-
bridge, UK. The reader
may find a historic pic-
ture of the theoretical
chemistry team in Intern.
J. Quantum Chemistry,
S23, XXXII (1989).

attains a minimum equal to−ε. These features of the interaction are captured by the widely

used Lennard-Jones potential VL J
(
X , Y

) = ε [( re
r

)12 − 2
( re

r

)6], where we skip for brevity

the indices X , Y on the right side. The Lennard-Jones potential given above is called LJ 12−6

14 That is, when all other terms in the force field equal zero.
15 A CC bond involved in a conjugated single and double bonds (e.g., in benzene) also has its own parameters.
16 A similar thing happens with cars: the repair cost increases greatly when the distance between two cars decreases

below two thicknesses of the paint job.
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Fig. 7.3. The Lennard-Jones (LJ 12−6) potential. The parameter ε represents the depth of the potential well, while the parameter
re denotes the minimum position. This re , corresponding to the non-bonding interaction of atoms X and Y, has no direct relation
to the r0 value pertaining to the chemical bond X–Y. The first is larger than the second by about an angstrom.

(reflecting the powers involved). Sometimes other powers are used leading to other “LJ m-n”
potentials.17 Due to their simplicity, the LJ potentials are widely used (see Fig. 7.3).

• Electrostatic interaction. All the terms that we have introduced to V so far do not take into
account the fact that atoms carry net charges qX and qY that have to interact electrostatically
by Coulombic forces. To take this effect into account the electrostatic energy terms qX qY /r
are added to V , where we assume that the net charges qX and qY are fixed (i.e., independent
of the molecular conformation).18

17 The power 12 has been chosen for two reasons. First, the power is sufficiently large to produce a strong repulsion
when the two atoms approach each other. Second, . . . 12 = 6×2. The last reason makes the first derivative formula
(i.e., the force) look more elegant than other powers do. A more elegant formula is usually faster to compute, and
this is of practical importance.

18 In some force fields, the electrostatic forces depend on the dielectric constant of the neighborhood (e.g.,
solvent) despite the fact that this quantity has a macroscopic character and does not pertain to the near-
est neighborhood of the interacting atoms. If all the calculations had been carried out taking the molecu-
lar structure of the solvent into account, as well as the polarization effects, no dielectric constant would
have been needed. If this is not possible, then the dielectric constant effectively takes into account the
polarization of the medium (including reorientation of the solvent molecules). The next problem is how
to introduce the dependence of the electrostatic interaction of two atomic charges on the dielectric con-
stant. In some of the force fields, we introduce a brute force kind of damping; namely, the dielectric con-
stant is introduced into the denominator of the Coulombic interaction as equal to the interatomic distance.
This is equivalent to saying that the electrostatic interaction is practically damped down for larger distances.

In second-generation force fields, we explicitly take into account the induction interaction; e.g., the depen-
dence of the atomic electric charges on molecular conformations. Such force fields, when explicitly taking the
solvent molecules into account, should not introduce the dielectric constant.
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• Torsional interactions. In addition to all the terms described above, we often introduce
to the force field a torsional term AX−Y−Z−W

(
1− cos nω

)
for each torsional angle ω

showing how V changes when a rotation ω about the chemical bond YZ, in the sequence
X–Y–Z–W of chemical bonds, takes place (n is the multiplicity of the energy barriers per
single turn19). Some rotational barriers already result from the van der Waals interaction of
the X and W atoms, but in practice, the barrier heights have to be corrected by the torsional
potentials to reproduce experimental values.

• Mixed terms. Besides the abovementioned terms, one often introduces some coupling
(mixed) terms; e.g., bond-bond angle, etc. The reasoning behind this is simple. The X-Y-Z
bond angle force constant has to depend on the bond-lengths X-Y and Y-Z, etc.

Summing up a simple force field might be expressed as shown in Fig. 7.4, where for the sake
of simplicity, the indices X , Y at r , r0, as well as X , Y , Z at α, α0 and X , Y , Z ,W at ω, have
been omitted:

V =
∑
X−Y

1

2
kXY

(
r − r0

)2 + ∑
X−Y−Z

1

2
kXY Z

(
α − α0

)2 +∑
X ···Y

VL J
(
X , Y

)
+
∑
X ,Y

qX qY

r
+
∑
tors

AX−Y−Z−W
(
1− cos nω

)+ coupling terms (if any).

Hence, some simple formulas help us to figure out how the electronic energy E0
0(R) = V (R)

looks as a function of the configuration R of the nuclei. Our motivation is as follows:

• Economy of computation: ab initio calculations of the electronic energy for larger molecules
would have been many orders of magnitude more expensive.

• In addition, a force field gives V (R) in the form of a simple formula for any positions R of
the nuclei, while the calculation of the electronic energy would give us V (R) numerically;
i.e., for some selected nuclear configurations.

7.3 Local Molecular Mechanics (MM)

7.3.1 Bonds That Cannot Break

It is worth noting that the force fields correspond to a fixed (and unchangeable during computa-
tion) system of chemical bonds. The chemical bonds are treated as springs, most often satisfying
Hooke’s20 law (harmonic); therefore, they are unbreakable. Similarly, the bond angles are forced
to satisfy Hooke’s law. Such a force field is known as flexible molecular mechanics (MM)21.

19 For example, n = 3 for ethane.
20 Robert Hooke, British physicist and biologist (1635–1703).
21 There are a few such force fields in the literature. They give similar results, as far as their main features are

considered. The force field concept was able to clarify many observed phenomena and even fine effects. It may
also fail, as with anything in the real world.
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Fig. 7.4. The first force field of Bixon and Lifson in a mnemonic presentation.

To decrease the number of variables, we sometimes use rigid molecular mechanics (MM),22 in

22 The rigid molecular mechanics was a very useful tool for Paul John Flory (1910–1985), American chemist and
professor at Cornell and Stanford. Using such mechanics, Flory developed a theory of polymers that explained
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which the bond lengths and the bond angles are fixed at values close to experimental ones, but
the torsional angles are free to change. The argument behind such a choice is that a quantity of
energy that is able to make only tiny changes in the bond lengths, larger but still small changes
in the bond angles, can make large changes in the torsional angles; i.e., the torsional variables
determine the overall changes of the molecular geometry. Of course, the second argument is
that a smaller number of variables means lower computational costs.

Molecular mechanics represents a method of finding a stable configuration of the nuclei
by using a minimization of V (R)with respect to the nuclear coordinates (for a molecule or
a system of molecules). The essence of molecular mechanics is that we roll the potential
energy hypersurface slowly downhill from a starting point chosen (corresponding to a
certain starting geometry of the molecule) to the “nearest” energy minimum corresponding
to the final geometry of the molecule.

The “sliding down” is carried out by a minimization procedure that traces, point by point,
the trajectory in the configurational space; e.g., in the direction of the negative gradient vec-
tor calculated at any consecutive point. The minimization procedure represents a mechanism
showing how to obtain the next geometry from the previous one. The procedure ends, when the
geometry ceases to change (e.g., the gradient vector has zero length23). The geometry attained
is called the equilibrium or stable geometry. The rolling described above is more like a crawling
down with large friction, since in molecular mechanics, the kinetic energy is always zero and
the system is unable to go uphill of V .

A lot of commercial software24 offers force field packages. Unfortunately, the results depend
to quite a significant degree on the force field chosen. Even using the same starting geometry,
we may obtain final (equilibrium) results that differ very much one from another. Usually the
equilibrium geometries obtained in one force field do not differ much from those in another
one, but the corresponding energies may be very different. Therefore, the most stable geometry
(corresponding to the lowest energy) obtained in a force field may turn out to be less stable in
another one, thus leading to different predictions of the molecular structure.

A big problem in molecular mechanics is that the final geometry is very close to the start-
ing one. We start from a boat (chair) conformation of cyclohexane and obtain a boat (chair)
equilibrium geometry. The essence of molecular mechanics however, is that when started from
a distorted boat (chair) conformation, we obtain the perfect, beautiful equilibrium boat (chair)

their physical properties. In 1974, he obtained the Nobel Prize “for his fundamental achievements, both theoretical
and experimental, in the physical chemistry of macromolecules.”

23 The gradient also equals zero at energy maxima and energy saddle points. To be sure that a minimum really has
been finally attained, we have to calculate (at the particular point suspected to be a minimum) a Hessian [i.e.,
the matrix of the second derivatives of V , then diagonalize it (cf. p. e105)] and check whether the eigenvalues
obtained are all positive.

24 See the Web Annex.
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conformation, which may be compared to experimental results. Molecular mechanics is
extremely useful in conformational studies of systems with a small number of stable con-
formations, either because the molecule is small, rigid, or its overall geometry is fixed. In such
cases, all or all “reasonable,”25 conformations can be investigated and those with the lowest
energy can be compared to experimental results.

7.3.2 Bonds That Can Break

Harmonic bonds cannot be broken, and therefore, molecular mechanics with harmonic approx-
imation is unable to describe chemical reactions. When instead of harmonic oscillators, we use
the Morse model (p. 192), then the bonds can be broken.

And yet we most often use the harmonic oscillator approximation. Why? There are a few
reasons:

• The Morse model requires many computations of the exponential function, which is expen-
sive26 when compared to the harmonic potential.

• The Morse potential requires three parameters, while the harmonic model needs only two
parameters.

• In most applications, the bonds do not break, and it would be very inconvenient to obtain
breaking due to a particular starting point, for instance.

• A description of chemical reactions requires not only the possibility if breaking bonds, but
also a realistic (i.e., quantum chemical) computation of the charge distributions involved
(cf. p. 368). The Morse potential would be too simplistic for such purposes.

7.4 Global Molecular Mechanics

7.4.1 Multiple Minima Catastrophe

If the number of local minima is very large (and this may happen even for medium-size
molecules) or even “astronomic”, then exploring the whole conformational space (all possible
geometries) by finding all possible minima using a minimization procedure becomes impossible.
Hence, we may postulate another procedure which may be called global molecular mechanics
and could find the global minimum (the most stable conformation) starting from any point in
the configurational space.

If the number of local minima is small, there is in principle no problem with using theory.
Usually it turns out that the quantum mechanical calculations are feasible, often even at the ab
initio level. A closer insight leads, however, to the conclusion that only some extremely accurate
and expensive calculations would give the correct energy sequence of the conformers, and that
only for quite small molecules with a dozen atoms. This means that for larger molecules, we

25 A very dangerous word!
26 Each time requires a Taylor expansion calculation.
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are forced to use molecular mechanics. For molecules with a few atoms, we might investigate
the whole conformational space by sampling it by a stochastic or systematic procedure, but this
approach soon becomes prohibitive for larger molecules.

For such larger molecules, we encounter difficulties that may only be appreciated by individ-
uals who have made such computations themselves. We may say, in short, that virtually nothing
helps us with the huge number of conformations to investigate. According to Schepens,27 the
number of conformations found is proportional to the time spent conducting the search. It is
worth noting that this means catastrophe, because for a twenty amino acid oligopeptide, the
number of conformations is of the order28 of 1020, and for a hundred amino acids, it is 10100.
Also, methods based on molecular dynamics (cf. p. 364) do not solve the problem, since they
could cover only a tiny fraction of the total conformational space.

7.4.2 Does the Global Minimum Count?

The goal of conformational analysis is to find those conformations of the molecule that are
observed under experimental conditions. At temperatures close to 300 K, the lowest-energy
conformations prevail in the sample; i.e., first of all, those corresponding to the global minimum
of the potential energy V.

We may ask whether indeed the global minimum of the potential energy decides the observed
experimental geometry. Let us disregard the influence of the solvent (neighborhood). A better
criterion would be the global minimum of the free energy, E − T S, where the entropic factor
would also enter.29 A wide potential well means a higher density of vibrational states, and a
narrow well means a lower density of states (cf. Eq. (4.26), p. 196; a narrow well corresponds
to a large α). If the global minimum corresponds to a wide well, the system in such a well is
additionally stabilized by entropy.

For large molecules, there is a possibility that, due to the synthesis conditions, the molecule
is trapped in a local minimum (kinetic minimum), which is different from the global minimum
of the free energy (thermodynamic minimum); see Fig. 7.5.

For the same reason that the diamonds (kinetic minimum) in your safe do not change spon-
taneously into graphite (thermodynamic minimum), a molecule imprisoned in the kinetic min-
imum may rest there for a very long time (compared to the length of the experiment).

27 Wijnand Schepens, Ph.D. thesis, University of Gand, 2000.
28 The difficulty of finding a particular conformation among 1020 conformations is pretty bad. Maybe the example

here will show the severity of the problem being encountered. A single grain of sand has a diameter of about
1 mm. Let us try to align 1020 of such sand grains side by side. What will the length of such a chain of grains
be? Let us compute: 1020 mm = 1017 m = 1014 km. One light year is 300000 km/s × 3600 s × 24 ×
365 	 1013 km. Hence, the length is about 10 light years–i.e., longer than the round trip from the Sun to the
nearest star, Alpha Centauri.

29 According to the famous formula of Ludwig Boltzmann, entropy S = kB ln�(E), where � is the number of the
states available for the system at energy E . The more states there are, the larger the entropy is.
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Fig. 7.5. The basins of the thermodynamic minimum (T), of the kinetic minimum (K) and of the global minimum (G). The
deepest basin (G) should not correspond to the thermodynamically most stable conformation (T). Additionally, the system may
be caught in a kinetic minimum (K), from which it may be difficult to tunnel to the thermodynamic minimum basin. Explosives
and fullerenes may serve as examples of K.

Christian Anfinsen (1916 –1995),
American biochemist, obtained,
the Nobel Prize in 1972 “for
his work on ribonuclease, espe-
cially concerning the connection
between the amino acid sequence
and the biologically active confor-
mation.” He made an important
contribution showing that after
denaturation (a large change of
conformation) some proteins fold
back spontaneously to their native
conformation.

Despite these complications, we
generally assume in conformati-
onal analysis that the global min-
imum and other low-energy con-
formations play the most impor-
tant role. In living matter, taking
a definite (native) conformation
is sometimes crucial. It has been
shown30 that the native confor-
mation of natural enzymes has
much lower energy than those
of other conformations (energy

gap). Artificial enzymes with stochastic amino acid sequences do not usually have this property,
resulting in no well-defined conformation.

In my opinion, the global molecular mechanics is one of the most important challenges not
only in chemistry, but in natural sciences in general. This is because optimization is fundamental
in virtually all domains and, if it is treated mathematically, usually transforms into a problem
of finding the global minimum.31

30 E.I. Shakanovich and A.M. Gutin, Proc. Natl. Acad. Sci. USA, 90, 7195 (1993); A. Šali, E.I. Shakanovich, and
M. Karplus, Nature, 369, 248 (1994).

31 The reader may find the description of the author’s adventure with this problem in L. Piela in Handbook of Global
Optimization, vol.2, P.M. Pardalos, H.E. Romeijn (eds.), Kluwer Academic Publishers, Dordrecht (2002), p. 461.
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7.5 Small Amplitude Harmonic Motion–Normal Modes

The hypersurface V (R) has, in general (especially for large molecules), an extremely complex
shape with many minima, each corresponding to a stable conformation. Let us choose one of
those minima and ask what kind of motion the molecule undergoes when only small displace-
ments from the equilibrium geometry are allowed. In addition, we assume that the potential
energy for this motion is a harmonic approximation of the V (R) in the neighborhood of the
minimum.32 Then we obtain the normal vibrations or normal modes.

Normal Modes
A normal mode represents a harmonic oscillation (of a certain frequency) of all the atoms
of the molecule about their equilibrium positions with the same phase for all the atoms
(i.e., all the atoms attain their equilibrium position at the same time).

7.5.1 Theory of Normal Modes

Suppose that we have at our disposal an analytical expression for V (R) (e.g., the force field),
where R denotes the vector of the Cartesian coordinates of the N atoms of the system (it has 3N
components). Let us assume (see Fig. 7.6) that the function V (R) has been minimized in the
configurational space, starting from an initial position Ri and going downhill until a minimum

Fig. 7.6. A schematic (one-dimensional) view of the hypersurface V (x) that illustrates the choice of a particular basin of V
related to the normal modes to be computed. The basin chosen is then approximated by a paraboloid in 3N variables. This gives
the 3N − 6 modes with nonzero frequencies and 6 “modes” with zero frequencies.

32 We may note en passant that a similar philosophy prevailed in science until quite recent times: take only the
linear approximation and forget about nonlinearities. It turned out, however, that the nonlinear phenomena (cf.,
Chapter 15) are really fascinating.
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position R0 has been reached, the R0 corresponding to one of many minima the V function
may possess33 (we will call the minimum the “closest” to the Ri point in the configurational
space). All the points Ri of the configurational space that lead to R0 represent the basin of the
attractor34 R0.

From this time on, all other basins of the function V (R) have “disappeared from the theory”–
only motion in the neighborhood of R0 is to be considered.35 If someone is aiming to apply
harmonic approximation and to consider small displacements from R0 (as we do), then it is a
good idea to write down the Taylor expansion of V about R0 [hereafter, instead of the symbols
X1, Y1, Z1, X2, Y2, Z2, . . . for the atomic Cartesian coordinates, we will use a slightly more
uniform notation: R = (X1, X2, X3, X4, X5, X6, ..X3N )

T ]:

V (R0 + x) = V (R0)+
∑

i

(
∂V

∂xi

)
0

xi + 1

2

∑
i j

(
∂2V

∂xi∂x j

)
0

xi x j + · · ·, (7.3)

where x = R − R0 is the vector with the displacements of the atomic positions from their
equilibria (xi = Xi − Xi,0 for i = 1, . . . , 3N ), while the derivatives are computed at R = R0.

In R0, all the first derivatives vanish. According to the harmonic approximation, the higher-
order terms denoted as “+ · · ·” are neglected. In effect, we have

V (R0 + x) ∼= V (R0)+ 1

2

∑
i j

(
∂2V

∂xi∂x j

)
0

xi x j . (7.4)

In matrix notation, we have V (R0+ x) = V (R0)+ 1
2 xT V ′′x, where V

′′
is a square matrix of

the Cartesian force constants, (V ′′)i j =
(

∂2V
∂xi∂x j

)
0
.

The Newton equations of motion for all the atoms of the system can be written in matrix

form as (
··
x means the second derivative with respect to time t)

M
··
x = −V ′′x, (7.5)

where M is the diagonal matrix of the atomic masses (the numbers on the diagonal are:
M1,M1,M1,M2,M2,M2, . . .), because we calculate the force component along the axis k

as − ∂V
∂xk
= −1

2

∑
j

(
∂2V
∂xk∂x j

)
0

x j − 1
2

∑
i

(
∂2V
∂xi∂xk

)
0

xi = −∑ j

(
∂2V
∂xk∂x j

)
0

x j = −(V ′′x)k .
We may use the relation M

1
2 M

1
2 = M in order to write Eq. (7.5) in a slightly different way:

M
1
2 M

1
2
··
x = −M

1
2 M−

1
2 V ′′M−

1
2 M

1
2 x, (7.6)

33 These are improper minima because a translation or rotation of the system does not change V .
34 The total configurational space consists of a certain number of such non-overlapping basins.
35 For another starting conformation Ri , we might obtain another minimum of V (R). This is why the choice of Ri

has to have a definite relation to that which is observed experimentally.
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where M
1
2 is a matrix similar to M, but its elements are the square roots of the atom masses

instead of the masses, while the matrix M− 1
2 contains the inverse square roots of the masses.

The last equation, after multiplying from the left by M− 1
2 , gives

··
y = −Ay, (7.7)

where y = M
1
2 x and A = M− 1

2 V ′′M− 1
2 .

Let us try to find the solution in the form36

y = c1 exp (+ iωt)+ c2 exp (− iωt),

where the vectors ci (of the dimension 3N ) of the complex coefficients are time independent.
The coefficients ci depend on the initial conditions, as well as on the A matrix. If we decide to
find a solution, in which at time t = 0, all the atoms are at equilibrium [i.e., y(t = 0) = 0, the
same phase], then we obtain the relation c1 = −c2, leading to the formula

y = L sin (ωt), (7.8)

where the vector37 L and ω depend on the matrix A. Vector L is determined only to the accuracy
of a multiplication constant because multiplication of L by any number does not interfere with
satisfying Eq. (7.7).

When we insert the proposed solution [Eq. (7.8)] in Eq. (7.7), we immediately find that ω
and L have to satisfy the following equation:

(A− ω21)L = 0. (7.9)

The values ofω2 represent the eigenvalues,38 while the L are the eigenvectors of the A matrix.
There are 3N eigenvalues, and each of them corresponds to its eigenvector L. This means that
we have 3N normal modes, with each mode characterized by its angular frequency ω = 2πν(ν
is the frequency) and its vibration amplitudes L. Hence, it would be natural to assign a normal
mode index k = 1, . . . , 3N for ω and L. Therefore, we have

(A− ω2
k 1)Lk = 0 (7.10)

36 This form (with ω = a + ib) allows for a constant solution (a = b = 0), an exponential growth or vanishing
(a = 0, b �= 0), oscillations (a �= 0, b = 0), oscillatory growing or oscillatory vanishing (a �= 0, b �= 0). For R0
denoting a minimum det A > 0, this ensures a solution with a �= 0, b = 0.

37 The vector is equal to 2ic1, but since c1 is unknown, as for the time being is L, therefore, we can say goodbye to
c1 without feeling any discomfort whatsoever.

38 A is a symmetric matrix, hence its eigenvalues ω2 and therefore ω = a + ib are real (b = 0). Whether ω is
positive, negative, or zero depends on the hypersurface V at R0; see Fig. 7.7.
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Fig. 7.7. A ball oscillating in a potential energy well (scheme). (a) and (b) show the normal vibrations (normal modes) about a point R0 = 0 being a minimum of the potential
energy function V (R0+x) of two variables x = (x1, x2

)
. This function is first approximated by a quadratic function; i.e., a paraboloid Ṽ (x1, x2). Computing the normal modes

is equivalent to such a rotation of the Cartesian coordinate system (a), that the new axes (b) x ′1 and x ′2 become the principal axes of any section of Ṽ by a plane Ṽ = const

(i.e., ellipses). Then, we have Ṽ (x1, x2) = V (R0 = 0) + 1
2 k1

(
x ′1
)2 + 1

2 k2
(
x ′2
)2. The problem then becomes equivalent to the two-dimensional harmonic oscillator (cf.,

Chapter 4) and separates into two independent one-dimensional oscillators (normal modes): one of angular frequency ω1 = 2πν1 =
√

k1
m and the other with angular frequency

ω2 = 2πν2 =
√

k2
m , where m is the mass of the oscillating particle. Panels (c) and (d) show what would happen if R0 corresponded not to a minimum, but to a maximum (c) or

the saddle point (d). For a maximum (c), k1 and k2 in Ṽ (x ′1, x ′2) = V (0)+ 1
2 k1

(
x ′1
)2+ 1

2 k2
(
x ′2
)2 would both be negative, and therefore the corresponding normal “vibrations”

would have had both imaginary frequencies, while for the saddle point (d), only one of the frequencies would be imaginary.
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The diagonalization of A (p. e105) is an efficient technique for solving the eigenvalue prob-
lem using commercial computer programs (diagonalization is equivalent to a rotation of the
coordinate system; see Fig. 7.7).

This is equivalent to replacing V by a 3N–dimensional paraboloid with origin R0. The
normal mode analysis finds a rotation of the coordinate system such that the new axes
coincide with the principal axes of the paraboloid.

There will be six frequencies (five for a linear molecule) equal to zero. They are connected to
the translation and rotation of the molecule in space: three translations along x, y, and z and three
rotations about x, y, and z (two in the case of a linear molecule). Such free translations/rotations
do not change the energy and therefore may be thought to correspond to zero force constants.

If we are interested in what the particular atoms are doing when a single mode l is active,
then the displacements from the equilibrium position as a function of time are expressed as

xk = M − 1
2 yk = M − 1

2 Lk Qk sin (ωkt), (7.11)

where Qk ∈ (−∞,∞), because the displacements xk are not bound by the length of vector Lk ,
which has been arbitrarily set to 1. Therefore, if one shifts all atoms according how they behave in
the normal mode k, one should insert the variable Qk , which tunes the displacement amplitude.

A given atom participates in all vibrational modes. Even if any vibrational mode makes all
atoms move, some atoms move more than others. It may happen that a particular mode changes
mainly the length of one of the chemical bonds (stretching mode), another mode moves another
bond, and yet another changes a particular bond angle (bending mode), etc.

This means that some chemical bonds or some functional groups may have characteristic
vibration frequencies, which is of great importance for the identification of these bonds or
groups in spectral analysis.

In Table 7.1 these frequencies ν characteristic for some particular chemical bonds are given
as the wave numbers ν̄ defined by the relation

ω = 2πν = 2πν̄c, (7.12)

with c being the velocity of light and ν the frequency. The wave number is the number of the
wave lengths covering a distance of 1 cm.

Example 1. Water Molecule
A single water molecule has 3× 3 = 9 normal modes. Six of them would have the angular

frequencies ω equal zero (they correspond to three free translations and three free rotations of
the molecule in space). Three normal modes remain, and the vectors x of Eq. (7.11) for these
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Table 7.1. Characteristic frequencies (wave numbers, in cm−1) typical
for some chemical bonds (stretching vibrations) and bond angles (bending
vibrations).

Bond Vibration Wave Number

C–H Stretching 2850–3400
H–C–H Bending 1350–1460
C–C Stretching 700–1250
C==C Stretching 1600–1700
C≡≡C Stretching 2100–2250
C==O Stretching 1600–1750
N–H Stretching 3100–3500
O–H Stretching 3200–4000

(a) (b) (c)

Fig. 7.8. The normal modes of the water molecule: (a) symmetric, (b) antisymmetric, (c) bending. The arrows indicate the
directions and proportions of the atomic displacements.

modes can be described as follows (see Fig. 7.8; the corresponding wave numbers have been
given in parentheses39):

• One of the modes means a symmetric stretching of the two OH bonds (ν̄sym = 3894 cm−1).
• The second mode corresponds to a similar, but antisymmetric motion; i.e., when one of the

bonds shortens, the other one elongates, and vice versa40 (ν̄asym = 4029 cm−1).

39 J. Kim, J.Y. Lee, S. Lee, B.J. Mhin, and K.S. Kim, J. Chem. Phys., 102, 310 (1995). This paper reports normal
mode analysis for potential energy hypersurfaces computed by various methods of quantum chemistry. I have
chosen the coupled cluster method [CCSD(T); see Chapter 10] as an illustration.

40 The shortening has the same value as the lengthening. This is a result of the harmonic approximation, in which
both shortening and lengthening require the same energy.
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Fig. 7.9. The water dimer and the configurations of the nuclei that correspond to minima of the two basins of the potential energy
V . The global minimum (a) corresponds to a single hydrogen bond O–H. . .O; the local minimum (b) corresponds to the bifurcated
hydrogen bond.

• The third mode is called the bending mode and corresponds to an oscillation of the HOH
angle about the equilibrium value (ν̄bend = 1677 cm−1).

Example 2. Water Dimer
Now let us take two interacting water molecules. First, let us ask how many minima we can

find on the electronic ground-state energy hypersurface. Detailed calculations have shown that
there are two such minima (see Fig. 7.9). The global minimum corresponds to the configuration
characteristic for the hydrogen bond (cf. p. 863). One of the molecules is a donor, and the other
is an acceptor of a proton (Fig. 7.9a). A local minimum of smaller stability appears when one
of the water molecules serves as a donor of two protons, while the other serves as an acceptor
of them called the bifurcated hydrogen bond,41 (Fig. 7.9b).

Now, we decide to focus on the global minimum potential well. We argue that for thermo-
dynamic reasons, this particular well will be most often represented among water dimers. This
potential energy well has to be approximated by a paraboloid. The number of degrees of freedom
is equal to 6×3 = 18, and this is also the number of normal modes to be obtained. As in Exam-
ple 1, six of them will have zero frequency and the number of true vibrations is 12. This is the

number of normal modes, each with its frequency ωk and the vector xk = M− 1
2 Lk Qk sin

(
ωkt

)
that describes the atomic motion. The two water molecules, after forming the hydrogen bond,
have not lost their individual features (in other words, the OH vibration is characteristic).

In dimer vibrations, we will find the vibration frequencies of individual molecules changed a
little by the water-water interaction. These modes should appear in pairs, but the two frequencies
should differ (the role of the two water molecules in the dimer is different). The proton acceptor
has something attached to its heavy atom, and the proton donor has something attached to the
light hydrogen atom. Let us recall that in the harmonic oscillator, the reduced mass is relevant,
which therefore is almost equal to the mass of the light proton. If something attaches to this atom,

41 See, for example, a theoretical analysis given by R.Z. Khaliullin, A.T. Bell, and M. Head-Gordon, Chem. Eur. J.,
15, 851 (2009), at the DFT level (see Chapter 11 for more).
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it means a considerable lowering of the frequency. This is why lower frequencies correspond
to the proton donor. The computed frequencies42 are the following:

• Two stretching vibrations with frequencies of 3924 cm−1 and 3904 cm−1 (both antisym-
metric; the higher frequency corresponds to the proton acceptor, the lower to the proton
donor)

• Two stretching vibrations with frequencies of 3796 cm−1 and 3704 cm−1 (both symmetric;
again the higher frequency corresponds to the proton acceptor, the lower to the proton donor)

• Two bending vibrations with frequencies of 1624 cm−1 (donor bending) and 1642 cm−1

(acceptor bending)

Thus, among 12 modes of the dimer, we have discovered 6 modes that are related to the
individual molecules: 4 OH stretching and 2 HOH bending modes. Now, we have to identify
the remaining 6 modes. These are the intermolecular vibrations (see Fig. 7.9a):

• Stretching of the hydrogen bond O–H· · ·O (the vibration of two water molecules treated as
entities): 183 cm−1

• Bending of the hydrogen bond O–H· · ·O in the plane of the figure: 345 cm−1

• Bending of the hydrogen bond O–H· · ·O in the plane perpendicular to the figure: 645 cm−1

• Rocking of the hydrogen atom H1 perpendicular to the figure plane: 115 cm−1

• Rocking of the second water molecule (the right side of the Fig. a) in the figure plane:
131 cm−1

• Rocking of the second water molecule (the right side of the Fig. a) about its symmetry axis:
148 cm−1

As we can see, the intermolecular interactions have made the “intramolecular” vibration
frequencies decrease,43 while the “intermolecular” frequencies have very low frequencies. The
last effect is nothing strange, of course, because a change of intermolecular distances does
require a small expenditure of energy (which means small force constants). Note that the simple
Morse oscillator model considered in Chapter 4 (p. 198) gave the correct order of magnitude of
the intermolecular frequency of two water molecules (235 cm−1, compared to the above, much
more accurate, result of 183 cm−1).

Example 3. The Formaldehyde Molecule H2C==O
Each molecule of this useful substance is planar and consists of only four atoms, so the

number of the normal vibrational modes should be equal to 3 · 4 − 6 = 6. The quantum-
mechanical calculations based on the ground-state electronic energy as a function of the nuclear

42 R.J. Reimers and R.O. Watts, Chem. Phys. 85, 83 (1984).
43 This is how the hydrogen bonds behave. This seemingly natural expectation after attaching an additional mass to a

vibrating system is legitimate when assuming that the force constants have not increased. An interesting example
of the opposite effect for a wide class of compounds has been reported by Pavel Hobza and Zdenek Havlas [Chem.
Rev., 100, 4253 (2000).].



Motion of Nuclei 363

Fig. 7.10. An illustration of how the vibrational modes concept is related to the experimental IR spectrum, including an example
of the formaldehyde molecule (a planar H2C==O system). The number of the vibrational modes 3N − 6 = 6 is identical to the
number of the absorption lines (each line corresponding to the vibrational excitation v = 0 → 1). If you are interested in the
intensity of these absorptions, you need to compute some integrals involving the corresponding vibrational wave functions.

coordinates44 gave six normal modes. Fig. 7.10 shows the experimental infrared (IR) absorption
spectrum. One sees six light frequencies (“absorption lines”) for which a significant absorption
occurs. Each of these lines is interpreted as an excitation of one of the six normal oscillators
(modes),45 each corresponding to a transition from the ground vibrational state with v = 0 to the
first excited state with v = 1 of the corresponding harmonic oscillator. We have already some
experience and may predict that the highest frequencies will correspond to the CH stretching
vibrations in CH2, because of the low mass of hydrogen atoms. One of the modes is symmetric
(calculation: 2934 cm−1, experiment: 2785 cm−1), while the other is antisymmetric (calcula-
tion: 2999 cm−1, experiment: 2850 cm−1), similar to the water molecule. We expect a stretching
vibration of the C==O bond to have a much lower frequency because much heavier atoms are
involved (calculated: 1769 cm−1, experiment: 1750 cm−1). Bending vibrations are of lower
energy than the stretching ones (for atoms of comparable masses). Indeed, for the scissor-like
mode of CH2, the computation gives 1546 cm−1, while the experimental result is 1485 cm−1.
Next, the predicted by theory rocking vibration of CH2 (that moves the CH2 group within the
molecular plane) has frequency 1269 cm−1, whereas measurement gives 1250 cm−1. Finally,
a wagging motion (that moves the entire CH2 group out of the molecular plane) corresponds to
the calculated 1183 cm−1, and measured 1165 cm−1 frequencies.

44 I have used the Gaussian package with the coupled cluster method [CCSD(T), a procedure known as a rather
reliable one, as described in Chapter 10; also, a reasonable quality of the atomic basis set 6-311G(d,p) was used;
see Chapter 8].

45 As one can see, these spectral lines exhibit certain widths (related to accompanying various rotational excitations).
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7.5.2 Zero-Vibration Energy

The computed minimum of V (using any either the quantum-mechanical or force field method)
does not represent the energy of the system for exactly the same reason why the bottom of the
parabola (the potential energy) does not represent the energy of the harmonic oscillator (cf.
p. 186). The reason is the kinetic energy contribution.

If all the normal oscillators are in their ground states (v j = 0, called zero-vibrations), then
the energy of the system is the energy of the bottom of the parabola Vmin plus the zero-vibration
energy (we assume no rotational contribution):

E = Vmin + 1

2

∑
j

(
hν j

)
. (7.13)

In the above formula, it has been assumed that the vibrations are harmonic. This assumption
usually makes the frequencies higher by several percentage points (cf. p. 198).

Taking anharmonicity into account is a much more difficult task than normal mode analysis.
Note (see Fig. 7.11) that in the anharmonic case the wave function becomes asymmetric with
respect to x = 0 as compared to the harmonic wave function.

7.6 Molecular Dynamics (MD)

In all the methods described above, there is no such thing as temperature. It is difficult to tolerate
such a situation.

This is what molecular dynamics is for. The idea is very simple.
If we knew the potential energy V as a function of the position (R) of all the atoms (we may

think here about a force field as its approximation46), then all the forces that the atoms undergo

Fig. 7.11. The ground-state vibrational wave function ψ ′0 of the anharmonic oscillator (of potential energy V1, taken here as the
Morse oscillator potential energy ) is asymmetric and shifted toward positive values of the displacement when compared to
the wave function ψ0 for the harmonic oscillator with the same force constant (the potential energy V2, •••).

46 For more, refer back to p. 346.
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could be easily computed. If R = (X1, X2, . . . X3N )
T denotes the coordinates of all the N

atoms (X1, X2, X3 are the x, y, and z coordinates of atom 1; X4, X5, X6 are the x, y, and z
of atom 2; etc.), then − ∂V

∂X1
is the x-component of the force that atom 1 undergoes; − ∂V

∂X2
is the y-component of the same force; etc. When a force field is used, all this can be easily
computed even analytically.47 We had the identical situation in molecular mechanics, but there
we were interested just in making these forces equal to zero (through obtaining the equilibrium
geometry). In molecular dynamics, we are interested in time t , the velocity of the atoms (in this
way temperature will come into play) and the acceleration of the atoms.

Our immediate goal is collecting the atomic positions as functions of time; i.e., of the
system trajectory.

The Newton equation tells us that, knowing the force acting on a body (e.g., an atom), we
may compute the acceleration that the body undergoes. We have to know the mass, but there is
no problem with that.48 Hence the i th component of the acceleration vector is equal to

ai = − ∂V

∂Xi
· 1

Mi
(7.14)

for i = 1, 2, . . . , 3N (Mi = M1 for i = 1, 2, 3,Mi = M2 for i = 4, 5, 6, etc.).
Now, let us assume that at t = 0, all the atoms have the initial coordinates R0 and the initial

velocities49 v0. Now we assume that the forces calculated act unchanged during a short period
�t (often 1 femtosecond, or 10−15 sec). We know what should happen to a body (atom) if under
influence of a constant force during time�t . Each atom undergoes a uniformly variable motion,
and the new position may be found in the vector

R = R0 + v0�t + a
�t2

2
, (7.15)

47 That is, an analytical formula can be derived.
48 We assume that what moves is the nucleus (see the discussion on p. 274). In MD, we do not worry about the fact

that the nucleus moves together with its electrons, because the mass of all electrons of an atom is more than 1840
times smaller than that of the nucleus. Thus, the mass is negligible in view of other approximation, which have
been made.

49 Where could these coordinates be taken from? To tell the truth, it can almost be considered to happen randomly.
We say “almost” because some essential things will be assured. First, we may quite reasonably conceive the
geometry of a molecule, because we know which atoms form the chemical bonds, their reasonable lengths, the
reasonable values of the bond angles, etc. That is, however, not all we would need for larger molecules. What
do we take as dihedral angles? This is a difficult case. Usually we take a conformation, which we could call
“reasonable.” Shortly we will take a critical look at this problem. The next question is the velocities. Having
nothing better at our disposal, we may use a random number generator, assuring, however, that the velocities are
picked out according to the Maxwell-Boltzmann distribution suitable for a given temperature T of the laboratory;
e.g., 300 K. In addition, we will make sure that the system does not rotate or flies off. In this way, we have our
starting position and velocity vectors R0 and v0.
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and its new velocity in the vector is
v = v0 + a�t, (7.16)

where the acceleration a is a vector composed of the acceleration vectors of all the N atoms

a = (a1, a2, . . . aN)
T , (7.17)

a1 =
(
− ∂V

∂X1
,− ∂V

∂X2
,− ∂V

∂X3

)
· 1

M1
,

a2 =
(
− ∂V

∂X4
,− ∂V

∂X5
,− ∂V

∂X6

)
· 1

M2
etc.

Everything on the right side of Eqs. (7.15) and (7.16) is known. Therefore, the new positions
and the new velocities are easy to calculate.50 Now, we may use the new positions and velocities
as starting ones and repeat the whole procedure over and over. This makes it possible to go along
the time axis in a steplike way in practice, reaching even nanosecond times (10−9 sec), which
means millions of such steps. The procedure described above simply represents the numerical
integration of 3N differential equations. If N = 2000, then the task is impressive. It is so
straightforward because we are dealing with a numerical solution, not an analytical one.51

7.6.1 What Does MD Offer Us?

The computer simulation makes the system evolve from the initial state to the final one. The
position R in 3N–dimensional space becomes a function of time, so R(t) represents the trajectory
of the system in the configurational space. A similar statement pertains to v(t). Knowing the
trajectory means that we know the smallest details of the motion of all the atoms. Within the
approximations used, we can therefore answer any question about this motion. For example,
we may ask about some mean values, like the mean value of the total energy, potential energy,
kinetic energy, the distance between atom 4 and atom 258, etc. All these quantities may be
computed at any step of the procedure, then added up and divided by the number of steps,
giving the mean values we require. In this way, we may obtain the theoretical prediction of the
mean value of the interatomic distance and then compare it to, say, the NMR result.

In this way, we may search for some correlation of motion of some atoms or groups of atoms;
i.e., the space correlation (“when this group of atoms is shifted to the left, then another group
is most often shifted to the right”) or the time correlation (“when this thing happens to the
functional group G1, then after a time τ that most often takes place with another functional
group G2”) or time autocorrelation (“when this happens to a certain group of atoms, then
after time τ the same most often happens to the same group of atoms”). For example, is the
x-coordinate of atom 1 (X1) correlated to the coordinate y of atom 41 (X122), or are these
two quantities absolutely independent? The answer to this question is given by the correlation

50 In practice, we use a more accurate computational scheme called the leap frog algorithm.
51 By the way, if somebody gave us the force field for galaxies (this is simpler than for molecules), we could solve

the problem as easily as in our case. This is what astronomers often do.
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coefficient c1,122 calculated for M simulation steps in the following way:

c1,122 =
1
M

∑M
i=1

(
X1,i − 〈X1〉

) (
X122,i − 〈X122〉

)
√(

1
M

∑M
i=1

(
X1,i − 〈X1〉

)2) ( 1
M

∑M
i=1

(
X122,i − 〈X122〉

)2) ,

where 〈X1〉 and 〈X122〉 denote the mean values of the coordinates indicated, and the summation
goes over the simulation steps. It is seen that any deviation from independence means a nonzero
value of c1,122. What could be more correlated to the coordinate X1 than the same X1 (or−X1)?
Of course, absolutely nothing. In such a case (in the formula, we replace X122,i → X1,i and
〈X122〉 → 〈X1〉), we obtain c1,1 = 1 or −1. Hence, c always belongs to [−1, 1], c = 0 means
independence, c ± 1 means maximum dependence.

Has molecular dynamics anything to do with reality?
If the described procedure were applied without any modification, then most probably we

would have bad luck and our R0 would be located on a slope of the hypersurface V . Then,
the solution of the Newton equations would reflect what happens to a point (representing the
system) when placed on the slope–that is it would slide downhill. The point would go faster and
faster, and soon the vector v would not correspond to the room temperature, but, say, to 500 K.
Of course, despite such a high temperature, the molecule would not disintegrate because this is
not a real molecule, but one operating with a force field that usually corresponds to unbreakable
chemical bonds.52 Although the molecule will not fall apart, such a large T has nothing to
do with the temperature of the laboratory. This suggests that after some number of steps, we
should check whether the atomic velocities still correspond to the proper temperature. If not,
it is recommended to scale all the velocities by multiplying them by a factor in order to make
them correspond again to the desired temperature. For this reason, the only goal of the first part
of a molecular dynamics simulation is known as thermalization, in which the error connected
to the nonzero�t is averaged and the system is forced stepwise (by scaling) to behave as what
is called the canonical ensemble. The canonical ensemble preserves the number of molecules,
the volume, and the temperature (simulating contact with a thermostat at temperature T ). In
such a thermalized system, total energy fluctuations are allowed.

Now that the thermalization has completed, the next (main) stage of molecular dynamics
begins i.e., the harvesting of data (trajectory).

7.6.2 What Should We Worry About?

• During simulation, the system has to have enough time to wander through all parts of the
phase space53 that are accessible in the experimental conditions (with which the simulation
is to be compared). We are never sure that this happens. We have to check whether the
computed mean values depend upon the simulation time. If they do not, then probably
everything is all right–we have a description of the equilibrium state.

52 This pertains to a single molecule bound by chemical bonds; a system of several molecules could fall apart.
53 This is Cartesian space of all atomic positions and momenta.
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• The results of the MD (the mean values) should not depend on the starting point because
it has been chosen arbitrarily. This is usually satisfied for small molecules and their col-
lections. For large and flexible molecules, we usually start from the vector R0 found from
X-ray determined atomic positions. Why? Because after the MD, we still will stay close to
this all in all experimental conformation. If the simulation started from another conforma-
tion, it would result in a conformation close to this new starting point. This is because even
with the most powerful computers, simulation times are too short. In such a way, we have
a simulation of one conformation evolution rather than a description of the thermodynamic
equilibrium.

• The simulation time in the MD is limited on one side by the power of computers and on
the other side by the time step�t , which is not infinitesimally small, and it creates an error
that cumulates during the simulation (as a result, the total energy may vary too much and
the system may be heading into non-physical regions of the phase space).

7.6.3 MD of Non-Equilibrium Processes

We do not always want thermalization. We may be interested what happens, when a DNA
molecule being anchored to a solid surface by one of its end functional groups is distorted by
pulling the other end of the molecule. Such MD results may nowadays be compared to the
corresponding experiment.

Here is yet another example. A projectile hits a wall (“armor”), Fig. 7.12. The projectile
is composed of Lennard-Jones atoms (with some εp and re,p; p. 347), and we assume the
same for the wall (for other values of the parameters, let us make the wall less resistant than the
projectile: εw < εp and re,w > re,p ). All together, we may have hundreds of thousands (or even
millions) of atoms (i.e., there are millions of differential equations to solve). Now, we prepare
the input R0 and v0 data. The wall atoms are assumed to have stochastic velocities drawn from
the Maxwell-Boltzmann distribution for room temperature. The same for the projectile atoms,
but additionally, they have a constant velocity component along the direction pointing to the
wall. At first, nothing particularly interesting happens–the projectile flies toward the wall with
a constant velocity (while all the atoms of the system vibrate). Of course, it is most interesting
when the projectile hits the wall. Once the front part of the projectile touches the wall, the wall
atoms burst into space in a kind of eruption, the projectile’s tip loses some atoms, and the spot
on the wall hit by the projectile vibrates and sends a shock wave.

Among more civil applications of this theory, we may use this method to plan better drills
and better steel plates, as well as about other micro-tools which have a bright future.

7.6.4 Quantum-Classical MD

A typical MD does not allow for breaking chemical bonds, and the force fields that allow this
give an inadequate, classical picture, so a quantum description is sometimes a must. The systems
treated by MD are usually quite large, which excludes a full quantum-mechanical description.
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Fig. 7.12. A projectile hitting an armor–an example of simulating non-equilibrium processes in molecular dynamics. (a) On
the right is a projectile flying left, on the left the armor, both objects built of particles (“atoms”) that interact according to the
Lennard-Jones interatomic potential. The Lennard-Jones parameters for the projectile atoms are as follows: ε = 0.2 a.u., re = 2.3
a.u., for those of the armor: ε = 0.1 a.u., re = 2.6 a.u. (the projectile-armor interaction parameters correspond to their mean
values). The projectile atoms are denoted by +, the armor atoms by ×. At the starting point shown, the armor atoms all have the
velocity equal to zero, while all the projectile atoms have only the x-component of velocity (x is the left-right axis), which was
equal to vx = −55000 km

h (i.e., the missile is heading right into the armor). (b) An early stage of the hit. The top of the missile
undergoes a destruction, the armor atoms in the epicenter accelerate (arrows) and change their position. It is remarkable that this
motion is limited for the time being to some small region, and that one can see something that is similar to an intact missile (“a
virtual missile”), which, however, is built from the atoms of both colliding objects. (c) Half of the missile is already destroyed, and
one can see quite a lot of particles that bounce off the armor and go back very fast, while the missile was able to crush the armor
width. Despite of this, the abovementioned “virtual missile” is still visible. (d) The armor is destroyed, a lot of debris is flying off,
and one does not see any virtual missile anymore. These results were obtained by Marcin Gronowski supervised by the author, the
undergraduate course at the University of Warsaw, Department of Chemistry.

For enzymes (natural catalysts), researchers proposed54 joining the quantum and the classical
descriptions by making the precision of the description dependent on how far the region of focus
is from the enzyme active center (where the reaction the enzyme facilitates takes place). They
proposed dividing the system (enzyme + solvent) into three regions:

• Region I represents the active center atoms.
• Region II is composed of the other atoms of the enzyme molecule.
• Region III is the solvent.

54 P. Bała, B. Lesyng, and J.A. McCammon, in Molecular Aspects of Biotechnology: Computational Methods and
Theories, Kluwer Academic Publishers, (1992), p. 299. A similar philosophy stands behind the Morokuma’s
ONIOM procedure, as described in M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, and K.
Morokuma, J. Phys. Chem. 100, 19357 (1996).
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Region I is treated as a quantum mechanical object and described by the proper time-
dependent Schrödinger equation, while region II is treated classically by the force-field
description and the corresponding Newton equations of motion and region III is simulated
by a continuous medium (no atomic representation) with a certain dielectric permittivity.

The regions are coupled by their interactions: quantum mechanical Region I is subject to the
external electric field produced by Region II evolving according to its MD as well as that of
Region III; and Region II feels the charge distribution changes that Region I undergoes through
electrostatic interaction.

7.7 Simulated Annealing

The goal of MD may differ from simply computing some mean values; e.g., we may try to use
MD to find regions of the configurational space for which the potential energy V is particularly
low.55 From a chemist’s point of view, this means trying to find a particularly stable structure
(conformation of a single molecule or an aggregate of molecules). To this end, MD is sometimes
coupled with an idea of Kirkpatrick et al.56, taken from an ancient method of producing metal
alloys of exceptional quality (the famous steel of Damascus), and serving to find the minima of
arbitrary functions.57 The idea behind simulated annealing is extremely simple.

This goal is achieved by a series of heating and cooling procedures (called the annealing
protocol). First, a starting configuration is chosen that, to the best of our knowledge, is of
low energy, and the MD simulation is performed at a high temperature T1. As a result, the
system (represented by a point R in the configuration space) rushes through a large manifold
of configurations R; i.e., wanders over a large portion of the hypersurface V (R). Then, a lower
temperature T2 is chosen and the motion slows down, the visited portion of the hypersurface
shrinks and hopefully corresponds to some regions of low values of V –the system is confined
in a large superbasin (composed of individual minima basins). Now the temperature is raised
to a certain value T3 < T1, thus allowing the system eventually to leave the superbasin and
to choose another one, maybe of lower energy. While the system explores the superbasin, the
system is cooled again, this time to temperature T4 < T2, and so forth. Such a procedure does
not give any guarantee of finding the global minimum of V , but there is a reasonable chance
of getting a configuration with lower energy than the start. The method, being straightforward
to implement, is very popular. Its successes are spectacular, although sometimes the results
are disappointing. The highly prized swords made in ancient Damascus using annealing, prove
that the metal atoms settle down in quasi-optimal positions forming a solid state of low energy,
which is very difficult to break or deform.

55 This is similar to global molecular mechanics.
56 S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, Science, 220, 671 (1983).
57 I recommend a very good book: W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical

Recipes: The Art of Scientific Computing, Cambridge University Press, New York, 2007.
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7.8 Langevin Dynamics

In the MD, we solve Newton equations of motion for all atoms of the system. Imagine we have a
large molecule in an aqueous solution (biology offers us important examples). We have no chance
to solve Newton equations because there are too many of them (a lot of water molecules). What
do we do then? Let us recall that we
are interested in the macromolecule;
the water molecules are interesting
only as a medium that changes the
conformation of the macromolecule.
The changes may occur for many
reasons, but the simplest is the most
probable–just the fact that the water
molecules in their thermal motion hit
the atoms of the macromolecule. If
so, their role is reduced to a source

Paul Langevin (1872–1946),
French physicist and pro-
fessor at the College de
France. His main achieve-
ments are in the theory of
magnetism and in relativity
theory. His Ph.D. student
Louis de Broglie made a
breakthrough by attributing
wave properties to particles
in quantum theory.

of chaotic strikes. The main idea behind Langevin dynamics is to ensure that the atoms of the
macromolecule indeed feel some random hits from the surrounding medium without taking this
medium into consideration explicitly. This is the main advantage of the method.

A reasonable part of this problem may be incorporated into the Langevin equation of motion:

Mi
··
Xi = − ∂V

∂Xi
+ Fi

(
t
)− γi Mi

·
Xi , (7.18)

for i = 1, 2, . . . , 3N , where besides the force −∇V resulting from the potential energy V for
the macromolecule alone, we also have an additional stochastic force F

(
t
)
, whose magnitude

and direction are drawn keeping the force related to the temperature and assuring its isotropic
character. The coefficient γi is a friction coefficient and the role of friction is proportional to
atomic velocity.

The Langevin equations are solved in the same way as those of MD, with the additional
stochastic force drawn using a random number generator.

7.9 Monte Carlo Dynamics

Las Vegas, Atlantic City, and Monte Carlo are notorious for their day and night use of such
random number generators as billiards, roulette, and cards. Because of this, the idea and even
the name of Monte Carlo (MC) have been accepted in mathematics, physics, chemistry, and
biology. The key concept is that a random number, when drawn successively many times, may
serve to create a sequence of system snapshots.

All this began from an idea of a mathematician from Lwów, in Poland (now Lviv in the
Ukraine) named Stanisław Marcin Ulam.
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Stanisław Ulam (1909–1984), first associated with
the University of Lwów, then professor at Harvard
University, the University of Wisconsin, the Univer-
sity of Colorado, and Los Alamos National Labora-
tory. In Los Alamos, Ulam solved the most impor-
tant bottleneck in hydrogen bomb construction by
suggesting that pressure is the most important fac-
tor and that sufficient pressure could be achieved
by using the atomic bomb as a detonator. Using
this idea and an idea of Edward Teller about fur-
ther amplification of the ignition effect by implosion
of radiation, both scholars designed the hydrogen
bomb. They both owned the U.S. patent for H-bomb
production.

According to the Ulam Quarterly Journal ( http://
www.ulam.usm.edu/editor.html), Ulam’s contribu-
tion to science includes logic, set theory, measure
theory, probability theory, computer science, topol-
ogy, dynamic systems, number theory, algebra,
algebraic and arithmetic geometry, mathematical
biology, control theory, mathematical economy,
and mathematical physics. He developed and
coined the name of the Monte Carlo method,
and also invented the cellular automata method
(described at the end of this chapter). Ulam wrote
a very interesting autobiography Adventures of a
Mathematician. During the A-bomb project, Ulam
lamented that he always worked with symbols, not
numbers, he is driven so low as to use them now,
even worse: these are numbers with decimal points!

The picture shows one of the “magic places”
of the world science, the Szkocka Café, on
Akademicka Street, Lwów. At this café, now a

bank at Prospekt Szewczenki 27, before World
War II, young Polish mathematicians (including
Stanisław Ulam and the mathematical genius
Stefan Banach) made a breakthrough thereafter
called the “Polish school of mathematics.”

Perhaps an example will best explain the MC method. I have chosen the methodology intro-
duced to the protein folding problem by Andrzej Koliński and Jeffrey Skolnick.58 In a version
of this method, we use a simplified model of the real protein molecule, a polymer composed
of monomeric peptide units · · ·NH–CO–CHR–· · ·, as a chain of pointlike entities NH–CO–CH
from which protrude points representing various side chains R. The polymer chain goes through
the vertices of a crystallographic lattice (the side chain points can also occupy only the lattice
vertices), which excludes a lot of unstable conformations and enables us to focus on those
chemically/physically relevant. The lattice representation speeds computation by several orders
of magnitude.

The reasoning goes as follows. The nonzero temperature of the water that the protein is
immersed in makes the molecule acquire random conformations all the time. The authors

58 J. Skolnick, and A. Koliński, Science, 250, 1121 (1990).

http://www.ulam.usm.edu/editor.html


Motion of Nuclei 373

assumed that a given starting conformation is modified by a series of random micro-modifications.
A micro-modification allowed has to be chosen so as to obey three rules:

• It must be chemically/physically acceptable.
• It must always be local; i.e., they have to pertain to a small fragment of the protein, because in

the future we would like to simulate the kinetics of the protein chain (how a conformational
change evolves).

• When repeated, they should be able to transform any conformation into any other confor-
mation of the protein.

In this way, we can modify the molecular conformation, but we want the protein to move; i.e.,
to have the dynamics of the system (a sequence of molecular conformations, each one derived
from the previous one in a physically acceptable way).

To this end, we have to be able to write down the energy of any given conformation. This is
achieved by assigning an energy award (i.e., energy lowering) if the configuration corresponds
to intramolecular energy gain (e.g., trans conformation, the possibility of forming a hydrogen
bond or a hydrophobic effect; see Chapter 13), and an energy penalty for intramolecular repul-
sion (e.g., cis conformation, or when two fragments of the molecule are to occupy the same
space). It is generally better if the energy awards and penalties are accompanied by an ingredient
that reflects the complex reality of the Protein Data Bank, the most extended database. This
database may serve to add what is known as the statistical interaction potential. The potential
is a correction computed from the frequency of finding two kinds of amino acids close in space
(e.g., glutamic acid and lysine; there are 20 natural amino acids) in the Protein Data Bank. If the
frequency is larger than just the random one, we deduce that an attraction has to occur between
them and assign an energy gain that takes into account the value of this higher frequency.59

Now we have to let the molecule move. We start from an arbitrarily chosen conformation
and calculate its energy E1. Then, a micro-modification, or even a series of micro-modifications
(this way the calculations go faster), is drawn from the micro-modifications list and applied to
the molecule. Thus, a new conformation is obtained with energy E2. Now the most important
step takes place. We decide to accept or reject the new conformation according to the Metropolis
criterion60, which gives the probability of the acceptance as

P1→2 =
{

1 if E2 ≤ E1

a = exp
(
−
(
E2−E1

)
kB T

)
if E2 > E1.

Well, we have a probability, but what we need is a clear decision: to be or not to be in state 2?
This is where the MC spirit comes in; see Fig. 7.13. By using a random number generator, we

59 Such an approach may be certainly considered as a bit too pragmatic. People believe that before coming to a true
force field that will give us correct answers (in the distant future), we have a lot of time to explore what kind of
corrections the current force fields need to get reasonable answers.

60 N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys., 21, 1087 (1953).
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Fig. 7.13. Metropolis algorithm. (a) If E2 is only a little higher than E1, then the Metropolis criterion often leads to accepting the
new conformation (of energy E2). (b) On the other hand, if the energy difference is large, then the new conformation is accepted
only rarely.

draw a random number61 u from section [0, 1] and compare it with the number a. If u ≤ a, then
we accept the new conformation; otherwise, conformation 2 is rejected (and we forget about it).
The whole procedure is repeated over and over again: drawing micro-modifications→ a new
conformation→ comparison with the old one by the Metropolis criterion→ accepting (i.e.,
the new conformation becomes the current one) or rejecting (i.e., the old conformation remains
the current one), etc.

The Metropolis criterion is one of those mathematical tricks that a chemist has to know about.
Note that the algorithm always accepts the conformation 2 if E2 ≤ E1; therefore, it will have a
tendency to lower the energy of the current conformation. On the other hand, when E2 > E1,
the algorithm may decide to increase the energy by accepting the higher energy conformation

2. If
(
E2−E1

)
kB T > 0 is small, the algorithm accepts the new conformation very easily (Fig. 7.13a).

On the other hand, an attempt of a very high jump (Fig. 7.13b) in energy may be successful
in practice only at very high temperatures. The algorithm prefers higher energy conformations
to the same extent as the Boltzmann distribution. Thus, grinding the mill of the algorithm on
and on (sometimes it takes months on the fastest computers of the world) and making statistics
of the number of accepted conformations as a function of energy, we arrive at the Boltzmann
distribution as it should be in thermodynamic equilibrium.

Thus, as the mill grinds, we can make a movie which would reveal how the protein molecule
behaves at high temperatures: the protein acquires practically any new conformation gener-
ated by the random micro-modifications, and it looks as if the molecule is participating in a

61 The current situation is like this: there are deterministic computer programs, which are claimed to generate random
numbers. According to John von Neumann those who use such programs “live in the state of sin.”
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kind of rodeo. However, we decide the temperature. Thus, let us decide to lower the tempera-
ture. Until a certain temperature, we will not see any qualitative change in the rodeo, but at a
sufficiently low temperature, we can recognize that something has happened to the molecule.
From time to time, some local structures typical of the secondary structures of proteins (the
α–helices and the zigzag type β–strands, the latter like to bind together laterally by hydrogen
bonds) emerge and vanish, emerge again, etc.

When the temperature decreases, at a certain critical value, Tcrit , a stable structure suddenly
emerges (an analog of the so-called native structure; i.e., the one ensuring the molecule
can perform its function in nature).

The structure vibrates a little, especially at the ends of the protein, but further cooling does
not introduce anything new. The native structure exhibits a unique secondary structure pattern
along the polymeric chain (i.e., definite sections of the α and β structures) which packs together
into a unique tertiary structure. In this way, a highly probable scenario for the coil-globule was
demonstrated for the first time by Koliński and Skolnick.

One of the most successful variations of the abovementioned basic MC algorithm is what is
known as Monte Carlo with Replica Exchange (MCRE). The idea is to speed up the exploration
of the conformational space by making parallel computations for the same system (“replica”),
but each computation differing by the assumed and fixed temperature, from very low to very
high. Then, during the simulation, one stochastically exchanges the replicas in a way that is
analogous to the Metropolis criterion (instead of E1 and E2, one considers E1

kB T1
and E2

kB T2
). This

simple idea makes easier to overcome even large energy barriers.
Predicting the 3-D structure of globular proteins from the sequence of amino acids62 and

using a sophisticated algorithm63 based on all relevant physical interactions and adjusted using
the accumulated structural knowledge of proteins (nearly 100000 structures in the Protein Data
Bank, no bias towards the target) is feasible nowadays with a remarkable accuracy. An example
is shown in the section Ad Futurum.

Example: Conformational Autocatalysis as a Model of Prion Disease
Propagation

In biology, there is a concept of “contagious misfolded proteins” (prions), which are supposed
to increase their quantity spontaneously at the expense of the native fold of the same protein.

62 This problem is sometimes called “the second genetic code” in the literature. This name reflects the final task of
obtaining information about protein function from the “first genetic code” (i.e., DNA) information that encodes
protein production.

63 J. Skolnick, Y. Zhang, A.K. Arakaki, A. Koliński, M. Boniecki, A. Szilagyi, and D. Kihara, Proteins, 53 (2003),
Suppl. 6, 469–479.
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This phenomenon is suspected to be the cause of dangerous diseases such as Creutzfeldt-Jakob
disease in humans or “mad cow disease” in cattle.

The elaborated force field and the above described MCRE technique proved to predict the
3-D structure of many globular proteins to a very good accuracy (e.g., of the order of 2 Å of
the root mean square deviation, rms). Having in hand such a tool, one may consider questions
that are related to the prion disease propagation.

Imagine a protein with an amino-acid sequence designed in such a way that the protein folds
to a certain conformation (A) being its lowest-energy conformation (“native”). The sequence,
however, also has another state (conformation B), that widely differs structurally from A and
is metastable. Thus, there is a frustration introduced on purpose in the molecule.64 The protein
will usually fold to A, but if some external factors are present, it may prefer to fold to B. These
external factors might be simply the intermolecular interaction of several such molecules. For
example, if the lowest energy of the dimer corresponded to the BB conformation, a molecule in
conformation A, when in contact with another molecule in conformation B, might change from
AB to BB. This would mean eliminating of the most stable conformation of a protein molecule
just by contact with a contagious, metastable (“misfolded”) form, which resembles spreading
of a kind of “conformational disease.”

If such a scenario were possible, then is the theory strong enough to predict the necessary
amino acid sequence that would behave like that? Well, let us consider an oligopeptide composed
of 32 amino acids only, which is small enough to make many series of computations feasible.
There is already some computational experience accumulated, which serves as a guideline in
planning the amino-acid sequence.

First of all, to make the effect seen clearly, we plan to have A and B structurally distinct
as much as possible. Let one of them be of α-helical (A), the other (B) of β-sheet character,
both quite compact ones (“globular”). To induce this compactness, let us locate two glycines
in the middle of the sequence because we want the chain to bend easily there, changing its
direction in space (a “hairpin-like” structure). Glycine is unique among the 20 amino acids
given in nature; it is known for its flexibility, since it has as the side chain a very small object–
the hydrogen atom (no sterical hindrance). Two other glycines have been put at positions 8
and 25, exactly where we plan to have some increased flexibility necessary for the planned
β-sheet (we plan four β-strands bound together by the hydrogen bonds). We hope these latter
glycines will not break the two α-helices to be formed and packed in the hairpin-like structure.
Well, we would like the native structure (A) to have an additional stability. To this end, we
will introduce the interactions within the four pairs of glutamic acid and lysine (they interact
through the electrostatic attraction –NH+3 · · ·−OOC–) in the positions that ensure that they are
close in space, but only in a pattern typical for an α-helix. However, to increase a chance of
forming β structures (to make the B structure stable), the sequence has been enriched by a
pattern of hydrophobic valines and isoleucines (they are known for forming what is called the
valine-leucine zipper) in the amino-acid sequence, their positions assuring a strong interaction

64 E. Małolepsza, M. Boniecki, A. Koliński, and L. Piela, Proc. Natl Acad. Sciences (USA), 102, 7835 (2005).
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within a β structure. Although the water structure (necessary for the hydrophobic effect) is not
taken into account explicitly in the force field used, it is present implicitly through the force
field; e.g., the statistical amino-acid interaction potential from the Protein Data Bank (which
does take it into account).

To complete such a design, the amino-acid sequence has been tuned, increasing the propensity
toward α-helices or β-sheets. The calculations have been repeated independently for many
sequences, each time checking the behavior of single molecules, as well as dimers and trimers.
Among the final 14 sequences, only the following:

GVEIAVKGAEVAAKVGGVEIAVKAGEVAAKVG

(G = glycine,V = valine,E = glutamic acid, I = isoleucine,A = alanine,K = lysine)
exhibited the desired conformational autocatalysis.

It turned out in the MCRE procedure that the oligopeptide molecule always attains the global
minimum conformation in the form of a two-helix bundle (see Fig. 7.14a-b), if the temperature
is in a certain range. Below this range, not only the two-helix bundle, but also a (very different
from the latter one) four-member β-barrel (see Fig. 7.14c), are stable. If two protein molecules
interact, one of them frozen (for whatever reasons, chemical of physical) in its metastable
β–barrel conformation, while the second molecule is free to move (Fig. 7.14d), the second
molecule practically always folds to the β–barrel that interacts very strongly with the frozen
β–barrel (Fig. 7.14e). This happens even when the second molecule starts from its native (i.e.,
α-helical) form: the α-helical form unfolds and then folds to the β–barrel (Fig. 7.14e). It has
been also demonstrated that a third protein molecule, when in the presence of the two frozen
β-barrels, folds to the β-barrel that fits very well to the two forming a stack of three β-barrel
molecules. Formation of such stacks is notorious for prion diseases.

This model may be seen as a prototype of a prion disease propagation, in which a metastable
“incorrect conformation” spontaneously spreads out in the system.

7.10 Car-Parrinello Dynamics

Despite the fact that this textbook is based on the assumption that the reader has completed a
basic quantum chemistry course, the author (as already stated in the Introduction) does not profit
from this too extensively. Car-Parrinello dynamics is an exception. It positively belongs in this
chapter, while borrowing heavily from the results of Chapter 8. If the reader feels uncomfortable
with this, this section may just be skipped.

We have already listed a few problems associated with the otherwise powerful MD. We have
also mentioned that the force field parameters (e.g., the net atomic charges) do not vary when
the conformation changes or when two molecules approach, whereas everything has to change.
Car and Parrinello65 thought of a remedy in order to make the parameters change “in flight.”

65 R. Car and M. Parrinello, Phys. Rev. Letters, 55, 2471 (1985).
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Fig. 7.14. (Continued)
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Let us assume the one-electron approximation.66 The total electronic energy E0
0(R) is (in the

Born-Oppenheimer approximation) not only a function of the positions of the nuclei, but also
a functional of the spinorbitals {ψi } : V = V

(
R, {ψi }

) ≡ E0
0(R).

The function V = V
(
R, {ψi }

)
will be minimized with respect to the positions R of the

nuclei and the spinorbitals {ψi }, depending on the electronic coordinates.

If we are going to change the spinorbitals, we have to take care of their orthonormality at
all stages of the change.67 For this reason, Lagrange multipliers (see Appendix N available at
booksite.elsevier.com/978-0-444-59436-5) appear in the equations of motion. We obtain the
following set of Newton equations for the motion of N nuclei:

MI Ẍ I = − ∂V

∂X I
for I = 1, . . . , 3N

and an equation of motion for each spinorbital (each corresponding to the evolution of one
electron probability density in time):

μψ̈i = −F̂ψi +
∑
j=1

�i jψ j , (7.19)

whereμ is a fictitious parameter68 for the electron, F̂ is a Fock operator (see Chapter 8, p. 407),
and �i j are the Lagrange multipliers to ensure the orthonormality of the spinorbitals ψ j .

Both equations are quite natural. The first (the Newton equation) says that a nucleus has to
move in the direction of the force acting on it (− ∂V

∂X I
) and the larger the force and the smaller

the mass, the larger the acceleration achieved. This sounds correct. The left side of the second
equation and the first term on the right side say the following: Let the spinorbital ψi change in
such a way that the orbital energy has a tendency to go down (in the sense of the mean value).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 7.14. Conformational autocatalysis. (a) a two α-helix bundle conformation of a protein with a particular amino acid
sequence: GVEIAVKGAEVAAKVGGVEIAVKAGEVAAKVG (G = glycine, V = valine, E = glutamic acid, I = isoleucine, A =
alanine, K = lysine). This 3D structure is shown in a simplified way by representing a single amino acid by a point connected to its
neighbors; (b) The all heavy atom representation of such structures can be recovered, an example for the two α-helix bundle. The
structure corresponds to the global minimum of the protein molecule. Note the stabilizing interaction of the hydrophobic amino
acids (AA,VA,VV) between the helices, as well as the electrostatic KE stabilization within them. (c) A β-barrel conformation
(metastable one) of the same protein. The stabilization of this structure also comes from similar interactions, this time acting
between the β-strands. (d) The starting configuration for the MCRE procedure: the frozen β-barrel (left) interacts with the two
α-helix bundle (right), which is subject to the MCRE dynamics. (e) The final result after a long MCRE run: the α-helix bundle
has unfolded and then refolded, but to a β-barrel conformation, thus producing two interacting β-barrels (autocatalysis).

66 The approximation will be described in Chapter 8 and is based on assuming the wave function in the form of a
single Slater determinant built of orthonormal spinorbitals. Car and Parrinello give their procedure for the density
functional theory (DFT), where a single Slater determinant also plays an important role.

67 This is because the formulas they satisfy are valid under this condition.
68 We may call it “mass.” In practical applications, μ is large, usually taken as a few hundreds of the electron mass,

because this ensures the agreement of theory and experiment.

http://booksite.elsevier.com/978-0-444-59436-5
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How does this follow from the equations? From a basic course in quantum chemistry (this will
be recalled in Chapter 8), we know that the orbital energy may be computed as the mean value

of the operator F̂ with the spinorbital ψi ; i.e.,
〈
ψi | F̂ψi

〉
. To focus our attention, let us assume

that ψi is localized in a small region of space (see Fig. 7.15).

Fig. 7.15. A scheme showing why the acceleration ψ̈i of the spinorbital ψi has to be of the same sign as −F̂ψi . Time (arbitrary
units) goes from up (t = 0) downward (t = 3), where the time step is�t = 1. On the left side, the changes (localized in 1-D space,
the x-axis) of ψi are shown in a schematic way ( ). It is seen that the velocity of the change is not constant and the corresponding
acceleration is equal to 1. Now let us imagine for simplicity that function F̂ψi has its nonzero values precisely where ψi �= 0 and
let us consider two cases: a) F̂ψi < 0 and b) F̂ψi > 0. In such a situation, we may easily foresee the sign of the mean value of

the energy
〈
ψi | F̂ψi

〉
of an electron occupying spinorbital ψi . In situation a), the conclusion for changes of ψi is maintain or, in

other words, even increase the acceleration ψ̈i making it proportional to −F̂ψi . In b), the corresponding conclusion is suppress
these changes or decrease the acceleration; e.g., making it negative as −F̂ψi . Thus, in both cases, we have μψ̈i = −F̂ψi , which

agrees with Eq. (7.19). In both cases, there is a trend to lower orbital energy εi =
〈
ψi | F̂ψi

〉
.
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From Fig. 7.15, it is seen that it would be desirable to have the acceleration ψ̈i with the same
sign as−F̂ψi . This is equivalent to increasing the changes that lower the corresponding orbital
energy, and to suppressing the changes that make it higher. The ψi spinorbitals obtained in the
numerical integration have to be corrected for orthonormality, as is assured by the second term
in Eq. (7.19).

The prize for the elegance of the Car-Parrinello method is the computation time, which allows
to treat systems currently up to a few hundreds of atoms (while MD may even deal with a million
atoms). The integration interval has to be decreased by a factor of 10 (i.e., 0.1 fs instead of 1 fs),
which allows us to reach simulation times of the order of 10 to100 picoseconds only instead of
nanoseconds, as in classical MD.

7.11 Cellular Automata

Another powerful tool is the cellular automata method invented by John (or Janos) von Neumann
and Stanisław Marcin Ulam (under the name of “cellular spaces”). The cellular automata are
mathematical models in which space and time both have a granular structure (similar to Monte
Carlo simulations on lattices, in MD only time has such a structure). A cellular automaton
consists of a periodic lattice of cells (nodes in space). In order to describe the system locally, we
assume that every cell has its “state” representing a vector of N components. Each component is
a Boolean variable; i.e., a variable having a logical value; (e.g., “0” for “false” and “1” for “true”).

A cellular automaton evolves using some propagation and collision (or actualization) rules
that are always of a local character. The local character means that (at a certain time step t and
a certain cell), the variables change their values depending only on what happened at the cell
and at its neighbors at time step t − 1. The propagation rules dictate what would happen next
with variables on the cell for each cell independently. But this may provoke a collision of the
rules because a Boolean variable on a cell may be forced to change by the propagation rules
related to two or more cells. We need a unique decision, and this comes from the collision, or
actualization, rules.

For physically relevant states, the propagation and collision rules for the behavior of such a
set of cells as time goes on may mirror what would happen with a physical system. This is why
cellular automata are appealing. Another advantage is that due to the locality mentioned above,
the relevant computer programs may be effectively parallelized, which usually significantly
speeds up computations. The most interesting cellular automata are those for which the rules
are of a nonlinear character (cf. Chapter 15).

Example 4. Gas Lattice Model
One of the simplest examples pertains to a lattice model of a gas. Let the lattice be regular

two-dimensional (Fig. 7.16).
Propagation Rules:

There are a certain number of pointlike particles of equal mass that may occupy the nodes
(cells) only and have only unit velocities pointing either in north-south or east-west directions,
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(a) (b)

Fig. 7.16. Operation of a cellular automaton–a model of gas. The particles occupy the lattice nodes (cells). Their displacement
from the node symbolizes which direction they are heading on with the velocity equal to 1 length unit per 1 time step. In the left
scheme (a), the initial situation is shown. In the right scheme the result of the one step propagation and one step collision is shown.
Collision only took place in one case (at a3b2), and the collision rule has been applied (of the lateral outgoing). The game would
become more dramatic if the number of particles were larger, and if the walls of the box as well as the appropriate propagation
rules (with walls) were introduced.

thus reaching the next row or column after a unit of time. We assign each cell a state which is
a four-dimensional vector of Boolean variables. The first component tells us whether there is
a particle moving north on the node (Boolean variables take 0 or 1), the second moving east,
the third south, and the fourth west. There should be no more than one particle going in one
direction at any node; therefore, a cell may correspond to 0,1,2,3,4 particles. Any particle is
shifted by one unit in the direction of the velocity vector.
Collision Rules:

If two particles are going to occupy the same state component at the same cell, the two particles
are annihilated and a new pair of particles is created with drawn positions and velocities. Any two
particles which meet at a node with opposite velocities acquire the velocities that are opposite
to each other and perpendicular to the old ones (the “lateral outgoing”; see Fig. 7.16).

This primitive model has nevertheless an interesting property. It turns out that such a system
attains an equilibrium state. No wonder that this approach with more complex lattices and
rules became popular. Using the cellular automata, we may study an extremely wide range of
phenomena, such as turbulent flow of air along a wing surface, electrochemical reactions, etc.
It is a simple and powerful tool of general importance.

Summary

• A detailed information about a molecule (in this case a three-atom complex C. . .AB) may be obtained making
use of the potential energy hypersurface for the nuclear motion computed as the ground-state electronic energy
(however, even in this simplified case, the AB distance has been frozen). After constructing the basis functions
appropriate for the five variables and applying the Ritz method for solving the Schrödinger equation, we obtain the
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rovibrational levels and corresponding wave functions for the system. This allows us to compute the microwave
spectrum.

• We may construct an approximation to the potential energy hypersurface for the motion of the nuclei by designing
what is known as a force field, or a simple expression for the electronic energy as a function of the position of
the nuclei. Most often in proposed force fields, we assume harmonicity of the chemical bonds and bond angles
(“springs”). The hypersurface obtained often has a complex shape with many local minima.

• Molecular Mechanics (should have the adjective “local”) represents

– The choice of the starting configuration of the nuclei (a point in the configuration space)
– Sliding downhill from the point (configuration) to the “nearest” local minimum, which corresponds to a

stable conformation with respect to small displacements in the configurational space

• Global molecular mechanics means

– The choice of the starting configuration of the nuclei
– Finding the global (the lowest-energy) minimum; i.e., the most stable configuration of the nuclei

While the local molecular mechanics represents a standard procedure, the global one is still in statu nascendi.

• Any of the potential energy minima can be approximated by a paraboloid. Then, for N nuclei, we obtain 3N −6
normal modes (i.e., harmonic and having the same phase) of the molecular vibrations. This represents important
information about the molecule, because it is sufficient to calculate the IR and Raman spectra frequencies (cf.
p. e17). Each of the normal modes makes all the atoms move, but some atoms may move more than others. It
often happens that a certain mode is dominated by the vibration of a particular bond or functional group and
therefore the corresponding frequency is characteristic for this bond or functional group, which may be very
useful in chemical analysis.

• Molecular mechanics does not involve atomic kinetic energy, molecular dynamics (MD) does. MD represents a

method of solving the Newton equations of motion69 for all the atoms of the system. The forces acting on each
atom at a given configuration of the nuclei are computed (from the potential energy V assumed to be known70)
as F j = −∇ j V for atoms j = 1, 2, . . . , N . Now that the forces are known, we calculate the acceleration vector,
and from that, the velocities and the new positions of the atoms. The system starts to evolve, as time goes on.
Important ingredients of the MD procedure are:

– Choice of starting conformation
– Choice of starting velocities
– Thermalization at a given temperature (with velocity adjustments to fulfill the appropriate Maxwell-

Boltzmann distribution)
– Harvesting the system trajectory
– Conclusions derived from the trajectory.

• In MD (also in the other techniques listed below), there is the possibility of applying a sequence (protocol) of
cooling and heating intervals in order to achieve a low-energy configuration of the nuclei (simulated annealing).
The method is very useful and straightforward to apply.

• Besides MD, there are other useful techniques describing the motion of the system:

– Langevin dynamics that allows taking into account the surrounding solvent (“at virtually no cost”)
– Monte Carlo dynamics is a powerful technique basing on drawing and then accepting/rejecting random

configurations by using the Metropolis criterion. The criterion says that if the energy of the new configuration
is lower, the configuration is accepted, and if it is higher, it is accepted with a certain probability.

– Car-Parrinello dynamics allows for the electronic structure to be changed “in flight,” when the nuclei move.
– Cellular automata is a technique of general importance, which divides the total system in cells. Each cell

is characterized by its state representing a vector with its components being Boolean variables. There are

69 In some cases, we refer to this as integration.
70 Usually, it is a force field.
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propagation rules that change the state, as time goes on, and collision rules, which solve conflicts of the
propagation rules. Both types of rules have a local character. Cellular automata evolution may have some
features in common with thermodynamic equilibria.

Main Concepts, New Terms

angular momenta addition (p. 343)
autocorrelation (p. 366)
Boolean variables (p. 382)
Car-Parrinello algorithm (p. 377)
cellular automaton (p. 381)
characteristic frequency (p. 359)
cooling protocol (p. 370)
entropy (p. 353)
force field (p. 345)
free energy (p. 353)
global minimum (p. 352)
global optimization (p. 354)
Jacobi coordinate system (p. 341)
kinetic minimum (p. 353)
Langevin dynamics (p. 371)

Lennard-Jones potential (p. 347)
Metropolis algorithm (p. 374)
molecular dynamics (p. 364)
molecular mechanics (p. 349)
Monte Carlo dynamics (p. 371)
Monte Carlo with Replica Exchange (p. 375)
normal modes (p. 355)
rovibrational spectrum (p. 340)
simulated annealing (p. 370)
spatial correlation (p. 366)
thermalization (p. 367)
thermodynamic minimum (p. 353)
time correlation (p. 366)
torsional potential (p. 349)

From the Research Front

The number of atoms taken into account in MD nowadays may reach a million. The real problem is not the size of the
system, but rather its complexity and the wealth of possible structures, with their too large number to be investigated.
Some problems may be simplified by considering a quantum-mechanical part in the details and a classical part
described by Newton equations. Another important problem is to predict the 3-D structure of proteins, starting from
the available amino acid sequence. Every two years beginning in 1994, CASP (Critical Assessment of techniques
for protein Structure Prediction) has been organized in California. CASP is a kind of scientific competition, in which
theoretical laboratories (knowing only the amino acid sequence) make blind predictions about 3-D protein structures
about to be determined in experimental laboratories. Most of the theoretical methods are based on the similarity of
the sequence to a sequence from the Protein Data Bank of the 3-D structures, only some of the methods are related
to chemical physics. Fig. 7.17 shows an example of the latter.

Ad Futurum

The maximum size of the systems investigated by the MM and MD methods will increase systematically to several
million atoms in the near future. A critical problem will be the choice of the system to be studied, as well as the
question to be asked. Very probably non-equilibrium systems will become more and more important in such areas
as concerning impact physics, properties of materials subject to various stresses, explosions, self-organization (see
Chapter 13), and, most important, chemical reactions. At the same time, the importance of MD simulations of
micro-tools of dimensions of tens of thousands Å will very probably increase.
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Fig. 7.17. One of the target proteins in the 2004 CASP6 competition. The 3-D structure (in ribbon representation) was obtained
for the putative nitroreductase, one of the 1877 proteins of the bacterium Thermotoga maritima, which lives in geothermal marine
sediments. The energy expression that was used in the theoretical calculations took into account the physical interactions (such
as hydrogen bonds, hydrophobic interactions, etc.; see Chapter 13), as well as an empirical potential deduced from representative
proteins’ experimental structures deposited in the Brookhaven Protein Data Bank (no bias toward the target protein). The molecule
represents a chain of 206 amino acids; i.e., about 3000 heavy atoms. Both theory (CASP6 blind prediction) and experiment
(carried out within CASP6 as well) give the target molecule containing five α-helices and two β- pleated sheets (wide arrows).
These secondary structure elements interact and form the unique (native) tertiary structure, which is able to perform its biological
function. (a) predicted by A. Kolinski and K. Bujnicki by the Monte Carlo method, and (b) determined experimentally by X-ray
diffraction. Both structures in atomic resolution differ (rms) by 2.9 Å. Reproduced courtesy of Professor Andrzej Koliński.

Additional Literature
A. R. Leach, Molecular Modelling. Principles and Applications, Longman, Prentice Hall, Upper Saddle River, New
Jersey, (2001).

This book is considered the “bible” of theoretical simulations.
M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, Oxford Science Publications, Clarendon Press,
Oxford (1987).

This book offers a more theoretical take on this subject.
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Questions

1. The energy V (R) as a potential energy for the motion of the nuclei in the adiabatic approximation:

a. allows to identify the most stable configuration of the nuclei as such a point of the configurational space,
for which ∇V (R) = 0

b. differs for two isotopomers
c. when in the Born-Oppenheimer approximation gives the same V (R) for two isotopomers
d. the gradient ∇V (R) calculated for a stable configuration R of the nuclei is equal 0

2. The symbols in the Hamiltonian Ĥ = − �
2

2μR2
d

d R R2 d
d R + l̂2

2μR2 + ĵ2

2μABr2
eq
+V for a triatomic system C. . .AB

mean:

a. V stands for the ground-state electronic energy as a function of the configuration of the nuclei
b. R = the CA distance
c. req = the AB distance

d. ĵ2 means the operator of the square of the angular momentum of C with respect to the center of mass of
AB

3. A force field:

a. represents an approximate ground state electronic energy as a function of the configuration of the nuclei
b. represents an approximation for the total energy of the molecular system
c. allows to compute the approximate forces acting on each nucleus at a given nuclear configuration
d. means an electric field created by the molecule.

4. The normal mode frequencies for a molecule:

a. pertain to a particular minimum of the potential energy (they will be different for another minimum)
b. are calculated assuming that the vibrational amplitudes are small
c. take into account a small anharmonicity
d. are different for different isotopomers

5. The equation for the normal modes (A−ω2
k 1)Lk= 0 (M is a diagonal matrix of atom masses):

a. if A is computed for a point, for which the gradient of the potential energy is zero, it may happen that ωk
is imaginary

b. if A = M− 1
2 V′′M− 1

2 , where V′′ stands for the matrix of second derivatives computed for a minimum of
the potential energy, ωk ≥ 0 for all k

c. the vectors Lk represent the columns of A
d. T r(V′′) < 0, computed at a point where ∇V = 0, means that the point is a saddle point

6. One of the following sets of the wave numbers (cm−1) in an IR spectrum may correspond to vibrations of the
following bonds: C–H, C–C, C==C:

a. 2900, 1650, 800
b. 800, 2900, 1650
c. 1650, 800, 2900
d. 2900, 800, 1650

7. In the simulated annealing method in molecular mechanics:

a. one adapts the velocity of particles to the Maxwell distribution for a given temperature (that varies during
the simulation)

b. the goal is to find the most stable structure
c. one carries out computation with slowly and monotonically decreasing temperature
d. one alternatively increases and decreases the temperature
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8. In the Metropolis algorithm used in the Monte Carlo method (for temperature T ), a new configuration of the
nuclei is accepted

a. only if its energy is lower than the energy of the current configuration
b. always
c. always, if its energy is lower than the energy of the current one
d. sometimes, even if its energy is higher than the energy of the current configuration

9. In the Langevin dynamics, the atoms of the solvent molecules:

a. represent a source of stochastic forces acting on the molecule under consideration
b. are responsible for a friction felt by moving atoms of the molecule under consideration
c. are treated differently than the atoms of the molecule under consideration
d. are treated in the same way as the atoms of the molecule under consideration

10. In the Car-Parrinello dynamics:

a. the nuclei move according to the Newton dynamics, while for the electrons, one solves the Schrödinger
equation for each configuration of the nuclei

b. the electronic charge distribution adjusts to the current positions of the nuclei, while the position of the
nuclei changes due to the electronic charge distribution

c. each electron is considered as having the mass of 1 a.u.
d. when the nuclei move, the electronic charge distribution changes in such a way as to decrease the electronic

energy at any position of the nuclei

Answers

1b,c,d, 2a,c, 3a,c, 4a,b,d, 5a,b, 6d, 7a,b,d, 8c,d, 9a,b,c, 10b,d





CHAPTER 8

Orbital Model of Electronic
Motion in Atoms and Molecules

“Everything should be made as simple as possible, but not simpler.”
Albert Einstein

Where Are We?

We are in the upper part of the main trunk of the TREE, most important for chemists.

An Example
What is the electronic structure of atoms? How do atoms interact in a molecule? Two neutral moieties (say, hydrogen
atoms) attract each other with a large force of a similar order of magnitude to the Coulombic forces between two ions.
This is quite surprising. What pulls these neutral objects toward one another? These questions are at the foundations
of chemistry.

What Is It All About?
Hartree-Fock Method–A Bird’s-eye View (�) p. 393

• Spinorbitals as the One-Electron Building Blocks
• Variables
• Slater Determinant–An Antisymmetric Stamp
• What Is the Hartree-Fock Method All About?

Toward the Optimal Spinorbitals and the Fock Equation (�) p. 399

• Dirac Notation for Integrals
• Energy Functional to Be Minimized
• Energy Minimization with Constraints
• Slater Determinant Subject to a Unitary Transformation
• The Ĵ and K̂ Operators Are Invariant
• Diagonalization of the Lagrange Multipliers
• Optimal Spinorbitals Are Solutions of the Fock Equation (General Hartree-Fock Method)
• “Unrestricted” Hartree-Fock (UHF) Method
• The Closed-Shell Systems and the Restricted Hartree-Fock (RHF) Method
• Iterative Solution: The Self-Consistent Field Method

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00008-8
© 2014 Elsevier B.V. All rights reserved. 389

http://dx.doi.org/10.1016/B978-0-444-59436-5.00008-8
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Total Energy in the Hartree-Fock Method (�) p. 418
Computational Technique: Atomic Orbitals as Building Blocks of the Molecular Wave Function (�) p. 420

• Centering of the Atomic Orbital
• Slater-Type Orbitals (STOs)
• Gaussian-Type Orbitals (GTOs)
• Linear Combination of the Atomic Orbitals (LCAO) Method
• Basis Sets of Atomic Orbitals
• The Hartree-Fock-Roothaan Method (SCF LCAO MO)
• Some Practical Problems

Back to the Basics ( � �) p. 437
• When Does the RHF Method Fail? (�)
• Fukutome Classes (�)

RESULTS OF THE HARTREE-FOCK METHOD

Mendeleev Periodic Table (�) p. 446
• Similar to the Hydrogen Atom–The Orbital Model of an Atom
• Shells and Subshells
• Educated Guess of Atomic Orbitals–The Slater Rules

The Nature of the Chemical Bond (�) p. 451
• The Simplest Chemical Bond: H+2 in the MO Picture
• Can We See a Chemical Bond?

Excitation Energy, Ionization Potential, and Electron Affinity (RHF approach) (�) p. 458
• Approximate Energies of Electronic States
• Singlet or Triplet Excitation?
• Hund’s Rule
• Hund’s Rules for the Atomic Terms
• Ionization Potential and Electron Affinity (Koopmans’s Theorem)

Toward Chemical Picture–Localization of MOs (�) p. 467
• Can a Chemical Bond Be Defined in a Polyatomic Molecule?
• The External Localization Methods
• The Internal Localization Methods
• Examples of Localization
• Localization in Practice–Computational Technique
• The Chemical Bonds of σ, π, δ Symmetry
• Electron Pair Dimensions and the Foundations of Chemistry
• Hybridization or Mixing One-Center AOs

A Minimal Model of a Molecule (�) p. 489
Valence Shell Electron Pair Repulsion (VSEPR) Algorithm (�) p. 491
The Isolobal Analogy (�) p. 496

The Born-Oppenheimer (or adiabatic) approximation is the central point of this book (note its position in the
TREE). Thanks to the approximation, we can consider separately two coupled problems concerning molecules:

• The motion of the electrons at fixed positions of the nuclei (to obtain the electronic energy)
• The motion of nuclei in the potential representing the electronic energy of the molecule (see Chapter 7).

From now on, we will concentrate on the motion of the electrons at fixed positions of the nuclei (the Born-
Oppenheimer approximation, p. 269).



Orbital Model of Electronic Motion in Atoms and Molecules 391

To solve the corresponding Eq. (6.8), we have at our disposal the variational and the perturbation methods. The
latter should have a reasonable starting point (i.e., an unperturbed system). This is not the case in the problem that we
want to consider at the moment. Thus, only the variational method remains. If so, a class of the trial functions should
be proposed. In this chapter, the trial wave function will have a very specific form, bearing significant importance
for the theory. We mean here the so-called Slater determinant, which is composed of molecular orbitals. At a certain
level of approximation, each molecular orbital is a “parking place” for two electrons. We will now learn on how to
get the optimum molecular orbitals (using the Hartree-Fock method). Despite some quite complex formulas, which
will appear below, the main idea behind them is extremely simple. It can be expressed in the following way.

Let us consider a traffic scenario where the cars (electrons) move past fixed positions of buildings (nuclei). The
motion of the cars is very complex (as it is for the electrons) and therefore, the problem is extremely difficult. How
may such a motion be described in an approximate way? To describe such a complex motion, one may use the
so-called mean field approximation (paying the price of lower quality). In the mean field approximation method,
we focus on the motion of one car only, considering its motion in such way that the car avoids those streets that
are usually most jammed. In this chapter, we will treat the electrons in a similar manner (leaving the difficulties of
considering the correlation of the motions of the electrons to Chapter 10). Now, the electrons will not feel the true
electric field of the other electrons (as it should be in a precise approach), but rather their mean electric field (i.e.,
averaged over their motions).

Translating it into the quantum mechanical language, the underlying assumptions of the mean field method for
the N identical particles (here: electrons) are as follows:

• There is a certain “effective” one-particle operator F̂(i) of an identical mathematical form for all particles

i = 1, 2, . . .N , which has the eigenfunctions φk , i.e., F̂φk = εkφk

•
〈
�|Ĥ�

〉
≈
〈
�̃|Ĥ e f �̃

〉
, where �̃ (normalized) is a wave function that approximates the exact wave function

� for the total system, Ĥ is the electronic Hamiltonian (in the clamped nuclei approximation, as discussed in
Chapter 6), and Ĥ e f = ∑N

i=1 F̂(i). In such a case, the eigenvalue equation Ĥe f �N
i=1φi (i) = E0�

N
i=1φi (i)

holds, and the approximate total energy is equal to E0 =
∑N

i=1 εk , as if the particles were independent.

Any mean field method needs to solve two problems:

• How should �̃ be constructed using N eigenfunctions φk?

• What is the form of the one-particle effective operator F̂?

These questions will be answered in this chapter.
Such effectively independent, yet interacting particles, are called quasiparticles, or as we sometimes used to say,

bare particles dressed up by the interaction with others.
It is worth remembering that the mean field method is known by several different names in chemistry:

• One-determinant approximation
• One-electron approximation
• One-particle approximation
• Molecular orbital method
• Independent-particle approximation
• Mean field approximation
• Hartree-Fock method
• Self-consistent field method (as regards practical solutions).

It will be shown how the mean field method implies that milestone of chemistry: the periodic table of chemical
elements.

Next, we will endeavor to understand why two atoms create a chemical bond, and also what affects the ionization
energy and the electron affinity of a molecule.

Then, still within the molecular orbital scheme, we will show how we can reach a localized description of a
molecule, with chemical bonds between some atoms, with the inner electronic shells, and the lone electronic pairs.
The last terms are elements of a rich and very useful language commonly used by chemists.
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Why Is This Important?

Contemporary quantum chemistry uses better methods than the mean field, as described in this chapter. We will get
know them in Chapters  10 and 11. Yet all these methods start from the mean field approximation, and in most cases,
they only perform cosmetic changes in energy and in electron distribution. For example, the methods described here
yield about 99% of the total energy of a system.1 There is one more reason why this chapter is important. Methods
beyond the one-electron approximation are computationally very time-consuming (hence they may be applied only
to small systems), while the molecular orbital approach is the “daily bread” of quantum chemistry. It is a sort of
standard method, and the standards have to be learned.

What Is Needed?

• Postulates of quantum chemistry (Chapter 1)
• Operator algebra, Hermitian operators (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5,

p. e7)
• Complete set of functions (Chapter 1)
• Hilbert space (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5, p. e7, recommended)
• Determinants (see Appendix A available at booksite.elsevier.com/978-0-444-59436-5, p. e1, necessary)
• Slater-Condon rules (see Appendix M available at booksite.elsevier.com/978-0-444-59436-5, p. e109, only the

results are needed)
• Lagrange multipliers (see Appendix N available at booksite.elsevier.com/978-0-444-59436-5, p. e121)
• Mulliken population analysis (see Appendix S available at booksite.elsevier.com/978-0-444-59436-5, p. e143,

occasionally used)

Classical Works
This chapter deals with the basic theory explaining the electronic structure of atoms and molecules. This is why we
begin with Dmitri Ivanovich Mendeleev, who discovered in 1865, when writing his textbook Osnovy Khimii (Princi-
ples of Chemistry), St. Petersburg, Tovarishchestvo Obshchestvennaya Polza, 1869–71, his famous periodic table of
elements, which is one of the greatest human achievements. � Gilbert Newton Lewis, in the paper “The atom and the
molecule,” J. Amer. Chem. Soc., 38, 762 (1916) and Walter Kossel, in the article “Über die Molekülbildung als Frage
des Atombaus” published in Annalen der Physik, 49, 229 (1916), introduced such important algorithmic theoretical
tools as the octet rule and stressed the importance of the noble gas electronic configurations. � As soon as quantum
mechanics was formulated in 1926, Douglas R. Hartree published several papers in the Proceedings of the Cambridge
Philosophical Society. 24, 89 (1927); 24, 111 (1927); 26, 89 (1928); entitled “The wave mechanics of an atom with a
non-Coulomb central field,” containing the computations for atoms such large as Rb and Cl. These were self-consistent
ab initio2 computations, and the wave function was assumed to be the product of spinorbitals. � The LCAO approxi-
mation (for the solid state) was introduced by Felix Bloch in his Ph.D. thesis “Über die Quantenmechanik der Elektro-
nen in Kristallgittern,” University of Leipzig, 1928, and three years later, Erich Hückel used this method to describe the
first molecule (benzene) in a publication “Quantentheoretische Beitrage zum Benzolproblem. I. Die Elektronenkon-
figuration des Benzols,” which appeared in Zeitschrift für Physik, 70, 203 (1931). � Vladimir Fock introduced the
antisymmetrization of the spinorbital product in his publication “Näherungsmethode zur Lösung des quantenmechani-
schen Mehrkörperproblems” in Zeitschrift für Physik, 61, 126 (1930), and ibid. 62, 795 (1930).� John Slater proposed
the idea of the multi-configurational wave function (“Cohesion in monovalent metals,” Phys. Rev., 35, 509 (1930)). �

1 In physics and chemistry, we are seldom interested in the total energy. The energy differences of various states
are important. Sometimes such precision is not enough, but the result speaks for itself.

2 That is, they were derived from the first principles of (non-relativistic) quantum mechanics. Note that these
scientists worked incredibly fast (with no help from e-mail or computers).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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The Hartree-Fock method in the LCAO approximation was formulated by Clemens C.J. Roothaan in his work “New
developments in molecular orbital theory,” published in the Rev. Mod. Phys., 23, 69 (1951), and, independently, by
George G. Hall in a paper called “The molecular orbital theory of chemical valency,” in Proc. R. Soc. (London), A205,
541 (1951). � The physical interpretation of the orbital energies in the Hartree-Fock method was given by Tjalling C.
Koopmans in his only quantum chemical paper “On the assignment of wave functions and eigenvalues to the individual
electron of an atom,” published in Physica, 1, 104 (1934). � The first localized orbitals (for the methane molecule)
were computed by Charles A. Coulson despite the difficulties of wartime (Trans. Faraday Soc. 38, 433 (1942)). �
Hideo Fukutome, first in an article “Spin Density Wave and Charge Transfer Wave in Long Conjugated Molecules”
in Progress in Theoretical Physics, 40 (1968) 998, and then, in several following papers, analyzed general solutions
for the Hartree-Fock equations from the symmetry viewpoint, and showed exactly eight classes of such solutions.

In the previous chapter, the motion of the nuclei was considered. In the Born-Oppenheimer
approximation (Chapter 6), the motion of the nuclei takes place in the potential, which is the
electronic energy of a system (being a function of the nuclei position, R, in the configurational
space). The electronic energy E0

k (R) is an eigenvalue given in Eq. 6.8 (adapted to the polyatomic
case, hence R → R): Ĥ0ψk(r;R) = E0

k (R)ψk(r;R). We will now deal exclusively with this
equation; i.e., we will consider the electronic motion at fixed positions of the nuclei (clamped
nuclei). Thus, our goal is twofold: we are interested in what the electronic structure looks like
and in how the electronic energy depends on the positions of the nuclei.3

Any theoretical method applicable to molecules may be also used for atoms (albeit very
accurate wave functions, even for simple atoms, are not easy to calculate).4 In fact, for atoms,
we know the solutions quite well only in the mean field approximation (i.e., the atomic orbitals).
Such orbitals play an important role as building blocks of many-electron wave functions.

8.1 Hartree-Fock Method–A Bird’s-Eye View

Douglas R. Hartree (1897–1958) was born and died in
Cambridge, U.K. He was a British mathematician and
physicist, professor at Manchester University, and then
professor of mathematical physics at Cambridge. Until
1921, his interest was in the development of numerical
methods for anti-aircraft artillery (he had some experi-
ence from World War I), but a lecture by Niels Bohr
has completely changed his career. Hartree imme-
diately started investigating atoms. He used the atomic
wave function in the form of the spinorbital product.
Hartree learned to use machines to solve differential

3 In the previous chapter, the ground-state electronic energy E0
0(R) was denoted as V (R).

4 If an atom is considered in the Born-Oppenheimer approximation, the problem is even simpler, and the electronic
equation also holds; we can then take, e.g., R = 0. People still try to compute correlated wave functions (i.e.,
beyond the mean field approximation; see Chapter 10) for heavier atoms. Besides, relativistic effects (see Chapter
3) play increasingly important roles for such atoms. Starting with magnesium, they are larger than the correlation
corrections. Fortunately, the relativistic corrections for atoms are largest for the inner electronic shells, which are
least important for chemists.
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equations while in Boston, and then he built one for
himself at Cambridge. The machine was invented by
Lord Kelvin, and constructed by Vannevar Bush in
the United States. The machine integrated equations
using a circle which rolled on a rotating disk. Later,
the first electronic computer, ENIAC was used, and
Hartree was asked to come and help to compute mis-
sile trajectories.

An excerpt from Solid State and Molecular
Theory, Wiley, London, 1975 by John C. Slater:

“Douglas Hartree was very distinctly of the matter-
of-fact habit of thought that I found most congenial.
The hand-waving magical type of scientist regarded
him as a ‘mere computer.’ Yet he made a much
greater contribution to our knowledge of the behav-
ior of real atoms than most of them did. And while
he limited himself to atoms, his demonstration of
the power of the self-consistent field for atoms is
what has led to the development of that method for
molecules and solids as well.”

Vladimir A. Fock (1898–1974),
Russian physicist, professor
at Leningrad University (Saint
Petersburg), led investigations
on quantum mechanics, gravity
theory, general relativity theory,
and in 1930, while explain-
ing atomic spectra, invented
the antisymmetrization of the
spinorbitals product.

Before introducing the detailed formal-
ism of the Hartree-Fock method, let us
look at its principal features. It will help
us to understand our mathematical goal.

First of all, the positions of the nuclei
are frozen (Born-Oppenheimer approx-
imation) and then we focus on the wave
function of N electrons. Once we want
to move nuclei, we need to repeat the
procedure from the beginning (for the
new position of the nuclei).

8.1.1 Spinorbitals as the One-Electron Building Blocks

Although this comparison is not precise, the electronic wave function for a molecule is built of
segments, as a house is constructed from bricks.

The electronic wave function of a molecule containing N electrons depends on 3N Cartesian
coordinates of the electrons and on their N spin coordinates (for each electron, its σ = 1

2 or−1
2 ).

Thus, it is a function of position in 4N–dimensional space. This function will be created out of
simple “bricks”; i.e., molecular spinorbitals. Each of those will be a function of the coordinates
of one electron only: three Cartesian coordinates and one spin coordinate (cf., Chapter 1).
A spinorbital is therefore a function of the coordinates in the 4-D space,5 and in the most
general case, a normalized spinorbital reads as (see Fig. 8.1):

φi (r, σ ) = ϕi1(r)α(σ )+ ϕi2(r)β(σ ), (8.1)

5 The analogy of house and bricks fails here because both the house and the bricks come from the same 3-D space.
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Fig. 8.1. According to Eq. (8.1), a spinorbital is a mixture of α and β orbital components: ϕi1(r) and ϕi1(r), respectively. This
image shows two sections of such a spinorbital (z denotes the Cartesian axis perpendicular to the plane of the page): section
z = 0, σ = 1

2 (solid isolines) and section z = 0, σ = − 1
2 (dashed isolines). In practical applications, most often a restricted form

of spinorbitals is used: either ϕi1 = 0 or ϕi2 = 0; i.e., a spinorbital is taken as an orbital part times spin function α or β.

where the orbital components ϕi1 and ϕi2 (square-integrable functions) that depend on position
r of the electron can adopt complex values, while the spin functions α and β, which depend on
the spin coordinate σ , are defined in Chapter 1, p. 28.

In the vast majority of quantum mechanical calculations, the spinorbitalφi is a real function,
and ϕi1 and ϕi2 are such that either ϕi1 = 0 or ϕi2 = 0.

Yet for the time being we do not introduce any significant6 restrictions for the spinorbitals.
Spinorbital φi will adopt different complex values for various spatial coordinates, as well as for
a given value7 of the spin coordinate σ .

8.1.2 Variables

Thus, the variables, which the wave function depends on, are as follows:

x1, y1, z1, σ1 or briefly 1,

x2, y2, z2, σ2 or briefly 2,

. . . . . . . . . . . .

xN , yN , zN , σN or briefly N ,

where xi , yi , zi are the Cartesian coordinates and σi is the spin coordinate of electron i .

6 The normalization condition does not reduce the generality of the approach.
7 That is, we put σ = 1

2 or σ = − 1
2 .
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Fig. 8.2. Diagram of the sets among which the solutionψ of the Schrödinger equation is sought. The Q set is the one of all square-
integrable functions, variables is the set of the functions with variables as those of the solution of the Schrödinger equation, ψ ,
andantisym is the set of the functions that are antisymmetric with respect to the exchange of coordinates of any two electrons. The
solutions of the Schrödinger equation,ψ , will be sought in the common part of these three sets:ψ ∈  = Q∩variables∩antisym .
The Slater represents the set of single Slater determinants built of normalizable spinorbitals. The exact wave function always
belongs to ψ ∈ −Slater .

An exact wave function ψ(x1, y1, z1, σ1, x2, y2, z2, σ2, . . .) = ψ(1, 2, . . ., N ) belongs (see
Fig. 8.2) to the set , which is the common part of the following sets:

• Set Q of all square-integrable functions
• Set variables of all the functions dependent on the abovementioned variables
• Setantisym of all the functions that are antisymmetric with respect to the mutual exchange

of the coordinates of any two electrons (p. 34):

ψ ∈  = Q ∩variables ∩antisym .

8.1.3 Slater Determinant–An Antisymmetric Stamp

There should be something in the theory that assures us that if we renumber the electrons, no
theoretical prediction will change. The postulate of the antisymmetric character of the wave
function with respect to the exchange of the coordinates of any two electrons, certainly ensures
this (Chapter 1, p. 33). The solution of the Schrödinger equation for a given stationary state of
interest should be sought among such functions.
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John C. Slater (1901–1976), American physicist, for 30 years
a professor and dean at the Physics Department of the Mas-
sachusetts Institute of Technology, then at the University of
Florida, Gainesville, where he participated in the Quantum
Theory Project. His youth was in the stormy period of the intense
development of quantum mechanics, and he participated vividly
in it. For example, in 1926–1932, he published articles on the
ground state of the helium atom, the screening constants (Slater
orbitals), the antisymmetrization of the wave function (Slater
determinant), and the algorithm for calculating the integrals (the
Slater-Condon rules).

A Slater determinant is a function of the coordinates of N electrons, which automatically
belongs to :

ψ = 1√
N !

∣∣∣∣∣∣∣∣
φ1(1) φ1(2) . . . φ1(N )
φ2(1) φ2(2) . . . φ2(N )
. . . . . . . . . . . . . . . . . . . . . . . .

φN (1) φN (2) . . . φN (N )

∣∣∣∣∣∣∣∣
, (8.2)

where φi are the orthonormal8 one-electron functions (i.e., molecular spinorbitals).9 The Slater
determinants form a subset Slater ⊂ .

A Slater determinant carries two important attributes of the exact wave function:

• Suppose that we want to calculate the probability density that two electrons with the same
spin coordinate σ are in the same place (i.e., that these two electrons have all their coordi-
nates, spatial and spin ones, identical). If so, then the two columns of the abovementioned
determinant are identical. And this means that the determinant becomes equal to zero.10

From this, and from the continuity of the wave function, we may conclude that

electrons of the same spin cannot approach each other.

• Let us now imagine two electrons with opposite values of their spin coordinate σ . If these
two electrons take the same position in space, the Slater determinant will not vanish because
in general, there is nothing that forces φi (1) be equal to φi (2), when 1 ≡ (r1, σ = 1

2

)
and

8 It is most often so, and then the factor standing in front of the determinant ensures the normalization. The spinorbitals
could be non-normalized (but if they are to describe a stationary state, they should be square-integrable). They
also do not need to be mutually orthogonal, but certainly they need to be linearly independent. Any attempt to
insert linearly dependent functions in the determinant will have a “tragic outcome”–we will get 0. It comes from
the properties of the determinant (if a row is a linear combination of the others, then the determinant is zero). It
also follows that if we have a set of non-orthogonal spinorbitals in a Slater determinant, we could orthogonalize
them by making the appropriate linear combinations. This would multiply the original Slater determinant by an
irrelevant constant. This is why it is no loss of generality to require the spinorbitals to be orthonormal.

9 In the theory of the atomic nucleus, the determinant wave function for the nucleons (fermions) is also used.
10 Indeed, this is why we exist. Two objects built out of fermions (e.g., electrons) cannot occupy the same position

in space. If it were not so, our bodies would sink into the ground.
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2 ≡ (r1, σ = −1
2

)
for i = 1, 2, . . . From this non-vanishing, and from the continuity of

the wave function (which means a non-zero probability for having both electrons close in
space), we conclude that

electrons of opposite spins can approach each other.

8.1.4 What Is the Hartree-Fock Method All About?

The Hartree-Fock method is a variational one (p. 232); i.e., it uses the variational wave
function ψ in the form of a single Slater determinant and minimizes the mean value of the

Hamiltonian ε =
〈
ψ |Ĥψ

〉
〈ψ |ψ〉 producing the Hartree-Fock energy εmin = EH F =

〈
ψH F |ĤψH F

〉
〈ψH F |ψH F 〉 .

The Slater determinant is an antisymmetric function, but an antisymmetric function does not
necessarily need to take the shape of a Slater determinant.

Taking the variational wave function in the form of one determinant means an automatic
limitation to the subset Slater for searching for the optimum wave function. In fact, we
should search the optimum wave function in the set. Thus, it is an approximation for the
solution of the Schrödinger equation, with no chance of representing the exact result.

Why are Slater determinants used so willingly? There are two reasons for this:

• A determinant is a kind of “stamp.” Whatever you put inside, the result (if not zero) is
antisymmetric by definition; i.e., it automatically satisfies one of the postulates of quantum
mechanics.

• It is constructed out of simple “bricks”–the one-electron functions (spinorbitals).

The Slater determinants built out of the complete set of spinorbitals do form the com-
plete set.

Because of this, the true wave function can take the form of a linear combination of the
determinants (we will discuss this later in this book, in Chapter 10).11

11 But never represents a single determinant because the Hamiltonian of a molecule is not the sum of the effective
Hamiltonians for the individual electrons.
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AN ANALOGY–THE COUPLED HARMONIC OSCILLATORS (1 of 5): The
derivation of the Fock equation given below looks more complex than it really is. We
decided to go in parallel and illustrate all steps of the Fock equation derivation in
a much simpler case of the two coupled harmonic (bosonic, 1-D) oscillators. These
illustrations will be given as the inserts like the present one. Thus, reading only
the inserts in the text, the reader is able to catch the very essence of what is being
explained in the main text.
The Hamiltonian for the two oscillators will be given by Ĥ = T̂ + V̂ , where

T̂ = − �
2

2m1

∂2

∂x2
1
− �

2

2m2

∂2

∂x2
2

and V = 1
2 kx2

1+ 1
2 kx2

2+λx4
1 x4

2 , with λx4
1 x4

2 as the coupling term.

Considering the bosonic nature of the particles (the wave function has to be symmetric; see
Chapter 1), we will use ψ = φ(1)φ(2) as a variational function, where φ is a normalized
spinorbital. This represents a restriction analogous to taking a single Slater determinant
because an exact wave function should not be ψ = φ(1)φ(2), but rather �i jφi (1)φ j (2).

8.2 Toward the Optimal Spinorbitals and the Fock Equation

8.2.1 Dirac Notation for Integrals

The integrals over the spatial and spin coordinates (φ are the spinorbitals, ϕ - the orbitals) in

the Dirac notation will be denoted with angle brackets 〈〉 (ĥ denotes a one-electron operator
and r12 – the distance between electrons 1 and 2), as follows:
for the one-electron integrals,

〈
i |ĥ| j

〉
≡
∑
σ1

∫
dx1dy1dz1φ

∗
i (1)ĥφ j (1), (8.3)

and for the two-electron integrals,

〈i j |kl〉 ≡
∑
σ1

∑
σ2

∫
dx1dy1dz1

∫
dx2dy2dz2φ

∗
i (1)φ

∗
j (2)

1

r12
φk(1)φl(2). (8.4)

The integrals over the spatial coordinates (only) will be denoted by round brackets (), for the
one-electron integrals:

(
i |ĥ| j

)
≡
∫

dx1dy1dz1ϕ
∗
i (1)ĥ(1)ϕ j (1), (8.5)

and for the two-electron integrals:

(i j |kl) ≡
∫

dx1dy1dz1

∫
dx2dy2dz2ϕ

∗
i (1)ϕ

∗
j (2)

1

r12
ϕk(1)ϕl(2). (8.6)
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This is called Dirac notation (of the integrals).12

8.2.2 Energy Functional to Be Minimized

Applying the first Slater–Condon rule,13 we get the following equation for the mean value of
the Hamiltonian (without a constant nuclear repulsion) calculated using the normalized Slater
one-determinant function ψ ; i.e., the energy functional E[ψ]:

E[ψ] = 〈ψ |Ĥ |ψ〉 =
N∑

i=1

〈i |ĥ|i〉 + 1

2

N∑
i, j=1

(〈i j |i j〉 − 〈i j | j i〉), (8.7)

where the indices symbolize the spinorbitals, and the symbol ĥ

ĥ(1) = −1

2
�1−

M∑
a=1

Za

ra1
(8.8)

is the one-electron operator (in atomic units) of the kinetic energy of the electron plus the
operator of the nucleus-electron attraction (there are M nuclei).

AN ANALOGY–THE COUPLED HARMONIC OSCILLATORS (continued, 2 of 5):

The expression for the mean value of the Hamiltonian takes the form E[φ] =
〈
ψ |Ĥψ

〉
=〈

φ(1)φ(2)|
(

ĥ(1)+ ĥ(2)
)
φ(1)φ(2)

〉
+ λ 〈φ(1)φ(2)∣∣x4

1 x4
2 φ(1)φ(2)

〉 = 〈φ(1)φ(2)|ĥ(1)
φ(1)φ(2)

〉
+
〈
φ(1)φ(2)|ĥ(2)φ(1)φ(2)

〉
+ λ 〈φ(1)∣∣x4

1 φ(1)
〉 〈
φ(2)

∣∣x4
2 φ(2)

〉 = 〈φ(1)|ĥ(1)
φ(1)

〉
+
〈
φ(2)|ĥ(2)φ(2)

〉
+ λ 〈φ(1)∣∣x4

1 φ(1)
〉 〈
φ(2)

∣∣x4
2 φ(2)

〉 = 2
〈
φ|ĥφ

〉
+ λ 〈φ|x4φ

〉2
,

where one-particle operator ĥ(i) = − �
2

2mi

∂2

∂x2
i
+ 1

2 kx2
i .

12 Sometimes one uses Coulomb notation [(i j |kl)Dirac ≡ (ik| jl)Coulomb, also 〈i j |kl〉Dirac ≡ 〈ik| jl〉Coulomb],
which emphasizes the physical interpretation of the two electron integral as the energy of the Coulombic interaction
of two charge distributions ϕ∗i (1)ϕk(1) for electron 1 and ϕ∗j (2)ϕl (2) for electron 2. Dirac notation for the two-
electron integrals emphasizes the two-electron functions “bra” and “ket” from the general Dirac notation (p. 20).
In this book, we will consequently use Dirac notation (both for integrals using spinorbitals, and for those using
orbitals, the difference being emphasized by the type of bracket).

13 See Appendix M available at booksite.elsevier.com/978-0-444-59436-5, p. e109; look at this rule on p. e119 (you
may leave out its derivation).

http://booksite.elsevier.com/978-0-444-59436-5
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8.2.3 Energy Minimization with Constraints

We would like to find such spinorbitals (“the best ones”), that any change in them leads to
an increase in energy E[ψ]. But the changes of the spinorbitals need to be such that the
above formula still holds, and it would hold only by assuming the orthonormality of the
spinorbitals. This means that there are some constraints for the spinorbitals:

〈i | j〉 − δi j = 0, (8.9)

for i, j = 1, 2, . . .N .

Thus we seek the conditional minimum. We will find it using the Lagrange multipliers
method (see Appendix N available at booksite.elsevier.com/978-0-444-59436-5, p. e121). In
this method, the equations of the constraints multiplied by the Lagrange multipliers are added (or
subtracted, does not matter) to the original function that is to be minimized. Then we minimize
the function as if the constraints did not exist.

We do the same for the functionals. The necessary condition for the minimum is that the
variation14 of E −∑i j Li j (〈i | j〉 − δi j ) equals zero (the numbers Li j denote the Lagrange
multipliers to be found).

The variation of a functional is defined as the linear part of the functional change coming
from a change in the function which is its argument.

Variation is an analog of the differential (the differential is just the linear part of the function’s
change). Thus, we calculate the linear part of a change (variation):

δ(E −
∑

i j

Li j 〈i | j〉) = 0 (8.10)

using the (as-yet) undetermined Lagrange multipliers Li j , and we set the variation equal to
zero.15

14 However, this is not a sufficient condition because the vanishing of the differential for certain values of independent
variables happens not only for minima, but also for maxima and saddle points (stationary points).

15 Note, that δ(δi j ) = 0.

http://booksite.elsevier.com/978-0-444-59436-5
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AN ANALOGY–THE COUPLED HARMONIC OSCILLATORS (continued, 3 of 5):
The change of E , because of the variation δφ∗, is E[φ + δφ] − E[φ] =
2
〈
φ + δφ|ĥφ

〉
+ λ 〈φ + δφ|x4φ

〉2 − [2 〈φ|ĥφ〉+ λ 〈φ|x4φ
〉2] = 2

〈
φ|ĥφ

〉
+ 2

〈
δφ|ĥφ

〉
+

λ
〈
φ|x4φ

〉2+2λ
〈
δφ|x4φ

〉 〈
φ|x4φ

〉+λ 〈δφ|x4φ
〉2−[2 〈φ|ĥφ〉+ λ 〈φ|x4φ

〉2] = 2
〈
δφ|ĥφ

〉
+

2λ
〈
δφ|x4φ

〉 〈
φ|x4φ

〉 + λ 〈δφ|x4φ
〉2

. The linear part in δφ of the energy change (i.e., the

variation) is, therefore, equal to δE = 2
〈
δφ|ĥφ

〉
+ 2λ

〈
δφ|x4φ

〉 〈
φ|x4φ

〉
. The variation

δφ∗, however, has to ensure the normalization of φ; i.e., 〈φ|φ〉 = 1. After multiply-
ing by the unknown Lagrange multiplier chosen as 2ε, we get the extremum condition

δ(E − 2ε 〈φ|φ〉 ) = 0; i.e., 2
〈
δφ|ĥφ

〉
+ 2λ

〈
δφ|x4φ

〉 〈
φ|x4φ

〉− 2ε 〈δφ|φ〉 = 0.

The Stationarity Condition for the Energy Functional

It is sufficient to vary only the function’s complex conjugate to the spinorbitals or only the
spinorbitals (cf., p. 234), yet the result is always the same. We decide the first instance of this.

Substituting φ∗i → φ∗i +δφ∗i in Eq. (8.7), and retaining only linear terms in δφ∗i to be inserted
into Eq. (8.10), the variation takes the form (the symbols δi∗ and δ j∗ mean δφ∗i and δφ∗j )

N∑
i=1

(
〈δi |ĥ|i〉 + 1

2

∑
j

(〈δi, j |i j〉 + 〈i, δ j |i j〉 − 〈δi, j | j i〉 − 〈i, δ j | j i〉 − 2Li j 〈δi | j〉
)) = 0.

(8.11)
Now we will express this in the form: ∑

i

〈δi |. . .〉 = 0.

Since the δi∗may be arbitrary, the equation |. . .〉 = 0 (called the Euler equation in variational
calculus) results. This will be our next goal.

Noticing that the sum indices and the numbering of electrons in the integrals are arbitrary,
we have the following equalities:∑

i j

〈i, δ j |i j〉 =
∑

i j

〈 j, δi | j i〉 =
∑

i j

〈δi, j |i j〉,
∑

i j

〈i, δ j | j i〉 =
∑

i j

〈 j, δi |i j〉 =
∑

i j

〈δi, j | j i〉,

and after substitution in the expression for the variation, we get∑
i

(
〈δi |ĥ|i〉 + 1

2

∑
j

(〈δi, j |i j〉 + 〈δi, j |i j〉 − 〈δi, j | j i〉 − 〈δi, j | j i〉 − 2Li j 〈δi | j〉
)) = 0.

(8.12)
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Let us rewrite this equation in the following manner ( 〈δi | ≡ 〈δφi (1)| ):
∑

i

〈
δφi (1)|

[
ĥφi (1)+

∑
j

( ∫
dτ2

1

r12
φ∗j (2)φ j (2)φi (1)

−
∫

dτ2
1

r12
φ∗j (2)φi (2)φ j (1)− Li jφ j (1)

)]〉
1
= 0, (8.13)

where 〈δφi (1)|. . .〉1 means integration over spatial coordinates of electron 1 and summation
over its spin coordinate, dτ2 refers to the spatial coordinate integration and spin coordinate
summing for electron 2. The above must be true for any 〈δφi (1)| ≡ δφ∗i , which means that each
individual term in the square parentheses needs to be equal to zero:

ĥφi (1)+
∑

j

(∫
dτ2

1

r12
φ∗j (2)φ j (2) · φi (1)−

∫
dτ2

1

r12
φ∗j (2)φi (2) · φ j (1)

)
=
∑

j

Li jφ j (1).

(8.14)

The Coulombic and Exchange Operators

Let us introduce the following linear operators:

a) Two Coulombic operators: the total operator Ĵ (1) and the spinorbital operator Ĵ j (1),
defined via their action on an arbitrary function u(1) of the coordinates of electron 1, as
follows:

Ĵ (1)u(1) =
∑

j

Ĵ j (1)u(1) (8.15)

Ĵ j (1)u(1) =
∫

dτ2
1

r12
φ∗j (2)φ j (2)u(1) (8.16)

b) Similarly, two exchange operators: the total operator K̂ (1) and the spinorbital operator
K̂ j (1)

K̂ (1)u(1) =
∑

j

K̂ j (1)u(1) (8.17)

K̂ j (1)u(1) =
∫

dτ2
1

r12
φ∗j (2)u(2)φ j (1). (8.18)
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Then Eq. (8.14) takes the form(
ĥ(1)+ Ĵ (1)− K̂ (1)

)
φi (1) =

∑
j

Li jφ j (1). (8.19)

The equation is handy and concise except for one thing. It would be even better if the right
side were proportional to φi (1) instead of being a linear combination of all the spinorbitals. In
such a case, the equation would be similar to the eigenvalue problem and we would find it quite
satisfactory. It would be similar but not identical, since the operators Ĵ and K̂ include the sought
spinorbitals φi . Because of this, the equation would be called the pseudo-eigenvalue problem.

8.2.4 Slater Determinant Subject to a Unitary Transformation

How can we help? Let us notice that we do not care too much about the spinorbitals themselves
because these are by-products of the method that gives the optimum mean value of the Hamilto-
nian, and the corresponding N -electron wave function. We can choose some other spinorbitals,
such that the mean value of the Hamiltonian, so long as the wave function do not change and
the Lagrange multipliers Li j are diagonal. Is this at all possible? Let us see.

Let us imagine the linear transformation of spinorbitals φi ; i.e., in matrix notation:

φ′ = Aφ, (8.20)

where φ and φ′ are vertical vectors containing components φi . A vertical vector is uncom-
fortable for typography, in contrast to its transposition (a horizontal vector), and it is easier to
write the transposed vector: φ′T = [φ′1, φ′2, . . . , φ′N

]
and φT = [φ1, φ2, . . . , φN ].

If we construct the determinant built of spinorbitals φ′ and not of φ, an interesting chain of
transformations will result:

1√
N !

∣∣∣∣∣∣∣∣
φ′1(1) φ′1(2) . . . φ′1(N )
φ′2(1) φ′2(2) . . . φ′2(N )
. . . . . . . . . . . . . . . . . . . . . . . . . .

φ′N (1) φ′N (2) . . . φ′N (N )

∣∣∣∣∣∣∣∣
= 1√

N !

∣∣∣∣∣∣∣∣

∑
i A1iφi (1) . . .

∑
i A1iφi (N )∑

i A2iφi (1) . . .
∑

i A2iφi (N )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∑

i ANiφi (1) . . .
∑

i ANiφi (N )

∣∣∣∣∣∣∣∣
(8.21)

= 1√
N !det

⎧⎪⎪⎨
⎪⎪⎩A

⎡
⎢⎢⎣
φ1(1) φ1(2) . . . φ1(N )
φ2(1) φ2(2) . . . φ2(N )
. . . . . . . . . . . . . . . . . . . . . . . . . .

φN (1) φN (2) . . . φN (N )

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

= detA · 1√
N !

∣∣∣∣∣∣∣∣
φ1(1) φ1(2) . . . φ1(N )
φ2(1) φ2(2) . . . φ2(N )
. . . . . . . . . . . . . . . . . . . . . . . . . .

φN (1) φN (2) . . . φN (N )

∣∣∣∣∣∣∣∣
. (8.22)
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Therefore, we have obtained our initial Slater determinant multiplied by a number: det A.
Thus, provided that det A is not zero,16

the new wave function would provide the same mean value of the Hamiltonian.

The only problem from such a transformation is the loss of the normalization of the wave
function. Yet we may even preserve the normalization. Let us choose such a matrix A, that
|det A| = 1. This condition will hold if A = U, where U is a unitary matrix (when U is real,
we call U an orthogonal transformation).17 This means that

if a unitary transformation U is performed on the orthonormal spinorbitals, then the new
spinorbitals φ′ are also orthonormal.

This is why a unitary transformation is said to represent a rotation in the Hilbert space: the
mutually orthogonal and perpendicular vectors do not lose these features upon rotation.18 This
can be verified by a direct calculation:

〈
φ′i (1)|φ′j (1)

〉
=
〈∑

r

Uirφr (1)|
∑

s

U jsφs(1)

〉

=
∑
rs

U∗irU js 〈φr (1)|φs(1)〉 =
∑
rs

U∗irU jsδrs

=
∑

r

U∗irU jr = δi j .

Thus, in the case of a unitary transformation, even the normalization of the total one-
determinant wave function is preserved; at worst, the phase χ of this function will change
(while exp (iχ) = det U), and this factor does not change either |ψ |2 or the mean value of the
operators.

16 The A transformation thus cannot be singular (see the Appendix B available at booksite.elsevier.com/978-0-
978-0-444-59436-5, p. e7).

17 For a unitary transformation, UU† = U†U = 1. The matrix U† arises from U via the exchange of rows and
columns (this does not influence the value of the determinant), and via the complex conjugation of all elements
(and this gives det U† = (det U)∗). Finally, since (det U)(det U†) = 1, we have |det U| = 1.

18 Just as three fingers held at right angles do not stop being the same length (normalization), and they continue to
be orthogonal after rotation.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/444-59436-5
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8.2.5 The Ĵ and K̂ Operators Are Invariant

How does the Coulombic operator change upon a unitary transformation of the spinorbitals?
Let us see the following:

Ĵ (1)′χ(1) =
∫

dτ2
1

r12

∑
j

φ′∗j (2)φ′j (2)χ(1)

=
∫

dτ2
1

r12

∑
j

∑
r

U∗jrφ∗r (2)
∑

s

U jsφs(2)χ(1)

=
∫

dτ2
1

r12

∑
r ,s

(∑
j

U jsU∗jr
)
φ∗r (2)φs(2)χ(1)

=
∫

dτ2
1

r12

∑
r ,s

(∑
j

U †
r jU js

)
φ∗r (2)φs(2)χ(1)

=
∫

dτ2
1

r12

∑
r ,s

δsrφ
∗
r (2)φs(2)χ(1)

=
∫

dτ2
1

r12

∑
r

φ∗r (2)φr (2)χ(1) = Ĵ (1)χ(1).

The operator Ĵ (1)′ proves to be identical to the operator Ĵ (1). Similarly, we may prove the
invariance of the operator K .

The operators Ĵ and K̂ are invariant with respect to any unitary transformation of the
spinorbitals. In conclusion, while deriving the new spinorbitals from a unitary transfor-
mation of the old ones, we do not need to worry about Ĵ and K̂ since they remain the
same.

8.2.6 Diagonalization of the Lagrange Multipliers

Equation (8.19) may be written in matrix form as follows:

[ĥ(1)+ Ĵ (1)− K̂ (1)]φ(1) = Lφ(1), (8.23)

where φ is a column of spinorbitals. Transforming φ = Uφ′ and multiplying the last equation
by U† (where U is a unitary matrix), we obtain

U†[ĥ(1)+ Ĵ (1)− K̂ (1)]Uφ(1)′ = U†LUφ(1)′, (8.24)

because Ĵ and K̂ did not change upon the transformation.
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The U matrix can be chosen such that U†LU represents the diagonal matrix.

Its diagonal elements19 will now be denoted as εi . Because ĥ(1)+ Ĵ (1) − K̂ (1) is a linear
operator, we get the following equation:

U†U
(
ĥ(1)+ Ĵ (1)− K̂ (1)

)
φ(1)′ = U†LUφ(1)′ (8.25)

or, alternatively, (
ĥ(1)+ Ĵ (1)− K̂ (1)

)
φ(1)′ = εφ(1)′, (8.26)

where εi j = εiδi j .

8.2.7 Optimal Spinorbitals Are Solutions of the Fock Equation (General Hartree-Fock
Method)

We leave out the “prime” to simplify the notation20 and write the Fock equation for a single
spinorbital:

The Fock Equation in the General Hartree-Fock (GHF) Method:

F̂(1)φi (1) = εiφi (1), (8.27)

where the Fock operator F̂ is

F̂(1) = ĥ(1)+ Ĵ (1)− K̂ (1). (8.28)

These φi are called canonical spinorbitals and are the solution of the Fock equation, and εi

is the orbital energy corresponding to the spinorbital φi . It is indicated in brackets that both
the Fock operator and the molecular spinorbital depend on the coordinates of one electron only
(represented by electron 1).

19 Such diagonalization is possible because L is a Hermitian matrix (i.e., L† = L), and each Hermitian matrix may be

diagonalized via the transformation U†LU with the unitary matrix U. Matrix L is indeed Hermitian. It is clear when

we write the complex conjugate of the variation δ(E−∑i j Li j 〈i | j〉) = 0. This gives δ
(

E −∑i j L∗i j 〈 j |i〉
)
= 0,

because E is real, and after the change of the summation indices, δ
(

E −∑i j L∗j i 〈i | j〉
)
= 0. Thus, Li j = L∗j i ,

i.e., L = L†.
20 This means that we finally forget about φ′ (we pretend that they have never appeared), and we will deal only with

such φ as correspond to the diagonal matrix of the Lagrange multipliers.
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AN ANALOGY–THE COUPLED HARMONIC OSCILLATORS (continued,
4 of 5): The equation for the conditional extremum may be rewritten as

2
〈
δφ|
[
ĥ + λx̄4x4 − ε

]
φ
〉
= 0, where x̄4 = 〈φ|x4φ

〉
is a number. This gives (remem-

ber that δφ∗ is arbitrary) the Euler equation
[
ĥ + λx̄4x4 − ε

]
φ = 0; i.e., the analog of

the Fock [Eq. (8.27)]. F̂φ = εφ with the operator F̂ = ĥ + λx̄4x4. Let us emphasize
that the operator F̂ is a one-particle operator, via the notation F̂(1) φ(1) = εφ(1), while
F̂(1) = ĥ(1)+ λx̄4x4

1 . The term λx4
1 x4

2 is analogous to the term 1
r12

, the term λx̄4x4
1φ(1)

may be rewritten as
∫

dx2λx4
1 x4

2φ
∗(2)φ(2)φ(1), which for the coupled oscillators might be

written as Ĵosc(1)φ(1), where Ĵosc(1) =
∫

dx2λx4
1 x4

2φ
∗(2)φ(2) operator (with the inter-

action operator λx4
1 x4

2 instead of 1
r12

for electrons) is analogous to Ĵ (1). There will be no

term corresponding to K̂ (1) since the latter results from the antisymmetry of the varia-
tional wave function (the Slater determinant), while the bosonic function is a symmetric
product φ(1)φ(2) of two “spinorbitals” φ and we do not have such an effect. Also, there
is no unitary transformation appearing because we have a single spinorbital here, not a set
of N spinorbitals φi .

8.2.8 “Unrestricted” Hartree-Fock (UHF) Method

One may limit the GHF method by forcing some restrictions on the form of the GHF spinorbitals.
A special case of the GHF method is known in textbooks as the unrestricted Hartree-Fock method
(UHF). Despite its name, UHF is not a fully unrestricted method (as the GHF is). In the UHF,
we assume that, [cf., Eq. (8.1)]:

• Orbital components ϕi1 and ϕi2 are real.
• There is no mixing of the spin functions α and β; i.e., either ϕi1 = 0 and ϕi2 �= 0 or ϕi1 �= 0

and ϕi2 = 0.

The UHF method is called sometimes the DODS method, which means Different Orbitals
for Different Spins. In the UHF (or DODS) method, each spinorbital has its own orbital energy.

8.2.9 The Closed-Shell Systems and the Restricted Hartree-Fock (RHF) Method

Double Occupation of the Orbitals and the Pauli Exclusion Principle

When the number of electrons is even, the spinorbitals are usually formed out of orbitals in a
very easy [and simplified with respect to Eq. (8.1)] manner,21 by multiplication of each orbital
by the spin functions α or β:

21 It is not necessary, but it is quite comfortable.
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Fig. 8.3. Construction (scheme) of a spinorbital in the RHF method (i.e., a function x, y, z, σ ) as a product of an orbital (a
function of x, y, z) and one of the two spin functions α(σ) or β(σ).

φ2i−1(r, σ ) = ϕi (r)α(σ ) (8.29)

φ2i (r, σ ) = ϕi (r)β(σ ), (8.30)

i = 1, 2, . . .
N

2
, (8.31)

where, as it can be clearly seen, there are half as many occupied orbitals ϕ as occupied spin-
orbitals φ (occupation means that a given spinorbital appears in the Slater determinant22) (see
Fig. 8.3). Thus, we introduce an artificial restriction for spinorbitals (some of the consequences
will be described on p. 437). This is why the method is called the Restricted Hartree-Fock (RHF)
method. Nothing forces us to do this; the criterion is simplicity. The problem of whether we
lose the Hartree-Fock energy by doing this will be discussed on p. 441.

There are as many spinorbitals as electrons, and there can be a maximum of two electrons
per orbital.

If we wished to occupy a given orbital with more than two electrons, we would need once again
to use the spin function α or β when constructing the spinorbitals (i.e., repeating spinorbitals).
This would imply two identical rows in the Slater determinant, and the wave function would
equal zero. This cannot be accepted. The above rule of maximum double occupation is often
called the Pauli exclusion principle.23 Such a formulation of the Pauli exclusion principle

22 When the Slater determinant is written, the electrons lose their identity–they are no longer distinguishable.
23 From Solid State and Molecular Theory, Wiley, London, 1975 by John Slater: “I had a seminar about the work

which I was doing over there–the only lecture of mine which happened to be in German. It has appeared that not
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(a)

(c)

(b)

Fig. 8.4. Electron occupancy of orbitals and the concept of the HOMO and LUMO. The LUMO-HOMO energy difference is
shown as �. (a) If � is large, we have the closed shell. (b) If � > 0 is small, we have to do with a poorly closed shell. (c) � = 0
means the open shell.

requires two concepts: the postulate of the antisymmetrization of the electronic wave function,
p. 29, and double orbital occupancy. The first of these is of fundamental importance, while the
second is of a technical nature.24

We often assume the double occupancy of orbitals within what is called the closed shell.
The latter term has an approximate character (Figs. 8.4 and 8.5). It means that for the studied
system, there is a large energy difference between HOMO and LUMO orbital energies.

HOMO is the Highest Occupied Molecular Orbital, and LUMO is the Lowest Unoccupied
Molecular Orbital. The unoccupied molecular orbitals are called virtual orbitals.

only Heisenberg, Hund, Debye, and young Hungarian Ph.D. student Edward Teller were present, but also Wigner,
Pauli, Rudolf Peierls and Fritz London, all of them on their way to winter holidays. Pauli, of course, behaved in
agreement with the common opinion about him, and disturbed my lecture saying that ‘he had not understood a
single word out of it,’ but Heisenberg has helped me to explain the problem. (…) Pauli was extremely bound to
his own way of thinking, similar to Bohr, who did not believe in the existence of photons. Pauli was a warriorlike
man, a kind of dictator . . .”.

24 The concept of orbitals, occupied by electron pairs, exists only in the mean field method. We will abandon this
idea in the future, and the Pauli exclusion principle will be understood in its generic form as a postulate (see
Chapter 1) of the antisymmetry of the electronic wave function.
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A Closed Shell
A closed shell means that the HOMO is doubly occupied, as are all the orbitals that have
equal or lower energy. The occupancy is such that the mathematical form of the Slater deter-
minant does not depend on the spatial orientation of the x-, y-, or z-axis. Using group theory
nomenclature (see Appendix C available at booksite.elsevier.com/978-0-444-59436-5),
this function transforms according to fully symmetric irreducible representation of the
symmetry group of the electronic Hamiltonian.

If a shell is not closed, it is called “open.”25 We assume that there is a unique assignment
for which molecular spinorbitals26 within a closed shell are occupied in the ground state. The
concept of the closed shell is approximate because it is not clear what it means when we say
that the HOMO-LUMO energy distance27 is large or small.28

Fig. 8.5. Some restrictions imposed on the GHF method in computational practice: the RHF, the UHF, and the ROHF (Restricted
Open Shell) methods. (a) RHF: we force the same (real) orbitals for the electron pair (opposite spins) producing a pair of spinorbitals
by using the same orbital. (b) UHF: we relieve this restriction for orbitals (still being real). (c) ROHF: we keep the double occupancy
for inner shells as for the RHF method, while for the valence shell, we use the UHF-type splitting of orbitals.

25 Sometimes we use the term semi-closed shell if it is half-occupied by the electrons and we are interested in the
state bearing maximum spin. In this case, the Slater determinant is a very good approximation. The reasons for
this is, of course, the uniqueness of electron assignment to various spinorbitals. If there is no uniqueness (as in
the carbon atom), then the single-determinant approximation cannot be accepted.

26 The adjective molecular is suggested even for calculations for an atom. In a correct theory of electronic structure, the
number of nuclei present in the system should not play any role. Thus, from the point of view of the computational
machinery, an atom is just a molecule with one nucleus.

27 The decision to occupy only the lowest-energy MOs (so-called Aufbau Prinzip; a name left over from the German
origins of quantum mechanics) is accepted under the assumption that the total energy differences are sufficiently
well approximated by the differences in the orbital energies.

28 This is so unless the distance is zero. The helium atom, with the two electrons occupying the 1s orbital (HOMO),

is a 1s2 shell of impressive “closure” because the LUMO-HOMO energy difference calculated in a high-quality
basis set (6-31G∗∗; see p. 431) of atomic orbitals is of the order of 62 eV. On the other hand, the HOMO-LUMO
distance is zero for the carbon atom because in the ground state, 6 electrons occupy the 1s, 2s, 2px , 2py and 2pz
orbitals. There is room for 10 electrons, and we only have 6. Hence, the occupation (configuration) in the ground

http://booksite.elsevier.com/978-0-444-59436-5
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We need to notice that HOMO and LUMO have somewhat different meanings. As will be
shown on p. 465,−εH O M O represents an approximate ionization energy i.e., binding energy of
an electron interacting with the

(
N − 1

)
- electron system, while −εLU M O is an approximate

electron affinity energy; i.e., energy of an electron interacting with the N - electron system.

The Fock Equation for Closed Shells

The Fock equations for a closed shell (using the RHF method) can be derived in a very similar
way as with the GHF method. This means that we perform the following steps:

1. We write down the expression for the mean value of the Hamiltonian (as a functional of the
orbitals, the summation extends over all the occupied orbitals29 (there are N/2 of them,

as will be recalled by the upper limit denoted by MO); see p. 419: E = 2
∑MO

i

(
i |ĥ|i

)
+∑MO

i, j [2(i j |i j)− (i j | j i)].
2. We seek the conditional minimum of this functional (Lagrange multipliers method) allow-

ing for the variation of the orbitals that takes their orthonormality into account δE =
2
∑MO

i

(
δi |ĥ|i

)
+∑MO

i, j [2(δi j |i j)−(δi j | j i)+2(iδ j |i j)−(iδ j | j i)]−∑MO
i, j L ′i j (δi | j) = 0.

3. We derive the Euler equation for this problem from (δi |. . .) = 0. In fact, it is the Fock
equation expressed in orbitals.30

F̂(1)ϕi (1) = εiϕi (1), (8.32)

where ϕ are the orbitals. The Fock operator is defined for the closed shell as

F̂(1) = ĥ(1)+ 2Ĵ (1)− K̂(1), (8.33)

where the first term [ĥ, see Eq. (8.8)] is the sum of the kinetic energy operator of electron 1 and
the operator of the interaction of this electron with the nuclei in the molecule, the next two terms
(i.e., Coulombic Ĵ and exchange K̂ operators) are connected with the potential energy of the

state is 1s22s22p2. Thus, both HOMO and LUMO are the 2p orbitals, with zero energy difference. If we asked
for a single sentence describing why carbon compounds play a dominant role in nature, it should be emphasized
that for carbon atoms, the HOMO-LUMO distance is equal to zero (and that the orbital levels ε2s and ε2p are
close in energy).

On the other hand, the beryllium atom is an example of a closed shell, which is not very tightly closed. Four

electrons are in the lowest-lying configuration 1s22s2, but the orbital level 2p (LUMO) is relatively close to 2s
(HOMO) (10 eV for the 6-31G∗∗ basis set is not a small gap, yet it amounts to much less than that of the helium
atom).

29 Not spinorbitals.
30 After a suitable unitary transformation of orbitals, analogous to what we have done in the case of GHF.
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interaction of electron 1 with all electrons in the system, and they are defined (slightly differently
than before for Ĵ and K̂ operators31) via the action on any functionχ of the position of electron 1:

2Ĵ (1)χ(1) =
MO∑
i=1

2Ĵi (1)χ(1) =
MO∑
i=1

2
∫

dV2
1

r12
ϕ∗i (2)ϕi (2)χ(1)

≡ 2
MO∑

i

∫
dV2

1

r12
ϕ∗i (2)ϕi (2)χ(1) (8.34)

K̂(1)χ(1) =
MO∑
i=1

K̂i (1)χ(1) =
MO∑
i=1

∫
dV2

1

r12
ϕ∗i (2)χ(2)ϕi (1)

≡
MO∑

i

∫
dV2

1

r12
ϕ∗i (2)χ(2)ϕi (1), (8.35)

where integration is now exclusively over the spatial coordinates32 of electron 2. Factor 2 mul-
tiplying the Coulombic operator results (as the reader presumably guessed) from the double
occupation of the orbitals.

Interpretation of the Coulombic Operator

The Coulombic operator is nothing else but calculation of the Coulombic potential (with the
opposite sign as created by all the electrons; Fig. 8.6) at the position of electron 1. Indeed, such
a potential coming from an electron occupying molecular orbital ϕi is equal to∫

ρi (2)

r12
dV2, (8.36)

whereρi (2) = ϕi (2)∗ϕi (2) is the probability density of finding electron 2 described by orbitalϕi .
If we take into account that the orbital ϕi is occupied by two electrons, and that the number of
the doubly occupied molecular orbitals is N/2, then the electrostatic potential calculated at the
position of the electron 1 is

∫ ∑MO
i 2ρi (2)

r12
dV2 =

M O∑
i

2Ĵi = 2Ĵ (1).

The same expression also means the interaction energy (in a.u.) of two charges: 1 (pointlike
elementary charge −1) and 2, represented by a diffused cloud of charge density distribution
ρ(2) =∑MO

i 2ρi (2) carrying N elementary charges −1 because − ∫ ρ(2)dV2 = −2
∑

i 1 =
N (−1).

31 This occurs because we have orbitals here, and not spinorbitals.
32 Simply, the summation over the spin coordinates has already been done when deriving the equation for the mean

value of the Hamiltonian.
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Fig. 8.6. Pointlike electron 1 interacts with the total electron density (shown as an electron cloud with density ρ =∑MO
i 2ρi (2)).

To compute the interaction energy, the total electron density is chopped into small cubes. The interaction energy of electron 1 with one
of these cubes of volume dV2 containing charge −∑MO

i 2ρi (2)dV2 is calculated according to the Coulomb law: charge× charge

divided by their distance:
−1×(−1)

∑MO
i 2ρi (2)dV2

r12
or, alternatively, as charge−1 times electric potential produced by a single cube

at electron 1. The summation over all cubes gives
∫ ∑MO

i 2ρi (2)
r12

dV2 = 2Ĵ (1).

Integration in the formula for the operator Ĵ is a consequence of the approximation of
independent particles.

This approximation means that, in the Hartree-Fock method, the electrons do not move in
the electric field of the other pointlike electrons, but in the mean static field of all the electrons
represented by electron cloud ρ =∑MO

i 2ρi (2). This is similar to a driver (one of the electrons)
in Paris not using the position of other cars, but a map showing only the traffic intensity via
the probability density cloud. The driver would then have a diffuse image of other vehicles
and could not satisfactorily optimize his car’s position with respect to other cars (which means
higher energy for the molecule under study).

The Mean Field
This is typical for all the mean field methods. In these methods, instead of watching the
motion of other objects in detail, we average these motions, and the problem simplifies
(obviously, we pay the price of reduced quality).
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This trick is general, ingenious, and worth remembering.33

Coulombic Self-Interaction

There is a problem with this, though. From what we have said, it follows that the electron 1
uses the “maps” of total electron density (i.e., including its own contribution to the density).34

This looks strange, though. Let us take a closer look, maybe we have missed something in our
reasoning. Note first of all that the repulsion of electron 1 (occupying, say, orbital ϕk) with

the electrons, which is visible in the Fock operator, reads as
(
ϕk |
(

2Ĵ − K̂
)
ϕk

)
and not as(

ϕk |
(

2Ĵ
)
ϕk

)
. Let us write it down in more detail:

(
ϕk |
(

2Ĵ − K̂
)
ϕk

)
=
∫

dV1 |ϕk(1)|2
MO∑
i=1

2
∫

dV2
1

r12
ϕ∗i (2)ϕi (2)

−
MO∑
i=1

∫
dV1ϕk(1)

∗ϕi (1)
∫

dV2
1

r12
ϕ∗i (2)ϕk(2)

=
∫

dV1 |ϕk(1)|2
MO∑
i=1

2
∫

dV2
1

r12
ϕ∗i (2)ϕi (2)

−
∫

dV1ϕk(1)
∗ϕk(1)

∫
dV2

1

r12
ϕ∗k (2)ϕk(2)

−
MO∑

i
(�=k

)
∫

dV1ϕk(1)
∗ϕi (1)

∫
dV2

1

r12
ϕ∗i (2)ϕk(2)

=
∫∫

dV1dV2
1

r12
ρk(1)[ρ(2)− ρk(2)] −

MO∑
i
(�=k

) (ki |ik),

where ρk = |ϕk(1)|2 (i.e., the distribution of electron 1) interacts electrostatically with all
the other electrons35 (i.e., with the distribution [ρ(2) − ρk(2)], with ρ denoting the total
electron density ρ = ∑MO

i=1 2 |ϕi |2 and −ρk excluding from it the self-interaction energy of
the electron in question). Thus, the Coulombic and exchange operators together ensure that an
electron interacts electrostatically with other electrons, not with itself.

33 We use it every day, although we do not call it a mean field approach. Indeed, if we say: “I will visit my aunt at
noon, because it is easier to travel out of rush hours,” or “I avoid driving through the center of town, because of
the traffic jams,” in practice we are using the mean field method. We average the motions of all citizens (including
ourselves!) and we get a “map” (temporal or spatial), which allows us optimize our own motion. The motion of
our fellow-citizens disappears, and we obtain a one-body problem.

34 Exactly as happens with real city traffic maps.
35 The fact that the integration variables pertain to electron 2 is meaningless, it is just a definite integration and the

name of the variable does not count at all.
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AN ANALOGY–THE COUPLED HARMONIC OSCILLATORS (continued, 5 of 5):

The Fock operator is: F̂(1) = ĥ(1)+ λx̄4x4
1 . It is now clear what the mean field approx-

imation really is: the two-particle problem is reduced to a single-particle one (denoted
as number 1), and the influence of the second particle, which appears as a result of the
coupling term λx4

1 x4
2 , is averaged over its positions x̄4 = 〈φ|x4φ

〉 = 〈φ(2)|x4
2φ(2)

〉
. We

see a similar effect in the Hartree-Fock problem for molecules: a single electron denoted
by 1 interacts with all other electrons through the operators 2Ĵ − K̂, in which we have an
integration (averaging) over positions of all these electrons. So, we have essentially the
same mean-field picture for the electronic system and for the two coupled oscillators.

Here, we end the illustration of the Hartree-Fock procedure by the two coupled
harmonic oscillators.

Electrons with Parallel Spins Repel Less

There is also an exchange remainder −∑MO
i
(�=k

) (ki |ik), which is just a by-product of the anti-
symmetrization of the wave function (i.e., the Slater determinant), which tells us that in the
Hartree-Fock picture, electrons of the same spin functions36 repel . . . less. Can this really be
so? As shown at the beginning of this chapter, two electrons of the same spin cannot occupy the
same point in space, and therefore (from the continuity of the wave function) they avoid each
other. It is as if they repelled each other because of the Pauli exclusion principle, in addition to
their Coulombic repulsion. Is there something wrong in our result, then? No, everything is all
right. The necessary antisymmetric character of the wave function says simply that the same
spins should keep electrons apart. However, when the electrons described by the same spin
functions keep apart, this obviously means that their Coulombic repulsion is weaker than that
of electrons of opposite spins. This is what the negative term −∑MO

i
(�=k

) (ki |ik) really means.

Hartree Method

The exchange operator represents a (non-intuitive) result of the antisymmetrization postulate
for the total wave function (Chapter 1) and it has no classical interpretation. If the variational
wave function were the product of the spinorbitals37 (Douglas Hartree did this in the beginning
of quantum chemistry),

φ1(1)φ2(2)φ3(3). . .φN (N ),

36 When deriving the total energy expression (see Appendix M available at booksite.elsevier.com/978-0-444-
59436-5), only those exchange terms survived, which correspond to the parallel spins of the interacting
electrons. Note also that for real orbitals (as in the RHF method), every exchange contribution (ki |ik) ≡∫

dV1ϕk(1)ϕi (1)
∫

dV2
1

r12
ϕi (2)ϕk(2) means a repulsion because this is a self-interaction of the cloud ϕkϕi .

37 Such a function is not legal–it does not fulfill the antisymmetrization postulate. This illegal character (caused
by a lack of the Pauli exclusion principle) would sometimes give unfortunate consequences: e.g., more than two
electrons would occupy the 1s orbital, etc.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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then we would get the corresponding Euler equation, which in this case is called the Hartree
equation:

F̂Hartree(1)φi (1) = εiφi (1)

F̂Hartree(1) = ĥ(1)+
N∑

j(�=i)

Ĵ j (1),

where F̂Hartree corresponds to the Fock operator. Note that there is no self-interaction there.

8.2.10 Iterative Solution: The Self-Consistent Field Method

The following is a typical technique of solving the Fock equation.
First, we must handle the problem that in order to solve the Fock equation, we should know

. . . its solution. Indeed, the Fock equation is not an eigenvalue problem, but a pseudo-eigenvalue
problem because the Fock operator depends on the solutions (which obviously are unknown).
So, in the Fock equation, we do not know anything: all three quantities F̂, ϕi , εi that constitute
the equation are unknown. Regardless of how strange all this might seem, we deal with this
situation quite easily using an iterative approach because of the structure of F̂ . This is called
the self-consistent field method (SCF). In this method (shown in Fig. 8.7), we do the following:

• Assume at the beginning (zeroth iteration) a certain shape of molecular orbitals.38

Fig. 8.7. Iterative solution of the Fock equation (the SCF). We do all of the following:

— Start from any set of occupied orbitals (zeroth iteration).
— Insert them into the Fock operator.
— Solve the Fock equation.
— Obtain the molecular orbitals of the first approximation.
— Choose those of the lowest energy as the occupied ones, and if your criterion of the total energy is not satisfied, repeat the
procedure.

38 These are usually the any-sort “orbitals,” although recently, because of the direct SCF idea (we calculate the
integrals whenever they are needed; i.e., at each iteration), an effort is made to save computational time per
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• Introduce these orbitals to the Fock operator, thus obtaining a sort of “caricature” of it (the
zero-order Fock operator).

• Solve the eigenvalue problem using the above “Fock operator” and get the molecular orbitals
of the first iteration.

• Repeat the process until the shape of the orbitals does not change in the next iteration; i.e.,
until the Fock equations are solved.39

8.3 Total Energy in the Hartree-Fock Method

In Appendix M available at booksite.elsevier.com/978-0-444-59436-5, p. e109, we derived the
following expressions for the mean value of the Hamiltonian using the normalized determinant
(without a constant additive term for the nuclear repulsion energy Vnn , SMO means summation
over the spinorbitals i = 1, . . ., N ; in the RHF method, and the MO summation limit means
summation over the orbitals i = 1, . . ., N/2):

E ′H F =
SMO∑

i

〈i |ĥ|i〉 + 1

2

SMO∑
i, j=1

[〈i j |i j〉 − 〈i j | j i〉] ≡
SMO∑

i

hii + 1

2

SMO∑
i, j=1

[Ji j − Ki j ]. (8.37)

If double occupancy is assumed (i.e., the flexibility of the variational wave function is
restricted ), we may transform this expression in the following way:

E ′RH F (double occupancy)

=
MO∑

i

(
〈iα|ĥ|iα〉 + 〈iβ|ĥ|iβ〉

)

+1

2

MO∑
i

SMO∑
j

[〈iα, j |iα, j〉 − 〈iα, j | j, iα〉 + 〈iβ, j |iβ, j〉 − 〈iβ, j | j iβ〉] = 2
MO∑

i

(i |ĥ|i)

iteration and therefore to provide as excellent a starting function as possible. We may obtain it via an initial
calculation with some two-electron integrals neglected.

39 Using our driver analogy, we may say that at the beginning, the driver has false maps of the probability density
(thus, the system energy is high, and in our analogy, the car repair costs are large). The next iterations (repair
costs effectively teach all the drivers) improve the map, the final energy decreases, and at the very end, we get
the best map possible. The mean energy is the lowest possible (within the mean field method). A further energy
reduction is only possible beyond the Hartree-Fock approximation; i.e., outside of the mean field method, which
for the drivers means not believing maps, but their own eyes. A suspicious person (scientist) should be careful,
because our solution may depend on the starting point used; i.e., from the initial, completely arbitrary orbitals.
Besides, the iteration process does not necessarily need to be convergent. But it appears that the solutions in the
Hartree-Fock method are usually independent of the zeroth-order MOs, and convergence problems are very rare.
This is surprising. This situation is much worse for better-quality computations, where the AOs of small exponents
are included (diffuse orbitals). Then we truly meet the problem already described (p. 352) of searching for the
global energy minimum among a multitude of local ones.

http://booksite.elsevier.com/978-0-444-59436-5
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+1

2

MO∑
i

MO∑
j

[〈iα, jα|iα, jα〉 + 〈iα, jβ|iα, jβ〉 − 〈iα, jα| jα, iα〉 − 〈iα, jβ| jβ, iα〉

+〈iβ, jα|iβ, jα〉 + 〈iβ, jβ|iβ, jβ〉 − 〈iβ, jα| jα, iβ〉 − 〈iβ, jβ| jβ, iβ〉]

= 2
MO∑

i

(i |ĥ|i)+ 1

2

MO∑
i

MO∑
j

[4(i j |i j)− 2(i j | j i)]

= 2
MO∑

i

(i |ĥ|i)+
MO∑

i

MO∑
j

[2(i j |i j)− (i j | j i)].

This finally gives

E ′RH F = 2
MO∑

i

hii +
MO∑
i, j

[2Ji j −Ki j ], (8.38)

where Ji j ≡
(
i j |i j

)
,Ki j ≡

(
i j | j i), see p. 413.

Both Eqs. (8.37) and (8.38) may in general give different results, because in the first, no
double occupancy is assumed (we will discuss this further on p. 441).

Given the equality 〈i |ĥ|i〉 = (i |ĥ|i), these integrals are written here as hii . The Coulombic
and exchange integrals defined in spinorbitals are denoted Ji j and Ki j and defined in orbitals
as Ji j and Ki j .

The additive constant corresponding to the internuclear repulsion (it is constant, since the
nuclei positions are frozen) is

Vnn =
∑
a<b

Za Zb

Rab
, (8.39)

which has not been introduced in the electronic Hamiltonian Ĥ0, and thus, the full Hartree-Fock
energy is

ERH F = E ′RH F + Vnn. (8.40)

Note that the mean value of the electronic repulsion energy in our system is40

Vee =
〈
ψH F |

∑
i< j

1

ri j
|ψH F

〉
=

MO∑
i, j

[2(i j |i j)− (i j | j i)] =
MO∑
i, j

[2Ji j −Ki j ]. (8.41)

It is desirable (interpretation purposes) to include the orbital energies in the formulas derived.
Let us recall that the orbital energy εi is the mean value of the Fock operator for orbital i ; i.e.,
the energy of an effective electron described by this orbital.41 Based on Eqs. (8.33)–(8.35), this

40 Recall that 〈ψR H F |Ĥ |ψR H F 〉 = ER H F and Vee is, therefore, the Coulombic interaction of electrons.
41
(
ϕi |F̂ϕi

)
= εi because F̂ϕi = εiϕi .
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can be expressed as (i stands for the molecular orbital)

εi = hii +
MO∑

j

[2Ji j −Ki j ], (8.42)

and this in turn gives an elegant expression for the Hartree-Fock electronic energy:

E ′RH F =
MO∑

i

[hii + εi ]. (8.43)

From Eqs. (8.38), (8.41) and (8.42), the total electronic energy may be expressed as

E ′RH F =
M O∑
i=1

2εi − Vee. (8.44)

It can be seen that the total electronic energy (i.e., E ′RH F ) is not the sum of the orbital
energies of electrons

∑
i 2εi .

And we would already expect full additivity, since the electrons in the Hartree-Fock method
are treated as independent. Yet “independent” does not mean “non-interacting.” The reason for
the non-additivity is that for each electron, we need to calculate its effective interaction with
all the electrons, hence we would get too much repulsion.42 Of course, the total energy, and not
the sum of the orbital energies, is the most valuable. Yet in many quantum chemical problems,
we interpret orbital energy lowering as energetically profitable. And it turns out that such an
interpretation has an approximate justification. Works by Fraga, Politzer, and Ruedenberg43

show that at the equilibrium geometry of a molecule, the formula

ERH F = E ′RH F + Vnn ≈ 3

2

MO∑
i=1

2εi , (8.45)

works with 2%–4% precision, and even better results may be obtained by taking a factor of 1.55
instead of 3

2 .

8.4 Computational Technique: Atomic Orbitals as Building Blocks of the
Molecular Wave Function

One of most powerful methods of computational analysis is to represent a function to be sought
as a linear combination of some predefined set of functions (basis set). Fig. 8.8 shows the

42 For example, the interaction of electron 5 and electron 7 is calculated twice: as the interaction 1
r57

and 1
r75

.
43 S. Fraga, Theor. Chim. Acta, 2, 406 (1964); P. Politzer, J. Chem. Phys., 64, 4239 (1976); K. Ruedenberg, J. Chem.

Phys., 66, 375 (1977).
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Fig. 8.8. An approximation of a function as a linear combination of some basis functions (one variable case). The first (larger)
figures show how a function (black solid line) is approximated by, consecutively: one, two, three, and four basis functions (shown
individually as small inserts at the bottom). As one can see, the approximation gets better and better with the increase of the number
of the expansion functions. In an ideal situation (which is never reached in practice), this number would be infinite.

efficiency of such an idea in a step-by-step way (in the case of a smooth function of a single
variable). In quantum chemistry we use atomic orbitals as the basis functions.

Atomic Orbital (AO)
means a function

g(r) = f (x, y, z) exp (−ζrn),

where f (x, y, z) is a polynomial and n = 1, 2. Such an atomic orbital is localized (centered)
around (0, 0, 0). The larger the exponent ζ > 0, the more effective is this centering.

For n = 1, we have what is called Slater Type Orbitals (STOs), and for n = 2, Gaussian
Type Orbitals (GTOs).

We have to be careful because the term atomic orbital is used in quantum chemistry with a
double meaning. These are (1) the Hartree-Fock orbitals for a particular atom, or (2) functions
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localized in the space about a given center.44 The role of the AOs is to provide a complete
set of functions; i.e., a suitable linear combination of the AOs should in principle be able to
approximate any continuous and square-integrable function.

8.4.1 Centering of the Atomic Orbital

If a complete set of the orbitals were at our disposal, then all the AOs might be centered around
a single point.

It is more economic, however, to allow using the incomplete set and the possibility of the
AOs centered in various points of space.

Atomic orbital g(r) may be shifted by a vector A in space [translation operation Û(A); see
Chapter 2] to result in the new function Û(A)g(r) = g(T̂−1(A) r) = g(T̂ (−A) r) = g(r− A),
because T̂−1(A) = T̂ (−A). Hence, the orbital centered at a given point (indicated by a vector A)
is (Fig. 8.9):

g(r− A) = f (x − Ax , y − Ay, z − Az) exp[−ζ |r− A|n]. (8.46)

Fig. 8.9. The centering of g(r) at the point shown by vector A means the creation of the orbital g(r− A). A linear combination
of such orbitals can describe any smooth function of the position in space, of any degree of complexity.

44 Atomic orbitals (the first meaning) may be thought of as expressed through linear combinations of atomic orbitals
in the second meaning. The AOs may be centered on the nuclei (common practice), but they can also be centered
off the nuclei.
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8.4.2 Slater-Type Orbitals (STOs)

The Slater-type orbitals45:

χSTO,nlm
(
r , θ, φ

) = Nrn−1 exp
(−ζr

)
Y m

l

(
θ, φ

)
, (8.47)

(N stands for a suitable normalization constant) differ from the atomic orbitals of the hydrogen
atom (see p. 202). The first difference is that the radial part is simplified in the STOs (the radial
part of a STO has no nodes). The second difference is in the orbital exponent, which has no
constraint except46 ζ > 0.

The STOs have a great advantage: they decay with distance from the center in a similar way
to the “true” orbitals; let us recall the exponential vanishing of the hydrogen atom orbitals (see
Chapter 4).47 STOs would be fine, but finally we have to compute a large number of the inte-
grals needed.48 And here is a real problem: Since the Hamiltonian contains the electron-electron
interactions, integrals appear with, in general, four atomic orbitals (of different centers). These
integrals are difficult to calculate, and therefore consume an excessive amount of computer time.

8.4.3 Gaussian-Type Orbitals (GTOs)

If the exponent in Eq. (8.46) is equal to n = 2, we are dealing with GTOs (N ′ is a normalization
constant):

χGTO,nlm
(
r , θ, φ

) = N ′rn−1 exp
(−ζr2) Y m

l

(
θ, φ

)
. (8.48)

The most important among them are 1s-type orbitals, given for an arbitrary center Rp:

χp ≡ G p(r;αp,Rp) =
(

2αp

π

) 3
4

exp (−αp|r− Rp|2), (8.49)

45 We will distinguish two similar terms here: Slater-type orbitals and Slater orbitals. The latter term is reserved for
special Slater-type orbitals, in which the exponent is easily computed by considering the effect of the screening
of nucleus by the internal electronic shells. The screening coefficient is calculated according to the Slater rules;
see p. 451.

46 Otherwise, the orbital would not be square-integrable.
47 It has been proved that each of the Hartree-Fock orbitals has the same asymptotic dependence on the dis-

tance from the molecule (N.C. Handy, M.T. Marron, and H.J. Silverstone, Phys. Rev., 180, 45 (1969)); i.e.,
const · exp (−√−2εmaxr), where εmax is the orbital energy of HOMO. Earlier, people thought the orbitals
decay as exp (−√−2εi r), where εi is the orbital energy expressed in atomic units. The last formula, as is easy
to prove, holds for the atomic orbitals of hydrogen atom (see p. 201). R. Ahlrichs, M. Hoffmann-Ostenhoff,
T. Hoffmann-Ostenhoff, and J.D. Morgan III, Phys. Rev., A23, 2106 (1981), have shown that at a long dis-
tance r from an atom or a molecule, the square root of the ideal electron density satisfies the inequality:

√
ρ ≤ C

(
1+ r

) (Z−N+1
)

√
2ε
−1

exp
[− (2εr)], where ε is the first ionization potential, Z is the sum of the nuclear

charges, N is the number of electrons, and C > 0 is a constant.
48 The number of necessary integrals may reach billions.
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(a)

(b) (c)

Fig. 8.10. Two spherically symmetric GTOs of the “1s-type” G(r; 1, 0) (a) These are used to form the difference orbital (b):
G(r; 1,−0.5i)−G(r; 1,+0.5i), where i is the unit vector along the x-axis. For comparison (c), the Gaussian-type px orbital is
shown: xG(r; 1, 0). It can be seen that the spherical orbitals may indeed simulate the 2p ones. Similarly, they can model the spatial
functions of arbitrary complexity.

where αp is the orbital exponent. Why are 1s-type orbitals so important? Because we may
construct “everything” (even s, p, d-like orbitals) out of them using proper linear combinations.
For example, the difference of two 1s orbitals, centered at (a, 0, 0) and (−a, 0, 0), is similar to
the 2px orbital (Fig. 8.10).

The most important reason for the great progress of quantum chemistry in recent years is
replacing the STOs, formerly used, by GTOs as the expansion functions.

Orbital Size

Each orbital extends to infinity, and it is impossible to measure its extension using a ruler. Still,
the αp coefficient may allow comparison of the sizes of various orbitals. And the quantity
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ρp = (αp)
− 1

2 (8.50)

may be called (which is certainly an exaggeration) the orbital radius of the orbital χp, because49

∫ ρp

0

∫ π

0

∫ 2π

0
χ2

pdV = 4π
∫ ρp

0
χ2

pr2dr = 0.74, (8.51)

where the integration over r goes through the inside of a sphere of radius ρp. This gives us an
idea about the part of space in which the orbital has an important amplitude. For example, the
1s hydrogen atom orbital can be approximated as a linear combination of three 1s GTOs (here
centered on the origin of the coordinate system; this popular approximation is abbreviated to
STO-3G)50:

1s ≈ 0.64767 G1(r; 0.151374, 0)+0.40789 G2(r; 0.681277, 0)+0.07048 G3(r; 4.50038, 0),
(8.52)

which corresponds to the following radii ρ of the three GTOs: 2.57, 1.21, and 0.47 a.u.

Product of GTOs

The GTOs have an outstanding feature (along with the square dependence in the exponent),
which decides about their importance in quantum chemistry.

The product of two Gaussian-type 1s orbitals (even if they have different centers) is a single
Gaussian-type 1s orbital.51

The case of GTOs other than 1s does not give any trouble, but the result is slightly different.
The product of the exponential factors is, of course, the 1s-type GTO, shown above. The poly-
nomials of x, y, z standing in both GTOs multiplied by each other [recall the dependence of

49 See, e.g., I.S. Gradshteyn, and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, Orlando
(1980), formula 3.381.

50 S. Huzinaga, J. Chem. Phys., 42, 1293 (1965).
51 Let us take two (not normalized) GTOs 1s: exp (−a(r − A)2) and exp (−b(r − B)2), the first centered on the

point shown by vector A, the second centered on the point shown by vector B. It will be shown that their product
is the GTO:

exp (−a(r− A)2) exp (−b(r− B)2) = N exp (−c(r− C)2),

with parameters c = a + b,

C = (aA+ bB)/(a + b),

N = exp

[
− ab

a + b
(A− B)2

]
.

Vector C shows the center of the new GTO. It is identical to the center of mass position, where the role of mass
is played by the orbital exponents a and b.
Here is the proof:
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the polynomial on the orbital centering; see Eq. (8.46)], can always be presented as a certain
polynomial of x ′, y′, z′ taken versus the new center C. Hence, in the general case,

the product of any two GTOs is a linear combination of GTOs.

Integrals

If somebody wanted to perform52 quantum chemical calculations by themselves, they would
immediately face integrals to compute, the simplest among them being the 1s-type. Expres-
sions for these integrals are given in Appendix P available atbooksite.elsevier.com/978-0-444-
59436-5 on p. e131.

Left side =
= exp (−ar2 + 2arA− a A2 − br2 + 2brB− bB2)

= exp (−(a + b)r2 + 2r(aA+ bB)) exp[−(a A2 + bB2)]
= exp (−cr2 + 2cCr) exp [−(a A2 + bB2)]

Right side =

= N exp (−c(r− C)2) = N exp [−c(r2 − 2Cr+ C2)]
= Left side,

if N = exp (cC2 − a A2 − bB2).

It is instructive to transform the expression for N , which is a kind of amplitude of the GTO originating from the
multiplication of two GTOs. So,

N = exp [(a + b)C2 − a A2 − bB2] = exp

(
(a2 A2 + b2 B2 + 2abAB)

(a + b)
− a A2 − bB2

)

= exp

(
1

a + b
(a2 A2 + b2 B2 + 2abAB− a2 A2 − abA2 − b2 B2 − abB2)

)

= exp

(
1

a + b
(2abAB − abA2 − abB2)

)

= exp

(
ab

a + b
(2AB− A2 − B2)

)
= exp

( −ab

a + b
(A− B)2

)
.

This is what we wanted to show.
It is seen that if A = B, then amplitude N is equal to 1 and the GTO with the a + b exponent results (as it should).
The amplitude N strongly depends on the distance |A − B| between two centers. If the distance is large, then N is
very small, which gives the product of two distant GTOs as practically zero (in agreement with common sense). It
is also clear that if we multiply two strongly contracted GTOs (a, b � 1) of different centers, the “GTO–product”
is again small. Indeed, let us take a = b as an example. We get N = exp {[−a/2][A− B]2}.
52 That is, independent of existing commercial programs, which only require the knowledge of how to push a few

buttons.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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8.4.4 Linear Combination of the Atomic Orbitals (LCAO) Method

Algebraic Approximation

Usually we apply the SCF approach with the linear combination of the atomic orbitals (LCAO)
method; this is then known as the LCAO MO and SCF LCAO MO.53 In the SCF LCAO MO
method, each molecular orbital is presented as a linear combination of atomic orbitals χs

ϕi (1) =
M∑
s

csiχs(1), (8.53)

where the symbol (1) emphasizes that each of the atomic orbitals, and the resulting molecular
orbital, depend on the spatial coordinates of one electron only (say, electron 1). The coefficients
csi are called the LCAO coefficients. The STOs and GTOs are important only in the context of
the LCAO.

The approximation, in which the molecular orbitals are expressed as linear combinations of
the atomic orbitals is also called the algebraic approximation.54

Erich Hückel (1896–1980), German physicist and
professor at the universities in Stuttgart and Mar-
burg, student of Bohr and Debye. Erich Hückel,
presumably inspired by his brother Walter, an eminent
organic chemist, created a simplified version of the
Hartree-Fock method, which played a major role
in linking the quantum theory with chemistry. Even
today, although this tool is extremely simplistic and
has been superceded by numerous and much better
computational schemes, Hückel theory is valued as
an initial insight into the electronic structure of some
categories of molecules and solids.

A curious piece of trivia: these people liked to
amuse themselves with little rhymes.

Felix Bloch has translated a poem by Walter
Hückel from German to English. It does not look
like a great poem, but it deals with the famous

Erwin (Schrödinger) and his mysterious
function ψ :
Erwin with his ψ can do
Calculations quite a few.
But one thing has not been seen,
Just what does ψ really mean

.

53 This English abbreviation turned out to be helpful for Polish quantum chemists in communist times (as special-
ists in “MO methods”, MO standing for the mighty “citizen police” which included the secret police). It was
independently used by Professors Wiktor Kemula (University of Warsaw) and Kazimierz Gumiński (Jagiellonian
University). A young coworker of Prof. Gumiński complained that despite much effort, he still could not get the
official registered address in Kraków, required for employment at the university. The professor wrote a letter to
the officials, and asked his coworker to deliver it in person. The reaction was immediate: “Why didn’t you show
this to us earlier?!”

54 It was introduced in solid-state theory by Felix Bloch (his biography is on p. 512), and used in chemistry for the
first time by Hückel.
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Why is it so useful? Imagine we do not have such a tool at our disposal. Then we are
confronted with defining a function that depends on the position in 3-D space and has a quite
complex shape. If we want to do this accurately, we should provide the function values at many
points in space, say for a large lattice with a huge number of nodes, and the memory of our PC
will not be able to handle it. Also, in such an approach, one would not make use of the fact that
the function is smooth. We find our way through by using atomic orbitals. For example, even if
we wrote that a molecular orbital is in fact a single atomic orbital (we can determine the latter
by giving only four numbers: three coordinates of the orbital center and the orbital exponent),
although very primitive, this would carry a lot of physical intuition (truth…): (1) the spatial
distribution of the probability of finding the electron is concentrated in some small region of
space, (2) the function decays exponentially when we go away from this region, etc.

“Blocks” of molecular orbitals ϕi are constructed out of “primary building blocks” – the
one-electron functions χr (in the jargon called atomic orbitals), which are required to fill two
basic conditions:

• They need to be square-integrable.
• They need to form the complete set, i.e., “everything” can be constructed from this set (any

smooth square-integrable function of x, y, z).

In addition, there are several practical conditions:

• They should be effective; i.e., each single function should include a part of the physics of
the problem (position in space, decay rate while going to∞, etc.).

• They should be “flexible”; i.e., their parameters should influence their shape to a large extent.
• The resulting integrals should be easily computable (numerically and/or analytically); see

p. 426.

In computational practice, unfortunately, we fulfill the second set of conditions only to some
extent: the set of orbitals taken into calculations (i.e., the basis set) is always limited because
computing time requires money, etc. In some calculations for crystals, we also remove the first
set of conditions (we often use plane waves: exp (ik · r), and these are not square-integrable).

We could construct a molecular orbital of any complexity exclusively using a linear combina-
tion of the orbitals g(r) = exp (−ζ |r− A|n )with different ζ and A; i.e., the f (x, y, z) = const ,
known as the 1s orbitals. We could do it also even for a Beethoven bust in a kind of “hole-
repairing” (plastering-like) procedure by building Beethoven from a mist of very many 1s
orbitals similarly as a sculptor would make it from clay.55 But why we do not do it like this in
practice? The reason is simple: the number of atomic orbitals that we would have to include
in the calculations would be too large. Instead, chemists allow for higher-order polynomials
f (x, y, z). This makes for more efficient “plastering,” because instead of spherically sym-

55 Frost derived the method of FSGO in a paper “Floating spherical Gaussian orbitals,” A.A. Frost, J. Chem. Phys.,
47, 3707 (1967); i.e., GTOs of variably chosen positions. Their number is truly minimal – equal to the number of
occupied MOs.
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Fig. 8.11. An example of function modeling by a linear combination of AOs. If a tiny admixture of the 3dx2−y2 function is added
to the spherically symmetric 1s orbital (a football ball, both with 0.5 orbital exponent). We will get shrinking in one direction,
and elongation in the other (the dimension in the third direction is unchanged); i.e., a flattened rugby ball. In this case, the tiny
admixture means 0.05. If the admixture were of the 2p type, the ball would look more like an egg. As we see, nearly everything
can be simulated like this. This is the essence of the LCAO method.

metric objects (1s), we can use orbitals g(r) of virtually any shape (via an admixture of the
p, d, f , . . . functions that introduce more and more complicated patterns of wave function’s
increasing or decreasing). For example, the way that a rugby-ball shaped orbital can be achieved
is shown in Fig. 8.11.

If in Fig. 8.12, we take five LCAOs and provide a reasonable choice of their centers, the
exponents, and the weights of the functions, we will get quite a good approximation of the
ideal orbital. We account for the advantages as follows: instead of providing a huge number of
function values at the grid nodes, we master the function using only 5× 5 = 25 numbers.56

Interpretation of LCAO
The idea of LCAO MO is motivated by the fact that the molecular orbital should consist

of spatial sections (atomic orbitals), because in a molecule in the vicinity of a given atom,
an electron should be described by an atomic orbital of this atom. The essence of the LCAO
approach is just the connection (unification) of such sections. But only some AOs are important
in practice. This means that the main effort of constructing MOs is connected to precise shaping
and polishing, by inclusion of more and more of the necessary AOs.57

Effectiveness of AOs Mixing

When could we expect that two normalized AOs will have comparable LCAO coefficients in
a low-energy MO? Two rules hold [both can be deduced immediately from Eq. (D.1)] for the
mixing effectiveness of the AOs, obtained from numerical experience:

56 Three coordinates of the center, the exponent, and the coefficient standing at AO altogether give five parameters
per one AO.

57 This plays the role of the filling mass because we aim for a beautiful (i.e., ideal from the point of view of the
variational method) shape for the MOs.
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Fig. 8.12. The concept of a MO as a LCAO, a section view. From the point of view of mathematics, it is an expansion in a series
of a complete set of functions. From the viewpoint of physics, it is just recognizing that when an electron is close to nucleus a, it
should behave in a similar way as that required by the atomic orbital of atom a. From the point of view of a bricklayer, it represents
the construction of a large building from soft and mutually interpenetrating bricks.

Effectiveness of AO Mixing

- AOs must correspond to comparable energies (in the meaning of the mean value of the
Fock operator).

- AOs must have a large overlap integral.

Let us see what we obtain as the orbital energies58 (in a.u.) for several important atoms:

1s 2s 2p 3s 3p

H −0.5 – – – –
C −11.34 −0.71 −0.41 – –
N −15.67 −0.96 −0.51 – –
O −20.68 −1.25 −0.62 – –
F −26.38 −1.57 −0.73 – –
Cl −104.88 −10.61 −8.07 −1.07 −0.51

Now, which orbitals will mix effectively when forming methane? The hydrogen atom offers
the 1s orbital with energy−0.5. As we can see from the table, there is no possibility of effectively
mixing the carbon 1s orbital, while 2s and 2p are very good candidates. Note that

58 J.B. Mann, “Atomic structure calculations. I. Hartree-Fock energy results for the elements H through Lr,” Report
LA-3690 (Los Alamos National Laboratory, 1967).
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the orbital energies of all the outermost (the so-called valence) orbitals are similar for all
the elements (highlighted in bold in the table), and therefore they are able to mix effectively
(i.e., to lower energy by forming chemical bonds). This is why chemistry is mainly the
science of outer shell orbitals.

The Mathematical Meaning of LCAO
From a mathematical point of view, Eq. (8.53) represents an expansion of an unknown

function ϕi in a series of the known functions χr , which belong to a certain complete set, thus
M should equal ∞. In real life (cf. Fig. 8.8), we need to truncate this series; i.e., use some
limited M .

8.4.5 Basis Sets of Atomic Orbitals

Basis Set
The set of the AOs {χr } used in the LCAO expansion is called a basis set.

The choice of the basis set functionsχ (the incomplete set) is one of the most important practical
(numerical) problems of quantum chemistry. Yet, because it is of a technical character, we will
just limit ourselves to a few remarks.

Although atomic functions do not need to be atomic orbitals (e.g., they may be placed between
nuclei), in most cases, they are centered directly on the nuclei of the atoms belonging to the
molecule under consideration. If M is small (in the less precise calculations), the Slater atomic
orbitals discussed above are often used as the expansion functions χr ; for larger M (in more
accurate calculations), the relation between χr and the orbitals of the isolated atoms is lost, and
χr are chosen based on the numerical experience gathered from the literature.59

8.4.6 The Hartree-Fock-Roothaan Method (SCF LCAO MO)

The Hartree-Fock equations are nonlinear differential-integral equations that can be solved
by appropriate numerical methods. For example, in the case of atoms and diatomics,

59 For those who are interested in such problems, we recommend the chapter by S. Wilson, “Basis sets,” in the
book “Ab initio Methods in Quantum Chemistry,” ed. by K.P. Lawley, 1987, p. 439. In fact, this knowledge is a
little magical. Certain notations describing the quality of basis sets are in common use. For example, the symbol
6-31G* means that the basis set uses GTOs (G), the hyphen divides two electronic shells (here K and L, see p.
448). The K shell is described by a single atomic orbital, which is a certain linear combination (a “contracted
orbital”) of six GTOs of the 1s type, and the two digits, 31, pertain to the L shell and denote two contracted
orbitals for each valence orbital (2s, 2px , 2py , 2pz), one of these contains three GTOs, the other one GTO (the
latter is called “contracted,” with a bit of exaggeration). The starlet corresponds to d functions used additionally
in the description of the L shell (called polarization functions).
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Clemens C.J. Roothaan (b. 1918),
American physicist and professor
at the University of Chicago. He
became interested in this topic after
recognizing that in the literature,
people write about the effective
one-electron operator, but he could
not find its mathematical expression.
He derived the expression within the
SCF LCAO MO procedure.

the orbitals may be obtained in
a numerical form.60 High accu-
racy at long distances from the
nuclei is their great advantage.
However, the method is pro-
hibitively difficult to apply to
larger systems.

A solution is the use of
the LCAO MO method (alge-
braization of the Fock equa-
tions). It leads to simplification
of the computational scheme of
the Hartree-Fock method.61 In
the SCF LCAO MO method,
the Fock equations (compli-
cated differential-integral equa-
tions) are solved in a very sim-
ple way. From Eqs. (8.53) and
(8.32), we have

George G. Hall (b. 1925),
Irish physicist and profes-
sor of mathematics at the
University of Nottingham.
His scientific achievements
are connected to localized
orbitals, ionization potentials,
perturbation theory, solvation,
and chemical reactions.

F̂
∑

s

csiχs = εi

∑
s

csiχs . (8.54)

Making the scalar product with χr for r = 1, 2, . . .,M , we obtain (the symbols hrs and Frs

are the matrix elements of the corresponding operators in the AO basis set)

∑
s

(Frs − εi Srs)csi = 0. (8.55)

This is equivalent to the Roothaan matrix equation62:

Fc = Scε, (8.56)

60 J. Kobus, Adv. Quantum Chem, 28, 1 (1997).
61 The LCAO approximation was introduced to the Hartree-Fock method, independently, by C.C.J. Roothaan and

G.G. Hall.
62 On the left side: L = ∑s Frscsi ; on the right side: P = ∑s,l Srscslεli =

∑
s,l Srscslδli εi =

∑
s Srscsi εi .

Comparison of both sides of the equation gives the desired result.



Orbital Model of Electronic Motion in Atoms and Molecules 433

where S is the matrix of the overlap integrals 〈χr |χs〉 involving the AOs, ε is the diagonal matrix
of the orbital energies63 εi , and F is the Fock operator matrix. Each of these matrices is square
(of the order M). F depends on c (which is why it is a pseudo-eigenvalue equation).

If the LCAO expansion is introduced to the expression for the total energy, Eq. (8.43) gives
(εi = (i |F̂ |i)):

E ′H F =
∑

i

[hii + (i |F̂ |i)] =
M O∑
i=1

∑
rs

c∗ri csi [(r |ĥ|s)+ (r |F̂ |s)] ≡ 1

2

∑
rs

Psr [hrs + Frs],
(8.57)

where P in the RHF method is called the bond-order matrix,

Psr = 2
∑MO

j c∗r j cs j ,

and the summation goes over all the occupied MOs. In consequence, a useful expression for the
total energy in the HF method may be written as

ERH F = 1

2

AO∑
rs

Psr (hrs + Frs)+
∑
a<b

Za Zb

Rab
, (8.58)

where the first summation goes over the atomic orbitals (AO). For completeness, we also give
the expression for Frs :

Frs = (r |ĥ + 2Ĵ − K̂|s) (8.59)

= hrs +
MO∑

i

[2(ri |si)− (ri |is)] = hrs +
MO∑

i

AO∑
pq

c∗pi cqi [2(r p|sq)− (r p|qs)] (8.60)

= hrs +
AO∑
pq

Pqp

[
(r p|sq)− 1

2
(r p|qs)

]
, (8.61)

where i is the index of a MO, and r and s denote the AOs.

The SCF Solution

The Hartree-Fock-Roothaan matrix equation is solved iteratively as follows:

1. We assume an initial c matrix (i.e., also an initial P matrix; often in the zeroth iteration, we
put P = 0, as if there were no electron repulsion).

2. We find the F matrix using matrix P.

63 In fact, they are some approximations to them. Their values approach the orbital energies, when the basis set of
AOs gets closer to the complete basis set.
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3. We solve the Hartree-Fock-Roothaan equation (see Appendix L available at booksite.
elsevier.com/978-0-444-59436-5, p. e107) and obtain the M MOs, we choose the N/2
occupied orbitals (those of the lowest energy).

4. We obtain a new c matrix, and then a new P, etc.
5. We go back to step 1.

The iterations are terminated when the total RHF energy (the more liberal approach) or
the coefficients c (the less liberal one) change less than the assumed threshold values. Both
these criteria (ideally fulfilled) may be considered as a sign that the output orbitals are already
self-consistent. Practically, these are never the exact solutions of the Fock equations, because
a limited number of AOs was used, while expansion to the complete set requires the use of an
infinite number of AOs (the total energy in such a case would be called the Hartree-Fock limit
energy).

After finding the MOs (hence, also the HF function) in the SCF LCAO MO approximation,
we may calculate the total energy of the molecule as the mean value of its Hamiltonian. We
need only the occupied orbitals, and not the virtual ones for this calculation.

The Hartree-Fock method only takes care of the total energy and completely ignores the
virtual orbitals, which may be considered as a kind of by-product.

8.4.7 Some Practical Problems

Size of the AO Basis Set

Number of MOs
The number of MOs obtained from the SCF procedure is always equal to the number of
the AOs used. Each MO consists of various contributions of the same basis set of AOs. The
apparent exception is when due to symmetry, the coefficients at some AOs are equal to zero.

For double occupancy, M needs to be larger or equal to N/2. Typically, we are forced to use
large basis sets (M � N/2), and then along the occupied orbitals, we get M−N/2 unoccupied
orbitals (virtual orbitals). Of course, we should aim at the highest-quality MOs (i.e., how close
they are to the solutions of the Fock equations), and avoiding large M (computational effort is
proportional to M4), but in practice, a better basis set often means a larger M . The variational
principle implies the ordering of the total energy values obtained in different approximations
(Fig. 8.13).

It is required that the largest possible basis set be used (mathematics: we approach the com-
plete set), but we may also ask if a basis set dimension may be decreased freely (economy!).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 8.13. The Hartree-Fock method is variational. The better the wave function, the lower the mean value of the Hamiltonian. An
extension of the AO basis set (i.e., adding new AOs) has to lower the energy, and the ideal solution of the Fock equations gives the
“Hartree-Fock limit.” The ground-state eigenvalue of the Hamiltonian is always lower than the HF limit because the Hartree-Fock
method is able to produce only an approximation to the solution of the Schrödinger equation.

Of course, the answer is no. The absolute limit M is equal to half the number of the electrons,
because only then can we create N spinorbitals and write the Slater determinant. However, in
quantum chemistry (rather misleadingly), we call the minimum basis set the basis set resulting
from an inner shell and valence orbitals in the corresponding atoms. For example, the minimum
basis set for a water molecule is 1s, 2s and three 2p orbitals of oxygen and two 1s orbitals of
hydrogen atoms, which is seven AOs in total (while the truly minimal basis would contain only
10/2 = 5 AOs).

Flip-Flop

The M MOs result from each iteration. We order them using the increasing orbital energy ε
criterion, and then we use the N/2 orbitals of the lowest orbital energy in the Slater determinant;
we call this the occupation of MOs by electrons. We might ask why we make the lowest-lying
MOs occupied? The variational principle does not hold for orbital energies. And yet we do this
(not trying all possible occupations), and only very rarely we get into trouble. The most frequent
problem is that the criterion of orbital energy leads to the occupation of one set of MOs in odd
iterations, and another set of MOs in even ones (typically both sets differ by including/excluding
one of the two MOs that are neighbors on the energy scale) and the energy resulting from the
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even
iterations

odd
iterations

Fig. 8.14. A difficult case for the SCF method (“flip-flop”). We are sure that the orbitals exchange in subsequent iterations, because
they differ in symmetry (�1, �2).

odd iterations is different from that of the even ones (a “flip-flop” behaviour). Such behavior of
the Hartree–Fock method is indeed annoying64 (Fig. 8.14).

Dilemmas of the AOs Centering

Returning to the total energy issue, we should recall that in order to decrease the total energy, we
may move the nuclei (so far frozen during the HF procedure). This is called the geometry opti-
mization. Practically all calculations should be repeated for each nuclear geometry during such
optimization.65 And there is one more subtlety. As was said before, the AOs are most often cen-
tered on the nuclei. When the nuclei are moved, the question arises whether a nucleus should pull
its AOs to a new place, or not.66 If not, then this “slipping off” the nuclei will significantly increase
the energy (independent of, whether the geometry is improved or not). If yes, then in fact we use
different basis sets for each geometry. Hence, in each case, we search for the solution in a slightly
different space (because it is spanned by another basis set). People use the second approach. It
is worth notifying that the problem would disappear if the basis set of AOs were complete.

The problem of AO centering is a bit shameful in quantum chemistry. Let us consider the
LCAO approximation and a real molecule such as Na2CO3. As mentioned above, the LCAO

64 There are methods for mastering this circus by using the matrix P in the kth iteration, not taken from the previous
iteration (as usual), but as a certain linear combination of P from the k − 1 and k − 2 iterations. When the
contribution of P from the k− 2 iteration is large, in comparison with that from the k− 1 iteration, it corresponds
to a gentle attempt at quietening a nervous stallion.

65 Let us take an example of CH4. First, we set any starting geometry, say, a square-like planar. Now, we try to change
the configuration to make it out-of-plane (the energy goes down). Taking the HCH angles as all equal (tetrahedral
configuration) once more lowers the total energy computed. Putting all the CH bonds of equal length gives even
lower energy. Finally, by trying different CH bond lengths, we arrive at the optimum geometry (for a given AO
basis set). In practice, such geometry changes are made automatically by computing the gradient of total energy.

66 Even if the AOs were off the nuclei, we would have the same dilemma.
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functions have to form a complete set. But which functions are we talking about? Since they
have to form a complete set, they may be chosen as the eigenfunctions of a certain Hermitian
operator (e.g., the energy operator for the 3-D harmonic oscillator or the energy operator for
the hydrogen atom or the Fock operator for the uranium atom). We decide, and we are free to
choose. In addition to this freedom, we add another freedom, that of centering. Where should
the eigenfunctions (of the oscillator or the hydrogen or uranium atom) of the complete set be
centered (i.e., positioned in space)? Since it is the complete set, each way of centering is good
by definition. It really looks like this if we hold to the principles.

But in practical calculations, we never have the complete set at our disposal. We always need
to limit it to a certain finite number of functions, and it does not represent any complete set.
We usually try to squeeze the best results from the available time and money. How do we do
that? We apply our physical intuition to the problem, believing that it will pay off. First of all,
intuition suggests the use of functions for some atom that is present in the molecule, and not
those of the harmonic oscillator, or the hydrogen or uranium atom, which are absent from our
molecule. And here we encounter another problem: Which atom is meant, because we have Na,
C, and O in Na2CO3? It appears that

the solution close to optimum is to take as a basis set the beginnings of several complete
sets, each of them centered on one of the atoms.

So we could center the 1s, 2s, 2p, and 3s orbitals on both Na atoms, and the 1s, 2s, and 2p
set on the C and O atoms.67

8.5 Back to the Basics

8.5.1 When Does the RHF Method Fail?

The reason for any Hartree-Fock method failure can be only one thing: the wave function is
approximated as a single determinant. All possible catastrophes come from this, and we might
even deduce when the Hartree–Fock method is not appropriate for description of a particular
real system. First, let us ask when a single determinant would be OK? Well, out of all Slater
determinants that could be constructed from a certain spinorbital basis set, only its energy (i.e.,
the mean value of the Hamiltonian for this determinant) would be close to the true energy of

67 This is nearly everything, except for a small paradox: if we are moderately poor (reasonable but not extensive basis
sets), then our results will be good, but if we became rich (and performed high-quality computations using very
large basis sets for each atom), then we would get into trouble. This would come from the fact that our basis set
starts to look like six distinct, complete sets. Well, that looks too good, doesn’t it? We have an overcomplete set, and
trouble must result from this. The overcompleteness means that any orbital from one set is already representable
as a linear combination of another complete set. You would see strange things when trying to diagonalize the Fock
matrix, and that won’t do. You can be sure that you would be begging to be less rich.
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Fig. 8.15. In exact theory, there is no such a thing as molecular orbitals. In such a theory, we would only deal with the many-
electron states and the corresponding energies of the molecule (left). If, nevertheless, we decided to stick to the one-electron
approximation, we would have the MOs and the corresponding orbital energies (right). These one-electron energy levels can be
occupied by electrons (0, 1, or 2) in various ways (the meaning of the occupation is given on p. 409), and a many-electron wave
function (a Slater determinant) corresponds to each occupation. This function gives a certain mean value of the Hamiltonian (i.e.,
the total energy of the molecule.) In this way (in many cases), one value of the total energy of the molecule corresponds to a diagram
of orbital occupation. The case of the S and T states is somewhat more complex than the one shown here, and we will come back
to it on p. 460.

the molecule. In such a case, only this determinant would matter in the linear combination
of determinants,68 and the others would have negligible coefficients. This could be so69 if
the energies of the occupied orbitals were much lower than those of the virtual ones. Indeed,
various electronic states of different total energies may be approximately formed while the
orbitals scheme is occupied by electrons, and if the virtual levels are at high energies, the total
energy calculated from the “excited determinant” (replacement: occupied spinorbital→ virtual
spinorbital) would also be high (Fig. 8.15).

In other words, the danger for the RHF method is when the energy difference between HOMO
and LUMO is small. For example, RHF completely fails to describe metals properly, because
� = 0 there.70 When the HOMO–LUMO gap is small, always expect bad results.

68 The Slater determinants form the complete set, as discussed on p. 398. In the configuration interaction method
(which will be described in Chapter 10), the electronic wave function is expanded using Slater determinants.

69 We shift here from the total energy to the one-electron energy (i.e., to the orbital picture).
70 It shows up as strange behavior of the total energy per metal atom, which exhibits poorly decaying oscillations

with an increasing number of atoms. In addition, the exchange interactions notorious for fast (exponential) decay
as calculated by the Hartree-Fock method are of a long-range character (see Chapter 9).
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Incorrect Description of Dissociation by the RHF Method

Another example is provided by the H2 molecule at long internuclear distances. In the simplest
LCAO MO approach, two electrons are described by the bonding orbital (χa and χb are 1s
orbitals centered on the H nuclei, a and b, respectively; both obtained by using the symmetry
requirement):

ϕbond = 1√
2
(
1+ S

)(χa + χb), (8.62)

but there is another orbital, an antibonding one

ϕantibond = 1√
2
(
1− S

)(χa − χb). (8.63)

These names stem from the respective energies, which are obtained if we accept that the
molecular orbitals satisfy a sort of “Schrödinger equation” using an effective Hamiltonian (say,
an analog of the Fock operator): Ĥe f ϕ = Eϕ and, after introducing notation, the overlap integral
S = (χa|χb), Haa = (χa|Ĥe f χa), the resonance integral71 Hab = Hba = (χa|Ĥe f χb) < 0.

For the bonding orbital, we have Ebond =
(
ϕbond |Ĥe f ϕbond

)
= 1

2(1+S)

[
Haa + Hbb + 2Hab

]
which gives

Ebond = Haa + Hab

1+ S
< Haa,

and for the antibonding orbital (similar derivation),

Eantibond = Haa − Hab

1− S
> Haa.

The resonance integral Hab, and the overlap integral S, decay exponentially when the inter-
nuclear distance R increases.

Incorrect Dissociation Limit of the Hydrogen Molecule
Thus, we have obtained the quasi-degeneracy (a near degeneracy of two orbitals) for long
distances, while we need to occupy only one of these orbitals (bonding one) in the RHF
method. The antibonding orbital is treated as virtual, and as such, is completely ignored.
However, as a matter of fact, for long distances R, it corresponds to the same energy as the
bonding energy.

We have to pay for such a huge drawback. And the RHF method pays, for its result significantly
deviates (Fig. 8.16) from the exact energy for large R values (tending to the energy of the two
isolated hydrogen atoms). This effect is known as an incorrect dissociation of a molecule in
the RHF method (here exemplified by the hydrogen molecule). The failure may be explained
in several ways, and we have presented one point of view here.
71 This integral is negative. Its sign is what decides the energy effect of the chemical bond formation (because Haa

is nearly equal to the energy of an electron in the H atom; i.e., − 1
2 a.u.).
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Fig. 8.16. Incorrect dissociation of H2 in the MO (RHF) method. The wave function, in the form of one Slater determinant, leads
to dissociation products, which are neither atoms nor ions (while they should be two ground-state hydrogen atoms with energy
2EH = −1 a.u.). The Hartree-Fock computations have been carried out (program GAUSSIAN) for the internuclear distances
shown as points by using the atomic basis set known as 6− 31G(d, p). The energy of an isolated hydrogen atom (EH ) has been
calculated in the corresponding single-atom basis set. The curve displayed has been created as a multi-exponential approximation
by using the least-mean-square method. Computed in such a way, the minimum of the curve corresponds to the internuclear distance
R = 1.385 a.u. (the Hartree–Fock limit is 1.370 a.u., while the solution of the Schrödinger equation in the Born-Oppenheimer
approximation gives 1.401 a.u.). The corresponding energy equals −1.131 a.u., while the Hartree–Fock limit is −1.134 a.u., and
the solution of the Schrödinger equation within the Born-Oppenheimer approximation gives −1.174 a.u.

8.5.2 Fukutome Classes

Symmetry Dilemmas and the Fock Operator

We have derived the general Hartree-Fock method (GHF, p. 407) providing completely free
variations for the spinorbitals taken from Eq. (8.1). As a result, the Fock equation [Eq. (8.27)]
was derived.

We then decided to limit the spinorbital variations via our own condition of the double
occupancy of the molecular orbitals as the real functions. This has led to the RHF method and
to the Fock equation in the form of Eq. (8.32).

The Hartree-Fock method is a complex (nonlinear) machinery. Do the HF solutions have any
symmetry features related to those of the Hamiltonian? This question may be asked both for
the GHF method and for any spinorbital constraints (e.g., the RHF constraints). The following
problems may be addressed:

• Do the output orbitals belong to the irreducible representations of the symmetry group
(see Appendix C available at booksite.elsevier.com/978-0-444-59436-5 on p. e17) of the
Hamiltonian? Or, if we set the nuclei in the configuration corresponding to symmetry group
G, will the canonical orbitals transform according to some irreducible representations of

http://booksite.elsevier.com/978-0-444-59436-5
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the G group? Or, stated in yet another way, does the Fock operator exhibits the symmetry
typical of the G group?72

• Does the same apply to electron density?
• Is the Hartree-Fock determinant an eigenfunction of the Ŝ2 and Ŝz operators?
• Is the probability density of finding a σ = 1

2 electron equal to the probability density of
finding a σ = −1

2 electron at any point of space?

Instabilities in the Hartree-Fock Method

The above mentioned questions are connected to the stability of the solutions. The HF solution
is stable if any change of the spinorbitals leads to a higher energy. We may put certain con-
ditions for spinorbital changes. Relaxing the condition of double occupancy may take various
forms; e.g., the paired orbitals may be equal but complex, or all orbitals may be different real
functions, or we may admit them as different complex functions, among other options. Could
the energy increase along with this gradual orbital constraints removal? No, an energy increase
is impossible, of course, because of the variational principle, the energy might, however, remain
constant or decrease.

The general answer to this question (the character of the energy change) cannot be given since
it depends on the molecule under study, interatomic distances, the AO basis set, etc. However,
as shown by Fukutome73 by a group theory analysis, there are exactly eight situations that may
occur. Each of these leads to a characteristic shape of the set of occupied orbitals, and they are
all given in Table 8.1. We may pass the borders between these eight classes of GHF method
solutions while changing various parameters.

Example. RHF/UHF Triplet Instability
May the UHF method give lower energy for the hydrogen molecule than the RHF procedure?
Let us take the RHF function:

ψRH F = 1√
2

∣∣∣∣φ1(1) φ1(2)
φ2(1) φ2(2)

∣∣∣∣ ,
where both spinorbitals have a common real orbital part ϕ : φ1 = ϕα, φ2 = ϕβ.

Now we allow for a diversification of the orbital part (keeping the functions real: i.e., staying
within the Fukutome class 4, usually called UHF in quantum chemistry) for both spinorbitals.

72 It has been shown that the translational symmetry in the RHF solution for polymers is broken and that the symmetry
of the electron density distribution in polymers exhibits a unit cell twice as long as that of the nuclear pattern
[Bond-Order Alternating Solution (BOAS); J. Paldus and J. Čižek, J. Polym. Sci., Part C, 29, 199 (1970); also
J.-M. André, J. Delhalle, J.G. Fripiat, G. Hennico, J.-L. Calais, and L. Piela, J. Mol. Struct. (Theochem), 179, 393
(1988)]. The BOAS represents a feature related to the Jahn-Teller effect in molecules and to the Peierls effect in
the solid state (see Chapter 9).

73 A series of papers by H. Fukutome starts with the article in Prog. Theor. Phys., 40, 998 (1968), and the review
article Int. J. Quantum Chem., 20, 955 (1981). I recommend a beautiful paper by J.-L. Calais, Adv. Quantum
Chem., 17, 225 (1985).
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Table 8.1. Fukutome classes [for ϕi1 and ϕi2; see Eq. (8.1)].

Class Orbital Components
[
ϕ11 ϕ21 . . . ϕN1
ϕ12 ϕ22 . . . ϕN2

]
Remarks Eigenfunction

1

[
ϕ1 0 ϕ2 0 . . . ϕN/2 0
0 ϕ1 0 ϕ2 . . . 0 ϕN/2

]
ϕi ; real RHF, Ŝ2, Ŝz

2

[
ϕ1 0 ϕ2 0 . . . ϕN/2 0
0 ϕ1 0 ϕ2 . . . 0 ϕN/2

]
ϕi ; complex Ŝ2, Ŝz

3

[
ϕ1 0 ϕ2 0 . . . ϕN/2 0
0 ϕ∗1 0 ϕ∗2 . . . 0 ϕ∗N/2

]
ϕi ; complex Ŝz

4

[
ϕ1 0 ϕ2 0 . . . ϕN/2 0
0 χ1 0 χ2 . . . 0 χN/2

]
ϕ, χ ; real UHF, Ŝz

5

[
ϕ1 0 ϕ2 0 . . . ϕN/2 0
0 χ1 0 χ2 . . . 0 χN/2

]
ϕ, χ ; complex Ŝz

6

[
ϕ1 χ1 ϕ2 χ2 . . . ϕN/2 χN/2
−χ∗1 ϕ∗1 −χ∗2 ϕ∗2 . . . −χ∗N/2 ϕ∗N/2

]
ϕ, χ ; complex

7

[
ϕ1 χ1 ϕ2 χ2 . . . ϕN/2 χN/2
τ1 κ1 τ2 κ2 . . . τN/2 κN/2

]
ϕ, χ, τ, κ; real

8

[
ϕ1 χ1 ϕ2 χ2 . . . ϕN/2 χN/2
τ1 κ1 τ2 κ2 . . . τN/2 κN/2

]
ϕ, χ, τ, κ; complex

We proceed slowly from the closed-shell situation, using as the orthonormal spinorbitals:

φ′1 = N−(ϕ − δ)α,
φ′2 = N+(ϕ + δ)β,

where δ is a small real correction to the ϕ function, and N+ and N− are the normalization
factors.74 The electrons hate each other (Coulomb law) and may thank us for giving them
separate apartments75: ϕ+ δ and ϕ− δ. We will worry about the particular mathematical shape
of δ in a minute. For the time being, though, let us see what happens to the UHF function:

ψU H F = 1√
2

∣∣∣∣φ′1(1) φ′1(2)
φ′2(1) φ′2(2)

∣∣∣∣
= 1√

2
N−
∣∣∣∣ [ϕ(1)− δ(1)]α(1) [ϕ(2)− δ(2)]α(2)φ′2(1) φ′2(2)

∣∣∣∣
= 1√

2
N−
{∣∣∣∣ϕ(1)α(1) ϕ(2)α(2)
φ′2(1) φ′2(2)

∣∣∣∣−
∣∣∣∣ δ(1)α(1) δ(2)α(2)
φ′2(1) φ′2(2)

∣∣∣∣
}

74 Such a form is not fully equivalent to the UHF method, in which a general form of real orbitals is allowed, not
just ϕ ± δ.

75 Well, this is not quite the case because the apartments overlap.
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= 1√
2

N+N−

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣ϕ(1)α(1) ϕ(2)α(2)
[ϕ(1)+ δ(1)]β(1) [ϕ(2)+ δ(2)]β(2)

∣∣∣∣−∣∣∣∣ δ(1)α(1) δ(2)α(2)
[ϕ(1)+ δ(1)]β(1) [ϕ(2)+ δ(2)]β(2)

∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭

= 1√
2

N+N−

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣ϕ(1)α(1) ϕ(2)α(2)
ϕ(1)β(1) ϕ(2)β(2)

∣∣∣∣+
∣∣∣∣ϕ(1)α(1) ϕ(2)α(2)
δ(1)β(1) δ(2)β(2)

∣∣∣∣−∣∣∣∣ δ(1)α(1) δ(2)α(2)
ϕ(1)β(1) ϕ(2)β(2)

∣∣∣∣−
∣∣∣∣ δ(1)α(1) δ(2)α(2)
δ(1)β(1) δ(2)β(2)

∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭

= N+N−ψRH F + 1√
2

N+N−
{[
ϕ(1)δ(2)− ϕ(2)δ(1)] [α(1)β(2)+ α(2)β(1)]}

− 1√
2

N+N−
∣∣∣∣ δ(1)α(1) δ(2)α(2)
δ(1)β(1) δ(2)β(2)

∣∣∣∣ .
The first and last functions are singlets (Sz = 0, S = 0), while the second function represents

a triplet state (Sz = 0, S = 1); see Appendix Q available at booksite.elsevier.com/978-0-444-
59436-5 on p. e133. Thus, a small diversification of the orbital functions leads to some triplet
(second term) and singlet (third term) admixtures to the original singlet function N+N−ψRH F

(called triplet contamination, generally spin contamination). The former is proportional to δ
and the latter to δ2. Now the total wave function is no longer an eigenfunction of the Ŝ2 operator.
How is this possible? If one electron has a spin coordinate of 1

2 and the second one of−1
2 , aren’t

they paired? Well, not necessarily, because one of the triplet functions (which describes the
parallel configuration of both spins76) is

[
α(1)β(2)+ α(2)β(1)].

Is the resulting UHF energy (calculated for such a function) lower than the corresponding RHF
energy (calculated for ψRH F ); i.e., is the RHF solution unstable toward UHF-type spinorbitals
changes (no. 4 in the table of Fukutome classes)?

It depends on a particular situation. Earlier, we have promised to consider what the δ function
should look like for the hydrogen molecule. In the RHF method, both electrons occupy the same
molecular orbital ϕ. If we ensured within the UHF method that whenever one electron is close
to nucleus a, the second one prefers to be closer to b, this would happily be accepted by the
electrons, since they repel each other (the mean value of the Hamiltonian would decrease, this is
welcome). Taking δ = εϕ̃ (where ϕ̃ is the antibonding orbital, and ε > 0 is a small coefficient)
would have such consequences. Indeed, the sum ϕ + δ = ϕ + εϕ̃ takes larger absolute value
preferentially at one of the nuclei77 (Fig. 8.17). Since both orbitals correspond to electrons with
opposite spins, there will be some net spin on each of the nuclei.

76 To call them parallel is an exaggeration, since they form an angle of 70.50 (see Chapter 1, p. 33), but this is
customary in physics and chemistry.

77 In our example, the approximate bonding orbital is ϕ = 1√
2
(1sa + 1sb), and ϕ̃ = 1√

2
(1sa − 1sb), hence

ϕ + εϕ̃ = 1√
2
[(1+ ε) 1sa +

(
1− ε) 1sb], while ϕ − εϕ̃ = 1√

2
[(1− ε) 1sa +

(
1+ ε) 1sb]. Thus, one of the new

orbitals has a larger amplitude at nucleus a, while the other one is at nucleus b (as we had initially planned).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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(a)

(b)

(c)

(d)

Fig. 8.17. The effect of mixing the bonding orbital ϕ (shown in panel a) with the antibonding orbital ϕ̃ (shown in panel b). A
small admixture (c) of ϕ̃ to the orbital ϕ leads to an increase of the probability amplitude of the resulting orbital at the left nucleus,
while a subtraction of ϕ̃ (d) leads to a larger probability amplitude of the resulting orbital at the right nucleus. Thus, it results in
partial separation of the spins 1

2 and − 1
2 .

A similar reasoning pertaining function ϕ − δ = ϕ − εϕ̃ results in opposite preferences for
the nuclei. Such a particular UHF method, which uses virtual orbitals ϕ̃ to change RHF orbitals,
is called the AMO approach.78

Now,

ψU H F = N+N−ψRH F + 1√
2

N+N−ε
{[
ϕ(1)ϕ̃(2)− ϕ(2)ϕ̃(1)] [α(1)β(2)+ α(2)β(1)]}

− 1√
2

N+N−ε2
∣∣∣∣ ϕ̃(1)α(1) ϕ̃(2)α(2)
ϕ̃(1)β(1) ϕ̃(2)β(2)

∣∣∣∣ = N+N−
[
ψRH F + ε

√
2ψT ′ − ε2ψE

]
,

where the following notation is used for normalized functions: ψRH F for the ground state of
the energy ERH F , ψT ′′ for the triplet state of the energy ET , and ψE for the singlet state with
a doubly occupied antibonding orbital that corresponds to the energy EE (“doubly excited”).

78 Alternant Molecular Orbitals; P.-O. Löwdin, Symp. Mol. Phys., Nikko (Tokyo Maruzen), (1954), p. 13; also
R. Pauncz, Alternant Molecular Orbitals, Saunders, Philadelphia (1967).
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Let us calculate the mean value
of the Hamiltonian using the
ψU H F function. Because of the
orthogonality of the spin func-
tions (remember that the Hamil-
tonian is independent of spin),

we have
〈
ψRH F |ĤψT ′′

〉
=

〈ψRH F |ψT ′′ 〉 = 0, and we obtain
(with accuracy up to ε2 terms):

Per-Olov Löwdin (1916–2000),
Swedish chemist and physicist
and a professor at the University
of Uppsala (Sweden), founder
and professor of the Quantum
Theory Project at Gainesville
University (Florida). He was
very active in organizing the sci-
entific life of the international
quantum chemistry community.

ĒU H F ≈
〈
ψRH F |ĤψRH F

〉
+ 2ε2

〈
ψT ′′ |ĤψT ′′

〉
− 2ε2

〈
ψRH F |ĤψE

〉
〈ψRH F |ψRH F 〉 + 2ε2 〈ψT ′′ |ψT ′′ 〉

= ERH F + 2ε2 ET − 2ε2(ϕϕ|ϕ̃ϕ̃)
1+ 2ε2 ≈ ERH F + 2ε2 [(ET − ERH F

)− (ϕϕ|ϕ̃ϕ̃)] ,
where the Taylor expansion and the III Slater-Condon rule have been used (p. e107):〈
ψRH F |ĤψE

〉
= (ϕϕ|ϕ̃ϕ̃) > 0. The last integral is greater than zero because it corresponds to

the Coulombic self-repulsion of a certain charge distribution.
It is now clear that if the singly-excited triplet state ψT ′′ is of high energy as compared to the

ground state ψRH F , then the spatial diversification of the opposite spin electrons (connected
with the stabilization of −2ε2(ϕϕ|ϕ̃ϕ̃)) will not pay. But if the ET is close to the ground state
energy, then the total energy will decrease upon the addition of the triplet state; i.e., the RHF
solutions will be unstable toward the UHF (or AMO)–type change of the orbitals.

This is the picture we obtain in numerical calculations for the hydrogen molecule (Fig. 8.18).
At short distances between the atoms (up to 2.30 a.u.), the interaction is strong and the triplet
state is of high energy. Then the variational principle does not allow the triplet state to contribute
to the ground state and the UHF and the RHF give the same result. But beyond the 2.30 a.u.
internuclear distance, the triplet admixture results in a small stabilization of the ground state
and the UHF energy is lower than the RHF. For very long distances (when the energy difference
between the singlet and triplet states is very small), the energy gain associated with the triplet
component is very large.

We can see from Fig. 8.18b the drama occurring at R = 2.30 a.u. for the mean value of
the Ŝ2 operator. For R < 2.30 a.u. the wave function preserves the singlet character, for larger
R the triplet addition increases fast, and at R = ∞ the mean value of the square of the total
spin Ŝ2 is equal to 1, i.e., half-way between the S(S + 1) = 0 result for the singlet (S = 0)
and the S(S + 1) = 2 result for the triplet (S = 1), since the UHF determinant is exactly
50%:50% singlet : triplet mixture. Thus, one determinant (UHF) is able to describe properly
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the dissociation of the hydrogen molecule in its ground state (singlet), but at the expense of a
large spin contamination (triplet admixture).

RESULTS OF THE HARTREE-FOCK METHOD

8.6 Mendeleev Periodic Table

8.6.1 Similar to the Hydrogen Atom–The Orbital Model of an Atom

Dmitri Ivanovich Mendeleev (1834–1907), Russian
chemist, professor at the University in Petersburg, and
later controller of the Russian Standards Bureau of
Weights and Measures (after he was expelled from the
university by the tsarist powers for supporting a student
protest). He was born in Tobolsk, as the youngest of 14
children of a headmaster. In 1859, young Mendeleev
went to Paris and Heidelberg on a tsarist scholarship,
where he worked with Robert Bunsen and Gustav
Kirchhoff. After getting his Ph.D.in 1865, he became
at 32 professor of chemistry at the University in St.
Petersburg. Since he had no good textbook, he started
to write his own (Principles of Chemistry ). This is when
he discovered one of the major human generalizations
(1869): the Periodic Table of chemical elements. In
1905 he was nominated for the Nobel Prize, but lost by
one vote to Henri Moissan, the discoverer of fluorine.
The Swedish Royal Academy thus lost its chance,
because in a year or so Mendeleev was dead. Many
scientists have had similar intuition as had Mendeleev,
but it was Mendeleev who completed the project, who
organized the known elements in the table, and who

predicted the existence of unknown elements.
The following example shows how difficult it was
for science to accept the periodic table. In 1864,
John Newlands presented to The Royal Society
in London his work showing similarities of the
light elements, occurring for each eighth element
with increasing atomic mass. The president of the
meeting, quite amused by these considerations,
suggested: “Haven’t you tried to organize them
according to the alphabetic order of their names?”

The Hartree-Fock method gives an approximate wave function for the atom of any chemical
element from the Mendeleev periodic table (orbital picture). The Hartree-Fock method stands
behind the orbital model of atoms. The model says essentially that a single electron configuration
can describe the atom to an accuracy that in most cases satisfies chemists. To tell the truth, the
orbital model is in principle false,79 but it is remarkable that nevertheless, the conclusions drawn
from it agree with experimental results, at least qualitatively. It is exciting that

the electronic structure of all elements can be generated to a reasonable accuracy using the
Aufbau Prinzip; i.e., a certain scheme of filling the atomic orbitals of the hydrogen atom.

79 Because the contributions of other Slater determinants (configurations) is not negligible (see Chapter 10).
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(a)

(b)
a.u.

a.u.

a.u.

Fig. 8.18. (a) The mean value of the Hamiltonian (E) calculated by the RHF and UHF methods (by T. Helgaker, P. Jørgensen,
and J. Olsen, “Molecular Electronic Structure Theory”, Wiley, Chichester, 2000). The lowest curve (EFC I ) corresponds to the
accurate result (called the full configuration interaction method; see Chapter 10). (b) The mean value of the Ŝ2 operator calculated
by the RHF and UHF methods. The energies ERH F (R) and EU H F (R) are identical for internuclear distances R < 2.30 a.u. For
larger R values, the two curves separate, and the RHF method gives an incorrect description of the dissociation limit, while the
UHF method still gives a correct dissociation limit. For R < 2.30 a.u., the RHF and UHF wave functions are identical, and they
correspond to a singlet, while for R > 2.30, the UHF wave function has a triplet contamination.

Thus, the simple and robust orbital model serves chemistry as a “work horse.” Let us take
some examples. All the atoms are build on a similar principle. A nodeless, spherically symmetric
atomic orbital of the lowest orbital energy is called 1s, the second lowest (and also the spherically
symmetric, one-radial node) is called 2s, etc. Therefore, when filling orbital energy states by
electrons, some electronic shells are formed: K(1s2),L(2s22p6), . . ., where the maximum for
shell orbital occupation by electrons is shown.

The very foundations of a richness around us (its basic building blocks being atoms in the
Mendeleev periodic table) result from a very simple idea: that the proton and electron form a
stable system called the hydrogen atom.
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8.6.2 Shells and Subshells

The larger the atomic number, the more complex the electronic structure. For neutral atoms, the
following occupation scheme applies (sign < relates to the orbital energy):

Aufbau Prinzip
The Aufbau Prinzip relies on the following scheme of orbital energies (in ascending order).

Orbital energy [Noble gas atoms]

Direction of occupying subshells =⇒⇓
n
1 1s [He(2)] = 1s2

2 2s 2p [Ne(10)] = [He(2)]2s22p6

3 3s 3p [Ar(18)] = [Ne(10)]3s23p6

4 4s 3d 4p [Kr(36)] = [Ar(18)]4s23d104p6

5 5s 4d 5p [Xe(54)] = [Kr(36)]5s24d105p6

6 6s 4 f 5d 6p [Rn(86)] = [Xe(54)]6s24 f 145d106p6

7 7s 5 f 6d 7p [Uuo(118)] = [Rn(86)]7s25 f 146d107p6

This sequence of the orbital energies may be viewed as a result of the Restricted Open-
Shell Hartree-Fock (ROHF, p. 411) calculations for atoms. As one can see, the sequence differs
from that for the hydrogen atom orbital energies. The main reason for this is that unlike for
the hydrogen atom, for other atoms for a given principal quantum number n (counting atomic
shells: K for n = 1, L for n = 2, M for n = 3, etc.), the orbital energies increase with the
quantum number l, which define subshells: s, p, d, . . . for l = 0, 1, 2, . . . This in turn reflects
the fact an electron in such an atom does not see a point nucleus. Instead, it sees the point
nucleus surrounded by an electron cloud; i.e., with the nuclear charge screened by an electron
cloud, something like a huge non-point-like nucleus. This leads to such an “anomaly” that the
3d orbital energy is higher than that of 4s, etc.

However, we cannot expect that all nuances of atomic stabilities and of the ions corresponding
to them might be deduced from a single simple rule like the Aufbau Prinzip, that would replace
the hard work of solving the Schrödinger equation (plus also the relativistic effects; see Chapter
3) individually for each particular system.

Increasing the nuclear charge of an atom (together with its number of electrons) leads to
the consecutive occupation by electrons of the electronic shells and subshells of higher
and higher energy. This produces a quasi-periodicity (sometimes called periodicity in
chemistry) of the valence shells, and as a consequence, a quasi-periodicity of all chemical
and physical properties of the elements (reflected in the Mendeleev periodic table).
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Example 1. Noble gases. The atoms He, Ne, Ar, Kr, Xe, and Rn have a remarkable feature:
they all exhibit the full occupancy of the electronic shells. According to the discussion on p.
430, what chemistry is all about is the outermost occupied orbitals (constituting the valence
shell) that participate in forming chemical bonds. To have a chemical bond an atom has to offer
or receive an electron. However,

the noble gases have the highest ionization potential among all chemical elements and the
zero electron affinity. This confirms the common chemical knowledge that the noble gases
do not form chemical bonds.

One has to remember, however, that even the closed shells of the noble gases can be opened
either in extreme physical conditions (like pressure) or by using aggressive compounds that are
able to detach an electron from them.

Example 2. Alkali metals. The atoms Li, Na, K, Rb, Cs, Fr have the following dominant
electronic configurations (the inner shells have been abbreviated by reporting the corresponding
noble gas atom configuration):

Inner shells Valence configuration

Li [He] 2s1

Na [Ne] 3s1

K [Ar] 4s1

Rb [Kr] 5s1

Cs [Xe] 6s1

Fr [Rn] 7s1

Since the valence shell decides about chemistry, no wonder the elements Li, Na, K, Rb,
Cs, and Fr exhibit similar chemical and physical properties. Let us take any property we want
(e.g., what will we get if the element is thrown into water?). Lithium is a metal that reacts
slowly with water, producing a colorless basic solution and hydrogen gas. Sodium is a metallic
substance, and with water produces a very dangerous spectacle (wild dancing flames): it reacts
rapidly with water to form a colorless basic solution and hydrogen gas. The other alkali metals
are even more dangerous. Potassium is a metal as well, and it reacts very rapidly with water,
giving a colorless basic solution and hydrogen gas. Rubidium is a metal that reacts very rapidly
with water, producing a colorless basic solution and hydrogen gas. Cesium metal reacts rapidly
with water. The result is a colorless solution and hydrogen gas. Francium is very scarce and
expensive, and probably no one has tried its reaction with water. However, we may expect, with
very high probability, that if the reaction were made, it would be faster than the reaction with
cesium, and a basic solution would be produced.
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However, maybe all elements react rapidly with water to form a colorless basic solution and
hydrogen gas? Well, this is not true. The noble gases do not. They only dissolve in water, without
any accompanying chemical reaction. They seem to be for the water structure just inert balls of
increasing size. No wonder then that (at 293 K) one obtains the following monotonic sequence of
their solubilities: 8.61(He)< 10.5 (Ne)< 33.6 (Ar)< 59.4 (Kr)< 108.1 (Xe)< 230 (Rn) cm3/kg.

Example 3. Halogens. Let us see whether there are other families. Let us concentrate on atoms
that have p5 as the outermost configuration. Using our scheme of orbital energies, we produce
the following configurations with this property:

– [He]2s22p5 with 9 electrons (i.e., F),
– [Ne]3s23p5) with 17 electrons (i.e., Cl),
– [Ar]4s23d104p5) with 35, which corresponds to Br,
– [Kr ]4d10, 5p5 with 53 electrons, which is iodine,
– [Xe]6s24f145d106p5 means 85 electrons (i.e., astatine, or At).

Are these elements similar? What happens to halogens when they make contact with water?
Maybe they react very rapidly, with water producing a colorless basic solution and hydrogen
gas, as with the alkali metals, or do they just dissolve in water like the noble gases? Let us see.

Fluorine reacts with water to produce oxygen, O2, and ozone, O3. This is strange in com-
parison with alkali metals. Next, chlorine reacts with water to produce hypochlorite, OCl−.
Bromine and iodine behave similarly, producing hypobromite OBr− and hypoiodite OI−.
Nothing is known about the reaction of astatine with water. Apart from the exceptional behavior
of fluorine,80 there is no doubt that we have a family of elements. This family is different from
the noble gases and from the alkali metals.

Thus, the families show evidence that elements differ widely among families, but much less
within a family, with rather small (and often monotonic) changes within it. This is what (quasi)
periodicity of the Mendeleev periodic table is all about. The families are called groups (usually
columns) in the Mendeleev table.

The Mendeleev table represents more than just a grid of information–it is a kind of compass
in chemistry. Instead of having a wilderness where all the elements exhibit their unique physical
and chemical properties as deus ex machina, we obtain the understanding that the animals are in
a zoo, and are not unrelated, that there are some families, which follow from similar structures
and occupancies of the outer electronic shells. Moreover, it became clear for Mendeleev that
there were cages in the zoo waiting for animals yet to be discovered. The animals could have
been described in detail before they were actually found by experimentation. This periodicity
pertains not only to the chemical and physical properties of elements, but also to all parameters
that appear in theory and are related to atoms, molecules, and crystals.

80 For light elements, the details of the electronic configuration play a more important role. For example, hydrogen
may also be treated as an alkali metal, but its properties differ widely from the properties of the other members of
this family.
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8.6.3 Educated Guess of Atomic Orbitals–The Slater Rules

John Slater, by analyzing what his young coworkers were bringing from the computer room
(as he wrote: “when the boys were computing”), noticed that he can quite easily predict the
approximate shape of the orbitals without any calculation. According to his rules, it is enough
to introduce a screening in the STO’s exponent in order to get a rough idea of realistic AOs for
a particular atom. Slater proposed the STOs with ζ = Z−σ

n , where Z stands for the nuclear
charge, σ tells us how other electrons screen (i.e., effectively diminish) the charge of the nucleus
for an electron “sitting on” the analyzed STO, and n is the principal quantum number, the same
as that in the Aufbau Prinzip.81

We focus on the electron occupying the orbital in question (that for which we are going to
find ζ ), and we try to estimate what the electron “sees.” The electron sees that the nucleus charge
is screened by its fellow electrons. The Slater rules are as follows:

• Write down the electronic configuration of the atom by grouping its orbitals in the following
way: [1s][2s2p][3s3p][3d]. . .

• Electrons from the groups to the right of this sequence give zero contribution.
• The electrons in the same group contribute 0.35 each, except the [1s] fellow electron (if we

consider 1s orbital), which contributes 0.30.
• For an electron in a [nsnp] group, each electron in the n − 1 group contributes 0.85, for

lower groups (more on the left side) each contributes 1.0 and for the [nd] or [n f ] groups,
all electrons in the groups to the left contribute 1.0.

Example: Carbon atom
Configuration in groups [1s2][2s22p2]. There will be two σ ’s: σ1s = 0.30, σ2s = σ2p =

3 · 0.35 + 2 · 0.85 = 2.75. Hence, ζ1s = 6−0.30
1 = 5.70, ζ2s = ζ2p = 6−2.75

2 = 1.625, which
means the following AOs 1sC = N1s exp (−5.70r), 2sC = N2sr exp (−1.625r), 2px,C =
N2px exp (−1.625r), 2py,C = N2p y exp (−1.625r), 2pz,C = N2pz exp (−1.625r). The advan-
tage of such estimations is that prior to any computation we have already an idea what kind of
AOs we should expect from more accurate approaches.

8.7 The Nature of the Chemical Bond

As shown on p. 439, the MO method explains the nature of the chemical bond via the argument
that the orbital energy in the molecule is lower than that in the isolated atom. But why is this
so? Which interactions decide bond formation? Do they have their origin in quantum or simply
in classical mechanics?

To answer these questions, we will analyze the simplest case: chemical bonding in molecular
ion H+2 . It seems that quantum mechanics is not required here: we deal with one repulsion and
two attractions. No wonder there is bonding, since the net effect is one attraction. But the same

81 For n ≥ 4, some modifications have been designed.



452 Chapter 8

applies, however, to the dissociated system (the hydrogen atom and the proton). Thus, the story
is becoming more subtle.

8.7.1 The Simplest Chemical Bond: H+
2 in the MO Picture

Let us analyze chemical bonding as viewed by the poor version of the MO method (only
two 1s hydrogen atom orbitals are used in the LCAO expansion; see Appendix R available at
booksite.elsevier.com/978-0-444-59436-5 on p. e137). Much can be seen because this is such a
simple version. The mean kinetic energy of the (only) electron of H+2 , residing on the bonding
MO ϕ = [2(1 + S)]−1/2(a + b), is given as (a and b denote the atomic 1s orbitals centered,
respectively, on the a and b nuclei)

T̄ ≡ (ϕ|T̂ϕ) = Taa + Tab

1+ S
, (8.64)

where S is the overlap integral S = (a|b), and

Taa = (a| − 1

2
�|a) = Tbb,

Tab = (a| − 1

2
�|b) = Tba.

The non-interacting hydrogen atom and the proton have the mean kinetic energy of the
electron equal to Taa . The kinetic energy change is, thus,

�T = T̄ − Taa = Tab − STaa

1+ S
. (8.65)

Let us note (recall the a and b functions are the eigenfunctions of the hydrogen atom
Hamiltonian), that Tab = EH S − Vab,b and Taa = EH − Vaa,a , where EH is the ground
state energy of the H atom,82 and

Vab,b = Vab,a = −
(

a| 1
rb
|b
)
,

Vaa,a = −
(

a| 1
ra
|a
)
.

Now, �T can be presented as

�T = −Vab,a − SVaa,a

1+ S
, (8.66)

because the terms with EH cancel each other out. In this way, the change in kinetic energy of
the electron when a molecule is formed may be formally presented as the integrals describing

82 For example, Tab = (a| − 1
2�|b) = (a| − 1

2�− 1
rb
+ 1

rb
|b) = EH S + (a| 1

rb
|b) = EH S − Vab,b.

http://booksite.elsevier.com/978-0-444-59436-5
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the potential energy. Using the results of Appendix R available at booksite.elsevier.com/
978-0-444-59436-5, p. e137, we have −Vab,a + SVaa,a = (1 + R) exp (−R) − S = S −
R2

3 exp (−R)− S = − R2

3 exp (−R) ≤ 0. This means �T ≤ 0; i.e.,

the kinetic energy change stabilizes the molecule.

This agrees with our intuition that an electron in the molecule has more space (“larger box,”
see p. 163), and the energy levels in the box (potential energy is zero in the box, so we mean
kinetic energy) decrease, when the box dimension increases. This example shows that some
abstract problems that can be solved exactly (here the particle in the box), serve as a beacon for
more complex problems.

Now let us calculate the change in the mean potential energy. The mean potential energy of
the electron (the nucleus-nucleus interaction will be added later) equals

V̄ = (ϕ|V |ϕ) = (ϕ|− 1

ra
− 1

rb
|ϕ) = (Vaa,a + Vaa,b + 2Vab,a)

1+ S
(8.67)

while in the hydrogen atom, it was equal to Vaa,a . The difference, �V , is

�V = (−SVaa,a + 2Vab,a + Vaa,b)

1+ S
. (8.68)

We can see that when the change in total electronic energy (�Eel = �T+�V ) is calculated,
some kinetic energy terms will cancel the corresponding potential energy terms, and potential
energy will dominate during bond formation:

�Eel = Vab,a + Vaa,b

1+ S
. (8.69)

To obtain the change,�E , in the total energy of the system during bond formation, we have
to add the term 1/R describing the nuclear repulsion:

�E = Vab,a

1+ S
+ Vaa,b

1+ S
+ 1

R
. (8.70)

This formula is identical (because Vab,a = Vab,b) to the difference in orbital energies in
the molecule H+2 and in the hydrogen atom, as given in Appendix R available at booksite.
elsevier.com/978-0-444-59436-5 on p. e137.

Eq. (8.70) can be easily interpreted. Let us first consider the electron density described by the
ϕ orbital: ϕ2 = [2(1+ S)]−1(a2+b2+2ab). Let us note that the density can be divided into the
part ρa close to nucleus a, ρb close to nucleus b, and ρab concentrated in the bonding region83

ϕ2 = ρa + ρb + ρab, (8.71)

83 We will see it later in detail.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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whereρa = [2(1+S)]−1a2, ρb = [2(1+S)]−1b2, ρab = [(1+S)]−1ab. It can be seen84 that the
charge associated with ρa is [−2(1+S)]−1, the charge connected with the nucleus b is the same,
and the overlap charge ρab is−S/(1+S). Their sum gives−2/[2(1+S)]−2S/[2(1+S)] = −1
(the unit electronic charge). The formula for�E may also be written as (we use symmetry: the
nuclei are identical, and the a and b orbitals differ only in their centers only):

�E = Vab,a

[2(1+ S)] +
Vab,b

[2(1+ S)] +
Vaa,b

[2(1+ S)] +
Vbb,a

[2(1+ S)] +
1

R
. (8.72)

Now it is clear that this formula exactly describes the following Coulombic interactions
(Fig. 8.19a,b):

• Of the electron cloud from the a atom (with density 1
2ρab) with the nuclei a and b (the first

two terms of the expression)
• Of the electron cloud of density ρa with the b nucleus (third term)
• Of the electron cloud of density ρb with the a nucleus (fourth term)
• Of the a and b nuclei (fifth term).

If we consider classically a proton approaching a hydrogen atom, the only terms for the total
interaction energy are (see Fig. 8.19c):

�Eclass = Vaa,b + 1

R
. (8.73)

The difference between �E and �Eclass only originates from the difference in electron
density calculated quantum mechanically and classically; cf. Fig. 8.19. The �Eclass is a weak
interaction (especially for long distances), and tends to +∞ for small R, because85 of the
1/R term. This can be understood because �Eclass is the difference between two Coulombic
interactions: of a point charge with a spherical charge cloud, and of the respective two point
charges (called penetration energy).�E contains two more terms in comparison with�Eclass:
Vab,a/[2(1 + S)] and Vab,b/[2(1 + S)], and both decrease exponentially to Vaa,a = −1 a.u.,
when R decreases to zero. Thus, these terms are not important for long distances, stabilize the
molecule for intermediate distances (and provide the main contribution to the chemical bond
energy), and are dominated by the 1/R repulsion for small distances.

In the quantum case, for the electron charge cloud connected with the a nucleus, a2 is
decreased by a charge of S/(1 + S), which shifts to the halfway point toward nucleus b. In
the classical case, there is no charge shift–the whole charge is close to a. In both cases, there
is the nucleus-nucleus and the nucleus-electron interaction. The first is identical, but the latter
is completely different in both cases. Yet even in the latter interaction, there is something in
common: the interaction of the nucleus with the major part of the electron cloud, with charge

84 This happens after the integration of ρa .
85 Vaa,a is finite.
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twice

twice

twice

twice

(a)

quantum

classical

quantum
(summary)

(b)

(c)

Fig. 8.19. The nature of the chemical bond in the H+2 molecule [schematic interpretation according to Eq. (8.72)]:

(a) The quantum picture of the interaction. The total electron density ϕ2 = ρa + ρb + ρab , consists of three electronic clouds
ρa = [2(1+S)]−1a2 bearing the− 1

2(1+S) charge (in a.u.) concentrated close to the a nucleus, a similar cloud ρb = [2(1+S)]−1b2

concentrated close to the b nucleus, and the rest (the total charge is −1) ρab = [(1 + S)]−1ab bearing the charge of −2 S
2
(
1+S

) ,

concentrated in the bond. The losses of the charge on the a and b atoms have been shown schematically, since the charge in the
middle of the bond originates from these losses. The interactions have been denoted by arrows: there are all kinds of interactions
of the fragments of one atom with the fragments of the second one.

(b) The quantum picture–summary (we will need it in just a moment). This scheme is similar to (a), but it has been emphasized
that the attraction of ρa by nucleus b is the same as the attraction of ρb by nucleus a; hence, they were both presented as one
interaction of nucleus b with charge of −2ρa at a (hence the double contour line). In this way, two of the interaction arrows have
disappeared compared to (a).

(c) The classical picture of the interaction between the hydrogen atom and a proton. The proton (nucleus b) interacts with the
electron of the a atom, bearing the charge of −1 = −2 1

2
(
1+S

) − 2 S
2
(
1+S

) and with nucleus a. Such division of the electronic

charge indicates that it consists of two fragments ρa [as in (b)] and of two fragments of the − S
2
(
1+S

) charge [i.e., similar to (b),

but centered in another way]. A major difference compared to (b) is that in the classical picture nucleus b interacts with two quite
distant electronic charges (put in the vicinity of nucleus a), while in the quantum picture [schemes (a) and (b)], the same charges
attract at short distance.
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−[1−S/(1+S)] = −1/(1+S). The difference in the cases is the interaction with the remaining
part of the electron cloud86: the charge −S/(1+ S).

In the classical view, this cloud is located close to distant nucleus a, while in the quantum
view, it is distributed within the bond. The latter is much better for bonding. This interaction,
of the (negative) electron cloud ρab within the bond with the positive nuclei, stabilizes the
chemical bond.

Fig. 8.19 shows an idea of the quantum mechanical nature of the chemical bond by using
some particular schematically drawn electronic clouds, their interaction favoring the quantum
mechanical picture over the classical one. However, there is nothing that prevents us from
showing the same clouds in a realistic way, as Fig. 8.20 demonstrates.

Note that the critically important charge density distribution ρab has a very unusual shape. It
represents something similar to an electron density rod (the figure shows its section only) that
connects the two nuclei, its density being the largest and constant within the section of the straight
line connecting the two nuclei (an extremely striking shape87) and decaying very fast beyond.

8.7.2 Can We See a Chemical Bond?

If a substance forms crystals, it may be subjected to X-ray analysis. Such an analysis is quite
exceptional, since it is one of very few techniques (which also include neutronography and
nuclear magnetic resonance spectroscopy), which can show atomic positions in space. More
precisely, the X-ray analysis shows electronic density maps because the radiation sees electrons,
not nuclei. The inverse is true in neutronography. If we have the results of X-ray and neutron
scattering, we can subtract the electron density of atoms (positions shown by neutron scattering)
from the electron density of the molecular crystal (shown by X-ray scattering). This difference
would be a result of the chemical bonding (and, to a smaller extent, of the intermolecular

86 This simple interpretation gets more complex when further effects are considered, such as contributions to energy
due to the polarization of the spherically symmetric atomic orbitals or the exponent dependence of the 1s orbitals
(i.e., the dimensions of these orbitals) on the internuclear distance. When there are several factors at play (some
positive, some negative) and when the final result is of the order of a single component, then we decide which
component carries responsibility for the outcome. The situation is similar to that in Parliament, when two MPs
from a small party are blamed for the result of a vote (the party may be called the “balancing party”), while perhaps
200 others who also voted in a similar manner are left alone.

87 For points along the section (0 ≤ x ≤ R), one gets ρab(x, 0, 0) = 1
1+S a(x, 0, 0)b(x, 0, 0) =

1
1+S

1
π exp (−|x |) exp (−|x−R|) = 1

1+S
1
π exp (−x) exp (x−R) = 1

1+S
1
π exp (−x+x−R) = 1

1+S
1
π exp (−R),

which is a number that is independent of x . In Chapter 11, we will detect a chemical bond as a “rope” formed by
the total electron density distribution (the Bader analysis), but the rod we find here as distinguishing the classical
and the quantum situations represents only a part of this “rope” from Chapter 11.
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(a)

(b)

Fig. 8.20. The same reasoning is used as in Fig. 8.19 , but this time, the key charge distributions are drawn in a realistic way
instead of a schematic diagram. The sections z = 0 of the two crucial electronic charge distributions are drawn. (a) In the quantum
mechanical picture, what decides about chemical bonding is an electron cloud− 1

1+S 1sa · 1sb ≡ − 1
1+S ab that contains the charge

− S
1+S [S stands for the overlap integral (a|b)] and has a uniform density along the bond. This is why its attraction with the

nucleus b (of charge +1), which is in the immediate neighborhood, is strong. (b) In the classical picture, the cloud − S
1+S

(
1sa
)2,

corresponding to the same total charge − S
1+S as before (the scale used is changed), is close to the nucleus a, so its attraction with

the nucleus b is far weaker. Thus, the atoms bind so strongly due to the quantum nature of the electron involved.

interactions). This method is called X-N or X-Ray minus Neutron Diffraction.88 Hence, differ-
ential maps of the crystal are possible, where we can see the shape of the “additional” electron
density at the chemical bond, or the shape of the electron deficit (negative density) in places
where the interaction is antibonding.89

88 There is also a pure X-ray version of this method. It uses the fact that the X-ray reflections obtained at large
scattering angles see only the spherically symmetric part of the atomic electron density, similarly to that which
we obtain from neutron scattering.

89 R. Boese, Chemie in unserer Zeit, 23(1989)77, D. Cremer, E. Kraka, Angew. Chem., 96(1984)612.
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From the differential maps, we can estimate the following:

1) The strength of a chemical bond via the value of the positive electron density at the bond
2) The deviation of the bond electron density (perpendicular intersection) from the cylindrical

symmetry, which gives information on the π character of the chemical bond
3) The shift of the maximum electron density toward one of the atoms, which indicates the

polarization of the bond
4) The shift of the maximum electron density away from the straight line connecting the two

nuclei, which indicates bent (banana-like) bonding.

This opens up new possibilities for comparing theoretical calculations with experimental
data.

8.8 Excitation Energy, Ionization Potential, and Electron Affinity
(RHF Approach)

8.8.1 Approximate Energies of Electronic States

Let us consider (within the RHF scheme) the simplest two-electron closed-shell system with
both electrons occupying the same orbital ϕ1. The Slater determinant, called ψG (G standing
for the ground state) is built from two spinorbitals φ1 = ϕ1α and φ2 = ϕ1β. We also have the
virtual orbital ϕ2, corresponding to orbital energy ε2, and we may form two other spinorbitals
from it. We are now interested in the energies of all the possible excited states that can be formed
from this pair of orbitals. These states will be represented as Slater determinants, built from ϕ1

and ϕ2 orbitals with the appropriate electron occupancy. We will also assume that excitations
do not deform the ϕ orbitals (which is, of course, only partially true). Now all possible states
may be listed by occupation of the ε1 and ε2 orbital levels, as shown in Table 8.2.

E is a doubly excited electronic state, and T and T ′ are two of three possible triplet states
of the same energy. If we require that any state should be an eigenfunction of the Ŝ2 operator
(it also needs to be an eigenfunction of Ŝz , but this condition is fortunately fulfilled by all the
functions listed above), it appears that only ψ1 and ψ2 are illegal. However, their combinations,
shown here:

ψS = 1√
2
(ψ1 − ψ2) (8.74)

ψT ′′ = 1√
2
(ψ1 + ψ2). (8.75)

Table 8.2. All possible occupations of levels ε1 and ε2.

Level| Function ψG ψT ψT ′ ψ1 ψ2 ψE

ε2 – α β β α αβ

ε1 αβ α β α β –
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are legal. The first describes the singlet state, and the second is the triplet state (the third function,
missing from the complete triplet set).90 This may be easily checked by inserting the spinor-
bitals into the determinants, then expanding the determinants, and separating the spin part. For
ψS , the spin part is typical for the singlet, 1√

2
[α(1)β(2) − α(2)β(1)], and for T , T ′, and T ′′,

the spin parts are, respectively, α(1)α(2), β(1)β(2), and 1√
2
[α(1)β(2) + α(2)β(1)]. This is

expected for triplet functions with components of total spin equal to 1,−1, and 0, respectively
(see Appendix Q available at booksite.elsevier.com/978-0-444-59436-5).

Now let us calculate the mean values of the Hamiltonian using the states mentioned above.
Here, we will use the Slater–Condon rules (see the diagram on p. e119), which when expressed
in orbitals91 produce in the MO representation:

EG = 2h11 + J11, (8.76)

ET = h11 + h22 + J12 −K12 (8.77)

(for all three components of the triplet);

ES = h11 + h22 + J12 +K12, (8.78)

EE = 2h22 + J22, (8.79)

where hii = (ϕi |ĥ|ϕi ), and ĥ is a one-electron operator, the same as that appearing in the
Slater-Condon rules, and explicitly shown on p. 400, Ji j and Ki j are the two-electron integrals
(Coulombic and exchange): Ji j = (i j |i j) and Ki j = (i j | j i).

The orbital energies of a molecule (calculated for the state with the doubly occupied ϕ1

orbital) are
εi = (ϕi |F̂ |ϕi ) = (ϕi |ĥ + 2Ĵ − K̂|ϕi ). (8.80)

Thus, we get

ε1 = h11 + J11, (8.81)

ε2 = h22 + 2J12 −K12. (8.82)

Now, the energies of the electronic states can be expressed in terms of the orbital energies:

EG = 2ε1 − J11, (8.83)

ET = ε1 + ε2 − J11 − J12 (8.84)

(for the ground singlet state and for the three triplet components of the common energy ET ).
The distinguished role of ϕ1 (in ET ) may be surprising (since the electrons reside on ϕ1 and

90 Let us make a convention, that in the Slater determinant 1√
2

det |φ1(1)φ2(2)|, the spinorbitals are organized

according to increasing orbital energy, because then the signs in Eqs. (8.74) and (8.75) are valid.
91 For EG , the derivation of the final formula is given on p. 419 (E ′R H F ). The other derivations are simpler.

http://booksite.elsevier.com/978-0-444-59436-5
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ϕ2), but ϕ1 is indeed distinguished, because the εi values are derived from the Hartree–Fock
problem with the only occupied orbital ϕ1. So we get

ES = ε1 + ε2 − J11 − J12 + 2K12, (8.85)

EE = 2ε2 + J22 − 4J12 + 2K12. (8.86)

Now it is time to draw some conclusions.

8.8.2 Singlet or Triplet Excitation?

Aleksander Jabłoński (1898–
1980), Polish theoretical physi-
cist and professor at the John
Casimirus University in Vilnius,
then at the Nicolaus Copernicus
University in Toruń. He studied
photoluminescence problems.
Courtesy of Nicolaus Copernicus
University, Poland

The Jabłoński diagram plays an
important role in molecular spec-
troscopy (Fig. 8.21). It shows
three energy levels: the ground
state (G), the first excited singlet
state (S), and the metastable in-
between state. Later, researchers
identified this metastable state as
the lowest triplet (T).

Let us compute the energy difference between the singlet and triplet states:

ET − ES = −2K12 < 0. (8.87)

This inequality says that

a molecule always has lower energy in the excited triplet state than in the excited singlet
state (both states resulting from the use of the same orbitals),

because K12 = (ϕ1(1)ϕ2(2)| 1
r12
|ϕ2(1)ϕ1(2)) is always positive, being the interaction of two

identical charge distributions (interpretation of an integral, real functions assumed). This rule
holds firmly for the energy of the two lowest (singlet and triplet) excited states.

8.8.3 Hund’s Rules

The difference between the energies of the ground and triplet states is

ET − EG = (ε2 − ε1)− J12. (8.88)
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S

T

G

Fig. 8.21. The Jabłoński diagram. The ground state is labeled G. The energy of the singlet excited state (S) is higher than the
energy of the corresponding triplet state (T; that results from use of the same orbitals).

This result has a simple interpre-
tation. The excitation of a single
electron (to the triplet state) costs
some energy (ε2− ε1), but (since
J12 = (12|12) = ∫

dV1dV2

|ϕ1(1)|2 1
r12
|ϕ2(2)|2 > 0) there is

also an energy gain (−J12) con-
nected with the removal of the
(mutually repulsing) electrons
from the “common apartment”

Friedrich Hermann Hund (1896–1997), pro-
fessor of theoretical physics at the universities
in Jena, Frankfurt am Main, and finally Göttin-
gen, where in his youth he had worked with
Born and Franck. He applied quantum theory
to atoms, ions, and molecules and discovered
his famous empirical rule in 1925. Considered
by many as one of the founders of quantum
chemistry. (biography, written in German:
Intern. J. Quantum Chem., S11, 6 (1977)).

(orbital ϕ1) to the two separate “apartments” (ϕ1 and ϕ2). Apartment ϕ2 is admittedly on a
higher floor (ε2 > ε1), but if ε2 − ε1 is small, then it may still pay to move.

In the limiting case, if ε2 − ε1 = 0, the system prefers to put electrons in separate orbitals
and with the same spins (the empirical Hund rule; see Fig. 8.22).
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(b)(a)

Fig. 8.22. Hund’s rule. Energy of each configuration (left) corresponds to an electron occupation of the orbital energy lev-
els (shown in boxes). Two electrons of the highest orbital energy face a dilemma (two upper diagrams): Is it better to occupy
a common apartment on the lower floor (…but electrons do not like each other); or is it better for one of them (fortu-
nately, they are not distinguishable…) to make a sacrifice and move to the upper-floor apartment (then they can avoid each
other)? If the upper floor is not too high in the energy scale (small �, shown in a), then the electrons prefer the second
case: each of them occupies a separate apartment and they feel best having their spins parallel (triplet state). But when the
upper-floor energy is very high (large �, as shown in panel b), then both electrons are forced to live in the same apart-
ment, and in that case, they are forced to have antiparallel spins. Hund’s rule pertains to the first case in its extreme form
(� = 0). When there are several orbitals of the same energy and there are many possibilities of their occupation, then the
state with the lowest energy is such that the electrons go each to a separate orbital, and the alignment of their spins is “parallel”
(see p. 31).

8.8.4 Hund’s Rules for the Atomic Terms

The question whether electron pairing is energetically favorable is most delicate for atoms. In
the atomic case, one has to do with quite a lot of possible electronic configurations (“occupan-
cies”), and the problem is which of them better describes the reality (i.e., which of them is of
the lowest energy).

Hund discovered that this can be determined by using some empirical rules (now known as
Hund’s rules): Here they are

• Hund’s first rule: the lowest energy corresponds to that configuration, which corresponds to
the maximum of the spin angular momentum |S|, where |S|2 = S(S+1)�2, with S either an
integer or a half-integer. A large value of S requires a “same-spin situation,” which is only
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possible for different orbitals for valence electrons; i.e., a single occupation of the orbitals
(low electronic repulsion).

• Hund’s second rule: if several such configurations come into play, the lowest energy cor-
responds to that one, which has the largest orbital angular momentum |L|, with |L|2 =
L(L + 1)�2, where L = 0, 1, 2, . . .

• Hund’s third rule is a relativistic correction to the first two rules, introducing a splitting of
the terms given by the previous rules. The energy operator (Hamiltonian) commutes with
the square of the total angular momentum J = L + S, and therefore, the energy levels
depend rather on the total momentum |J|2 = J (J + 1)�2. This means that they depend on
the mutual orientation of L and S (this is a relativistic effect due to the spin-orbit coupling
in the Hamiltonian). The vectors L and S add in quantum mechanics in a specific way (see
Chapter 7, p. 343): one has J = |L + S|, |L + S − 1|, . . .|L − S|. The III Hund’s rule says
that if the shell is less than half-filled, the lowest energy corresponds to J = |L− S| , while
if more than half-filled to J = |L + S|.

Hund’s rules not only allow one to identify the lowest energy level [or term 2S+1[L]J ,
where we use the symbol [L] = S(for L = 0), P(for L = 1), D(for L = 2), . . .] but they
enable one to give their sequence on the energy scale.

Example. Closed Shells–A Neon Atom
We write first the neon electronic configuration: 1s22s22p6, with a convention that we choose

as atomic orbitals the ones that represent the eigenfunctions of the L̂ z operator (in this case,
2p0, 2p1, 2p−1, not 2px , 2py, 2pz). Hund’s rules are about the orbital angular momentum
and spin angular momentum. Let us calculate the z component of the total orbital angular
momentum as a sum of the corresponding components for individual electrons: Lz = 2 · 0�+
2 · 0�+ 2 · (−1)�+ 2 · 0�++2 · (+ 1)� = 0. The only possibility for the total orbital angular
momentum to have only this value of the z component is that L = 0. The term, therefore,
has to have the symbol [L] = S (this is a remnant of a misleading quantum tradition: do not
confuse this symbol with the spin quantum number S). Now, about the z component of the spin
angular momentum as a sum of contributions of the individual electrons, the following is true:
Sz =

(1
2 − 1

2

)
� + (1

2 − 1
2

)
� + 3 · (1

2 − 1
2

)
� = 0. This can happen only if S = 0 (this time S

means spin). The multiplicity of the term is 2S+1 = 1, and therefore, the term symbol 2S+1[L]
becomes 1S (we say “singlet S”). Since L = 0 and S = 0, they may add up only to J = 0, which
means that J = 0. Therefore, the full term symbol should be 1S0, but to avoid the banality,
we write it always as 1S. This term is the only one possible for the electronic configuration
1s22s22p6, as well as for any other closed electronic shell:
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Any closed shell gives zero contribution to the orbital angular momentum L and to the spin
angular momentum S. This makes possible, when determining the terms, just to ignore any
closed-shell contribution.

Example. The Lowest-Energy Term for the Carbon Atom
The carbon atom electronic configuration reads as 1s22s22p2. Since the closed shells 1s22s2

do not contribute anything, we just ignore them. What matters is the configuration 2 p2. Three
orbitals 2p allow for six spinorbitals, occupied by two electrons only. The number of pos-

sible Slater determinants is, therefore,

(
6
2

)
= 15. The lowest-energy Slater determinant

will be determined by using Hund’s rules to find the lowest-energy term. To this end, we
draw a box diagram of orbital occupations, with the convention that an up or a down arrow
stands for an electron with the α or β spin function, respectively. The boxes in the diagram
(each one corresponding to an atomic orbital with quantum numbers n, l,m) begin by the
one with maximum value of m and continue in descending order. Then we begin the occu-
pation of the boxes by the electrons (maximum two electrons–of opposite spins–per box).
Our aim is to find the lowest-energy term by using Hund’s rules. We begin by the I Hund’s
rule and this means maximizing of S (same spins). To get this, we place electrons in sepa-
rate boxes, but to satisfy also the II Hund’s rule, we begin to do this from the left side of the
diagram:

2p1 2p0 2p−1

↑ ↑ .

We get MS = 1
2 + 1

2 = 1 (such a projection implies S = 1) and ML = 1 + 0 = 1 (this
projection implies L = 1).

Hence, the term indicated by the first two Hund’s rules that explains these projections is 3 P .
This is what the non-relativistic approach gives as the ground state.

However, the relativistic effects will split this degenerate energy level into three separate levels
according to three possible mutual orientations of the vectors L and S, leading to J = |L+S|. . .,
J = |L−S| i.e., to J = 2, 1, 0. Therefore, we get three terms: 3 P2,

3 P1,
3 P0, and the III Hund’s

rule predicts the following energy sequence:

3 P0 <
3 P1 <

3 P2.

This sequence is valid for all atoms having the 2p2 configuration: C, Si, Ge, Sn, Pb, with
increasing splitting in this series (from about 43 cm−1 for C to about 10650 cm−1 for Pb92).

92 This reminds us about a general rule: the heavier, the atom, the more important the relativistic effects are.
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8.8.5 Ionization Potential and Electron Affinity (Koopmans’s Theorem)

The ionization potential of the molecule M is defined as the minimum energy needed for an
electron to detach from the molecule. The electron affinity energy of the molecule M is defined
as the minimum energy for an electron detachment from M−. Let us assume again, naively, that
during these operations, the molecular orbitals and the orbital energies do not undergo any
changes. In fact, of course, everything changes, and the computations should be repeated for
each system separately (the same applies in the previous section for excitations).

In our two-electron system, which is a model of any closed-shell molecule, the electron
removal leaves the molecule with one electron only, and its energy has to be

E+ = h11. (8.89)

However,

h11 = ε1 − J11. (8.90)

This formula looks like trouble. After the ionization, there is only a single electron in the
molecule, while here, some electron–electron repulsion (integral J ) appears! But everything
is fine because we still use the two-electron problem as a reference, and ε1 relates to the two-
electron problem, in which ε1 = h11 + J11.

Hence,

Ionization Energy
The ionization energy is equal to the negative of the orbital energy of an electron:

E+ − EG = −ε1. (8.91)

To calculate the electron affinity energy, we need to consider a determinant as large as
3 × 3, but this proves easy if the useful Slater-Condon rules (see Appendix M available at
booksite.elsevier.com/978-0-444-59436-5) are applied. Rule I gives (we write everything using
the ROHF spinorbitals, then note that the three spinorbitals are derived from two orbitals, and
then sum over the spin variables):

E− = 2h11 + h22 + J11 + 2J12 −K12, (8.92)

and introducing the orbital energies, we get

E− = 2ε1 + ε2 − J11, (8.93)

which gives

E− − EG = ε2. (8.94)

http://booksite.elsevier.com/978-0-444-59436-5
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Hence,

Electron Affinity
The electron affinity is the difference of the energies of the system without an electron and
that of the anion, EG − E− = −ε2. It is equal approximately to the negative energy of the
virtual orbital on which the electron lands (if ε2 < 0 attaching an electron means energy
lowering).

A Comment on Koopmans’s Theorem

Tjalling Charles Koopmans (1910–
1985), American econometrist
of Dutch origin and professor at
Yale University, introduced mathe-
matical procedures of linear
programming to economics, and
received the Nobel Prize in 1975
“for work on the theory of optimum
allocation of resources.”

The MO approximation represents
a rough approximation to reality.
So is Koopmans’s theorem, which
proves to be poorly satisfied for
most molecules. But these approx-
imations are often used for practi-
cal purposes. This is illustrated by
a certain quantitative relationship,
derived by Grochala et al.93

The authors noted that a very simple relationship holds surprisingly well for the equilibrium
bond lengths R of four objects: the ground state M0 of the closed shell molecule, its excited
triplet state MT , its radical–cation M+·, and radical–anion M−·:

R(MT ) = R(M−·)+ R(M+·)− R(M0). (8.95)

The cyclobutadiene in the triplet state has the square symmetry (the two adjacent C–C bonds
of equal length), while in the ground state the molecule is rectangular. Therefore, if one takes
Eq. (8.95) for the first C–C bond and then for the second one, we should get the same length
in the triplet state (all values calculated by the DFT method; see Chapter 11). Let us insert the
bond lengths for the first C–C bond:

1.378 Å+ 1.363 Å− 1.318 Å = 1.423 Å,

while for the second C–C bond:

1.501 Å+ 1.489 Å− 1.565 Å = 1.425 Å,

both values are very close to what has been calculated independently for the triplet state: 1.426 Å.
The above relationship is similar to that pertaining to the corresponding energies:

E(MT ) = E(M−·)+ E(M+·)− E(M0),

93 W. Grochala, A.C. Albrecht, and R. Hoffmann, J. Phys. Chem. A, 104, 2195 (2000).
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which may be deduced, basing on certain approximations, from Koopmans’s theorem94 or
from the Schrödinger equation, while neglecting the two-electron operators. The difference
between these two expressions is substantial: the latter holds for the four species at the same
nuclear geometry, while the former describes the geometry changes for the “relaxed” species.95

The first equation proved to be satisfied for a variety of molecules: ethylene, cyclobutadiene,
divinylbenzene, diphenylacetylene, trans–N2H2, CO, CN−, N2, and NO+. It is not yet clear if
it would hold beyond the one-electron approximation, or for experimental bond lengths (these
are usually missing, especially for polyatomic molecules).

8.9 Toward Chemical Picture–Localization of MOs

The canonical MOs derived from the RHF method are usually delocalized over the whole
molecule; i.e., their amplitudes are in general nonzero for all atoms in the molecule. This
applies, however, mainly to high-energy MOs, which exhibit a similar AO amplitude for most
atoms. Yet the canonical MOs of the inner shells are usually very well localized. The canoni-
cal MOs are occupied, as usual, by putting two electrons on each low-lying orbital (the Pauli
exclusion principle).

The picture obtained is in contrast to chemical intuition, which indicates that the electron
pairs are localized within the chemical bonds, free electron pairs, and inner atomic shells.
The picture, which agrees with intuition, may be obtained after the localization of the MOs.

The localization is based on making new orbitals to be linear combinations of the canoni-
cal MOs, a fully legal procedure. Then, the determinantal wave function, as shown on p. 404,
expressed in the new spinorbitals, takes the formψ ′ = (detA)ψ and the total energy will remain
unchanged. If linear transformation applied (A) is an orthogonal transformation (i.e., AT A = 1),
or a unitary one (A†A = 1), the new MOs preserve orthonormality (like the canonical ones),
as shown on p. 405. We emphasize that we can make any non-singular96 linear transformation
A, not only orthogonal or unitary ones. This means something important, namely,

94 Let us check it using the formulas derived by us:

E(MT ) = ε1 + ε2 − J11 − J12, and E(M−·)+ E(M+·)− E(M0)

= [2ε1 + ε2 − J11
]+ [ε1 − J11

]− [2ε1 − J11
]

= ε2 + ε1 − J11.

The equality is obtained after neglecting J12, as compared to J11.
95 If we assume that a geometry change in these states induces an energy increase that is proportional to the square

of the change, and that the curvature of all these parabolas is identical, then the above relationship would be easily
proved. The problem is that these states have significantly different force constants, and the curvature of parabolas
strongly varies among them.

96 For any singular matrix, det A = 0, and this should not be allowed (as discussed on p. 404).



468 Chapter 8

the solution in the Hartree-Fock method depends on the space spanned by the occupied
orbitals (i.e., on the set of all linear combinations that can be formed from the occupied
MOs), and not on some particular set of the molecular orbitals. The new orbitals do not
satisfy the Fock equation (8.32); these are satisfied by canonical orbitals only.

The localized orbitals (being some other orthonormal basis set in the space spanned by the
canonical orbitals) satisfy the Fock equation (8.19) with the off-diagonal Lagrange multipliers.

8.9.1 Can a Chemical Bond Be Defined in a Polyatomic Molecule?

Unfortunately, the view to which chemists get used (i.e., the chemical bonds between pairs
of atoms, lone electron pairs, and inner shells) can be derived in an infinite number of ways
(because of the arbitrariness of transformation A), and in each case, the effects of localization
vary. Hence,

we cannot uniquely define the chemical bond in a polyatomic molecule.

It is not a drama, however, because what really matters is the probability density; i.e., the
square of the complex modulus of the total many-electron wave function. The concept of the
(localized or delocalized) molecular orbitals represents simply an attempt to divide this total
density into various spatially separated although overlapping parts, each belonging to a single
MO. It is similar to dividing an apple into N equal parts. The freedom of such a division is
unlimited. For example, we could envisage that each part would have the dimension of the apple
(“delocalized orbitals”), or an apple would be simply cut axially, horizontally, concentrically,
etc. into N equal parts, forming an analog of the localized orbitals. Yet each time, the full apple
could be reconstructed from these parts.

As we will soon convince ourselves, the problem of defining a chemical bond in a polyatomic
molecule is not so hopeless as it looks now, because various methods lead to essentially the
same results.

Now let us consider some practical methods of localization. There are two categories: internal
and external.97 In the external localization methods we plan where the future MOs will be
localized, and the localization procedure only slightly alters our plans. This is in contrast with
the internal methods, where certain general conditions are imposed that induce automatically
localization of the orbitals.

97 Like medicines.
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8.9.2 The External Localization Methods

Projection Method

This is an amazing method,98 in which we first construct some arbitrary99 (but linearly inde-
pendent100) orbitals χi of the bonds, lone pairs, and the inner shells, the total number of these
being equal to the number of the occupied MOs. Now let us project them on the space of the
occupied RHF molecular orbitals {ϕ j } using the projection operator P̂:

P̂χi ≡
⎛
⎝M O∑

j

|ϕ j 〉〈ϕ j |
⎞
⎠χi . (8.96)

The projection operator is used to create the new orbitals:

ϕ′i =
M O∑

j

〈ϕ j |χi 〉ϕ j . (8.97)

The new orbitals ϕ′i , as linearly independent combinations of the occupied canonical orbitals
ϕ j , span the space of the canonical occupied HF orbitals {ϕ j }. They are generally non-orthogonal,
but we may orthogonalize them by applying the Löwdin orthogonalization procedure (symmet-
ric orthogonalization; see Appendix I available at booksite.elsevier.com/978-0-444-59436-5).

Do the final localized orbitals depend on the starting χi in the projection method? The
answer101 is shown in Table 8.3. The influence is small.

Table 8.3. Influence of the initial approximation on the final localized MOs in the projection method of localization
(the LCAO coefficients for the CH3F molecule).

Function χ for the CF Bond The localized orbital of the CF bond

2s(C) 2p(C) 2s(F) 2p(F) 2s(C) 2p(C) 2s(F) 2p(F) 1s(H)

0.300 0.536 0.000 −0.615 0.410 0.496 −0.123 −0.654 −0.079
0.285 0.510 0.000 −0.643 0.410 0.496 −0.131 −0.655 −0.079
0.272 0.487 0.000 −0.669 0.410 0.496 −0.138 −0.656 −0.079
0.260 0.464 0.000 −0.692 0.410 0.496 −0.144 −0.656 −0.079
0.237 0.425 0.000 −0.730 0.410 0.496 −0.156 −0.658 −0.079

98 A. Meunier, B. Levy, and G. Bertier, Theoret. Chim. Acta, 29, 49 (1973).
99 This is the beauty of the projection method.
100 A linear dependence cannot be allowed. If this happens, then we need to change the set of functions χi .
101 B. Lévy, P. Millié, J. Ridard, and J. Vinh, J. Electr. Spectr., 4, 13 (1974).

http://booksite.elsevier.com/978-0-444-59436-5
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8.9.3 The Internal Localization Methods

Ruedenberg Method: The Maximum Interaction Energy of the Electrons Occupying a MO

The basic concept of this method was given by Lennard-Jones and Pople102 and applied by
Edmiston and Ruedenberg.103 It may be easily shown that for a given geometry of the molecule,
the functional

∑M O
i, j=1 Ji j is invariant with respect to any unitary transformation of the orbitals:

M O∑
i, j=1

Ji j = const . (8.98)

The proof is very simple and similar to the one on p. 406, where we derived the invariance
of the Coulombic and exchange operators in the Hartree–Fock method.

This further implies that

maximization of
∑M O

i=1 Ji i means making MOs small (the Ruedenberg localization
criterion)

is at the same time equivalent to the minimization of the off-diagonal elements:

M O∑
i< j

Ji j . (8.99)

This means that to localize the molecular orbitals, we try to put them as far apart as possible
in space, because then their repulsion will be least.

Similarly, we can prove another invariance:

M O∑
i, j=1

Ki j = const ′. (8.100)

It may be also expressed in another way, given that
∑M O

i, j Ki j = const ′ = ∑M O
i Ki i +

2
∑M O

i< j Ki j =∑M O
i Ji i+2

∑M O
i<, j Ki j . Since we maximize the

∑M O
i Ji i , then simultaneously,

we minimize the sum of the exchange contributions:

M O∑
i< j

Ki j . (8.101)

102 J.E. Lennard-Jones and J.A. Pople, Proc. Roy. Soc. (London), A202, 166 (1950).
103 C. Edmiston and K. Ruedenberg, Rev. Modern Phys., 34, 457 (1962).
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Boys Method: The Minimum Distance Between Electrons Occupying an MO

In this method,104 we search such a unitary transformation of the orbitals which minimizes the
functional105

M O∑
i

(
i i
∣∣r2

12

∣∣ i i) , (8.102)

where the symbol
(
i i
∣∣r2

12

∣∣ i i) denotes an integral similar to Ji i = (i i |i i), but instead of the
1/r12 operator, we have r2

12. Functional Eq. (8.102) is invariant with respect to any unitary
transformation of the molecular orbitals.106 Since the integral

(
i i
∣∣r2

12

∣∣ i i) represents the defi-
nition of the mean square of the distance between two electrons described by ϕi (1)ϕi (2), the
Boys criterion means that we try to obtain the localized orbitals as small as possible (small
orbital dimensions); i.e., localized in some small volume in space.107 The detailed technique of
localization will be given in a moment.

8.9.4 Examples of Localization

Despite the freedom of the localization criterion choice, the results are usually similar. The
orbitals of the CC and CH bonds in ethane, obtained by various approaches, are shown in
Fig. 8.23 and Table 8.4.

Let us discuss the table some more. First, note the similarity of the results of various local-
ization methods. The methods are different and the starting points are different, and yet we get
almost the same result in the end. It is both striking and important that

the results of various localizations are similar to one another, and in practical terms (not
theoretically), we can speak of the unique definition of a chemical bond in a polyatomic
molecule.

104 S.F. Boys, in Quantum Theory of Atoms, Molecules, and the Solid State , P.O. Löwdin, ed., Acad. Press, New
York (1966), p. 253.

105 Minimization of the interelectronic distance (Boys method) is in fact similar in concept to the maximization of
the Coulombic interaction of two electrons in the same orbital (Ruedenberg method).

106 We need to represent the orbitals as components of a vector, the double sum as two scalar products of such
vectors, then transform the orbitals, and show that the matrix transformation in the integrand results in a unit
matrix.

107 The integrals [Eq. (8.102)] are trivial. Indeed, using the Pythagorean theorem, we finally get simple one-electron
integrals of the following type:(

i(1)i(2)|(x2 − x1)
2|i(1)i(2)) = (i(2)

∣∣∣x2
2

∣∣∣ i(2))+ (i(1)
∣∣∣x2

1

∣∣∣ i(1))
−2
(
i(1)|x1|i(1)

)(
i(2)|x2|i(2)

)
= 2

(
i |x2|i)− 2

(
i |x |i)2.
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(a) (b)

(c)

Fig. 8.23. The ethane molecule in the antiperiplanar configuration (a). The localized orbital of the CH bond (b) and the localized
orbital of the CC bond (c). The carbon atom hybrid forming the CH bond is quite similar to the hybrid forming the CC bond.

Table 8.4. Localized orbitals for the ethane moleculea calculated by using three different localization methods.b The
LCAO coefficients are shown for the non-equivalent atomic orbitals only. The z-axis is along the CC’ bond.

The Projection Method Minimum Distance Method Maximum Repulsion Method

CC′ bond

1s(C) −0.0494 −0.1010 −0.0476
2s(C) 0.3446 0.3520 0.3505
2pz (C) 0.4797 0.4752 0.4750
1s(H) −0.0759 −0.0727 −0.0735

CH bond

1s(C) −0.0513 −0.1024 −0.0485
2s(C) 0.3397 0.3373 0.3371
2pz (C) −0.1676 −0.1714 −0.1709
2px (C) 0.4715 0.4715 0.4715
1s(C′) 0.0073 0.0081 0.0044
2s(C′) −0.0521 −0.0544 −0.054
2pz(C′) −0.0472 −0.0503 −0.0507
2px (C′) −0.0082 −0.0082 −0.0082
1s(H1) 0.5383 0.5395 0.5387
1s(H2) −0.0942 −0.0930 −0.0938
1s(H3) −0.0942 −0.0930 −0.0938
1s(H4) 0.0580 0.0584 0.0586
1s(H5) −0.0340 −0.0336 −0.0344
1s(H6) −0.0340 −0.0336 −0.0344

aIn its antiperiplanar conformation
bP. Millié, B. Lévy, and G. Berthier, in: Localization and Delocalization in Quantum Chemistry, ed. O.

Chalvet, R. Daudel, S. Diner, and J.P. Malrieu, Reidel Publish. Co., Dordrecht (1975)
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Nobody would reject the statement that a human body is composed of the head, the hands,
the legs, etc. Yet a purist (i.e., a theoretician) might get into trouble defining a hand (where
does it end up?). Therefore, purists would claim that it is impossible to define a hand, and as a
consequence, there is no such a thing as a hand–it simply does not exist. This situation is quite
similar to the definition of the chemical bonding between two atoms in a polyatomic molecule.

Note that the localized orbitals are concentrated mainly in one particular bond between two
atoms. For example, in the CC bond orbital, the coefficients at the 1s orbitals of the hydrogen
atom are small (−0.08); i.e., what really counts belongs to the carbon atoms. Similarly, the
2s and 2p orbitals of one carbon atom and the 1s orbital of one (the closest) of the hydrogen
atoms, dominate the CH bond orbital. Of course, localization is never complete. The oscillating
“tails” of the localized orbital may be found even at distant atoms. They assure the mutual
orthogonality of the localized orbitals.

8.9.5 Localization in Practice–Computational Technique

Let us take as an example the maximization of the electron interaction within all the orbitals
(Ruedenberg method):

I =
M O∑

i

Ji i =
M O∑

i

(i i |i i). (8.103)

Suppose that we want to make an orthogonal transformation (i.e., a rotation in the Hilbert
space, see Appendix B available at booksite.elsevier.com/978-0-444-59436-5) of (so far only
two) orbitals108: |i〉 and | j〉, in order to maximize I . The rotation (an orthogonal transformation,
which preserves the orthonormality of the orbitals) can be written as∣∣i ′(ϑ)〉 = |i〉 cosϑ + | j〉 sin ϑ,∣∣ j ′(ϑ)〉 = − |i〉 sin ϑ + | j〉 cosϑ,

where ϑ is an angle measuring the rotation (we are going to find the optimum angle ϑ). The
contribution from the changed orbitals to I , is

I (ϑ) = (i ′i ′|i ′i ′)+ ( j ′ j ′| j ′ j ′). (8.104)

Then109

I (ϑ) = I (0)
(

1−1

2
sin2 2ϑ

)
+(2(i i | j j)+(i j |i j)

)
sin2 2ϑ+((i i |i j)−( j j |i j)

)
sin 4ϑ, (8.105)

where I (0) = (i i |i i)+ ( j j | j j
)

is the contribution of the orbitals before their rotation.

108 The procedure is an iterative one. First, we rotate one pair of orbitals, then we choose another pair and make
another rotation, etc., until the next rotations do not introduce anything new.

109 Derivation of this formula is simple, taking only one page.

http://booksite.elsevier.com/978-0-444-59436-5
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Requesting that dI (ϑ)
dϑ = 0, we easily get the condition for optimum ϑ = ϑopt :

− 2I (0) sin 2ϑopt cos 2ϑopt +
(
2(i i | j j)+ (i j |i j)

)
4 sin 2ϑopt cos 2ϑopt

+ ((i i |i j)− ( j j |i j)
)
4 cos 4ϑopt = 0, (8.106)

and hence

tg(4ϑopt ) = 2
(i j | j j)− (i i |i j)

2(i i | j j)+ (i j |i j)− 1
2 I (0)

. (8.107)

The operation described here needs to be performed for all pairs of orbitals, and then repeated
(iterations) until the numerator vanishes for each pair; i.e.,

(i j | j j)− (i i |i j) = 0. (8.108)

Thus, the value of the numerator for each pair of orbitals is the criterion for whether a rotation
is necessary for this pair or not. The matrix of the full orthogonal transformation represents the
product of the matrices of these successive rotations.

The same technique of successive 2× 2 rotations applies to other localization criteria.

8.9.6 The Chemical Bonds of σ, π, δ Symmetry

Localization of the MOs leads to the orbitals corresponding to chemical bonds (as well as lone
pairs and inner shells). In the case of a bond orbital, a given localized MO is in practice domi-
nated by the AOs of two atoms only–those that create the bond.110 According to the discussion
on p. 430, the larger the overlap integral of the AOs, the stronger the bonding. The energy of
a molecule is most effectively decreased if the AOs are oriented in such a way as to maximize
their overlap integral (see Fig. 8.24). We will now analyze the kind and the mutual orientation
of these AOs.

As shown in Fig. 8.25, the orbitalsσ, π, δ (either canonical or not) have the following features:

• The σ - type orbital has no nodal plane containing the bond axis.
• The π - type orbital has one such nodal plane.
• The δ- type orbital has two such nodal planes.

Fig. 8.24. Maximization of the AO overlap requests position (a), while position (b) is less preferred.

110 That is, they have the largest absolute values of LCAO coefficients.
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Fig. 8.25. Symmetry of the MOs results from the mutual arrangement of those AOs of both atoms, which have the largest LCAO
coefficients. Panels (a) through (d) show the σ type bonds, panels (e) through (g) show the π type bonds, and panels (h) and (i)
show the δ type bonds. The σ bond orbitals have no nodal plane (containing the nuclei), the π orbitals have one such plane, and
the δ ones have two such planes.

If the z-axis is set as the bond axis, and the x-axis is set in the plane of the figure, then the cases (b-i) correspond (compare
Chapter 4) to the overlap of the following AOs: (b) s with pz , (c) pz with pz , (d) 3d3z2−r2 with 3d3z2−r2 , (e) px with px , (f )
px with 3dxz , (g) 3dxz with 3dxz , (h) 3dxy with 3dxy , and (i) 3dx2−y2 with 3dx2−y2 . The images show the atomic orbitals that
correspond to the bonding MOs. To get the corresponding antibonding MOs, we need to change the sign of one of the two AOs.

If a MO is antibonding, then a little star (tradition) is added to its symbol (e.g., σ ∗, π∗,
etc.). Usually, we also give the orbital quantum number (in order of increasing energy); e.g.,
1σ, 2σ, . . . etc. For homonuclear diatomics, additional notation is used (Fig. 8.26) showing the
main atomic orbitals participating in the MO; e.g., σ1s = 1sa + 1sb, σ

∗1s = 1sa − 1sb, σ2s =
2sa + 2sb, σ

∗2s = 2sa − 2sb, etc.
The very fact that the π and δ molecular orbitals have a value of zero at the positions of the

nuclei (the region most important for lowering the potential energy of electrons) suggests that
they are bound to have a higher energy than the σ ones, and they do.

8.9.7 Electron Pair Dimensions and the Foundations of Chemistry

What are the dimensions of the electron pairs described by the localized MOs, and how do you
define such dimensions? All orbitals extend to infinity, so you cannot measure them using a
ruler, but some may be more diffuse than others. It also depends on the molecule itself, the role
of a given MO in the molecular electronic structure (the bonding orbital, lone electron pair, or
the inner shell), the influence of neighboring atoms, etc. These are fascinating problems, and
the issue is at the heart of structural studies of chemistry.

Several concepts may be given to calculate the abovementioned dimensions of the molecular
orbitals. For instance, we may take the integrals

(
i i
∣∣r2

12

∣∣ i i) ≡ 〈r2
〉

calculated within the Boys
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H2     Li2     Be2     B2

Fig. 8.26. Scheme of the bonding and antibonding MOs in homonuclear diatomics from H2 through F2. This scheme is better
understood when you recall the rules of effective mixing of AOs discussed on p. 429. All the orbital energies become lower in this
series (due to increasing of the nuclear charge), but lowering of the bonding π orbitals leads to changing the order of the orbital
energies, when going from N2 to F2. This is why we get two sequences of orbital energies (schematically) for the molecules (b)
from H2 through N2 (electron configuration is shown for N2) and (a) for O2 and F2 (electron configuration is shown for O2).
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Fig. 8.27. Methanol (CH3OH) and mercaptan (CH3SH).

Table 8.5. The Dimensions of the electron pairs; i.e.,
√
〈r2〉 (a.u.) for CH3OH and

CH3SH according to Csizmadia.a “Core” means the 1s orbital of the atom indicated.

CH3OH CH3SH

core O 0.270 core S (1s) 0.148
core C 0.353 core C 0.357

S (L shell) 0.489
0.489
0.483
0.484

CO 1.499 CS 2.031
CH1

b 1.576 CH1
b 1.606

CH2,3
b 1.576 CH2,3

b 1.589
OH 1.353 SH 1.847
lone pair1,2

c 1.293 lone pair1,2
c 1.886

a I.G. Csizmadia, in Localization and Delocalization in Quantum Chemistry,
ed. by O. Chalvet and R. Daudel, D. Reidel Publ. Co., Dordrecht (1975).

b Different electron pair dimensions originate from their different positions vs the
OH or SH group.

c There are two lone pairs in the molecule.

localization procedure, and use them to estimate the square of the dimension of the (normalized)
molecular orbital ϕi . Indeed,

〈
r2
〉

is the mean value of the interelectronic distance for a two-

electron state ϕi (1)ϕi (2), and ρi (Boys) =
√〈

r2
〉

may be viewed as a measure of the ϕi orbital
dimension. Alternatively, we may do a similar thing using the Ruedenberg method, by noting
that the Coulombic integral Ji i , calculated in atomic units, is nothing more than the mean value
of the inverse of the distance between two electrons described by the ϕi orbital. In this case, the
dimension of the ϕi orbital may be proposed as ρi (Ruedenberg) = 1

Ji i
. Below, the calculations

are reported, in which the concept of ρi (Boys) is used. Let us compare the results for CH3OH
and CH3SH (Fig. 8.27) in order to see what makes these two molecules so different.111

Interesting features of both molecules can be deduced from Table 8.5. The most fundamental
aspect of the molecular structure is whether, speaking formally, the same chemical bonds (say,
the CH ones) are indeed similar for both molecules. A purist approach says that each molecule

111 Only those who have carried out experiments in person with mercaptan, or who have had neighbors (even distant
ones) involved in such experiments, understand how important the difference between the OH and SH bonds
really is. In view of the theoretical results reported, I am sure they also appreciate the blessing of theoretical work.
According to the Guinness Book of Records, CH3SH (mercaptan) is the smelliest substance in the Universe.
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is a new world, and thus, these are two different bonds by definition. Yet chemical intuition
says that some local interactions (in the vicinity of a given bond) should mainly influence
the bonding. If such local interactions are similar, the bonds should turn out similar as well. Of
course, the purist approach is formally right, but the local interactions turn out to be rather small.
If chemists desperately clung to purist theory, they would know some 0.01% or so of what they
now know about molecules. It is of fundamental importance for chemistry that we do not study
particular cases, case by case, but derive general rules. Strictly speaking, these rules are false
from the very beginning, for they are valid only to a certain extent, but they enable chemists to
understand, to operate, and to be efficient. Otherwise, there would be no chemistry at all.

The periodicity of chemical elements discovered by Mendeleev is another great idea in chem-
istry. It has its source in the shell structure of atoms. This means, for example, that the compounds
of sulfur with hydrogen should be similar to the compounds of oxygen with hydrogen, because
sulfur and oxygen have analogous electronic configuration of the valence electrons (i.e., those
of the highest energies), and they differ mainly in the inner shells (O: [He]2s22p4 as compared
to S: [Ne]3s23p4).

Looking at Table 8.5, you can see the following:

1. The dimension of the electron lone pair localized on the 1s orbital of the sulfur atom is
twice as small as the dimension of a similar pair of the 1s orbital of the oxygen atom. This is
nothing special. The electrons occupying the 1s orbital of S experience a strong electric field
of the nucleus charged +16, while the charge of the O nucleus is only +8. Let us note that
the core of the carbon atom is even larger, because it is controlled by an even less charged
nucleus112 (+6).

2. The dimension of the electron pair of the 1s orbital of the carbon atom (core C) for CH3OH is
very similar to that of the corresponding orbital for CH3SH (0.353 vs 0.357).113 This means
that the influence of the S atom (as compared to the oxygen atom) on the 1s orbital of the
neighboring atom is small. The local character of the interactions is thus the most decisive.

3. The influence of the S and O atoms on the CH bonds of the methyl group is only slightly
larger. For example, in CH3OH, one of the CH bond localized orbitals has the dimension
of 1.576 a.u., while in CH3SH, the dimension is 1.606 a.u.

4. The three CH bonds in methanol are very similar to each other (the numbers in Table 8.5
are identical), yet only two of them are strictly equivalent due to symmetry. It is even more
interesting that the CH bonds in CH3SH are also similar to them, although the differences

112 Let us check what is given for the Slater orbitals of the C,O,S atoms. The nuclear charge has to be diminished
by 0.3, so these three cases should be Z − σ = 5.70, 7.70, 15.70, respectively. The mean value of the nucleus-

electron distance can be easily computed as
√〈

1s|r2|1s
〉 = √ Z3

π

∫∞
0 r4 exp (−2Zr)dr

∫ π
0 sin θdθ

∫ 2π
0 dφ =√

Z3

π · 4!
(
2Z
)−5 · 2 · 2π =

√
3

Z . Our results are 0.30, 0.22, 0.11, whereas the reported, more accurate data are
0.35, 0.27, 0.15 a.u., respectively.

113 Even these small changes may be detected experimentally by removal of electrons from the molecules by
monochromatic X-ray radiation and subsequent measurement of the kinetic energy of the removed electrons.
Those that were more strongly bound run slower.
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between the various CH bonds of mercaptan, and between the corresponding CH bonds in
methanol and mercaptan, are clearer. So, even despite the different atomic environment, the
chemical bond preserves its principal and individual features.

5. This may sound like a banality, but it bears stating anyway: CH3SH differs from CH3OH in
that the O atom is replaced by the S atom. No wonder then that large differences in the close
vicinity of the O and S atoms are easily noticeable. The dimensions of the electron pairs at
the S atom (lone pairs and the SH and CS bonds) are always larger than the corresponding
pair at the O atom. The differences are at the 30% level. The sulfur atom is simply larger
than the oxygen atom, indicating that the electrons are more loosely bound when we go
down within a given group in the periodic table.

These conclusions are instructive and strongly encouraging, because we see a locality in
chemistry, and therefore chemistry is easier than it might be (e.g., CH bonds have similar
properties in two different molecules). On the other hand, we may play a subtle game with
local differences on purpose by making suitable chemical substitutions. In this way, we
have the possibility of tuning the chemical and physical properties of materials, which is
of prime importance in practical applications.

8.9.8 Hybridization or Mixing One-Center AOs

The localized orbitals may serve to illustrate the idea of a hybrid atomic orbital. A given
localized orbital ϕ of a bond represents a linear combination of the atomic orbitals of mainly
two atoms–the partners that form the chemical bond (say a and b). If so, then (for each localized
bond orbital), all the atomic orbitals of atom a may be added together with their specific LCAO
coefficients,114 and the same can be done for atom b. These two sums represent two normalized
hybrid atomic orbitals χa and χb multiplied by the resulting coefficients ca and cb and together
form the approximate115 bond orbital:

ϕ ≈ caha + cbhb,

with the corresponding LCAO expansions:

ha =
∑
j∈a

c jiχ j ,

hb =
∑
j∈b

c jiχ j .

114 That serve to express the localized orbital through the atomic basis set.
115 The “tails” of the localized orbital (i.e., its amplitudes on other atoms) have been neglected.
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Such a definition of the hybrid orbitals is not unique, since the localized orbitals used are
also not unique. However, as shown above, this ambiguity is of secondary importance. The
advantages of such an approach to hybridization are as follows:

• It can be determined for any configuration of the nuclei; e.g., for the tetrahedral as well as
for any other configuration of CH4, etc.

• The definition is applicable at any LCAO basis set used.
• It gives a clear message that all the atoms in a molecule are hybridized (why not?); e.g., the

carbon atom in the methane molecule, as well as all the hydrogen atoms. The only difference
between these two hybridizations is that the χa for the carbon atom does not resemble any
of the χ j in

∑
j∈a c jiχ j (because of comparable values116 of

∣∣c ji
∣∣ meaning an effective

mixing of the atomic orbitals), while the χb for the hydrogen atom is dominated by a single
atomic orbital 1sb, what should be understood as a lack of hybridization.117

How will the hybridization in the optimized geometry of methane look? Well, among five
doubly occupied localized molecular orbitals, four118 protrude from the carbon nucleus toward
one of the hydrogens (four hydrogens form a regular tetrahedron) and will have only some
marginal amplitudes on the three other hydrogens. If we neglect these “tails” on the other atoms
and the contributions of the atomic orbitals other than 2s and 2p (i.e., their c ji ) of the carbon
atom (also eliminating from the MO the 1s orbital of the partner hydrogen atom), we obtain the
following normalized hybrid carbon orbitals:

hi = 1√
1+ λ2

i

[(
2s
)+ λi (2pi )

]
,

for i = 1, 2, 3, 4 denoting the four directions of pi and therefore of the hi . If we force the
four hybrids to be equivalent, then this means λi = λ. Forcing the hybrids to be mutually
orthogonal,119

〈
hi |h j

〉 = 1

1+ λ2

[
1+ λ2 〈2pi |2p j

〉] = 1

1+ λ2

[
1+ λ2 cos θi j

] = 0,

we obtain as the 2s and 2p mixing ratio,

λ =
√
−1

cos θi j
. (8.109)

116 These correspond mainly to 2sa and 2pa , which have the highest values of the LCAO coefficients.
117 The reason why the carbon atom (and some other atoms such as N, O, etc.) is effectively hybridized, while the

hydrogen atom not, is that the 2s and 2p orbital energy levels in those atoms are close in the energy scale, while
the energy difference between the 1s hydrogen orbital energy and higher-energy hydrogen orbitals is larger.

118 The fifth will be composed mainly of the 1s carbon orbital.
119 “Orthogonal” also means “absolutely independent.”
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sp3 Hybridization (Tetrahedral)

Since, for the tetrahedral configuration θi j = 109028′, from Eq. (8.109), cos 109028′ = −1
3

and, therefore, λi =
√

3. Therefore, the orthogonal hybrids on the carbon atom (Figs. 8.28 and
8.29a) read as

hi
(
sp3) = 1

2

[(
2s
)+√3(2pi )

]
,

(a)

(d) (e)

(b) (c)

(f) (g) (h)

Fig. 8.28. The Slater-type orbitals shown as contours of the section at z = 0. The background corresponds to the zero value of
the orbital, the darker regions to the negative, the brighter to the positive value of the orbital. (a) 2px and (b) 2py , and their linear
combination (c) equal to cos 502px + sin 502py , which is also a 2p orbital, but rotated by 50 with respect to the 2px orbital. In
panels (d) and (e ), we show the normalized 2s and 2p orbitals, which will now be mixed in various proportions: (f ) the 1 : 1 ratio,
i.e., the sp hybridization, (g) the 1 : √2 ratio, i.e., the sp2 hybridization, and (h) the 1 : √3 ratio, i.e., the sp3 hybridization.
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Fig. 8.29. (a) The sp3 hybridization in the methane molecule in its tetrahedral equilibrium geometry [that corresponds to the
minimum of the ground-state electronic energy E0

0 (R); see p. 270]. There are four doubly occupied CH localized MOs and one that
is essentially the doubly occupied 1s carbon atomic orbital. Each of the CH MOs (of the nearly cylindrical symmetry) is composed
mainly of the carbon hybrid and the hydrogen 1s atomic orbital. The figure shows a scheme of the four carbon hybrids called the
sp3 hybrids. (b) An example of the nearly perfect sp2 hybridization of the carbon atoms in the ethylene (C2H4), which is perfectly
planar in its ground electronic state (D2h symmetry). Such a hybridization is only approximate because the CCH angle has to differ
from the HCH angle, both slightly deviate from 1200. The localized MOs are the following (occupied by altogether 16 electrons):

— Two essentially 1s carbon orbitals
— Four CH orbitals and one CC orbital having the nearly cylindrical symmetry (i.e., σ type)
— One bond orbital being antisymmetric with respect to the reflection in the molecular plane (i.e., of the π symmetry)

(c) An example of the sp hybridization: the acetylene molecule. The Hartree-Fock geometry optimization gives the lowest-energy
linear configuration: HCCH. The localization gives seven localized molecular orbitals:

— Two of them are essentially the 1s carbon orbitals.
— Two represent the cylindrical CH orbitals (σ ).
— One cylindrical CC σ orbital.
— Two CC orbitals that are of π symmetry (perpendicular to each other).

where 2s and 2pi are the normalized carbon atomic orbitals,120 with i denoting the direction
of the hybrid, one of the four directions from the carbon atom toward the tetrahedrally located
hydrogen atoms, Fig. 8.29a.121

120 Say, the Slater Type Orbitals (STOs), as discussed on p. 423.
121 Such orientation of the (normalized) 2pi may be achieved by the following choices (just look at the vortices of

a cube with the carbon atom at its center and the four directions forming the tetrahedron):
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sp2 Hybridization (Trigonal)

If we tried to find the lowest-energy configuration of ethylene (C2H4), it would correspond
to a planar structure (Fig. 8.29b) of D2h symmetry. After analyzing the localized molecular
orbitals, it would turn out that three hybrids protrude from each carbon nucleus, their directions
lying in the molecular plane (say, xy). These hybrids form angles very close to 1200.

For the trigonal hybridization (i.e., pure sp2 hybridization, with the θi j = 1200 angles), we
obtain from Eq. (8.109) λ = √2, and, therefore, the three orthogonal normalized sp2 hybrids are

hi
(
sp2) = 1√

3

[
(2s)+√2(2pi )

]
,

where the directions i = 1, 2, 3 form the mercedes logo on a plane.

sp Hybridization (Digonal)

The sp digonal hybridization is said to occur in acetylene: HCCH, which, after optimization of
the Hartree-Fock energy, corresponds to the linear symmetric configuration. According to this
explanation, each carbon atom exposes two hybrids (Fig. 8.29c): one toward its carbon and one
toward its hydrogen partner. These hybrids use the two carbon 2s and the two carbon 2pz , and
together with the two 1s orbitals of the hydrogens, form the two HC σ bonds and one CC σ

bond. This means that each carbon atom has two electrons left, which occupy its 2px and 2py

orbitals (perpendicular to the molecular axis). The 2px orbitals of the two carbon atoms form
the doubly occupied πx bonding localized molecular orbital and the same happens to the 2py

orbitals. In this way, the carbon atoms form the C≡C triple bond composed of one σ and two
π (i.e., πx and πy) bonds.

The angle between the two equivalent orthonormal hybrids should be θi j = 1800, then
the mixing ratio will be determined by λ = 1. Two such hybrids are, therefore,122 hi (sp) =

1√
2
[(2s)+ (2pi )], and making the two opposite directions explicit: h1(sp) = 1√

2
[(2s)+ (2pz)]

and h2(sp) = 1√
2
[(2s)− (2pz)].

2p1 = 1√
3

(
2px + 2py + 2pz

)
,

2p2 = 1√
3

(
2px − 2py − 2pz

)
,

2p3 = 1√
3

(−2px + 2py − 2pz
)
,

2p4 = 1√
3

(−2px − 2py + 2pz
)
.

The normalization of the above functions is obvious, since the 2px , 2py , 2pz are orthogonal.
122 This cannot be exact (cf., the ethylene case), because the two hybrids must not be equivalent. One corresponds

to the CC, and the other to the CH bond.
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Is Hybridization of Any Value?

The general chemistry textbook descriptions of hybridization for methane, ethylene, and acety-
lene usually start from the electronic configuration of the carbon atom: 1s22s22p2. Then it
is said that, according to valence bond theory (VB; see Chapter 10), this configuration pre-
dicts CH2 as the carbon hydride (bivalent carbon atom) with the CH bonds forming the right
angle.123 This differs very much from the way the methane molecule looks in reality (regu-
lar tetrahedron and tetravalent carbon). If the carbon atom were excited (this might happen
at the expense of future energy gains, known as “promotion”) then the configuration might
look like 1s22s12p1

x 2p1
y2p1

z . The textbooks usually go directly to the mixing of the valence
atomic orbitals 2s, 2px 2py2pz to form four equivalent sp3 hybrids, which lead directly to the
tetrahedral hydride: the methane. Note, however, that we would draw the conclusion that the
1s22s12p1

x 2p1
y2p1

z configuration leads to four non-equivalent CH bonds in the CH4 hydride.124

Only equivalent mixing (hybridization) gives the correct picture. When aiming at ethylene or
acetylene, the reasoning changes because some orbitals are left without mixing. We assume sp2

(one orbital left) or sp (two orbitals left) hybridizations, respectively, which leads to the correct
compounds and (almost) correct structures. It looks as if when we know what we are aiming for,
we decide what mixes and what does not. This seems to be a bit unfair.

Example. Water Molecule
Let us carry out the Hartree-Fock calculations for the water molecule.125 We focus on a sub-

sequent calculation of the localized molecular orbitals and get five doubly occupied molecular
orbitals, as shown in Fig. 8.30.

The lowest mean value of the orbital energy126 corresponds to an orbital that is small and
strongly localized on the oxygen nucleus, we identify it as practically 1s orbital of oxygen,
Fig. 8.30a. Next, we have two bond orbitals, Figs. 8.30b,c, each of them looking at first sight
like a hybrid of the oxygen atom oriented toward a given hydrogen, but it is a bit misleading
because it absorbed also the 1s orbital of the corresponding hydrogen atom. Then we find
something that seems embarrassing, Figs. 8.30(d,e), the last two localized molecular orbitals–
the two lone pairs: one of them (d), with its axis within the plane of the molecule, looks as
an sp2 orbital of oxygen, while the second one (e) is orthogonal to the molecular plane and
represents nothing but a pure 2p orbital of oxygen! Is it simply nonsense? Maybe the computer
made a mistake? Well, it may be that the reader studied too literally the popular literature,
where always the two lone pairs in the water molecule protruded right from the oxygen as in

123 Because 2p2 means, say, 2p1
x 2p1

y , and these singly occupied atomic orbitals form the two CH bonds with two
1s hydrogen orbitals.

124 Three CH bonds would form right angles (because of 2p1
x , 2p1

y , 2p1
z ), but one CH bond (formed by 2s1 together

with the corresponding 1s hydrogen orbital) would have a quite different character. This contradicts what we get
from experiments.

125 For example, by using the web server Webmo.com (Gaussian program).
126 The localized orbitals are not the eigenfunctions of the Fock operator.

http://Webmo.com
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(a) (b)

(c) (d)

(e)

Fig. 8.30. A shock therapy. The localized molecular orbitals of water molecule. (a) An orbital, which is strongly localized on the
oxygen nucleus and nearly spherical (practically 1s of the oxygen atom). (b) and (c) are the OH bond orbitals, one for each OH
bond. (d) The first of the two lone pair orbitals is a hybrid with its axis within the molecular plane. (e) The second of the two lone
pair orbitals (orthogonal to the plane of the molecule) is a pure 2p orbital of oxygen. It is clear that a sum of the last two orbitals
leads to a hybrid, which has to go up off the plane. On the other hand, a subtraction of these orbitals brings a twin hybrid but down
from the plane. In this way, we recover (in a fully correct way) the equivalent lone pairs of water molecules seen in textbooks.

a tetrahedral configuration. Everything is all right. If the reader added or subtracted the above
two orbitals (which is a perfectly legal operation), he would get the nearly tetrahedrally oriented
sp3 lone pair orbitals known from textbooks. They are no better than the ones obtained in our
calculations. Well, maybe they are a bit nicer because they will look similar. Both sets of the
orbitals lead to the same total electronic density and the same total energy.

Example. Methane Molecule
Let us check how important the role of hybridization is in the formation of chemical bonds in

methane. Let us imagine four scientists performing Hartree-Fock computations for methane in its
tetrahedral configuration127 of nuclei. They use four LCAO basis sets. Professor A believes that
in this situation, it is important to remember sp3 hybridization and uses the following basis set:

A:1sH1, 1sH2, 1sH3, 1sH4, 1sC , h1
(
sp3
)
, h2

(
sp3
)
, h3

(
sp3
)
, h4

(
sp3
)
.

Student B did not read anything about hybridization and just uses the common orbitals:
B:1sH1, 1sH2, 1sH3, 1sH4, 1sC , 2sC , 2px,C , 2py,C , 2pz,C .

127 Or any other one.
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Students C and D are not the brightest–they have mixed up the hybridization for methane
with that for ethylene and acetylene and used the following basis sets:

C:1sH1, 1sH2, 1sH3, 1sH4, 1sC , 2px,C , h1
(
sp2
)
, h2

(
sp2
)
, h3

(
sp2
)
.

D:1sH1, 1sH2, 1sH3, 1sH4, 1sC , 2px,C , 2py,C , h1
(
sp
)
, h2

(
sp
)
.

Which of these scientists will obtain the lowest total energy (i.e., the best approximation to
the wave function)?

Well, we could perform these calculations, but it is a waste of time. Indeed, each of the
scientists used different basis sets, but they all used the same space spanned by the AOs.128

This is because all these hybrids are linear combinations of the orbitals of student B. All the
scientists are bound to obtain the same total energy, the same molecular orbitals,129 and the
same orbital energies.

Hybridization Is Useful Before the Calculations Are Performed

Is hybridization a useless concept, then? No, it is not. It serves as a first indicator (when cal-
culations are not yet performed) of what happens to a local atomic electronic structure, if the
atomic configuration is tetrahedral, trigonal, etc. For example, the trigonal hybrids describe the
main features of the electronic configuration in the benzene molecule (see Fig. 8.31).

Let us take the slightly more complicated example of a molecule that is of great importance
in biology (see Fig. 8.32).

It is important to remember that we always start from some chemical intuition130 and use
the structural formula given in Fig. 8.32a. Most often, we do not even consider other possi-
bilities (isomers), like those shown in Fig. 8.32b. Now, we try to imagine what kind of local
electronic structure we have around the particular atoms. Let us start from the methyl (i.e.,
−CH3) functional groups. Of course, such a group resembles methane, except that one car-
bon hybrid extends to another atom (not hydrogen). Thus, we expect hybridization over there
close to sp3 one (with all consequences; i.e., angles, etc.). Next, we have the carbon atom
that is believed131 to make the double bond with the oxygen atom. The double bond means

128 Any of the AOs (and, therefore, also of the MOs) of a person can be expressed as a linear combination of the
AOs of another person.

129 Although the LCAO coefficients will be different, of course, because the expansion functions are different. The
orbital plots will be the same.

130 This is based on the vast experience of chemists.
131 Here, we rely on the concept of what is known as the valency of atoms; i.e., the number of bonds that a given atom

is able to form with its neighbors. The valency is equal to the number of valence electrons or valence holes; e.g.,
the valency of the carbon atom is four (because its electron configuration is K 2s22p2, four valence electrons),
of the oxygen atom is two (because its electron configuration is K 2s22p4, two valence holes). An element may
have several valencies because of the possible opening of several electronic shells.

Note that we are making several assumptions based on chemical intuition or knowledge. The reason is
that we want to go quickly without performing any computations. This ambiguity disappears, if we make real
computations (e.g., using the Hartree-Fock method). Then the chemical bonds, hybrids, and other items are
obtained as a result of the computations.



Orbital Model of Electronic Motion in Atoms and Molecules 487

(a)

(b)

Fig. 8.31. The benzene molecule. The hybridization concept allows us to link the actual geometry of a molecule with its electronic
structure (a). The sp2 hybrids of the six carbon atoms form the six σ CC bonds, and the structure is planar. Each carbon atom thus
uses two out of its three sp2 hybrids; the third one lying in the same plane protrudes toward a hydrogen atom and forms the σ CH
bond. In this way, each carbon atom uses its three valence electrons. The fourth one resides on the 2p orbital that is perpendicular
to the molecular plane. The six 2p orbitals form six π molecular orbitals, out of which three are doubly occupied and three are
empty (b). The doubly occupied ones are shown in panel (b). The ϕ0 of the lowest energy is an all-in-phase linear combination of
the 2p atomic orbitals (only their upper lobes are shown). The ϕ1 and ϕ2 correspond to higher energy and to the same energy, and
have a single node (apart from the node plane of the AOs). The ϕ3 orbital that apparently completes all combinations of single-node
molecular orbitals is redundant (that is why it is in parentheses), because the orbital represents a linear combination of the ϕ1 and ϕ2.

an ethylene-like situation; i.e., both atoms should have hybridizations similar to sp2. Let us
begin from the oxygen atom (Fig. 8.32c). The sp2 means three hybrids (planar configuration)
protruding from the O atom. One of them will certainly bind to a similar one protruding from
the carbon atom (OC σ bond); it therefore needs only a single electron from the oxygen. The
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Fig. 8.32. How does the hybridization concept help? This shows the all-important (protein) example of the peptide bond. (a) We
assume a certain pattern of the chemical bonds (this choice is knowledge based) ignoring other possibilities, such as the isomers
shown in (b). Apart from the methyl groups (they have the familiar tetrahedral configuration), the molecule is planar. Usually
in chemistry, knowing the geometry, we make a conjecture pertaining to the hybridization of particular atoms. This leads to the
electron count for each atom: the electrons left are supposed to participate in bonds with other atoms. In the example shown, the
sp2 hybridization is assumed for the central carbon and for the nitrogen and oxygen atoms (c). A π bonding interaction of the
nitrogen, carbon, and oxygen should therefore stabilize the planarity of the system, which is indeed an experimental fact.

oxygen atom has six valence electrons, so there remain five more to think of. Four of them
will occupy the other two hybrids protruding into space (nothing to bind; they are lone pairs).
Hence, there is one electron left. This is very good because it will participate in the OC π bond.
Let us go to the partner carbon atom. It is supposed to make a double bond with the oxygen.
Hence, it is reasonable to ascribe to it an ethylene-like hybridization as well. Out of four valence
electrons for carbon, two are already used up by the σ and π CO bonds. Two other sp2 hybrids
remain, which of course accommodate the two electrons and therefore are able to make two
σ bonds: one with −CH3 and one with the nitrogen atom. Then we go to the nitrogen atom.
It has three substituents in most cases in the (almost) planar configuration (we know this from
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experiment). To make the analysis simple, we assume an sp2 ideal hybridization. The nitrogen
atom has five valence electrons. Three of them will form the σ NC, NH, and N–CH3 bonds.
Note that although the configuration at N is assumed to be planar, this plane may not coincide
with the analogous plane on the carbon atom. Finally, we predict the last two valence electrons
of the nitrogen will occupy the 2p orbital perpendicular to the plane determined by the sub-
stituents of the nitrogen. Note that the 2p orbital could overlap (making a bonding effect) with
the analogous 2p orbital of the carbon atom provided that the two planes will coincide. This
is why we could expect the planarity of the C–N bond. This bond plays a prominent role in
proteins because it is responsible for making the chain of amino acid residues (known as the
amide bond). It is an experimental fact that deviations of the amide bond from planarity are
very small.

The value of the analyses as that given above is limited to qualitative predictions. Of course,
computations would give us a much more precise picture of the molecule. In such computations,
the orbitals would be more precise, or would not be present at all, because, to tell the truth, there
is no such thing as orbitals. We badly need to interpret the numbers, to communicate them to
others in a understandable way, to say whether we understand these numbers or they are totally
unexpected. Reasoning like this has a great value as part of our understanding of chemistry,
of speaking about chemistry, and of predicting and discussing the structures. This is why we
need hybridization. Moreover, if our calculations were performed within the VB method (in its
simplest formulation; the details of the method will be explained in Chapter 10), then the lowest
energy would be obtained by Professor A (who assumed the sp3 hybridization), because the
energy gain over there is very much connected to the overlap of the atomic orbitals forming the
basis, and the overlap with the 1s hydrogen orbitals is the best for the basis set of Professor A.
The other people would get high total energies because of poor overlap of their atomic orbitals
with the 1s hydrogen orbitals.

8.10 A Minimal Model of a Molecule

It is easy to agree that our world is complex. It would be great, however, to understand how
it operates. At least sometimes, answers look more and more complex as we go from crude
to more and more accurate theories. Therefore, we would like to consider a simpler world (a
model of our real world), that:

• Would work with good accuracy; i.e., would resemble the real world quite well.
• Would be based on such simple rules that we can understand it in detail.

We could explain these rules to any interested parties. Not only could we predict a lot for a
molecular system, but we ourselves could be confident that we understand most of chemistry
because it is based on several simple rules. Moreover, why worry about details? Most often,
we want just to grasp the essence of the problem. On top of that, if this essence were free, only
sometimes would we be interested in a more detailed (and expensive) picture.
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Is this utopia, or can such a model of chemistry be built?
Well, it seems that theoretical chemistry nowadays offers such a model describing chemical

structures.
The model is based on the following basic simplifications of the real world:

• The non-relativistic approach; i.e., the speed of light is assumed to be infinite, which leads
to the Schrödinger equation (Chapter 2).

• The Born-Oppenheimer approximation (Chapter 6) that separates the motion of the nuclei
from the motion of the electrons. This approximation allows us to introduce the concept of
a 3-D structure of the molecule: the heavy nuclear framework of the molecule kept together
by “electronic glue” moves (translation), and at the same time rotates in space.

• The mean-field approximation of this chapter offers us the orbital model of the electronic
structure of molecules within the RHF approach. In this picture, the electrons are described
by the doubly occupied molecular orbitals. Localization of the orbitals gives the doubly
occupied inner shell, lone pair, and bond MOs. The first and second are sitting on atoms,
and the third on chemical bonds. Not all atoms are bound with all, but instead the molecule
has a pattern of chemical bonds.

• These bonds are traditionally and formally represented by graphs suggesting a single (e.g.,
C–H); double (e.g., C==C), or triple (e.g., C ≡ C), although some intermediate situations
usually take place. The total number of these formal bonds of a given atom is equal to
its valency. The idea of valency helps a lot in selecting the chemical bond pattern, which
afterwards may be checked against experiment (e.g., bond distances).132 In most cases, a
single bond is of the σ type, a double one is composed of one σ and one π , and a triple
bond means one σ and two π bonds (cf., p. 474).

• The minimal model of a molecule may explain most of the chemical reactions, if besides the
closed-shell configuration (double occupancy of the molecular orbitals, including HOMO),
we consider excited configurations corresponding to electron transfer(s) from the HOMO
to LUMO orbital (see Chapter 14).

• The bonds behave very much like springs of a certain strength and length,133 and therefore,
apart from the translational and rotational motion, the atoms vibrate about their equilibrium
positions.134 As to the structural problems (not chemical reactions), these vibrations may
be treated as harmonic.

132 For some molecules, this procedure is not unique; i.e., several chemical bond patterns may be conceived (called
sometimes resonance structures or mesomeric forms; cf. the valence bond method in Chapter 10). In such cases,
the real electronic structure corresponds to an averaging of all of them (in space or in time).

133 Both depend first of all of the elements making the bond; also, a single bond is the weakest and longest, and the
triple is the strongest and shortest.

134 The model of molecule visualized in virtually all popular computer programs shows spherical atoms and chemical
bonds as shining rods connecting them. First of all, atoms are not spherical, as is revealed by Bader analysis (p. 667)
or atomic multipole representations (see Appendix S available at booksite.elsevier.com/978-0-444-59436-5).
Second, a chemical bond resembles more a “rope” (higher values) of electronic density than a cylindrical rod.
The rope is not quite straight and is slimmest at a critical point (see p. 671). Moreover, the rope, when cut

http://booksite.elsevier.com/978-0-444-59436-5
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• The 3-D shape of simple chemical structures can be correctly predicted using the
Hartree-Fock model. The main features of this 3-D structure can be also predicted (without
any calculation) by using the concept of the minimum repulsion energy of the electron pairs.
Within the molecular orbital model, such repulsion is given by Eq. (8.99).

8.11 Valence Shell Electron Pair Repulsion (VSEPR) Algorithm135

Is it possible to predict (in a minute, without any quantum chemical calculations) the shape of
a molecule corresponding to the lowest energy, or more exactly the configuration of ligands
around a central atom? It turns out that often136 such a goal is feasible, and moreover, the rules
(the VSEPR algorithm) behind such predictions are very simple:

• The VSEPR algorithm starts from choosing the central atom (C) in the molecule and defines
the rest as a set of its ligands (L).137

• The key step of the VSEPR is to calculate an integer number (N ) of electrons assigned to
the valence shell of the central atom according to the formula: N = nC + nL + nion , where
nC stands for the number of the valence electrons of the central atom itself, nL denotes the
number of electrons offered by the ligands L, while nion is an obvious correction for the
number of electrons if one considers an ion, not a neutral molecule.

– Calculation of nC . This number is calculated from the position of the central atom in the
Mendeleev periodic table (nC is the group number): for alkali metals, nC = 1; for alkali
earth metals, nC = 2; for analogs of boron, nC = 3; for analogs of carbon, nC = 4; for
analogs of nitrogen, nC = 5; for analogs of oxygen, nC = 6; for halogens, nC = 7; for
noble gases, nC = 8 (except helium, for which nC = 2).

– Calculation of nL . The integer nL is a sum of integer contributions from all individual lig-
ands. Each ligand bound to the central atom by a single bond contributes 1. The ligands
O, S, CH2, NH (i.e., those bound to the central atom by a double bond) contribute 0, and
the ligands N, CH (i.e., those bound to the central atom by a triple bond) contribute−1.

– Calculation of nion . If the total system is a cation of charge +n|e|, the number nion =
−n; for an anion of charge −n|e|, the number nion = +n.

• One calculates the number of the valence electronic pairs assigned to the central atom as138

P = N
2 .

perpendicularly, has a circular cross section for pure σ bonds, and an oval cross section for the double bond σ
and π (cf. Fig. 11.1).

135 The VSEPR algorithm comes from Ronald Gillespie and Ronald Nyholm [R.J. Gillespie and R.S. Nyholm,
Quart. Rev. Chem. Soc., 11, 339 (1957)].

136 The VSEPR works correctly for small molecules almost without exceptions; for larger molecules, one meets
difficulties of two types: there may be problems with heavy atoms and the VSEPR is unable to solve the
conformational problems (i.e., to show the lowest-energy conformer).

137 As the central atom can be chosen any atom of the molecule, one may also repeat the VSEPR procedure for the
consecutive choices of the central atom and check whether the outputs are consistent.

138 If N is an odd number (a rare case), one rounds off the number to (N + 1).
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• Distribution of the electron pairs found around the central atom: the pairs are distributed on
a surface of a sphere in such a way as to have their repulsion be as small as possible (the
largest distances between them).

• Distribution of the ligands around the central atom (i.e., the shape of the molecule): each
ligand is assigned to one of the electron pairs. They are called the ligand pairs; the other ones
will play the role of the lone electron pairs. If the number of ligands equals P , the structure
is determined. If the number of ligands is larger than P , there is an error in our calculations!
If the number of the ligands is smaller than P , we have a problem of several structures
possible. There comes the last VSEPR rule: two lone pairs repel stronger than a lone pair–
ligand pair and even stronger than the ligand pair–ligand pair.139 This sequence leads to
a unique VSEPR-predicted structure, all they are listed in Fig. 8.33 for various P and nL .

Example. Water
Let us first try the VSEPR model. For the oxygen atom as the central one, we have N =

nC+nL+nion = 6+2+0 = 8. Hence, the number of electronic pairs P = N/2 = 4. The largest
distances between the pairs will be assured by the tetrahedral configuration (Fig. 8.33; the angles
equal 109028′). Any assignment of the ligands (H) gives, of course, the same bent HOH structure.
Recalling the strong repulsion between lone pairs, we can predict the HOH angle to be smaller
than 109028′. This is a good guess because the experimental HOH angle is equal to 104.50.

Let us check now what the minimal model gives. The model (STO 6-31G∗∗ basis set, opti-
mized geometry) predicts correctly that we are dealing with two equivalent OH bonds, because
both bonds have the same length140 ROH = 0.943 Å, which is quite close to what can be deduced
from the microwave spectroscopy141: ROH = 0.957 Å. The minimal model used predicts also
that the molecule is bent (C2v symmetry), the HOH angle being 106.00 (the Hartree-Fock limit;
i.e., calculated with the complete AO set is 105.30). These results are quite typical for the min-
imal model: it is able to predict the bond lengths typically142 to the accuracy of about 0.01 Å,
and the bond-bond angles with the accuracy of about 10. There is no H–H bond in H2O at this
geometry.143

139 Note that at a given geometry, a minimization of the electron pair repulsion given by Eq. (8.99) means localization
of the MOs. If, however, a change of geometry is considered (which is the crux of the VSEPR), a smaller electron
repulsion [i.e., a smaller const in Eq. (8.98)] stabilizes the structure. For small variation of angles L-C-L, one
may expect a marginal change of the self-repulsion; i.e.,

∑M O
i Ji i =

∑M O
i (i i |i i), because each term depends

uniquely on a localized orbital on C or on an individual C-L, not involving any two ligands. The repulsion is
expected to vary for different localized orbitals because their distance will vary. The larger distance, the smaller
the value of Eqs. (8.98) and (8.99). This may be seen as a theoretical hint for validity of the VSEPR.

140 The VSEPR model does not provide information about interatomic distances.
141 The microwave spectroscopy determines the moments of inertia.
142 We mean here molecules with well-closed electronic shells.
143 This is a common fact of chemistry, but if you are wondering how you know this, then it turns out you have to quote

your teachers. As to a more serious argument, this conclusion can be drawn either from an electronic population
analysis described in Appendix S available at booksite.elsevier.com/978-0-444-59436-5 or by performing the
Bader analysis (as described in Chapter 11). In the first case, we would get the positive (and equivalent) populations
between atoms O and H, which will result from a net bonding interaction, while the population between H and H

http://booksite.elsevier.com/978-0-444-59436-5
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P=1, lig.=1       P=2, lig.=2        P=3, lig.=3
linear molecule      linear molecule        equilateral triangle

P=3, lig.=2        P=4, lig.=2        P=4, lig.=3
bent mol. (angle<120˚)      bent mol. (angle<109˚28')       pyramide (angle<109˚28')

P=4, lig.=4     P=5, lig.=5        P=5, lig.=4
tetrahedral (angle=109˚28')   trigon.bipyramide (120˚, 90˚)       deformed tetrahedron

P=5, lig.=3       P=5, lig.=2        P=6, lig.=6
T-shaped       linear molecule        octahedral (angle 90˚)

P=6, lig.=5        P=6, lig.=4        P=7, lig.=7
square pyramide       square (angles=90˚)       pentagon.bipyram. (90˚, 108˚)

P=7, lig.=6        P=8, lig.=8        P=9, lig.=9
deformed octahedron       square antiprism        face centered trigonal prism 

Fig. 8.33. The most stable structures according to VSEPR. The structures are assigned by assuming that the lone pair–lone pair
repulsion is larger than the lone pair–bonding pair repulsion, the latter still larger than the bonding pair–bonding pair repulsion.

will be negative, which indicates an antibonding interaction. The Bader analysis would reveal a kind of electronic
density “rope” between O and H and the absence of such a “rope” for H and H. No doubt, the H–H bond will
appear, if for any reason the HOH angle is forced to be small.
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The minimal model predicts three harmonic modes for the water molecule (Fig. 7.9 on p. 361):
antisymmetric stretching vibration with the wave number 4264 cm−1, symmetric stretching
vibration 4147 cm−1, and the bending vibration 1770 cm−1. It is less easy to say how to compare
these numbers to the experimental absorption lines observed in spectra. What an experimentalist
measures is related to the vibrational excitations from the ground state v = 0 to the excited state
withv = 1, but of an anharmonic oscillator. One may deduce what the corresponding frequencies
would be if the potential energy well were parabolic, they will be equal: 3942, 3832, 1648 cm−1.
This also is typical: the minimal model with its harmonic approximation gives the frequencies
that are higher by 7–8% than the experimental values.144

Example. Ozone
This simple molecule is composed of three oxygen atoms (O3), which at first sight appear to

play the same role. The concept of chemical valence (valence equals two) seems to confirm this
idea, allowing a structure of an equilateral triangle of single bonds. What does a more serious
approach offer? One has to solve the Schrödinger equation (even at the level of the Hartree-Fock
method). Before we explore this, let us turn first to what the VSEPR algorithm predicts. We
choose one of the oxygen atoms as a “central” one; the two other oxygen atoms will be the
ligands. We count it as follows: N = nC + nL + nion = 6+ 2 · 0+ 0 = 6. Hence, the number
of the electronic pairs is P = 3. The repulsion principle (Fig. 8.33) gives the configuration in
the form of the mercedes sign (at a 1200 angle). We assign two pairs to the ligands, and one
lone pair is left. Therefore, the VSEPR predicts the O-O-O angle to be a bit smaller than 1200

(due to a stronger lone pair–ligand pair repulsion), which excludes the three oxygen atoms to
be equivalent.

Let us see what the Hartree-Fock method has to say about this.145 Let us start from an
equilateral triangle configuration. We optimize the geometry and get an equilateral angle
(RO O = 1.373 Å) with the energy −224.245 a.u. Well, it may be that this is a saddle point.
We calculate the normal modes, and all three frequencies turn out to be real, so it is a true
minimum. But this can’t be–the VSEPR must have made a mistake. The VSEPR algorithm is
certainly primitive, so it is no wonder that it is sometimes misleading. Well, before we put the
VSEPR away, let us perform a Hartree-Fock calculation (with geometry optimization), this time
starting from the configuration predicted by the VSEPR. To our amazement, we find another
stable configuration: an isosceles triangle (C2v symmetry) with the energy −224.261 a.u.146,
which is lower than that computed before. The experiment confirms the VSEPR and our last
result: symmetry C2v. The side of the isosceles triangle is RO O = 1.204 Å (the experimental

144 This systematic error of theoretical description is quite often “corrected” by a proper scaling of the results. If
anharmonicity becomes very large (like in case of vibronic coupling), the error may be much larger.

145 There are 24 electrons in the system, which is quite a lot for quantum mechanical methods. Meanwhile, the
VSEPR algorithm is insensitive to the number of electrons.

146 The computed harmonic vibrational mode frequencies are 1537, 1453 and 849 cm−1, which proves we have to
do with a true minimum.
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value is147 1.272 Å), whereas the largest OO distance is computed as RO O = 2.076 Å. The
computed angle is 1190, and the experiment gives 116.780, while the VSEPR predicted “less
than 1200.” A triumph of the simple VSEPR algorithm, even more amazing since obtained in a
quite subtle situation of two non-equivalent and competing minima on the hypersurface of the
ground-state electronic energy.

Example. I−3 Anion
Our experience with H2O and O3 up to now suggests (hypothesis) that if one has three atoms,

one gets the C2v symmetry of the molecule. We may check our hypothesis in the case of I−3 , the
product of dissolving iodine in a solution of potassium iodide.

Well, what does the VSEPR say about the structure? We count (for an iodine atom taken as
a central one): N = nC + nL + nion = 7 + 2 · 1 + 1 = 10. We get P = 5, which means a
configuration of a trigonal bipyramide (Fig. 8.33). In the center of the bipyramid, one has the
central iodine atom, but where are the ligands? There are three possibilities: two iodine atoms
occupy two axial positions (an I-I-I angle equal to 1800); one of them occupies an axial position,
while the other an equatorial position (an I-I-I angle equal to 900); or both are equatorial (an I-I-I
angle equal to 1200). Figure 8.33, which summarizes the result of the simple VSEPR assumption
about the sequence of the strength of the electron pair repulsion, indicates unambiguously the
first possibility. Thus, the VSEPR predicts a linear configuration–exactly what one finds in
experiments.

What about this says the minimal quantum mechanical model? Let us optimize the geome-
try148 starting from several distinct configurations of the nuclei.149 We get the energy−20552.059
a.u., always corresponding to a symmetric linear configuration with the I-I distance equal to
2.94 Å. The experimental I-I distance is about 2.90 Å (and changes a bit depending on the
accompanying cation in a salt). Therefore, the Hartree-Fock calculations (as well as the VSEPR)
gave the structure confirmed by the experiment.

Example. The Infernal150 ClF3

The VSEPR gives (we choose chlorine as the central atom): N = nC + nL + nion = 7+ 3 ·
1 + 0 = 10. So, we have P = 5, and this means again a trigonal bipyramide (Fig. 8.33). The
three chlorine atoms may be in the following configurations: (1) two axial and one equatorial;
(2) one axial and two equatorial; (3) three equatorial. The VSEPR is able to distinguish these
three situations (Fig. 8.33) and indicates case #1 has the lowest energy. This, however, means

147 T. Tanaka, Y. Morino, Spectroscopy, 33, 538 (1970).
148 160 electrons is quite a lot (not for the VSEPR algorithm though). This is the reason why the calculations are

carried out within the minimal basis set (STO-3G).
149 This result is obtained from a starting point corresponding to a linear symmetric structure. A start from a bent

structure (the angle about 1200) gave the same linear configuration. A start from a strongly bent structure (the
angle equal to 900) led to a dissociation into I− + I2 (of higher energy).

150 When in contact with many organic substances, it catches fire spontaneously and has many other vicious surprises.
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a very strange molecule: planar and . . . T-shaped. The roof of the T is formed by F–Cl–F lying
on the straight line, while there is additional fluorine atom protruding from the chlorine. Does
it have any sense at all? Let us optimize the geometry within the Hartree-Fock method.151 We
do get a T-shaped molecule; only the roof deviates from the straight line, but not too much:
�F− Cl− F = 172.50 (the experimental value is 175.00). The two fluorine atoms (of the roof
of T) are equivalent (the net charge computed by the Mulliken population analysis is −0.515,
the distance rClF = 1.67 Å, and its experimental value is 1.70 Å). The third fluorine atom
differs: its net charge is −0.308, and rClF = 1.58 Å, the experimental value is 1.60 Å. When
the optimization starts from configurations #2 or #3, it ends up again in the strange configuration
#1, which suggests that these structures (2 and 3) are simply unstable. This underlines once more
the success of the VSEPR, for a very unusual molecular shape.

8.12 The Isolobal Analogy

What is the electronic structure of the Fe2(CO)8 molecule? This is not easy to say with no
background. Could there be some multiple bonds between iron atoms of the σ, π , or δ character?
Well, the isolobal analogy will allow us to say the following: in fact, Fe2(CO)8 is an ethylene-
like molecule, with all consequences concerning the iron-iron bond (double), the planarity of
(CO)2Fe==Fe(CO)2 fragment, etc. Also, we will be able to predict that the Fe(CO)4 moiety
resembles (“is isolobal with”) the CH2, that it will bind to CH2, forming the H2C==Fe(CO)4,
and can just replace CH2 in many other instances in organic chemistry.

Now comes a very short story about the isolobal analogy idea.152

The concept of localized molecular orbitals not only brought the quantum chemical approach
much closer to everyday chemists’ reasoning, but also enabled them to see chemistry in a kind
of holistic perspective, beyond any useless details.153 It became evident that to form a chemical
structure (e.g., a single chemical bond) it is sufficient to fulfill necessary conditions concerning
AOs, like for instance to have two particular atoms each offering a hybridized orbital protruding
in space (of similar energy, “a lobe”) and occupied by a single electron. The details of how
the hybridized AO looks are not important. It may have either sp, sp2, sp3 orbital or e.g.,
dsp3, d2sp3, etc.154 Such outer-most crucial orbitals are known as frontier orbitals (they may
be identified with the HOMO or LUMO molecular orbitals).

151 We use the 6− 31G(d) basis set.
152 R. Hoffmann, Nobel Lecture, December 8, 1981.
153 Stefan Banach: “A good mathematician sees analogies among theorems, an outstanding one sees the analogies

among theories, and a genius sees the analogies among analogies.”
154 To see what such a hybrid is, look at Fig. 4.24 on p. 210. If you add to what you see there (it is a linear combination

of 3dz2−x2 and 3dz2−y2 ) 3s and 3pz orbitals, you increase one of the lobes and diminish the other one along z.
The result is a lobe protruding toward +z.
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The isolobal analogy introduced by Roald Hoffmann says that

the electronic structure (typically of inorganic d-electron complexes) can be rationalized
by reducing it to the structures made by much simpler organic radicals like CH3,CH2, CH,
with similar frontier orbitals, and therefore similar chemical properties. More formally,
two fragments (or molecules) are said to be isolobal if they have the same number of the
frontier orbitals of the same symmetry and electron occupation. So, the isolobal molecular
fragments will bind similarly and for similar reasons, while the isolobal molecules will
have similar electronic structures.

Let us consider some examples.
In Fig. 8.34, we see several isolobal chemical objects. Let us consider the methane molecule

(upper-left corner). By detaching consecutive hydrogen atoms, one moves down the first column
and the result are the radicals: CH3,CH2, CH with one, two, and three mono-occupied lobes (all
in the tetrahedral configuration), respectively. Now, consider the CrL6 complex of chromium
and six ligands L. Each ligand binds to the chromium atom because the chromium offers low-
energy empty orbitals,155 while ligands (like CO,NH3, etc.) provide an electron pair each. The
CrL6 complex has, therefore, the electronic configuration 4s23d4L12 (i.e., 18 valence electrons),
which means the very stable Lewis-type closed shell of the krypton atom, [Ar(18)]4s23d104p6,
see p. 448. The next column begins by Mn(CO)3Cp, where Cp means the cyclopentadienyl
ligand offering 5 electrons of the π type. The electron count gives 4s23d5(CO)6 Cp5, again the
stable system of 18 valence electrons.

Now we will go down the columns (except the first column already discussed), beginning with
CrL6. Going toward the second row, we remove L with two electrons, but at the same time replace
the central atom by the next one in the periodic table (i.e., by manganese). Therefore, the extra
electron from the manganese atom (when compared to chromium) enters the lobe, which is thus
singly occupied (see Fig. 8.34). The electron configuration is 4s23d4(lobe)1L10, which means
17 electrons or one electron hole in the 18-electron shell. We do the same in the third column
(with the tetrahedral complex containing Cp). These compounds are analogous (isolobal) to
the CH3 radical. Going down once more (third row), we create two singly-occupied lobes by
the same type of “alchemical transmutation”: removing L with two electrons, but increasing
the central atom atomic number by 1 (two holes in the 18-electron shell, isolobal with CH2

group). Finally, we repeat this for the fourth row, receiving the three singly-occupied lobes
(three electron holes, isolobal with CH group).

The philosophy behind the isolobal analogy is to see complex molecular structures as being
interrelated and systemized through a simple idea. It allows to predict the essence of the

155 In this case, six d2sp3-type hybrid lobes protrude toward the six corners of the tetragonal bipyramid.
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Fig. 8.34. The isolobal analogy between molecular fragments (symbolized by a double arrow with a loop). All species
shown are electrically neutral and are derived conceptually from the first row that contains the “generic” compounds:
CH4,CrL6,Mn(CO)3(C5H4), where L are ligands that offer an electron pair each. The second row is a result of an alchemi-
cal transmutation: we remove an electron pair with a ligand L, but compensate for it by increasing the atomic number of the central
atom by 1 (its additional electron enters the empty lobe). In such a way, all species in the second row have an orbital lobe carrying
a single electron and each pair of them is isolobal. Similarly, in the third row, all species share the same two-lobe structure (all are
mutually isolobal), while in the fourth row, we have the same three-lobe isolobal structures.

electronic structure just from basic knowledge of much simpler molecules, and go across the
often too-detailed quantum mechanical description, in other words, to understand, why the
results should be like that. Understanding has direct consequences in chemical synthesis: the
isolobal analogy helped a lot in producing new organometallic materials.
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Summary

• The Hartree-Fock procedure represents a variational method. The variational function takes the form of a single

Slater determinant ψ built of orthonormal molecular spinorbitals: ψ = 1√
N !

∣∣∣∣∣∣∣∣
φ1(1) φ1(2) . . . φ1(N )
φ2(1) φ2(2) . . . φ2(N )
. . . . . . . . . . . . . . . . . . . . . . . .

φN (1) φN (2) . . . φN (N )

∣∣∣∣∣∣∣∣
.

• A molecular spinorbital φi (1) is a one-electron function of the coordinates x1, y1, z1, σ1. In the RHF method,
it is the product ϕi (x1, y1, z1)α(σ1) or ϕi (x1, y1, z1)β(σ1) of a real molecular orbital ϕi (x1, y1, z1) and of the
spin function α(σ1) or β(σ1), respectively. In the general HF method (GHF), a spinorbital is a complex function,
which depends both on α(σ1) and β(σ1). The UHF method uses, instead, real orbitals, which are all different
and are multiplied either by α or β (“different orbitals for different spins”).

• Minimization of the mean value of the Hamiltonian, ε =
〈
ψ |Ĥψ

〉
〈ψ |ψ〉 , with respect to the orthonormal spinorbitals

φi (GHF) leads to equations for optimum spinorbitals (Fock equations): F̂(1)φi (1) = εiφi (1), where the Fock
operator F̂ is F̂(1) = ĥ(1) + Ĵ (1) − K̂ (1), the Coulombic operator is defined by Ĵ (1)u(1) = ∑ j Ĵ j (1)u(1)

and Ĵ j (1)u(1) =
∫

dτ2
1

r12
φ∗j (2)φ j (2)u(1), and the exchange operator by K̂ (1)u(1) = ∑ j K̂ j (1)u(1) and

K̂ j (1)u(1) =
∫

dτ2
1

r12
φ∗j (2)u(2)φ j (1).

• In the Restricted Hartree-Fock method (RHF) for closed shell systems, we assume double occupancy of orbitals;
i.e., we form two spinorbitals out of each MO (by multiplying either by α or β).

• The Fock equations are solved by an iterative approach (with an arbitrary starting point) and as a result, we
obtain approximations to the following:

– The total energy
– The wave function (the optimum Slater determinant)
– The canonical molecular orbitals (spinorbitals)
– The orbital energies.

• Use of the LCAO expansion leads to the Hartree-Fock-Roothaan equations Fc = Scε. Our job, then, is to find the
LCAO coefficients c. This is achieved by transforming the matrix equation to the form of the eigenvalue problem,
and to diagonalize the corresponding Hermitian matrix. The canonical MOs obtained are linear combinations
of the atomic orbitals. The lowest-energy orbitals are occupied by electrons, while those of higher energy are
called virtual and are left empty.

• Using the H+2 and H2 examples, we found that a chemical bond results from a quantum effect of an electron
density flow toward the bond region. This results from a superposition of atomic orbitals due to the variational
principle.

• In the simplest MO picture:

• The excited triplet state has lower energy than the corresponding excited singlet state
• In the case of orbital degeneracy, the system prefers parallel electron spins (Hund’s rule)
• The ionization energy is equal to the negative of the orbital energy of the removed electron. The electron

affinity is equal to the negative of the orbital energy corresponding to the virtual orbital accommodating
the added electron (Koopmans’s theorem).

• The canonical MOs for closed-shell systems (the RHF method) may be transformed to orbitals localized in the
chemical bonds, lone pairs, and inner shells.

• There are many methods of localization. The most important ones are: the projection method, the method of
minimum distance between two electrons from the same orbital (Boys approach), and the method of maximum
interaction of electrons from the same orbital (Ruedenberg approach).

• Different localization methods lead to sets of localized MOs which are slightly different but their general shape
is similar.
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• The MOs (localized as well as canonical) can be classified as to the number of nodal surfaces going through the
nuclei. A σ bond orbital has no nodal surface at all, a π bond orbital has a single nodal surface, and a δ bond
orbital has two such surfaces.

• The localization allows comparison of the molecular fragments of different molecules. It appears that the features
of the MO localized on the AB bond relatively weakly depend on the molecule in which this bond is found.
This is a strong argument and a true source of experimental tactics in chemistry, which is to tune the properties
of particular atoms by changing their neighborhood in a controlled way.

• Localization may serve to determine hybrids.
• In everyday practice, chemists often use a minimal model of molecules that enables them to compare the

geometry and vibrational frequencies with experiment to the accuracy of about 0.01 Å for bond lengths and
about 10 for bond angles. This model assumes that the speed of light is infinite (non-relativistic effects only),
the Born-Oppenheimer approximation is valid (i.e., the molecule has a 3-D structure), the nuclei are bound by
chemical bonds and vibrate in a harmonic way, the molecule moves (translation) and rotates as a whole in space.

• In many cases, we can successfully predict the 3-D structure of a molecule by using a very simple tool: the
Valence Shell Electron Pair Repulsion (VSEPR) algorithm.

Main Concepts, New Terms

AMO method (p. 444)
antibonding orbital (p. 439 and 443)
atomic basis set (p. 440)
atomic orbital (p. 421)
atomic orbital dimension (p. 477)
basis sets (p. 431)
bonding orbital (p. 439 and 443)
Boys method (p. 471)
centering AO (p. 422)
chemical bond (p. 451)
closed shell (p. 410)
conditional extremum (p. 408)
Coulomb integral (p. 400)
Coulombic operator (p. 413)
digonal hybridization (p. 483)
Dirac notation (p. 399)
effectiveness of AOs mixing (p. 429)
electron affinity (p. 466)
electronic configuration (p. 451)
electronic pair dimension (p. 475)
electronic shells (p. 448)
energy functional (p. 400)
exchange integral (p. 419)
exchange operator (p. 403)
excitation energy (p. 458)
external localization (p. 469)
Fock equation (p. 399)
Fukutome classes (p. 440)
Gaussian-type orbital (p. 423)
General Hartree-Fock (GHF) method (p. 407)
Hartree-Fock method (p. 393)

Hartree-Fock-Roothaan method (p. 431)
Hartree method (p. 416)
HOMO (p. 410)
Hund’s rule (p. 460)
hybridization (p. 479)
instability (p. 441)
internal localization (p. 470)
invariance with respect to a unitary transformation
(p. 406)
ionization potential (p. 458)
Jabłoński diagram (p. 460)
Koopmans theorem (p. 465)
Lagrange multipliers (p. 401 and p. 406)
LCAO (p. 427)
localized MOs (p. 482)
LUMO (p. 410)
mean field (p. 414)
Mendeleev periodic table (p. 446)
minimal model of a molecule (p. 489)
molecular spinorbital (p. 394)
molecular orbital (p. 420)
occupied orbital (p. 409)
open shell (p. 411)
orbital centering (p. 422)
orbital localization (p. 467)
orbital size (p. 424)
penetration energy (p. 454)
Restricted Hartree-Fock (RHF) method (p. 408)
Ruedenberg method (p. 470)
Self-Consistent Field (SCF) (p. 417)
Slater determinant (p. 396)
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Slater orbital (p. 423)
Slater-type orbital (STO) (p. 423)
spinorbital (p. 394)
stationary state (p. 397)
σ, π, δ - molecular orbitals (p. 474)
tetrahedral hybridization (p. 481)
trigonal hybridization (p. 483)

triplet instability (p. 441)
unitary transformation (p. 404)
Unrestricted Hartree-Fock (UHF) method (p. 408)
Valence Shell Electron Pair Repulsion (VSEPR) (p. 491)
variation of a spinorbital (p. 401)
virtual orbital (p. 410)

From the Research Front

John Pople (1925–2004), British mathematician and
one of the founders of modern quantum chemistry. His
childhood was during time war in England (every day
25 mile train journeys, sometimes under bombing).
He came from a lower middle class family (drapers
and farmers), but his parents were ambitious for the
future of their children. At the age of 12, John devel-
oped an intense interest in mathematics. He entered
Cambridge University after receiving a special
scholarship. Pople made important contributions
to theoretical chemistry. To cite a few: proposing
semiempirical methods–the famous PPP method for
π electron systems, the once very popular CNDO
approach for all-valence calculations, and finally the
monumental joint work on GAUSSIAN, a system
of programs that constitutes one of most important

computational tools for quantum chemists. Pople
received the Nobel Prize in 1998 “for his development
of computational methods in quantum chemistry”
sharing it with Walter Kohn.

The Hartree-Fock method belongs to a narrow two- to three- member class of standard methods of quantum
chemistry. It is the source of basic information about the electronic ground state of a molecule. It also allows its
geometry optimization. At present, the available computational codes limit the calculations to the systems built
of several hundreds of atoms. Moreover, the programs allow calculations to be made by clicking the mouse. The
Hartree-Fock method is always at their core. The GAUSSIAN is one of the best known programs. It is the result of
many years of coding by a team of quantum chemists working under John Pople. Pople was given the Nobel Prize
in 1998, mainly for this achievement. To get a flavor of the kind of data needed, I provide below a typical data set
necessary for GAUSSIAN to perform the Hartree-Fock computations for the water molecule:

#HF/STO-3G opt freq pop
water, the STO-3G basis set
0 1
O
H1 1 r12
H2 1 r12 2 a213
r12 = 0.96
a213 = 104.5

The explanatory comments for this program, line by line, follow:

• #HF/STO-3G opt freq pop is a command that informs GAUSSIAN that the computations are of the Hartree-
Fock (HF) type, that the basis set used is of the STO-3G type (each STO is expanded into three GTOs), that
we want to optimize geometry (opt), compute the harmonic vibrational frequencies (freq), and perform the
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charge population analysis for the atoms (known as Mulliken population analysis; see Appendix S available at
booksite.elsevier.com/978-0-444-59436-5, p. e143).

• Just a comment line.
• 0 1 means that the total charge of the system is equal to 0, and the singlet state is to be computed (1).
• O means that the first atom in the list is oxygen.
• H1 1 r12 means that the second atom in the list is hydrogen (named H1), distant from the first atom by r12.
• H2 1 r12 2 a213 means that the third atom in the list is hydrogen (named H2), distant from atom number 1 by

r12, and forming the 2-1-3 angle equal to a213.
• r12 = 0.96 is a starting OH bond length in Å.
• a213 = 104.5 is a starting angle in degrees.

Similar inputs are needed for other molecules. The initial geometry is to some extent arbitrary, and therefore in
fact it cannot be considered as real input data. The only true information is the number and charge (kind) of the
nuclei, the total molecular charge (i.e., we know how many electrons are in the system), and the multiplicity of
the electronic state to be computed. The basis set issue (STO-3G) is purely technical and gives information about
the quality of the results.

Ad Futurum

Along with the development of computational techniques, and with the progress in the domain of electronic
correlation, the importance of the HF method as a source of information about total energy or total electron density
will probably decrease. Simply, much larger molecules (beyond the HF level) will be within the reach of future
computers. Yet HF calculations still will be carried out, and their results will be carefully analyzed. There are at least
two reasons for this:

• HF calculations are most often the necessary step before more precise computations are performed
• HF computations result in the MO model: the MOs and the orbital energies scheme (“minimal model”), they

provide the conceptual framework for the molecule. It is the sort of model that may be discussed, thought of,
and used to search for explanation of physical and chemical phenomena. So far, such a possibility does not exist
for advanced methods, where often we obtain very good results, but it is extremely difficult to get an idea why
they agree so well with experiments.156

Additional Literature
A. Szabo and N.S. Ostlund, Modern Quantum Chemistry, McGraw-Hill, New York, 1989, pp. 108–231.

Excellent book.

T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic Structure Theory, Wiley, Chichester, 2000,
pp. 433–513.

This book is a contemporary compendium of computational quantum chemistry.

O. Chalvet, R. Daudel, S. Diner, and J.P. Malrieu, Eds., Localization and Delocalization in Quantum Chemistry,
D. Reidel Publish. Co., Dordrecht, 1975.

A set of the very interesting articles by the leading quantum chemists of that time.

156 The fact of solving the Schrödinger equation, unfortunately does not instruct us on the nature of physical
phenomena in most cases.

http://booksite.elsevier.com/978-0-444-59436-5


Orbital Model of Electronic Motion in Atoms and Molecules 503

Questions
1. The Hartree-Fock method for a system with N electrons (closed-shell case) leads to a wave function

a. that satisfies the Schrödinger equation
b. in the form of a Slater determinant, which in the Hilbert space is the closest to the solution of the Schrödinger

equation
c. in the form of such a Slater determinant, which gives the lowest mean value of the electronic Hamiltonian
d. in the form of an antisymmetrized product of the spinorbitals, each satisfying the Fock equation

2. The canonical orbitals:

a. represent a minimal basis set of the atomic orbitals of the atoms present in the molecule
b. give the lowest mean value of the Hamiltonian among all possible orbitals when inserted into the Slater

determinant
c. satisfy the Fock equation
d. are either the core orbitals or bond orbitals or lone pair orbitals

3. The localized molecular orbitals

a. are mutually orthogonal
b. give the lowest mean value of the Hamiltonian of all the Slater determinants possible when inserted into

the Slater determinant
c. give the canonical orbitals when transformed by a particular unitary transformation
d. are localized on individual atoms of the molecule

4. Localization of molecular orbitals

a. is made for determining which molecular orbitals are bonding, antibonding and non-bonding
b. may lead to different sets of localized orbitals
c. lowers the mean value of the Hamiltonian
d. enables one to obtain the orbitals of individual chemical bonds, of the lone pairs, and of the atomic core

orbitals

5. The orbital energy

a. for each MO, multiplied by its occupancy and summed up over all MOs, equals the total HF electronic
energy

b. is equal to the mean value of the Fock operator with the corresponding MO
c. is a sum of the energies of the two electrons occupying the MO
d. is equal to the mean value of the energy per one electron of the molecule

6. The Fock operator contains the following operators:

a. of the kinetic energy of the nuclei
b. of the electrostatic attraction of the electron pairs by the nuclei
c. the Coulomb operator of a repulsion of a point-like electron with the charge density distribution of all

electrons
d. the electrostatic attraction electron-nucleus

7. In the LCAO MO method, each molecular orbital represents:

a. a function of position of an electron in 3-D space
b. a function that depends on the coordinates of the two electrons occupying this molecular orbital
c. a function of class Q
d. a linear combination of atomic orbitals (that belong to the atomic basis set chosen)

8. In the HF method (closed-shell case, U = a sum of the orbital energies of the doubly occupied molecular
orbitals, Vnn stands for the repulsion of the nuclei) the total energy is

a. lower than 2U + Vnn
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b. is equal 2U
c. equal to 2U + Vnn

d. lower than 2U − 1
2 Vee + Vnn

9. A comparison of the RHF and the UHF methods

a. in the UHF method, one always gets a spin contamination of the wave function
b. the Slater determinant in the RHF method represents an eigenfunction of the operator of the square of the

spin angular momentum
c. EU H F < ER H F
d. EU H F ≤ ER H F , and both functions are eigenfunctions of the z component of the total spin of the

electrons

10. The RHF method for the hydrogen molecule (R is the internuclear distance)

a. gives wrong results for large R, because a HOMO - LUMO quasi-degeneracy
b. gives a correct description of the dissociation producing two ground-state hydrogen atoms
c. gives wrong products of dissociation because of a too large difference between the bonding and antibonding

energy levels
d. does not take into account any correlation of motion of the two electrons

Answer

1c,d, 2b,c, 3a,b,c, 4b,d, 5b, 6c,d, 7a,c,d, 8a,d, 9b,d, 10a,d



CHAPTER 9

Orbital Model of Electronic Motion
in Periodic Systems

“Beauty of style and harmony and grace and good rhythm depend on simplicity.”
Plato

Where Are We?

We are on the upper-left branch of the TREE.

An Example

Polyacetylene1 represents a prac-

tically infinite polymeric chain2:
· · · –CH==CH–CH==CH–CH==CH
–CH==CH– · · ·. There is no such
thing in nature as a truly infinite
system. Yet, if we examine larger
and larger portions of a homoge-
neous material, we discover the
idea that such quantities as energy
per stoichiometric unit, electron
excitation energy, vibrational fre-
quencies, etc. depend less and less
on system size. This means that a
boundary-region (polymer ends,
crystal surface) contribution to

Herman Staudinger (1881–1965),
German polymer chemist and pro-
fessor at the University of Freiburg,
received the Nobel Prize in 1953
“for his discoveries in the field
of macromolecular chemistry.” How-
ever strange it may sound now, the
concept of polymers was unthinkable
in chemistry as late as 1926.

It will be encouraging for Ph.D.
students to read that a professor
advised Staudinger in the late 1920s:
“Dear colleague, leave the concept
of large molecules well alone: orga-
nic molecules with a molecular wei-
ght above 5000 do not exist. Purify

your products, such as rubber, then
they will crystallise and prove to be
lower molecular substances.”

1 The discovery of conducting polymers (like polyacetylene) was honored with the Nobel Prize in 2000 for
Hideki Shirakawa (who synthesized a crystalline form of polyacetylene), as well as Allan G.MacDiarmid and
Allan J. Heeger, who increased its electric conductivity by 18 orders of magnitude by doping the crystal with
some electron acceptors and donors. This incredible increase is probably the largest known to humanity in any
domain of experimental sciences [H.Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger,
Chem.Soc.Chem.Commun., 578 (1977)].

2 That is, a macromolecule. The concept of polymer was introduced to chemistry by Herman Staudinger.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00009-X
© 2014 Elsevier B.V. All rights reserved. 505
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these quantities becomes negligible. Therefore, these quantities (known as intensive) attain limit values that are
identical to those for an infinite system. It pays to investigate the infinite system because we can use its translational
symmetry to simplify its description. Well, this is what this chapter is about.

What Is It All About?
Primitive Lattice (�) p. 508
Wave Vector (�) p. 510
Inverse Lattice (�) p. 513

• Examples

First Brillouin Zone (FBZ) (�) p. 516
Properties of the FBZ (�) p. 516
A Few Words on Bloch Functions (�) p. 517

• Waves in 1-D
• Waves in 2-D

Infinite Crystal as a Limit of a Cyclic System (�) p. 523

• Origin of the Band Structure
• Born-von Kármán Condition in 1-D
• k-Dependence of Orbital Energy

A Triple Role of the Wave Vector (�) p. 526
Band Structure (�) p. 527

• Born–von Kármán Boundary Condition in 3-D
• Crystal Orbitals from Bloch Functions (LCAO CO Method)
• SCF LCAO CO Equations
• Bandwidth
• Fermi Level and Energy Gap: Insulators, Metals, and Semiconductors

Solid-State Quantum Chemistry (�) p. 539

• Why Do Some Bands Go Up?
• Why Do Some Bands Go Down?
• Why Do Some Bands Stay Constant?
• More Complex Behavior Explainable–Examples

The Hartree–Fock Method for Crystals (�) p. 548

• Secular Equation
• Integration in the FBZ
• Fock Matrix Elements
• Iterative Procedure
• Total Energy

Long-Range Interaction Problem (�) p. 553

• Fock Matrix Corrections
• Total Energy Corrections
• Multipole Expansion Applied to the Fock Matrix
• Multipole Expansion Applied to the Total Energy

Back to the Exchange Term (�) p. 563
Choice of Unit Cell (�) p. 565

• Field Compensation Method
• The Symmetry of Subsystem Choice
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(a) (b) (c)

Fig. 9.1. Translational symmetry existing in crystals and its lack in quasi-crystals despite a perfect long-range order. (a) The
translational symmetry in the NaCl crystal build of Na+ and Cl− ions; (b) the Penrose tiling as an example of a 2-D quasicrystal,
without translational symmetry; (c) a medieval Arabian mosaic as an example of a long-range, non-translational order.

If a motif (e.g., a cluster of atoms) associated with a unit cell is regularly translated along three different directions
in space, we obtain an infinite 3-D periodic structure (translational symmetry, Fig. 9.1a). In 2-D, this means that
having a single (special) type of tiles (unit cells), we have been successful in tiling the complete 2-D space. One
of the consequences of this is that the fivefold symmetry axes have to be absent in the atomic arrangements in
such crystals. It turned out that a vast majority of real crystals can be reliably modeled using this idea. There were
efforts in mathematics to design some non-translational complete tilings. In 1963, it was first shown that for number
N = . . . 20000 of square tiles, such a non-translational tiling is possible. This number has been gradually reduced,
and in 1976, Roger Penrose proposed covering by N = 2 kinds of tiles; see Fig. ??b. Then, Daniel Shechtman
discovered3 that there are substances (known now as quasicrystals) that indeed show fivefold symmetry axes (also
other translationally forbidden symmetry axes). There are also chaotic quasicrystals. The reason why the quasicrystals
exist in nature is quite simple: some strong short-range interactions force unusual five-ligand complexes. It is
remarkable that the discovery of quasicrystals has been preceded by ancient artists (Fig. 9.1c).

When applying the Hartree-Fock method to such periodic infinite objects, one usually exploits the translational
symmetry of the system (e.g., in calculating integrals). It would be indeed prodigal to compute the integrals many
times, the equality of which is guaranteed by translational symmetry. When translational symmetry is taken into
account, the problem reduces to the calculation of the interaction of a single unit cell (with a reference labeled 0)
with all other unit cells, the nearest neighbor cells being most important. The infinite size of the system is hidden in
the plethora of points (to be taken into account) that is known as the First Brillouin Zone (FBZ). The FBZ represents
a unit cell in what is called inverse lattice (associated with a given lattice reflecting the translational symmetry).

The electronic orbital energy becomes a function of the FBZ points and we obtain what is known as band structure
of the energy levels. This band structure decides the electronic properties of the system (insulator, semiconductor,
metal). We will also show how to carry out the mean field (Hartree-Fock) computations on infinite periodic systems.
The calculations require infinite summations (interaction of the reference unit cell with the infinite crystal) to be
made. This creates some mathematical problems, which will be also described in this chapter.

Why Is This Important?

This chapter is particularly important for those readers who are interested in solid-state physics and chemistry. Others
may treat it as exotic, and if they decide they do not like exotic matter, they may skip this discussion and go to other
chapters.

3 He received the 2011 Nobel Prize in chemistry for “the discovery of quasicrystals.”
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The properties of a polymer or a crystal sometimes differ widely from those of the atoms or molecules of which they
are built. The same substance may form different periodic structures, which have different properties (e.g., graphite
and diamond). The properties of periodic structures could be computed by extrapolation of the results obtained for
larger and larger clusters of the atoms from which the substance is composed. This avenue, however, is non-economic.
It is easier to carry out quantum mechanical calculations for an infinite system,4 than for a large cluster.5

What Is Needed?
• Operator algebra (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5, p. e7)
• Translation operator (see Appendix C available at booksite.elsevier.com/978-0-444-59436-5, p. e17)
• Hartree-Fock method (Chapter 8)
• Multipole expansion (see Appendix X available at booksite.elsevier.com/978-0-444-59436-5, p. e169, advised)
• Matrix diagonalization (see Appendix K available at booksite.elsevier.com/978-0-444-59436-5, p. e105, advised)

Classical Works

At the age of 23, Felix Bloch published an article called “Über die Quantenmechanik der Elektronen in Kristallgittern”
in Zeitschrift für Physik, 52, 555 (1928) (only two years after Schrödinger’s historic publication) on the translational
symmetry of the wave function. This was also the first application of LCAO expansion. � In 1931, Leon Brillouin
published a book entitled Quantenstatistik (Springer Verlag, Berlin), in which the author introduced some of the
fundamental notions of band theory. � The first ab initio calculations for a polymer were made by Jean-Marie André
in a paper “Self-consistent field theory for the electronic structure of polymers,” published in the Journal of Chemical
Physics, 50, 1536 (1969).

9.1 Primitive Lattice

Let us imagine an infinite crystal; e.g., a system that exhibits the translational symmetry of the
charge distribution (nuclei and electrons). The translational symmetry will be fully determined
by three (linearly independent) basis vectors6: a1, a2, and a3 having the property that ai beginning
at any atom extends to the corresponding identical atom located in the crystal. The lengths of
the basis vectors a1, a2, and a3 are called the lattice constants along the three periodicity axes.7

There is a lot of such basis sets possible. Any choice of the basis vectors, is acceptable from
the point of view of mathematics. For economic reasons, we choose one of the possible vector
sets that give the least volume parallelepiped8 with sides a1, a2, and a3. This parallelepiped

4 The surface effects can be neglected, and the units the system is composed of turn out to be equivalent.
5 Sometimes we may be interested in a particular cluster, not in an infinite system. Then it may turn out to be more

economic to perform the calculations for the infinite system and use the results in computations for the clusters
[e.g., R.A. Wheeler, L. Piela, and R. Hoffmann, J. Am. Chem. Soc., 110, 7302 (1988)].

6 These are not necessarily perpendicular, though; they determine the periodicity axes.
7 As shown on p. 440, a symmetry of the nuclear framework does not guarantee the same symmetry of the electronic

charge distribution computed using a mean field method. We may have to cope with the period doubling as
compared to the period of the nuclear framework (cf. BOAS, p. 441). If this happens, then we should choose
lattice constants that ensure the periodicity of both nuclear and electron distributions.

8 Yes, because the multiplicity of ai would also lead to unit cells that, when repeated, would reproduce the whole
crystal. We are, however, interested in the smallest unit cell.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 9.2. Periodicity in 2-D. We choose the unit cell (the parallelogram with vectors a1 and a2) and its content (motif) in such a
way as to reproduce the whole infinite crystal by repeating the unit cells through its translation vectors Ri = n1a1 + n2a2 with
integer n1, n2. In 3-D, instead of the parallelogram, we would have a parallelepiped, which would be repeated by translation vectors
Ri = n1a1 + n2a2 + n3a3, with integer n1, n2, n3.

(which is arbitrarily shifted in space;9 see Fig. 9.2) represents our choice of the unit cell,10

which together with its content (motif) is to be translationally repeated.11

Let us now introduce the space of translation vectors Ri =∑3
j=1 ni j a j , where ni j are arbi-

trary integer numbers (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5,
p. e7).

The points indicated by all the translation vectors (“lattice vectors”) are called the crystallo-
graphic lattice or the primitive lattice, or simply the lattice.

Let us introduce the translation operators T̂ (Ri )defined as translations of a function, on which
the operator acts, by vector Ri (cf. Chapter 2 and see Appendix C available at booksite.elsevier.
com/978-0-444-59436-5 on p. e17):

T̂ (Ri ) f (r) = f (r− Ri ). (9.1)

The function f (r) ≡ f (r − 0) is centered at the origin of the coordinate system, while the
function f (r− Ri ) is centered on the point shown by vector Ri .

9 The choice of the origin of the coordinate system is arbitrary, and the basis vectors are determined within the
accuracy of an arbitrary translation.

10 An example of a jigsaw puzzle shows that other choices are possible as well. A particular choice may result from
its convenience. This freedom will be discussed further on p. 516.

11 The motif can be ascribed to the unit cell (i.e., chosen) in many different ways, provided that after putting the cells
together, we get the same original infinite crystal. Let me propose disregarding this problem for the time being
(as well as the problem of the choice of the unit cell) and to think of the unit cell as a space-fixed parallelepiped
with the motif that has been enclosed in it. We will come back to this complex problem at the end of this chapter.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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The crystal periodicity is reflected by the following property of the potential energy V for an
electron (where V depends on its position in the crystal):

V (r) = V (r− Ri ), (9.2)

for any Ri . The equation simply says that the infinite crystal looks exactly the same close to the
origin O as to the point shown by any lattice vector Ri .

It is easy to see that the operators T̂ (Ri ) form a group (see Appendix C available at booksite.
elsevier.com/978-0-444-59436-5, p. e17) with respect to their multiplication as the group oper-
ation.12,13 In Chapter 2, it was shown that the Hamiltonian is invariant with respect to any
translation of a molecule. For infinite systems, the proof looks the same for the kinetic energy
operator, the invariance of V is guaranteed by Eq. (9.2). Therefore, the effective one-electron
Hamiltonian commutes with any translation operator:

Ĥ T̂ (Ri ) = T̂ (Ri )Ĥ .

9.2 Wave Vector

Since T̂ (Ri ) commutes with the Hamiltonian, its eigenfunctions also represent the eigen-
functions of the translation operator14 (cf. Chapter 2, p. 77, also see Appendix C available
at booksite.elsevier.com/978-0-444-59436-5 on p. e17); i.e., in this case, Ĥψ = Eψ and

12 Indeed, first a product of such operators represents a translational operator:

T̂ (R1)T̂ (R2) f (r) = T̂ (R1) f (r − R2) = f (r− R1 − R2) = f (r− (R1 + R2))

= T̂ (R1 + R2) f (r)

therefore:
T̂ (R1)T̂ (R2) = T̂ (R1 + R2). (9.3)

The second requirement is to have a unity operator. This role is played by T̂ (0), since

T̂ (0) f (r) = f (r+ 0) = f (r). (9.4)

The third condition is the existence [for every T̂ (Ri )] of the inverse operator, which in our case is T̂ (−Ri ), because

T̂ (Ri )T̂ (−Ri ) = T̂ (Ri − Ri ) = T̂ (0). (9.5)

The group is Abelian (i.e., the operations commute), since

T̂ (R1)T̂ (R2) = T̂ (R1 + R2) = T̂ (R2 + R1) = T̂ (R2)T̂ (R1). (9.6)
13 Besides the translational group, the crystal may also exhibit what is called the point group, associated with

rotations, reflections in planes, inversion, etc., and the space group that results from the translational group and
the point group. In such cases, a smaller unit cell may be chosen because the whole crystal is reproduced not
only by translations, but also by other symmetry operations. In this book, we will concentrate on the translational
symmetry group only.

14 The irreducible representations of an Abelian group are 1-D. In our case (translational group), this means that
there is no degeneracy, and that an eigenfunction of the Hamiltonian is also an eigenfunction of all the translation
operators.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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T̂ (R j )ψ(r) = ψ(r − R j ) = λR jψ(r). The symmetry of V requires the equality of the proba-
bility densities

|ψ(r− R j )|2 = |ψ(r)|2 (9.7)

for any lattice vector R j , which gives |λR j |2 = 1. Therefore we may write

λR j = exp (−iθR j ), (9.8)

where θR j will be found in a moment.15

From the equation T̂ (R j )ψ(r) = λR jψ(r), it follows that

λR jλRl = λR j+Rl , (9.9)

because

T̂ (R j + Rl)ψ(r) = λR j+Rlψ(r). (9.10)

On the other hand,

T̂ (R j + Rl)ψ(r) = T̂ (R j )T̂ (Rl)ψ(r) = λRl T̂ (R j )ψ(r)

= λR jλRlψ(r).

Since this relation has to be satisfied for any R j and Rl , it is therefore sufficient to have

θR j = k · R j , (9.11)

because a multiplication of λ by λ corresponds to adding the exponents, which results in adding
vectors R, which we need to have. The dot product k · R j for simplicity will also be written
as kR j .

Conclusion:

The eigenfunctions of the one-electron Hamiltonian and the translation operators correspond
to the following eigenvalues of the translation operator: λR j = exp (−ikR j ),

where the vector k characterizes the function, not the direction of R j . In other words, any
one-electron wave function (crystal orbital), which is the eigenfunction of the one-electron
Hamiltonian could be labelled by its corresponding vector k; i.e., ψ(r)→ ψk(r).

Bloch Theorem
The value of such a function in the point shifted by the vector R j is equal to

ψk(r− R j ) = exp (−ikR j )ψk(r) (9.12)

15 The exponent sign is arbitrary; we use “−” following a widely used convention.
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Felix Bloch (1905–1983), Ameri-
can physicist of Swiss origin and
professor at the Stanford University
from 1936 to 1971. Bloch con-
tributed to the electronic structure
of metals, superconductivity, ferro-
magnetism, quantum electrodyna-
mics, and the physics of neutrons.
In 1946, independently from E.M.
Purcell, he discovered the nuclear
magnetic resonance effect.

Both scientists received the
Nobel Prize in 1952 “for the
development of new methods
for nuclear magnetic precision

measurements and the discoveries
in connection therewith.”

This relation represents a
necessary condition to be
fulfilled by the eigenfunctions
for a perfect periodic structure
(crystal, layer, and polymer).
This equation differs widely
from 9.ptncl (9.2) for poten-
tial energy. Unlike potential
energy, which does not change
upon a lattice translation, the
wave function undergoes a
change of its phase acquiring
the factor exp (−ikR j ).

Any linear combination of functions labeled by the same k represents an eigenfunction of
any lattice translation operator and corresponds to the same k. Indeed, from the linearity of the
translation operator,

T̂ (Rl)
(
c1φk(r)+ c2ψk(r)

) = c1φk(r− Rl)+ c2ψk(r− Rl)

= c1 exp (−ikRl)φk(r)+ c2 exp (−ikRl)ψk(r)

= exp (−ikRl)
(
c1φk(r)+ c2ψk(r)

)
.

Let us construct the following function (called a Bloch function ) from a function χ(r), that in
future will play the role of an atomic orbital (in this case centered at the origin):

φ(r) =
∑

j

exp (ikR j )χ(r− R j ),

where the summation extends over all possible R j ; i.e., over the whole crystal lattice. The
function φ is automatically an eigenfunction of any translation operator and may be labeled by
the index16 k.

Our function φ represents, therefore, an eigenfunction of the translation operator with the
same eigenvalue as that corresponding toψk. In the following, very oftenψk will be constructed
as a linear combination of Bloch functions φ.

16 Indeed, first

T̂ (Rl )φ(r) = T̂ (Rl )
∑

j

exp (ikR j )χ(r− R j ) =
∑

j

exp (ikR j )T̂ (Rl )χ(r− R j )

=
∑

j

exp (ikR j )χ(r− R j − Rl ).

Instead of the summation over R j , let us introduce a summation over R j ′ = R j + Rl , which means an identical
summation as before, but we begin to sum the term up from another point of the lattice. Then, we can write
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A Bloch function is nothing but a symmetry orbital built from the functions χ(r− R j ).

A symmetry orbital is a linear combination of atomic orbitals that transforms according to
an irreducible representation � of the symmetry group of the Hamiltonian (see Appendix C
available at booksite.elsevier.com/978-0-444-59436-5). In order to obtain such a function, we
may use the corresponding projection operator [see Eq. (C.13)].

There is also another way to construct a function φk(r) of a given k from an auxiliary function
u(r) satisfying an equation similar to Eq. (9.2) for the potential V :

T̂ (Ri )u(r) = u(r− Ri ) = u(r). (9.13)

Then, φk(r) = exp (ikr)u(r). Indeed, let us check

T̂ (R j )φk(r) = T̂ (R j ) exp (ikr)u(r) = exp (ik(r− R j ))u(r− R j )

= exp (−ikR j )φk(r), (9.14)

9.3 Inverse Lattice

Let us now construct the so-called biorthogonal basis b1, b2, b3 with respect to the basis vectors
a1, a2, a3 of the primitive lattice, i.e., the vectors that satisfy the biorthogonality relations:

bi a j = 2πδi j . (9.15)

The vectors bi can be expressed by the vectors ai in the following way:

bi = 2π
∑

j

a j
(
S−1)

j i , (9.16)

Si j = ai · a j . (9.17)

The vectors b1, b2, and b3 form the basis of a lattice in a 3-D space. This lattice will be called
the inverse lattice. The inverse lattice vectors are, therefore,

K j =
i=3∑
i=1

g ji bi , (9.18)

where gi j represent arbitrary integers. We have K j Ri = 2πMi j , where Mi j are integers.

∑
j ′

exp (ik(R j ′ − Rl ))χ(r− R j ′) = exp (−ikRl )
∑

j ′
exp (ikR j ′)χ(r− R j ′)

= exp (−ikRl )φ(r),

which had to be proved.

http://booksite.elsevier.com/978-0-444-59436-5
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Indeed,

K j · Ri =
l=3∑
l=1

g jlbl ·
k=3∑
k=1

nikak =
l=3∑
l=1

k=3∑
k=1

nik g jlbl · ak (9.19)

=
l=3∑
l=1

k=3∑
k=1

nik g jl(2π)δlk = (2π)
l=3∑
l=1

nil g jl = 2πMi j , (9.20)

with nik , g jl , and, therefore, Mi j being integers.

The inverse lattice is composed, therefore, from the isolated points indicated from the origin
by the vectors K j . All the vectors that begin at the origin form the inverse space.

Examples

Let us see how we obtain the inverse lattice (1-D, 2-D, 3-D) in practice.

1-D

We have only a single biorthogonality relation: b1 a1 = 2π ; i.e., after skipping the index
ba = 2π . Because of the single dimension, we have to have b = 2π

a

( a
a

)
, where |a| ≡ a.

Therefore,

the vector b has length 2π
a and the same direction as a.

2-D

With 2-D, we have to satisfy b1 a1 = 2π, b2 a2 = 2π, b1 a2 = 0, and b2 a1 = 0. This means
that the game takes place within the plane determined by the lattice vectors a1 and a2. The vector
b1 has to be perpendicular to a2, while b2 has to be perpendicular to a1, their directions as shown
in Fig. 9.3 [each of the b vectors is a linear combination of a1 and a2, according to Eq. (9.16)].

3-D

In the 3-D case, the biorthogonality relations are equivalent to setting

b1 = a2 × a3
2π

V
, (9.21)

b2 = a3 × a1
2π

V
, (9.22)

and

b3 = a1 × a2
2π

V
, (9.23)



Orbital Model of Electronic Motion in Periodic Systems 515

Fig. 9.3. Construction of the inverse lattice in 2-D. In order to satisfy the biorthogonality relations Eq. (9.15), the vector b1 has to
be orthogonal to a2, while b2 must be perpendicular to a1. The lengths of the vectors b1 and b2 also follow from the biorthogonality
relations: b1 · a1 = b2 · a2 = 2π .

area

Fig. 9.4. The volume V of the unit cell is equal to V = a1 · (area of the base) i = a1 · (a2 × a3); i is the unit vector orthogonal
to the base.

where
V = a1 · (a2 × a3) (9.24)

is the volume of the unit cell of the crystal (see Fig. 9.4).
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Fig. 9.5. Construction of the FBZ as a Wigner-Seitz unit cell of the inverse lattice in 2-D. The circles represent the nodes of the
inverse lattice. We cut the lattice in the middle between the origin node W and all the other nodes (here, it turns out to be sufficient
to take only the nearest and the next nearest neighbors) and remove all the sawed-off parts that do not contain W . Finally we obtain
the FBZ in the form of a hexagon. The Wigner-Seitz unit cells (after performing all allowed translations in the inverse lattice)
reproduce the complete inverse space.

9.4 First Brillouin Zone (FBZ)

Léon Nicolas Brillouin (1889–
1969), French physicist, and
professor at the Sorbonnne and
College de France in Paris, and
starting in 1941, at the University
of Madison, Columbia University,
Harvard University. His contribu-
tions included quantum mechanics
and solid-state theory (he is one
of the founders of electronic band
theory). He introduced the notion
of the FBZ in 1930.

As was remarked at the begin-
ning of this chapter, the exam-
ple of a jigsaw puzzle shows us
that a parallelepiped unit cell
is not the only choice. Now,
we will profit from this extra
freedom and will define the so-
called Wigner-Seitz unit cell.
Here is the prescription for
how to construct it (Fig. 9.5):

We focus on a node W , saw the crystal along the plane that dissects (symmetrically) the distance
to a nearest-neighbor node, throw the part that does not contain W into the fireplace, and then
repeat the procedure until we are left with a solid containing W . This solid represents the First
Brillouin Zone (FBZ).

9.5 Properties of the FBZ

The vectors k, which begin at the origin and end within the FBZ, label all different irreducible
representations of the translational symmetry group.

Let us imagine two inverse space vectors k′ and k′′ related by the equality k′′ = k′ + Ks ,
where Ks stands for an inverse lattice vector. Taking into account the way the FBZ has been
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constructed, if one of them, (say k′) indicates a point in the interior of the FBZ, then the second,
k′′, “protrudes” outside the FBZ. Let us try to construct a Bloch function that corresponds to k′′:

φk′′ =
∑

j

exp (ik′′R j )χ(r− R j ) =
∑

j

exp
(
i(k′ + Ks)R j

)
χ(r− R j ) (9.25)

= exp (iKsR j )
∑

j

exp (ik′R j )χ(r− R j ) (9.26)

= exp (i2πMsj )
∑

j

exp (ik′R j )χ(r− R j ) (9.27)

=
∑

j

exp (ik′R j )χ(r− R j ) = φk′ . (9.28)

It turns out that our function φ does behave like corresponding to k′. We say that the two vectors
are equivalent.

Vector k outside the FBZ is always equivalent to a vector from inside the FBZ, while two vec-
tors from inside of the FBZ are never equivalent. Therefore, if we are interested in electronic
states (the irreducible representation of the translational group are labeled by k vectors), it is
sufficient to limit ourselves to those k vectors that are enclosed in the FBZ.

9.6 A Few Words on Bloch Functions

9.6.1 Waves in 1-D

Let us take a closer look of a Bloch function corresponding to the vector k:

φk(r) =
∑

j

exp (ikR j )χ(r− R j ) (9.29)

and limit ourselves to 1-D periodicity. In such a case, the wave vector k reduces to a wave
number k, and the vectors R j can all be written as R j = ajz, where z stands for the unit vector
along the periodicity axis, a means the lattice constant (i.e., the nearest-neighbor distance),
while j = 0,±1,±2, . . . Let us assume that in the lattice nodes, we have hydrogen atoms with
orbitals χ = 1s. Therefore, in 1-D, we have

φk(r) =
∑

j

exp (ik ja)χ(r− ajz). (9.30)

Let me stress that φk represents a function of position r in the 3-D space, only the periodicity
has a 1-D character. The function is a linear combination of the hydrogen atom 1s orbitals. The
coefficients of the linear combination depend exclusively on the value of k. Equation (9.28) tells
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us that the allowed k ∈ (0, 2π
a

)
, or alternatively, k ∈ (−πa , πa ). If we exceed the FBZ length 2π

a ,
then we would simply repeat the Bloch functions. For k = 0, we get

φ0 =
∑

j

exp (0)χ(r− ajz) =
∑

j

χ(r− ajz); (9.31)

i.e., simply a sum of the 1s orbitals. Such a sum has a large value on the nuclei, and close to a
nucleus the function φ0 will be delusively similar to its 1s orbital (Fig. 9.6a).

The function looks like a chain of buoys floating on a perfect water surface. If we ask whether
φ0 represents a wave, the answer could be, that if any, then its wavelength is∞. What about
k = π

a ? In such a case:

φπ
a
(r) =

∑
j

exp (i jπ)χ(r− ajz) =
∑

j

( cosπ j + isinπ j)χ(r− ajz)

=
∑

j

(−1) jχ(r− ajz).

If we decide to draw the function in space, we would obtain Fig. 9.6b. When asked this time,
we would answer that the wavelength is equal to λ = 2a, which, by the way, is equal to17 2π

|k| .
There is a problem. Does the wave correspond to k = π

a or k = −πa ? It corresponds to both
of them. Well, does it contradict the theorem that the FBZ contains all different states? No, it
does not. Both functions are from the border of the FBZ; their k values differ by π

2a (one of the
inverse lattice vectors), and therefore both functions represent the same state.

Now, let us take k = π
2a . We obtain

φk(r) =
∑

j

exp

(
iπ j

2

)
χ(r− ajz) =

∑
j

(
cos

(
π j

2

)
+ i sin

(
π j

2

))
χ(r− ajz), (9.32)

with some coefficients being complex numbers. For j = 0, the coefficient is equal to 1; for
j = 1, it equals i ; for j = 2, it takes the value−1; for j = 3, it attains−i ; for j = 4, it is again
1, and the values repeat periodically. This is depicted in Fig. 9.6c. If this time we ask whether
we see any wave there, we have to answer that we do, because after the length 4a, everything
begins to repeat. Therefore, λ = 4a, and again 2π

k = 2π
π
2a

. Everything is OK except that humans

like pictures more than schemes. Can we help it somehow? Let us take a look of φk(r), which
corresponds to k = − π

2a . We may easily convince ourselves that this situation corresponds to
what we have in Fig. 9.6d.

Let us stress that φ−k = φ∗k represents another complex wave. By adding and subtracting
φk(r) and φ−k(r), we receive the real functions, which can be plotted and that is all we need.
By adding 1

2 (φk + φ−k), we obtain

1

2
(φk + φ−k) =

∑
j

cos

(
π j

2

)
χ(r− ajz), (9.33)

17 In the preceding case, the formula λ = 2π
k also worked because it gave λ = ∞.
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(f)

(e)

(d)

(c)

(b)

(a)

Fig. 9.6. Waves in 1-D. Shadowed (white) circles mean negative (positive) values of the function. Despite the fact that the waves
are complex, in each of the cases (a)–(f), we are able to determine their wavelength.
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while 1
2i (φk − φ−k) results in

1

2i
(φk − φ−k) =

∑
j

sin

(
π j

2

)
χ(r− ajz). (9.34)

Now, there is no problem with plotting the new functions (Fig. 9.6e,f).18

A similar technique may be applied to any k. Each time, we will find that the wave we see
exhibits the wavelength λ = 2π

k .

9.6.2 Waves in 2-D

Readers confident in their understanding of the wave vector concept may skip this subsection.
This time, we will consider the crystal as 2-D rectangular lattice; therefore, the corresponding

inverse lattice is also 2-D, as well as the wave vectors k = (kx , ky).
Let us take first k = (0, 0). We immediately obtainφk (shown in Fig. 9.7a), which corresponds

to an infinite wavelength (again λ = 2π
k ), which looks like no wave at all.

Let us try k = (
π
a , 0

)
. The summation over j may be replaced by a double summation

(indices m and n along the x- and y-axes, respectively); therefore, R j = max + nby, where
m and n correspond to the unit cell j , and a and b denote the lattice constants along the axes
shown by the unit vectors x and y. We have

φk =
∑
mn

exp
(
i(kx ma + kynb)

)
χ(r− max− nby)

=
∑
mn

exp (iπm)χ(r− max− nby) =
∑
mn

(−1)mχ(r− max− nby).

If we go through all m and n, it is easily seen that moving along x , we will meet the signs
+1,−1,+1,−1, . . . , while moving along y, we have the same sign all the time. This will
correspond to Fig. 9.7b.

This is a wave.

The wave fronts are oriented along y; i.e., the wave runs along the x-axis. Therefore, it runs
in the direction of the wave vector k. The same happened in the 1-D cases, but we did not
express that explicitly: the wave moved along the (1-D) vector k.

Exactly as before, the wavelength is equal to 2π divided by the length of k. Since we are at
the FBZ border, a wave with −k simply means the same wave as for k.

18 And what would happen if we took k = π
a

m
n , with the integer m < n? We would again obtain a wave with the

wavelength λ = 2π
k ; i.e., in this case, λ = n

m 2a. It would be quite difficult to recognize such a wave computed at
the lattice nodes because the closest wave maxima would be separated by n2a and this length would have been
covered by m wavelengths.
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(a) (b)

(d)(c)

(e)

Fig. 9.7. Waves in 2-D. In any case, λ = 2π
k , while the wave vector k points to the direction of the wave propagation. (a)

k = (0, 0
)
; (b) k = (πa , 0

)
; (c) k = ( π2a , 0

)
, 1

2i

(
φk − φ−k

)
; (d) k = ( π2a , 0

)
, 1

2
(
φk + φ−k

)
; (e) k = (πa , πb ).
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If we take k = [ π2a , 0
]
, then

φk =
∑
mn

exp
(

i(kx ma + kynb)
)
χ(r− max− nby)

=
∑
mn

exp

(
iπm

2

)
χ(r− max− nby).

This case is very similar to that in 1-D for k = π
2a , when we look at the index m and k = 0,

and when we take into account the index n. We may carry out the same trick with addition and
subtraction, and immediately get Figs. 9.7c and d.

Is there any wave over there? Yes, there is. The wavelength equals 4a (i.e., λ = 2π
k ), and the

wave is directed along vector k. When making the figure, we also used the wave corresponding
to −k; therefore, neither the sum nor the difference correspond to k or −k, but rather to both
of them (we have two standing waves). The reader may guess the wavelength and direction of
propagation for φk corresponding to k = [0, π2b ].

Let us see what happens for k = [πa , πb ]. We obtain

φk =
∑
mn

exp
(
i(kx ma + kynb

)
χ(r− max− nby)

=
∑
mn

exp
(
i(mπ + nπ)

)
χ(r− max− nby)

=
∑
mn

(−1)m+nχ(r− max− nby),

which produces waves propagating along k. And what about the wavelength? We obtain19

λ = 2π√
(πa )

2 + (πb )2
= 2ab√

a2 + b2
. (9.35)

In the last example, there is something that may worry us. As we can see, Fig. 9.7 corresponds
not only to k1 = (πa , πb ) and k2 = (−πa ,−πb ), which is understandable (as discussed above),
but also to the wave with k3 = (−πa , πb ) and to the wave evidently coupled to it–namely, with
k4 = (πa ,−πb ). What is going on? Again, let us recall that we are on the FBZ border and this
identity is natural because the vectors k2 and k3 as well as k1 and k4 differ by the inverse lattice
vector (0, 2π

b ), which makes the two vectors equivalent.

19 The formula can be easily verified in two limiting cases. The first corresponds to a = b. Then, λ = a
√

2, and
this agrees with Fig.9.7e. The second case is when b = ∞, which gives λ = 2a, exactly as in the 1-D case with
k = π

a . This is what we expected.



Orbital Model of Electronic Motion in Periodic Systems 523

9.7 Infinite Crystal as a Limit of a Cyclic System

9.7.1 Origin of the Band Structure

Let us consider the hydrogen atom in its ground state (cf. p. 201). The atom is described by the
atomic orbital 1s and corresponds to energy−0.5 a.u. Let us now take two such atoms. We have
two molecular orbitals: bonding and antibonding (cf. p. 439), which correspond, respectively, to
energies a bit lower than−0.5 and a bit higher than−0.5 (this splitting is larger if the overlap of
the atomic orbitals gets larger). We therefore have two energy levels, which stem directly from
the 1s levels of the two hydrogen atoms. For three atoms, we would have three levels; for 1023

atoms, we would get 1023 energy levels that would be densely distributed along the energy scale
but would not cover the whole scale. There will be a bunch of energy levels stemming from 1s,
i.e., an energy band of allowed electronic states. If we had an infinite chain of hydrogen atoms,
there would be a band resulting from 1s levels, a band stemming from 2s, 2p, etc., the bands
might be separated by energy gaps.

How dense would the distribution of the electronic levels be? Will the distribution be uniform?
Answers to such questions are of prime importance for the electronic theory of crystals. It is
always advisable to come to a conclusion by steps, starting from something as simple as possible,
which we understand very well.

Fig. 9.8 shows how the energy level distribution looks for longer and larger rings (regular
polygon) of hydrogen atoms. One of the important features of the distribution is that

Fig. 9.8. Energy level distribution for a regular polygon built from hydrogen atoms. It is seen that the energy levels are located
within an energy band and are closer to one another at the band edges. The center of the band is close to energy 0, taken as the binding
energy in the isolated hydrogen atom (equal to −0.5 a.u.). Next to energy levels, the molecular orbitals are shown schematically
(the shadowed circles mean negative values).
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the levels extend over an energy interval and are more numerous for energy extremes.

How do the wave functions that correspond to higher and higher energy levels in a band look?
Let us see the situation in the ring Hn molecules. Fig. 9.8 indicates that the rule is very simple.
The number of nodes of the wave function increases by 1 when we go to the next level (higher
in the energy scale).20

9.7.2 Born–von Kármán Condition in 1-D

How is it in the case of a crystal? Here we are confronted with the first difficulty. Which crystal,
are we dealing with, and what shape is it? Should it be an ideal crystal–i.e., with perfectly ordered
atoms? There is nothing like the perfect crystal in nature. For the sake of simplicity (as well as
generality), let us assume, however, that our crystal is perfect indeed. Well, and now what about
its surface (shape)? Even if we aimed at studying the surface of a crystal, the first step would be
the infinite crystal (i.e., with no surface). This is the way that theoreticians always operate.21

One of the ingenious ideas in this direction is known as the Born–von Kármán boundary
conditions. The idea is that instead of considering a crystal treated as a stick (let us consider
the 1-D case) we treat it as a circle; i.e., the value of the wavefunction at one end of the stick
has to be equal to the wavefunction value at the other end. In this way, we remove the problem
of the crystal ends, and on top of that, all the unit cells become equivalent.

Theodore von Kármán (1881–
1963), American physicist of Hun-
garian origin and director of the
Guggenheim Aeronautical Labora-
tory at the California Institute of
Technology in Pasadena. Profes-
sor von Kármán was also a founder
of the NASA Jet Propulsion Lab-
oratory and father of the concept
of the first supersonic aeroplane.
On the Hungarian stamp, one can
see the famous “Kármán vortex
street” behind an aeroplane. He was
asked by the father of the young
mathematical genius John

von Neumann to persuade him
that the job of a mathematician
is far less exciting than that of a
banker. Theodore von Kármán did
not accomplish this mission well (to
the benefit of science).

The same may be done in 2-D
and 3-D cases. We introduce
usually the Born–von Kármán
boundary conditions for a
finite N and then go with N
to ∞. After such a procedure
is carried out, we are pretty
sure that the solution we are
going to obtain will not only
be true for an infinite cycle,
but also for the mass (bulk)
of the infinite crystal. This
stands to reason, provided

20 They are bound to differ by the number of nodes because this ensures their mutual orthogonality (required for the
eigenfunctions of a Hermitian operator).

21 People say that when theoreticians attack the problem of stability of a table as a function of the number n of its
legs, they do it in the following way. First, they start with n = 0, then they proceed with n = 1, then they go to
n = ∞, and after that, they have no time to consider other values of n.
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that the crystal surface does not influence the (deep) bulk properties at all.22 In the ideal periodic
case, we have to do with the cyclic translational symmetry group (see Appendix C available at
booksite.elsevier.com/978-0-444-59436-5 on p. e17). The group is Abelian and, therefore, all
the irreducible representations have dimension 1.

Let us assume that we have to do with N equidistant atoms located on a circle, the nearest-
neighbor distance being a. From the Bloch theorem, Eq.(9.12), for the wave functionψ , we have

ψ(N ) = exp (−ikaN )ψ(0), (9.36)

where we have assumed that the wave function ψ corresponds to the wave vector k (here, in
1D, to the wave number k), the translation has been carried out by Na, and as the argument
of the function ψ we have (symbolically) used the number (0, 1, 2, . . . N − 1) of the atom on
which the function is computed.

The Born–von Kármán condition means

ψ(N ) = ψ(0), (9.37)

or
exp (−ikaN ) = 1 (9.38)

From this, it follows that:
kaN = 2π J , (9.39)

where J = 0,±1,±2, . . .. This means that only some k are allowed; namely, k = 2π
a

J
N .

The Bloch functions take the form [cf. Eq. (9.29)]∑
j

exp (ik ja)χ j , (9.40)

where χ j denotes a given atomic orbital (e.g., 1s) centered on atom j . The summation over j
in our case is finite, because we only have N atoms, j = 0, 1, 2, . . . , N − 1. Let us consider
J = 0, 1, 2, . . . , N −1 and the corresponding values of k = 2π

a
J
N . For each k, we have a Bloch

function; altogether we have, therefore, N Bloch functions. Now, we may try to increase J and
take J = N . The corresponding Bloch function may be written as∑

j

exp (i2π j)χ j =
∑

j

χ j , (9.41)

which turns out to be identical to the Bloch function with k = 0; i.e., with J = 0. We are
reproducing what we already have. It is clear, therefore, that we have a set of those k, that
form a complete set of non-equivalent states, they correspond to J = 0, 1, 2, . . . N − 1. It
is also seen that if the limits of this set are shifted by the same integer (like e.g., J = −3,
−2,−1, 0, 1, 2, . . . , N − 4), then we still have the same complete set of non-equivalent states.
Staying for the time being with our primary choice of the set, we will get N values of k ∈
22 We circumvent the difficult problem of the crystal surface. The boundary (surface) problem is extremely important

for obvious reasons: we usually have to do with this, not with the bulk. The existence of the surface leads to some
specific, surface-related electronic states.

http://booksite.elsevier.com/978-0-444-59436-5
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[
0, 2π

a
N−1

N

]
; i.e., k ∈ {0, 2π

a
1
N ,

2π
a

2
N , . . .

2π
a

N−1
N

}
. Those k values are equidistant. When N →

∞, then the section to be divided attains the length 2π
a . Hence

the non-equivalent states (going with N to infinity) correspond to those k that are from section[
0, 2π

a

]
or shifted section

[−πa ,+πa ], called the FBZ. From now on, we will adopt this last
choice; i.e.,

[−πa ,+πa ]. We are allowed to make any shift, because, as we have shown, we
keep the same non-equivalent values of k. The allowed k values are distributed uniformly
within the FBZ. The number of the allowed k is equal to∞ because N = ∞ (and the number
of the allowed k is always equal to N ).

9.7.3 k-Dependence of Orbital Energy

Note that the higher the energy of a molecular orbital (in our case, they are identical to the
Bloch functions), the more nodes molecular orbitals have. Let us take the example of benzene
(N = 6, cf. Fig. 9.8, this time for carbon atoms) and consider only those molecular orbitals
that can be written as linear combinations of the carbon 2pz , where z is the axis orthogonal to
the plane of the molecule. The wave vectors23

(
k = 2π

a
J
N

)
may be chosen as corresponding to

J = 0, 1, 2, . . . , 5, or equivalently to J = −3,−2,−1, 0,+1,+2. It is seen that J = 0 gives a
nodeless function,24 J = ±1 lead to a pair of the Bloch functions with a single node, J = ±2
give a pair of the two-node functions, and finally J = −3 corresponds to a three-node function.

It has occasionally been remarked in this book (cf. e.g., Chapter 4), that increasing the
number of nodes25 results in higher energy. This rule becomes most transparent in the present
case, see Fig. 9.8. A nodeless Bloch function means that all the contacts between the 2p orbitals
being π–bonding, which results in low energy. A single node means introducing two nearest-
neighbor π–antibonding interactions, and this causes an energy increase. Two nodes result in
four antibonding interactions, and the energy goes up even more. Three nodes already give all
the nearest-neighbor contacts of antibonding character, and the energy is the highest possible.

9.8 A Triple Role of the Wave Vector

As has already been said, the wave vector (in 1-D, 2-D and 3-D) plays several roles. Here
they are:

1.
The wave vector k tells us which type of plane wave arranged from certain objects (like
atomic orbitals) we are concerned with. The direction of k is the propagation direction,
and the wavelength is λ = 2π

|k| .

23 In this case, this is a wave number.
24 We disregard here the node that follows from the reflection in the molecular plane as being shared by all the

molecular orbitals considered.
25 That is, considering another wave function that has a larger number of nodes.
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2. The wave vector may also be treated as a label for the irreducible representation of the
translational group.

In other words, k determines which irreducible representation we are dealing with
(see Appendix C available at booksite.elsevier.com/978-0-444-59436-5 on p. e17). This
means that k tells us which permitted rhythm is exhibited by the coefficients at atomic
orbitals in a particular Bloch function (i.e., ensuring that the square has the symmetry of the
crystal). There are a lot of such rhythms; e.g., all the coefficients equal each other (k = 0),
or one node introduced, two nodes, etc. The FBZ represents a set of such k, which corre-
sponds to all possible rhythms; i.e., non-equivalent Bloch functions.26 In other words, the
FBZ gives us all the possible symmetry orbitals that can be formed from an atomic orbital.

3.
The longer the k is, the more nodes the Bloch function φk has: |k| = 0 means no nodes,
while at the boundary of the FBZ, there is the maximum number of nodes.

9.9 Band Structure

9.9.1 Born–von Kármán Boundary Condition in 3-D

The Hamiltonian Ĥ that we have been talking about represents an effective, one-electron Hamil-
tonian, its form not yet given. From Chapter 8, we know that it may be taken as the Fock operator.
A crystal represents nothing but a huge (quasi-infinite) molecule, and assuming the Born–von
Kármán condition, a huge cyclic molecule.

This is how we will get the Hartree-Fock solution for the crystal–by preparing the Hartree-
Fock solution for a cyclic molecule and then letting the number of unit cells N go to infinity.

Hence, let us take a large piece of crystal–a parallelepiped with the number of unit cells in
each of the periodicity directions (i.e., along the three basis vectors) equals 2N+1 (the reference
cell 0, N cells on the right, N cells on the left). The particular number, 2N + 1, is not very
important, we have only to be sure that such a number is large. We assume that the Born–von
Kármán condition is fulfilled. This means that we treat the crystal like a snake eating its tail, and
this will happen on each of the three periodicity axes. This enables us to treat the translational
group as a cyclic group, which gives an enormous simplification to our task (no end effects, all
cells equivalent). The cyclic group of the lattice constants a, b, c implies that [cf. Eq. (9.38)]

exp
(
ikx a(2N + 1)

) = 1, (9.42)

exp
(
ikyb(2N + 1)

) = 1, (9.43)

26 That is, linearly independent.

http://booksite.elsevier.com/978-0-444-59436-5
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exp
(
ikzc(2N + 1)

) = 1, (9.44)

which can be satisfied only for some special vectors k = (kx , ky, kz):

kx = 2π

a

Jx

2N + 1
, (9.45)

ky = 2π

b

Jy

2N + 1
, (9.46)

kz = 2π

c

Jz

2N + 1
, (9.47)

with any of Jx , Jy, Jz taking 2N+1 consecutive integer numbers. We may, for example, assume
that Jx , Jy, Jz ∈ {−N ,−N + 1, . . . , 0, 1, 2, . . . , N }. Whatever N is, k will always satisfy

− π
a
< kx <

π

a
, (9.48)

− π
b
< ky <

π

b
, (9.49)

− π
c
< kz <

π

c
, (9.50)

which is what we call the FBZ. Therefore, we may say that before letting N →∞,

the FBZ is filled with the allowed vectors k in a grainlike way; the number being equal
to the number of unit cells; i.e., (2N +1)3. Note that the distribution of the vectors allowed in
the FBZ is uniform. This is ensured by the numbers J , which divide the axes kx , ky, and kz

in the FBZ into equal pieces.

9.9.2 Crystal Orbitals from Bloch Functions (LCAO CO Method)

What we expect to obtain finally in the Hartree-Fock method for an infinite crystal are the
molecular orbitals, which in this context will be called the crystal orbitals (COs). As usual, we
will plan to expand the CO as linear combinations of atomic orbitals (cf. 427). Which atomic
orbitals? Well, those that we consider appropriate for a satisfactory description of the crystal27;
e.g., the atomic orbitals of all the atoms of the crystal. We feel, however, that we are going to
have a big problem trying to perform this task.

There will be a lot of atomic orbitals, and therefore also an astronomic number of integrals
to compute (infinite for the infinite crystal), and there is nothing that can be done about that.
On the other hand, if we begin such a hopeless task, the value of any integral would repeat an
infinite number of times. This indicates a chance to simplify the problem. Indeed, we have
not yet used the translational symmetry of the system.

27 As for molecules.
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If we are going to use the symmetry, then we may create the Bloch functions representing the
building blocks that guarantee the proper symmetry in advance. Each Bloch function is built
from an atomic orbital χ :

φk = (2N + 1)−
3
2
∑

j

exp (ikR j )χ(r− R j ). (9.51)

The function is identical to that of Eq. (9.29), except it has a factor (2N + 1)− 3
2 , which makes

the function approximately normalized.28

Any CO will be a linear combination of such Bloch functions, each corresponding to a
given χ . This is equivalent to the LCAO expansion for molecular orbitals, the only difference
is that we have cleverly preorganized the atomic orbitals (of one type) into symmetry orbitals
(Bloch functions). Hence, it is indeed appropriate to call this approach as the LCAO CO method
(Linear Combination of Atomic Orbitals — Crystal Orbitals), analogous to the LCAO MO
(cf. p. 429). There is, however, a problem. Each CO should be a linear combination of the φk

for various types of χ and for various k. Only then would we have the full analogy: a molecular
orbital is a linear combination of all the atomic orbitals belonging to the atomic basis set.29

It will be shown below that the situation is far better:

each CO corresponds to a single vector k from the FBZ and is a linear combination of the
Bloch functions, each characterized by the same k.

28 The function without this factor is of class Q; i.e., normalizable for any finite N , but non-normalizable for
N = ∞. The approximate normalization makes the function square integrable, even for N = ∞. Look at the
following:

〈φk | φk〉 = (2N + 1)−3
∑

j

∑
j ′

exp
(
ik(R j − R j ′)

) ∫
χ(r− R j )χ(r− R j ′)dτ

= (2N + 1)−3
∑

j

∑
j ′

exp
(
ik(R j − R j ′)

) ∫
χ(r)χ

(
r− (R j − R j ′)

)
dτ,

because the integral does depend on a relative separation in space of the atomic orbitals. Further,

〈φk | φk〉 =
∑

j

exp (ikR j )

∫
χ(r)χ(r− R j )dτ, (9.52)

because we can replace a double summation over j and j ′ by a double summation over j and j ′′ = j − j ′ (both
double summations exhaust all the lattice nodes), and the latter summation always gives the same independent of
j ; the number of such terms is equal to (2N + 1)3. Finally, we may write 〈φk | φk〉 = 1+ various integrals. The
largest of these integrals is the nearest-neighbor overlap integral of the functions χ . For normalized χ , each of
these integrals represents a fraction of 1; additionally, the contributions for further neighbors decay exponentially
(cf. p. e137). As a result, 〈φk | φk〉 is a number of the order of 1 or 2. This is what we have referred to as an
approximate normalization.

29 Indeed, for any k, the number of distinct Bloch functions is equal to the number of atomic orbitals per unit cell.
The number of allowed vectors, k, is equal to the number of unit cells in the crystal. Hence, using the Bloch
functions for all allowed k would be justified, and any CO would represent a linear combination of all the atomic
orbitals of the crystal.
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There are, however, only a few Bloch functions — their number is equal to the number of
the atomic orbitals per unit cell (denoted by ω).30

It is easy to show that, indeed, we can limit ourselves to a single vector k. Imagine that
this is false, and our CO is a linear combination of all the Bloch functions with all possible
k. When, in the next step, we solve the orbital equation with the effective (i.e., Fock) Hamil-
tonian using the Ritz method, then we will end up computing the integrals

〈
φk | F̂φk′

〉
and〈

φk | φk′
〉
. For k �= k′, such integrals equal zero according to group theory (see Appendix

C available at booksite.elsevier.com/978-0-444-59436-5 on p. e17), because F̂ transforms
according to the fully symmetric irreducible representation of the translational group,31 while
φk and φk′ transform according to different irreducible representations.32 Therefore, the secular
determinant in the Ritz method will have a block form (see Appendix C available at book-
site.elsevier.com/978-0-444-59436-5). The first block will correspond to the first k, the second
to the next k, etc., where every block33 would look as if in the Ritz method, we used the Bloch
functions corresponding uniquely to that particular k. Conclusion: since a CO has to be a wave
with a given k, let us construct it with Bloch functions, which already have just this type of
behavior with respect to translation operators (i.e., have just this k). This is fully analogous with
the situation in molecules, if we used atomic symmetry orbitals.34

Thus, each vector k from the FBZ is associated with a crystal orbital, and therefore with a set
of LCAO CO coefficients.

The number of such CO sets (each k being one set) in principle has to be equal to the number
of unit cells (i.e., infinite).35 The only profit we may expect could be associated with the hope
that the computed quantities do not depend on k too much but will rather change smoothly when
k changes. This is indeed what will happen, and then a small number of vectors k will be used,
and the quantities requiring other k will be computed by interpolation.

Only a part of the computed COs will be occupied, and this depends on the orbital energy
of a given CO, the number of electrons, and the corresponding k, similar to what we saw for
molecules.

30 Our optimism pertains, of course, to taking a modest atomic basis set (small ω).
31 Unit cells (by definition) are identical.
32 Recall that k also has the meaning of the irreducible representation index (of the translational group).
33 The whole problem can be split into independent problems for individual blocks.
34 A symmetry atomic orbital (SAO) represents such linear combination of equivalent-by-symmetry AOs that trans-

forms according to one of the irreducible representations of the symmetry group of the Hamiltonian. Then, when
molecular orbitals (MOs) are formed in the LCAO MO procedure, any given MO is a linear combination of the
SAOs belonging to a particular irreducible representation. For example, the water molecule exhibits a symmetry
plane (σ ) that is perpendicular to the plane of the molecule. A MO, which is symmetric with respect to σ does
contain the SAO 1sa + 1sb, but does not contain the SAO 1sa − 1sb.

35 Well, we cannot fool Mother Nature. Was there an infinite molecule (crystal) to be computed or not? Then the
number of such sets of computations has to be infinite.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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The set of SCF LCAO CO equations will be very similar to the set for the molecular orbital
method (SCF LCAO MO). In principle, the only difference will be that, in the crystal case,
we will consequently use symmetry orbitals (Bloch functions) instead of atomic orbitals.

That’s it. The rest of this section is associated with several technical details accompanying
the operation N →∞.

9.9.3 SCF LCAO CO Equations

Let us write down the SCF LCAO CO equations as if they corresponded to a large molecule
(Bloch functions will be used instead of atomic orbitals). Then the nth CO may be written as

ψn(r, k) =
∑

q

cqn(k)φq(r, k), (9.53)

where φq is the Bloch function corresponding to the atomic orbital χq :

φq(r, k) = (2N + 1)−
3
2
∑

j

exp (ikR j )χ
j

q , (9.54)

with χ j
q ≡ χq(r− R j ) ( for q = 1, 2, . . . , ω).

The symbol χ j
q means the qth atomic orbital (from the set that we prepared for the unit cell

motif) located in the cell indicated by vector R j ( j th cell).

In the expression for ψn , we have taken into account that there is no reason whatsoever
that the coefficients c were k–independent, since the expansion functions φ depend on k. This
situation does not differ from what we encountered in the Hartree-Fock-Roothaan method (cf.
p. 431), with one technical exception: instead of the atomic orbitals, we have symmetry orbitals
(in our case Bloch functions).

The secular equations for the Fock operator will have, of course, the form of the Hartree and
Fock-Roothaan equations (cf. Chapter 8, p. 431):

ω∑
q=1

cqn[Fpq − εn Spq ] = 0

for p = 1, 2, . . . , ω,

where the usual notation has been applied. For the sake of simplicity, we have not highlighted
the k–dependence of c, F, and S. Whenever we decide to do this in the future, we will put it in
the form Fpq(k), Spq(k), etc. Of course, εn will become a function of k, as will be stressed by
the symbol εn(k). Theoretically, the secular equation has to be solved for every k of the FBZ.
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Therefore, despite the fact that the secular determinant is of rather low rank (ω), the infinity
of the crystal forces us to solve this equation an infinite number (the number of vectors k) of
times. For the time being, though, do not worry too much.

9.9.4 Bandwidth

The number of secular equation solutions is equal to ω. Let us label them using index n. If we
focus on one such solution and check whether εn(k) and ψn(r, k) are sensitive to a tiny change
of k within the FBZ, it turns out that εn(k) and ψn(r, k) change smoothly. This may not be true
when k passes through the border of the FBZ, however.

The function εn(k) is called the nth electronic band.

If we traveled in the FBZ, starting from the origin and continuing along a straight line, then
ε1, ε2, ...etc. would change as functions of k and create several energy bands. If εn(k) changes
very much during our travel over the FBZ, we would say that the nth band has large width or
dispersion.

As it was shown on p. 523 for the hydrogen atoms, an energy band forms due to the bonding
and antibonding effects, the energy splitting being of the order of the overlap integral between
the nearest-neighbor 1s AOs. If instead of hydrogen atoms, we put a unit cell with a few atoms
inside (motif), then the story is similar: the motif has some one-electron energy levels (orbital
energies), putting together the unit cells makes changing these energy levels into energy bands,
the number of levels in any band is equal to the number of unit cells, or the number of allowed
k vectors in the FBZ.

The bandwidth is related to interactions among the unit cell contents, and is roughly propor-
tional to the overlap integral between the orbitals of the interacting unit cells.

How do we plot the band structure? For the 1-D crystal, such as a periodic polymer, there is
no problem: the number k (the wave vector k) changes from−πa to π

a , we plot the function εn(k).
For each n, we have a single plot; e.g., for the hydrogen atom, the band ε1 collects energies
resulting from the 1s atomic orbital interacting with other atoms, similarly the band ε2, which
resulted from 2s, etc. In the 3-D case, we usually choose a path in FBZ. We start from the
point �, defined as k = 0. Then, we continue to some points located on the faces and edges
of the FBZ surface. It is impossible to go through the whole FBZ. The band structure in the
3-D case is usually shown by putting the described itinerary through the FBZ on the abscissa
(Fig. 9.9), and εn(k) on the ordinate. Fig.9.9 shows an example of what we might obtain from
such calculations.
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Fig. 9.9. (a) FBZ for four regular layers of nickel atoms (a crystal surface model); (b) the band structure for this system. We see
that we cannot understand much: it is just a horribly irregular mess of lines. All the band structures look equally clumsy. Despite
of this, from such a plot, we may determine the electrical and optical properties of the nickel slab. We will see later in this chapter
why the bands have such a mysterious form.

9.9.5 Fermi Level and Energy Gap: Insulators, Metals, and Semiconductors

Insulators

How many electrons are in a crystal? The answer is simple: the infinite crystal contains an
infinite number of electrons. But infinities are often different. The decider is the number of
electrons per unit cell. Let us denote this number by n0.

If this means a double occupation of the molecular orbitals of the unit cell, then the corre-
sponding band in the crystal will also be fully occupied, because the number of energy levels
in a band is equal to the number of unit cells, and each unit cell contributes two electrons from
the above mentioned molecular orbital. The bands that come from the valence orbitals of the
motif are called valence bands. Therefore,

doubly occupied orbitals of the motif, related usually to the inner electronic shells, lead to fully
occupied bands. Accordingly, singly occupied orbitals lead to bands that are half–occupied,
while empty (virtual) orbitals lead to empty bands (unoccupied bands, also called conduction
bands).

The highest-occupied crystal orbital is known as the Fermi level; it is equivalent to the
HOMO of the crystal.36 The two levels HOMO and LUMO are fundamental as always–they

36 We sometimes find a thermodynamic definition of the Fermi level, but in this book, it will always be the highest-
occupied crystal orbital.
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Fig. 9.10. Valence bands (highest occupied by electrons, dark gray) and conduction bands (empty, light gray). The electric
properties of a crystal depend on the energy gap between them (i.e., HOMO-LUMO separation). A large gap (a) is typical for an
insulator, a medium gap (b) means a semiconductor, and a zero gap (c) is typical of metals.

decide about the chemistry of the system (in our case, the chemical and physical properties of the
crystal).

The gap between the HOMO and LUMO of the crystal is the gap between the top of the
occupied valence band and the bottom of the conduction band; see Fig.9.10. When the gap is
large we have to do with insulators.

Metals, 1-D Metals, and Peierls Distortion

A partially filled band may lead to the situation where the band gap equals zero.

A metal is characterized by having empty levels (conduction band) immediately above doubly
occupied valence ones.

Metals, because of the zero gap, are conductors of electric current.37

The conductivity of the metallic systems is typically orientation independent. In the last
several decades, 2-D and 1-D metals (with anisotropy of conductivity) have been discovered.
The latter are called molecular wires and may have unusual properties, but are difficult to
prepare because they often undergo spontaneous dimerization of the lattice (known as the
Peierls transition).

37 When an electric field is applied to a crystal, its energy levels change. If the field is weak, then the changes may
be computed by perturbation theory (treating the zero–field situation as the unperturbed one). This means that the
perturbed states acquire some admixtures of the excited states (cf. Chapter 5). The lower the energy gap is, the
more mixing takes place. For metallic systems (with a gap of zero), such perturbation theory certainly would not
be applicable, but real excitation to the conduction band may take place.
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As Fig. 9.11a shows, dimerization
makes the bonding and antibond-
ing effects stronger a little below
and above the middle of the band
(k = π

2a ), whereas at the band
edges (k = 0), the effect is almost
zero (since dimerization makes the
bonding or antibonding effects can-
cel within a pair of consecutive
bonds). As a result, the degeneracy

Rudolph Peierls (1907–1995),
British physicist and professor
at the universities of Birming-
ham and Oxford. Peierls partic-
ipated in the Manhattan Project
(which resulted in the atomic
bomb) as the leader of the
British group.

Peierls proposed the mech-
anism of the metal-insulator
phase transition.

is removed in the middle of the band (Fig. 9.11b); i.e., a band gap appears and the system
undergoes metal-insulator transition (Fig. 9.11c). This is why polyacetylene, instead of having
all the CC bonds equivalent (Fig. 9.11d), which would make it a metal, exhibits alternation of
bond lengths (Fig. 9.11e), and it becomes an insulator or semiconductor.

To a chemist, the Peierls transition is natural. The hydrogen atoms will not stay equidistant in
a chain but will simply react and form hydrogen molecules; i.e., it will dimerize like lightning.
Also, the polyacetylene will try to form π bonds by binding the carbon atoms in pairs. There is
simply a shortage of electrons to keep all the CC bonds strong; in fact, there are only enough for
every second bond, which means simply dimerization through creating π bonds. On the other
hand, the Peierls transition may be described as similar to the Jahn-Teller effect: there is a degen-
eracy of the occupied and empty levels at the Fermi level, and it is therefore possible to lower
the energy by removing the degeneracy through a distortion of geometry (i.e., dimerization).

Polyacetylene, becomes ionized after doping if the dopants are electron acceptors, or it
receives extra electrons if the dopant represents an electron donor (symbolized by D+ in
Fig. 9.12). The perfect polyacetylene exhibits the bond alternation discussed above, but it may
be that we have a defect that is associated with a region of “changing rhythm” (or “phase”):
from38 (= − = − =) to (− = − = −). Such a kink is sometimes described as a soliton
wave (Fig. 9.12a,b); i.e., a “solitary” wave first observed in the 19th century in Scotland on a
water channel, where it preserved its shape while moving over a distance of several kilometers.
The soliton defects cause some new energy levels (“solitonic levels’’) to appear within the gap.
These levels too form their own solitonic band.

Charged solitons may travel when subject to an electric field, and therefore the doped poly-
acetylene turns out to be a good conductor (organic metal).

In polyparaphenylene, soliton waves are impossible because the two phases (aromatic and
quinoid, as shown in Fig. 9.12c) differ in energy (low-energy aromatic phase and high-energy
quinoid phase). However, when the polymer is doped, a charged double defect (bipolaron,
Fig. 9.12c) may form, and the defect may travel when an electric field is applied. Hence, the
doped polyparaphenylene, similarly to the doped polyacetylene, is an organic metal.

38 This possibility was first recognized by J.A. Pople and S.H. Walmsley, Mol.Phys., 5, 15 (1962), which was
published 15 years before the experimental discovery of this effect.



536 Chapter 9

Fig. 9.11. The Peierls effect has the same origin as the Jahn-Teller effect in removing the electronic level degeneracy by distorting
the system [H.A.Jahn and E.Teller, Proc.Roy.Soc.A 161, 220 (1937)]. The electrons occupy half the FBZ; i.e., − π

2a ≤ k ≤ π
2a , a

standing for the nearest-neighbor distance. The band has been plotted on the assumption that the period is equal to 2a; hence a
characteristic back folding of the band (similar to the way that we would fold a sheet of paper with the band structure drawn, the
period equaling a). (a) A lattice dimerization, shown by little arrows, amplifies the bonding and antibonding effects close to the
middle of the FBZ; i.e., in the neighborhood of k = ± π

2a . Close to k = 0, there is a cancellation of the opposite effects: bonding
(bottom) and antibonding (top). (b) As a result, the degeneracy at k = π

2a is removed and the band gap appears, which corresponds
to lattice dimerization. (c) The system lowers its energy when undergoing metal-insulator or metal-semiconductor transition. (d)
The polyacetylene chain, if forcing equivalence of all CC bonds, represents a metal. However, due to the Peierls effect, the system
undergoes dimerization (e) and becomes an insulator.

Controlling the Metal Fermi Level–An Electrode

The Fermi level (i.e., HOMO level) is especially interesting in metal because there are ways to
change its position on the energy scale. We may treat the metal as a container for electrons: we
may pump the electrons into it or create the electron deficiency in it by using it as a cathode or
anode, respectively. Having a tunable HOMO level, we decide if and when our reactant (i.e., the
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Fig. 9.12. Solitons and bipolarons as a model of electric conductivity in polymers. (a) Two phases of polyacetylene separated
by a defect. Originally, the defect was associated to an unpaired electron, but when a donor, D, gave its electron to the chain,
the defect became negatively charged. (b) The energy of such a defect is independent of its position in the chain (important for
charge transportation), but in reality, the change of phase takes place in sections of about 15 CC bonds, not two bonds as (a)
suggests. Such a situation is sometimes modeled by a nonlinear differential equation, which describes a soliton motion (“solitary
wave”) that represents the traveling phase boundary. (c) In the polyparaphenylene chain, two phases (low-energy aromatic and
high-energy quinoid) are possible as well, but in this case, they are of different energies. Therefore, the energy of a single defect
(aromatic structures-kink-quinoid structures) depends on its position in the chain (therefore, no charge transportation). However,
a double defect with a (higher-energy) section of a quinoid structure has a position-independent energy, and when charged by
dopants (bipolaron) can conduct electricity. The abovementioned polymers can be doped either by electron donors (e.g., arsenium,
potassium) or electron acceptors (iodine), which results in a spectacular increase in their electric conductivity.

electrode) acts as an electron donor or electron acceptor. This opens new avenues such as
polarography, when scanning the electrode potential results in consecutive electrode reactions
occurring whenever the electrode Fermi level matches the LUMO of a particular substance
present in the solution. Since the matching potentials are characteristic for the substances, this
is a way of performing chemical identification with quantitative analysis.

Semiconductors

An intrinsic semiconductor exhibits a conduction band separated by a small energy gap (band
gap) from the valence band (see Fig. 9.13a).

If the empty energy levels of the dopant are located just over the occupied band of an intrinsic
semiconductor, the dopant may serve as an electron acceptor for the electrons from the occupied
band (thus introducing its own conduction band), we have a p-type semiconductor, (Fig. 9.13b).
If the dopant energy levels are occupied and located just under the conduction band, the dopant
may serve as a n-type semiconductor (Fig. 9.13c).

Among these three fundamental classes of materials: insulators, metals, and semiconductors,
the semiconductors are most versatile as to their properties and practical applications. The
metals just conduct electricity, and the carriers of the electric current are electrons. The metals’
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(a)

(b) (c)

Fig. 9.13. Energy bands for semiconductors. (a) Intrinsic semiconductor (small gap), (b) p-type semiconductor (electron acceptor
levels close to the occupied band), (c) n-type semiconductor (electron donor levels close to the conduction band).

conductivity spans only one order of magnitude. The insulators are useful only because they
do not conduct electric current. In contrast to the metals and the insulators the conductivity of
semiconductors can be controlled within many orders of magnitude (mainly by doping; i.e.,
admixture of other materials). The second extraordinary feature is that only in semiconductors,
the conductivity can be tuned by using two types of the charge carriers: (negative) electrons and
(positive) electron holes. The results of such tuning depends on temperature, light, and electric
and magnetic fields. In contrast to metals and insulators, the semiconductors are able to emit
visible light. All these features make it possible to tailor functional semiconductor devices to
versatile electric and photonic properties. This is why in practically any electric or photonic
equipment, there is a semiconductor device.

Additionally, the reasons why the organic metals and semiconductors are of practical interest
are the versatility and tunability (precision) offered by organic chemistry, the easy processing
typical of the plastic industry, the ability to literally bent the device without losing its properties,
and last but not least, a low weight.

What kind of substances are semiconductors? Well, the most important class of them can
be derived directly from a section of the Mendeleev periodic table (the first row shows the
group number) Table 9.1. According to the Table we have: IV-IV semiconductors: the elemental

Table 9.1. A “semiconductor section” of the Mendeleev periodic table.

II III IV V VI

B C N O
Al Si P S

Zn Ga Ge As Se
Cd In Sn Sb Te
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semiconductors C, Si, Ge as well as the compounds SiGe, SiC, III-V semiconductors: GaN,
GaP, InP, InSb, etc., II-IV semiconductors: CdSe, CdS, CdTe, ZnO, ZnS, etc.

9.10 Solid-State Quantum Chemistry

A calculated band structure, with information about the position of the Fermi level, tell us a lot
about the electric properties of the material being looked at here (insulator, semiconductor, and
metal). They tell us also about basic optical properties; e.g., the band gap indicates what kind
of absorption spectrum we may expect. We can calculate any measurable quantity because we
have at our disposal the computed (approximate though) wave function.

However, despite this very precious information, which is present in the band structure,
there is a little worry. When we look at any band structure, such as that shown in Fig. 9.9,
the overwhelming feeling is a kind of despair. All band structures look similar–as just a tangle
of plots. Some go up, some down, some stay unchanged, and some change their direction
(seemingly for no reason). Can we understand this? What is the theory behind this band behavior?

9.10.1 Why Do Some Bands Go Up?

Let us take our beloved chain of hydrogen atoms in the 1s state, to which we already owe so
much (Fig. 9.14).

When will the state of the chain have the lowest possible energy? Of course, when all the
atoms interact in a bonding way and not in an antibonding way. This corresponds to Fig. 9.14a
(no nodes of the wave function). When, in this situation, we introduce a single nearest-neighbor
antibonding interaction, the energy will increase a bit (Fig. 9.14b). When two such interactions
are introduced (Fig. 9.14c), the energy goes up even more, and the plot corresponds to two
nodes. Finally, the highest-energy situation: all nearest-neighbor interactions are antibonding
(maximum number of nodes), as shown in Fig. 9.14d. Let us recall that the wave vector was
associated with the number of nodes. Hence, if k increases from zero to π

a , the energy increases
from the energy corresponding to the nodeless wave function to the energy characteristic for

maximum number
of nodes

2 nodes

1 node

0 nodes

(d)

(c)

(b)

(a)
Fig. 9.14. The infinite chain of ground-state hydrogen atoms and the influence of bonding and antibonding effects. (a) All
interactions are bonding; (b) introduction of a single node results in an energy increase; (c) two nodes increase the energy even
more; (d) with the maximum number of nodes, the energy is at its maximum.
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(a)

(b)

(c)

Fig. 9.15. Three typical band plots in the FBZ. (a) 1s orbitals. Increasing k is accompanied by an increase of the antibonding
interactions, which is why the energy goes up. (b) 2pz orbitals (z denotes the periodicity axis). Increasing k results in decreasing
the number of antibonding interactions and the energy goes down. (c) Inner-shell orbitals. The overlap is small as it is; therefore,
the band width is practically zero.

the maximum-node wave function. We understand, therefore, that some band plots are as they
appear in Fig. 9.15a.

9.10.2 Why Do Some Bands Go Down?

Sometimes the bands go in the opposite direction: the lowest energy corresponds to k = π
a ,

the highest energy to k = 0. What happens over there? Let us once more take the hydrogen
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atom chain, but this time in the 2pz state (z is the periodicity axis). Now, the Bloch function
corresponding to k = 0 (i.e., a function that follows just from locating the orbitals 2pz side
by side), describes the highest-energy interaction — the nearest-neighbor interactions are all
antibonding. Introduction of a node (increasing k) means a relief for the system–instead of one
painful antibonding interaction, we get a soothing bonding one. The energy goes down. No
wonder, therefore, some bands look like those shown in Fig. 9.15b.

9.10.3 Why Do Some Bands Stay Constant?

According to numerical rules, inner-shell atomic orbitals do not form effective linear combina-
tions (crystal orbitals). Such orbitals have very large exponential coefficients and the resulting
overlap integral, and therefore the band width (bonding vs antibonding effect), is negligible.
This is why the nickel 1s orbitals (deep-energy level) result in a low-energy band of almost zero
width (Fig. 9.15c); i.e., staying flat as a pancake all the time. Since they are always of very low
energy, they are doubly occupied, and their plot is so boring that they are not even displayed
(they are absent in Fig. 9.9).

9.10.4 More Complex Behavior Explainable–Examples

We understand, therefore, at least why some bands are monotonically going down, some going
up, and others staying constant. In explaining these cases, we have assumed that a given CO is
dominated by a single Bloch function. Other behaviors can be explained as well by detecting
what kind of Bloch function combination we have in a given crystal orbital.

2-D Regular Lattice of the Hydrogen Atoms

Let us take a planar regular lattice of hydrogen atoms in their ground state.39 Fig. 9.9 shows the
FBZ of a similar lattice. We (arbitrarily) choose as the itinerary through the FBZ:�−X−M−�.
From Fig. 9.7a, we easily deduce that the band energy for the point� has to be the lowest because
it corresponds to all the interaction bonding. What will happen at the point X (Fig.9.9a), which
corresponds to k = (± π

a , 0) or k = (0,±πa )? This situation is related to Fig. 9.7b. If we focus
on any of the hydrogen atoms, it has four nearest-neighbor interactions: two bonding and two
antibonding. This, to a good approximation, corresponds to the nonbonding situation (hydrogen
atom ground-state energy), because the two effects nearly cancel out. Halfway between � and
X , we go through the point that corresponds to Fig. 9.7c,d. For such a point, any hydrogen atom
has two bonding and two nonbonding interactions; i.e., the energy is the average of the � and
X energies. The point M is located in the corner of the FBZ, and corresponds to Fig. 9.7e. All
the nearest-neighbor interactions are antibonding there, and the energy will be very high. We
may, therefore, anticipate a band structure of the kind sketched in Fig. 9.16a, which was drawn

39 A chemist’s first thought would be that this could never stay this way, when the system is isolated. We are bound
to observe the formation of hydrogen molecules.
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(a)

(b)

Fig. 9.16. (a) A Roald Hoffmann’s sketch of the valence band for a regular planar lattice of ground-state hydrogen atoms and (b)
the valence band as computed in the laboratory of Roald Hoffmann for a nearest-neighbor distance equal to 2 Å. The similarity of
the two plots confirms that we are able, at least in some cases, to predict band structure.

to reflect the fact that the density of states for the band edges is the largest, and therefore the
slope of the curves has to reflect this. Fig. 9.16b shows the results of the computations.40 It is
seen that, even very simple reasoning may rationalize the main features of band structure plots.

Trans-polyacetylene (Regular 1-D Polymer)

Polyacetylene already has quite a complex band structure, but as usual, the bands close to the
Fermi level (valence bands) are the most important in chemistry and physics. All these bands
are of the π type; i.e., their COs are antisymmetric with respect to the plane of the polymer.
Fig. 9.17 shows how the valence bands are formed.41 We can see that the principle is identical
to that for the chain of the hydrogen atoms: the more nodes there are, the higher the energy is.
The highest energy corresponds to the band edge.

The resulting band is only half-filled (metallic regime) because each of the carbon atoms
offers one electron, and the number of COs is equal to the number of carbon atoms (each CO
can accommodate two electrons). Therefore, the Peierls mechanism (Fig. 9.11) is bound to enter
into play, and in the middle of the band, a gap will open. The system is, therefore, predicted

40 R. Hoffmann, Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures, VCH Publishers,
New York (1988).

41 J.-M. André, J. Delhalle, and J.-L. Brédas, Quantum Chemistry Aided Design of Organic Polymers, World Scien-
tific, Singapore (1991).
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Fig. 9.17. (a) π -band formation in polyenes (N stands for the number of carbon atoms) with the assumption of CC bond
equivalence (each has length a/2). For N = ∞, this gives the metallic solution (no Peierls effect). As we can see, the band
formation principle is identical to that, which we have seen for hydrogen atoms. (b) Band structure. (c) Density of states D(E);
i.e., the number of states per energy unit at a given energy E . The density has maxima at the extremal points of the band. If we
allowed the Peierls transtition, at k = ±π/a we would have a gap.

to be an insulator (or semiconductor) and indeed it is. It may change to a metal when doped.
Fig. 9.17 shows a situation analogous to the case of a chain of the ground-state hydrogen atoms.

Polyparaphenylene

The extent to which the COs conform to the rule of increasing number of nodes with energy
(or k) will be seen in the example of a planar conformation of polyparaphenylene41. On the left
side of Fig. 9.18, we have the valence π -orbitals of benzene as follows:

• The lowest-energy orbital has a nodeless,42 doubly occupied molecular orbital ϕ1.
• Then, we have a doubly degenerate and fully occupied level with the corresponding orbitals,

ϕ2 and ϕ3, each having a single node.
• Next, a similar double degenerate empty level with orbitals ϕ4 and ϕ5 (each with two nodes).
• Finally, we have the highest-energy empty three-node orbital ϕ6.

Thus, even in the single monomer we have the rule fulfilled.
Binding phenyl rings by using CC σ bonds results in polyparaphenylene. Let us see what

happens when the wave number k increases (the middle and the right side of Fig. 9.18). What
counts now is how two complete monomer orbitals combine: in phase or out of phase. The

42 Not counting the nodal plane of the nuclear framework.
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polymermonomer

(a) (b) (c)

Fig. 9.18. Rationalizing the band structure of polyparaphenylene (π -bands). The COs (in center) built as in-phase or out-of-phase
combinations of the benzene π molecular orbitals (left side). It is seen that energy of the COs for k = 0 and k = π

a agree with the
rule of an increasing number of nodes. A small bandwidth corresponds to small overlap integrals of the monomer orbitals.

lowest-energy π -orbitals of benzene (ϕ1), arranged in phase (k = 0), give point � – the lowest
energy in the polymer, while out-of-phase, point k = π

a has the highest energy. At k = π
a ,

there is a degeneracy of this orbital and of ϕ3 arranged out of phase. The degeneracy is quite
interesting because, despite a superposition of the orbitals with the different number of nodes,
the result corresponds to the same number of nodes. Note the extremely small dispersion of the
band which results from the arrangement of ϕ2. The figure shows that it is bound to be small
because it is caused by the arrangement of two molecular orbitals that are farther away in space
than those so far considered (the overlap results from the atomic orbitals separated by three
bonds, and not by a single bond as it has been). We see a similar regularity in the conduction
bands that correspond to the molecular orbitals ϕ4, ϕ5, and ϕ6. The rule works here without
any exception and results from the simple statement that a bonding superposition has a lower
energy than the corresponding antibonding one.

Thus, when looking at the band structure for polyparaphenylene, we understand every detail
of this tangle of bands.
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A Stack of Pt(II) Square Planar Complexes

Let us try to predict43 qualitatively (without making calculations) the band structure of a stack of

platinum square planar complexes – typically [Pt(CN−)2−4 ]∞. Consider the eclipsed configura-
tion of all the monomeric units. Let us first simplify our task. Who likes cyanides? Let us throw
them away and take something theoreticians really love: H−. This isn’t just laziness. If needed,
we are able to make calculations for cyanides too, but to demonstrate that we really understand
the machinery, we are always recommended to make the system as simple as possible (but not
simpler). We suspect that the main role of CN− is just to interact electrostatically, and H− does
this too (being much smaller). In reality, it turns out that what decides is the Pauli exclusion
principle, rather than the ligand charge.44

The electronic dominant configuration of the platinum atom in its ground state is45

[Xe](4 f 14)5d9 6s1. As we can see, we have the xenon-like closed shell and also the full closed
subshell 4 f . The orbital energies corresponding to these closed shells are much lower than the
orbital energy of the hydrogen anion (with which they are to be combined). This is why they
will not participate in the Pt-H bonds. Of course, they will contribute to the band structure, but
this contribution will be trivial: flat bands (because of small overlap integrals) with energies
very close to the energies characterizing the corresponding atomic orbitals. The Pt valence shell
is, therefore, 5d9 6s1 6p0 for Pt0, and 5d8 6s0 6p0 for Pt2+, which we have in our stack. The
corresponding orbital energies are shown on the left side of Fig. 9.19a.

Let us choose a Cartesian coordinate system with the origin on the platinum atom and
the four ligands at equal distances on the x- and y-axes. In the Koopmans approximation
(cf. Chapter 8, p. 465), an orbital energy represents the electron energy on a given orbital.
We see that because the ligands are pushing (and the Pauli exclusion principle is operating),
all the platinum atom orbital energies will go up (destabilization; in Fig. 9.19a, this shift is not
shown; only a relative shift is given). The largest shift up will be undergone by the 5dx2−y2

orbital energy because the orbital lobes protrude right across to the ligands. Eight electrons of
Pt2+ will therefore occupy four other d orbitals46 (5dxy, 5dxz, 5dyz, 5d3z2−r2), while 5dx2−y2

43 We follow R.Hoffmann, Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures, VCH publishers,
New York (1988).

44 When studying complexes of Fe2+ and Co2+ (of planar and tetrahedral symmetry), I have got that splitting the
d energy levels by negative point charges (simulating ligands) has been very ineffective even when making the
negative charges excessively large and pushing them closer to the ion. In contrast to that, replacing the point
charges by some closed-shell entities resulted in strong splitting.

45 Xe denotes the xenon-like configuration of electrons.
46 Of these four, the lowest-energy ones will correspond to the orbitals 5dxz, 5dyz , because their lobes just avoid the

ligands. The last two orbitals 5dxy and 5d3z2−r2 = 5dz2−x2 + 5dz2−y2 will go up somewhat in the energy scale
(each to different extents), because they aim in part at the ligands. However, these splits will be smaller when
compared to the fate of the orbital 5dx2−y2 and therefore, these levels have been shown in Fig. 9.19 as a single
degenerate level.
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Pt with ligands

ligands ligands

symmetry

orbitals

Pt

(b)(a)

Fig. 9.19. Predicting the band structure of
(

PtH2−
4

)
∞. (a) Monomer (PtH2−

4 ) molecular orbitals built of the atomic orbitals of

Pt2+ (the three p and five d Pt atomic orbitals correspond to two degenerate energy p and d levels) and four ligand (L = H−)
orbitals. One of the platinum orbitals (5dx2−y2 ) corresponds to high energy because it protrudes right across to the ligands. The
four ligand AOs, due to the long distance, practically do not overlap and are shown as a quadruply degenerate level. (b) The ligand
symmetry orbitals form linear combinations with those of the metal.

will become LUMO. The four ligand atomic orbitals practically do not overlap (long distance),
and this is why in Fig.9.19a, they are depicted as a quadruply quasi-degenerate level. We orga-
nize them as the ligand symmetry orbitals, as shown in Fig. 9.19b: the nodeless orbital (A) and
two single-node orbitals (B) corresponding to the same energy, and the two-node orbital (C).
The effective linear combinations (cf. p. 429, what counts most is symmetry) are formed by the
following pairs of orbitals: 6s with A, 6px and 6py with B, and the orbital 5dx2−y2 with C (in
each case, we obtain the bonding and the antibonding orbital); the other platinum orbitals, 5d
and 6pz , do not have partners of the appropriate symmetry (and therefore, their energy does not
change). Thus, we obtain the energy-level diagram of the monomer in Fig. 9.19a.

Now, we form a stack of PtH2−
4 along the periodicity axis z. Let us form the Bloch functions

(Fig. 9.20a) for each of the valence orbitals at two points of the FBZ: k = 0 and k = π
a . The

results are given in Fig. 9.20b. Because of large overlap of the 6pz orbitals with themselves,
and 3d3z2−r2 also with themselves, these σ bands will have very large dispersions. The smallest
dispersion will correspond to the 5dxy band (as well as to the empty band 5dx2−y2), because
the orbital lobes of 5dxy (also of 5dx2−y2) are oriented perpendicularly to the periodicity axis.
Two bands 5dxz and 5dyz have a common fate (i.e., the same plot) due to the symmetry, and a
medium bandwidth (Fig. 9.20b). We predict, therefore, the band structure shown in Fig. 9.21a.

It is to be compared with the calculated band structure for
(

PtH2−
4

)
∞ (Fig. 9.21b). As we can

see, the prediction turns out to be correct.
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(a) (b)

Fig. 9.20. Predicting the band structure of (PtH2−
4 )∞. (a) The Bloch functions for k = 0 and k = π

a corresponding to the atomic
orbitals 6pz (σ type orbitals), 5dxy (δ type orbitals), 5dxz (π type orbitals, similarly for 5dyz ), 5d3z2−r2 (σ type orbitals); (b)

The bandwidth is very sensitive to the overlap of the atomic orbitals. The bandwidths in (PtH2−
4 )∞ result from the overlap of the

(PtH2−
4 ) orbitals.

(a) (b)

Fig. 9.21. Predicting (after Roald Hoffmann) the band structure of
(

PtH2−
4

)
∞. (a) The predicted band structure; (b) the computed

band structure (by Roald Hoffmann) for a = 3 Å.
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9.11 The Hartree-Fock Method for Crystals

9.11.1 Secular Equation

What has been said previously about the Hartree-Fock method is only a sort of general theory.
The time has now arrived to show how the method works in practice. We have to solve the
Hartree-Fock-Roothaan equation (cf. Chapter 8, pp. 431 and 531).

The Fock matrix element is equal to (noting that (χ j
p |F̂χ j ′

q ) ≡ F j j ′
pq depends on the differ-

ence47 between the vectors R j and R j ′)

Fpq = (2N + 1)−3
∑
j j ′

exp
(
ik(R j − R′j )

)
(χ

j ′
p |F̂χ j

q ) (9.55)

=
∑

j

exp (ikR j )F
0 j
pq . (9.56)

The same can be done with Spq , and therefore, the Hartree-Fock-Roothaan secular equation
(see p. 531) has the form:

ω∑
p=1

cpn(k)
(∑

j

exp (ikR j )
(
F0 j

pq (k)− εn(k)S
0 j
pq(k)

)) = 0, (9.57)

for q = 1, 2, . . . ω. The integral Spq equals

Spq =
∑

j

exp (ikR j )S
0 j
pq . (9.58)

The summation goes over the lattice nodes and S0 j
pq ≡

(
χ0

p|χ j
q

)
. In order to be explicit, let us

see what is inside the Fock matrix elements F0 j
pq (k). We have to find a dependence there on the

Hartree-Fock-Roothaan solutions (determined by the coefficients cpn), and more precisely on
the bond order matrix.48 Any CO, according to Eq. (9.53), has the form

ψn(r, k) = (2N + 1)−
3
2
∑

q

∑
j

cqn(k) exp (ikR j )χ
j

q
(
r
)
, (9.59)

where we promise to use such cqn thatψn are normalized. For molecules, the bond order matrix
element (for the atomic orbitals χp and χq ) has been defined as 2

∑
cpi c∗qi (the summation is

over the doubly occupied orbitals), where the factor 2 results from the double occupation of the

47 As a matter of fact, all depends on how distant and how oriented the unit cells j and j ′ are. We have used the fact
that F̂ exhibits the crystal symmetry.

48 We have seen the same in the Hartree-Fock method for molecules, where the Coulomb and exchange operators
depended on the solutions to the Fock equation, (cf. p. 412).
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closed shell. We have exactly the same for the crystal, where we define the bond order matrix
element corresponding to atomic orbitals χ j

q and χ l
p as

Pl j
pq = 2(2N + 1)−3

∑
occupied

cpn(k) exp (ikRl)cqn(k)∗ exp (−ikR j ) (9.60)

where the summation goes over all the occupied COs (we assume double occupation, hence
factor 2). This means that in the summation, we have to go over all the occupied bands (index
n), and in each band over all allowed COs; i.e., all the allowed k vectors in the FBZ. Thus,

Pl j
pq = 2(2N + 1)−3

∑
n

F B Z∑
k

cpn(k)cqn(k)∗ exp
(
ik(Rl − R j )

)
. (9.61)

This definition of the P matrix is exactly what we should have for a large closed-shell molecule.
The matrix element has to have four indices (instead of the two indices in the molecular case),
because we have to describe the atomic orbitals indicating that atomic orbital p is from unit
cell l, and atomic orbital q from unit cell j . It is easily seen that Pl j

pq depends on the difference
Rl − R j , not on the Rl,R j themselves. The reason for this is that in a crystal, everything is
repeated, and the important thing to consider is the relative distances. Thus, the P matrix is
determined by all the elements P0 j

pq .

9.11.2 Integration in the FBZ

There is a problem with P: namely, it requires a summation over k. We do not like this because
the number of the permitted vectors k is huge for large N (and N has to be large because we
are dealing with a crystal). We have to do something with it.

Let us try a small exercise. Imagine that we have to perform a summation
∑

k f (k), where
f represents a smooth function in the FBZ. Let us denote the sum to be found by X . Let us
multiply X by a small number � = VF B Z

(2N+1)3
, where VF B Z stands for the FBZ volume:

X� =
F B Z∑

k

f (k)� (9.62)

In other words, we just cut the FBZ into tiny segments of volume �, their number equal to the
number of the permitted k. It is clear that if N is large (as it is in our case), then a very good
approximation of X� would be

X� =
∫

F B Z
f (k)dk. (9.63)

Hence,

X = (2N + 1)3

VF B Z

∫
F B Z

f (k)dk. (9.64)
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After applying this result to the bond order matrix, we obtain

Pl j
pq = 2

VF B Z

∫ F B Z∑
n

cpn(k)cqn(k)∗ exp
(
ik(Rl − R j ))

)
dk. (9.65)

For a periodic polymer (in 1-D: VF B Z = 2π
a ,� = V

2N+1 ), we would have

Pl j
pq = a

π

∫ ∑
n

cpn(k)cqn(k)
∗ exp

(
ika(l − j)

)
dk. (9.66)

9.11.3 Fock Matrix Elements

In full analogy with the formula on p. 427, we can express the Fock matrix elements by using
the bond order matrix P for the crystal:

F0 j
pq = T 0 j

pq −
∑

h

∑
u

Zu V 0 j
pq (A

h
u)+

∑
hl

∑
rs

Plh
sr

((
0h
pr | jlqs

)
− 1

2

(
0h
pr |l j

sq

))
, (9.67)

where P satisfies the normalization condition49

49 The P matrix satisfies the normalization condition, which we obtain in the following way: As in the molecular
case, the normalization of CO means

1 = 〈ψn(r, k) | ψn(r, k)〉
= (2N + 1)−3

∑
pq

∑
jl

cpn(k)∗cqn(k) exp[ik(R j − Rl )]Sl j
pq

= (2N + 1)−3
∑
pq

∑
jl

cpn(k)∗cqn(k) exp[ik(R j − Rl ))]So( j−l)
pq

=
∑
pq

∑
j

cpn(k)∗cqn(k) exp (ikR j )S
0 j
pq .

Now let us do the same for all the occupied COs and sum the results. On the left side, we sum just 1, so we obtain
the number of doubly occupied COs; i.e., n0(2N + 1)3, because n0 denotes the number of doubly occupied
bands. Further, in each band, we have in 3-D (2N + 1)3 allowed vectors k. Therefore, we have

n0(2N + 1)3 =
∑
pq

∑
j

(∑
n

F B Z∑
k

cpn(k)∗cqn(k) exp (ikR j )
)

S0 j
pq

=
∑
pq

∑
j

1

2
(2N + 1)3 P j0

qp S0 j
pq ,

where from Eq. (9.61), after exchanging p↔ q, j ↔ l, we get

P jl
qp = 2(2N + 1)−3

∑
n

F B Z∑
k

cqn(k)cpn(k)∗ exp
(
ik(R j − Rl )

)
.
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∑
j

∑
pq

P j0
qp S0 j

pq = 2n0, (9.68)

where 2n0 means the number of electrons in the unit cell.
The first term on the right side of Eq.(9.67) represents the kinetic energy matrix element

T 0 j
pq =

(
χ0

p| −
1

2
�|χ j

q

)
, (9.69)

where the second term is a sum of matrix elements, each corresponding to the nuclear attraction
of an electron and the nucleus of index u and charge Zu in the unit cell h:

V 0 j
pq (A

h
u) =

(
χ0

p|
1

|r− Ah
u |
|χ j

q

)
, (9.70)

where the upper index of χ denotes the cell number, the lower index is the number of the atomic
orbital in a cell, the vector Ah

u indicates nucleus u (numbering within the unit cell) in unit cell h
(from the coordinate system origin), and the third term is connected to the Coulombic operator
(the first of two terms) and the exchange operator (the second of two terms). The summations
over h and l go over the unit cells of the whole crystal, and therefore are very difficult and time
consuming.

The definition of the two-electron integral,(
0h

pr

∣∣∣∣ jl

qs

)
=
∫

dr1 dr2χ
0
p(r1)

∗χh
r (r2)

∗ 1

r12
χ

j
q (r1)χ

l
s(r2), (9.71)

is in full analogy to the notation of Chapter 8 and Appendix M available at booksite.elsevier.
com/978-0-444-59436-5, p. e109.

9.11.4 Iterative Procedure (SCF LCAO CO)

To solve Eq.(9.57), one uses the SCF LCAO MO technique as applied for molecules (Chapter
8) and now adapted for crystals. This particular method will be called SCF LCAO CO, because
the linear combinations (LC) of the symmetry AOs are used as the expansion functions for the

and then

P j0
qp = 2(2N + 1)−3

∑
n

F B Z∑
k

cqn(k)cpn(k)∗ exp
(
ikR j

)
.

Hence, ∑
pq

∑
j

P j0
qp S0 j

pq = 2n0.

http://booksite.elsevier.com/978-0-444-59436-5
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crystal orbitals (COs) in a self-consistent procedure (SCF - Self-Consistent Field) described
below. How does the SCF LCAO CO method work?

1. First (zeroth iteration), we start from a guess50 for P.

2. Then, we calculate the elements F0 j
pq for all atomic orbitals p, q for unit cells j = 0, 1, 2, ...

jmax. What is jmax? The answer is certainly non-satisfactory: jmax = ∞. In practice, how-
ever, we often take jmax as being of the order of a few cells; most often, we take51 jmax = 1.

3. For each k from the FBZ, we calculate the elements Fpq and Spq of Eqs. (9.56) and (9.58),
and then solve the secular equations within the Hartree-Fock-Roothaan procedure. This step
requires diagonalization52 (see Appendix K available at booksite.elsevier.com/978-0-444-
59436-5, p. e105). As a result, for each k we obtain a set of coefficients c for the crystal
orbitals and the energy eigenvalue εn(k).

4. We repeat all this for the values of k covering in some optimal way (some recipes exist) the
FBZ. We are then all set to carry out the numerical integration in the FBZ and we calculate
an approximate matrix P.

5. This enables us to calculate a new approximation to the matrix F and so on, until the
procedure converges in a self-consistent way; i.e., produces P very close to that matrix P,
which has been inserted into the Fock matrix F. In this way, we obtain the band structure
εn(k) and all the corresponding COs.

9.11.5 Total Energy

How do we calculate the total energy for an infinite crystal? We know the answer without
calculating: −∞. Indeed, since the energy represents an extensive quantity, for an infinite
number of the unit cells, we get −∞ because a single cell usually represents a bound state
(negative energy). Therefore, the question has to be posed in another way.

How do we calculate the total energy per unit cell? This is a different question. Let us denote
this quantity by ET . Since a crystal only represents a very large molecule, we may use the
expression for the total energy of a molecule. In the 3-D case, we get

(2N + 1)3 ET = 1

2

∑
pq

∑
l j

P jl
qp
(
hl j

pq + Fl j
pq
)+ 1

2

∑
l j

′∑
uv

Zu Zv

Rl j
uv

, (9.72)

where the summation over p and q extends over the ω atomic orbitals that any unit cell offers,
l and j tell us, in which cells these orbitals are located. The last term on the right side refers to
the nuclear repulsion of all the nuclei in the crystal; u, v number the nuclei in a unit cell; while

50 The result is presumed to be independent of this choice.
51 This is the nearest-neighbor approximation. We encounter a similar problem inside the F0 j

pq because we have
somehow truncated the summations over h and l. These problems will be discussed later in this chapter.

52 Unlike the molecular case, this time the matrix to diagonalize is Hermitian, and is not necessarily symmetric.
Methods of diagonalization exist for such matrices, and there is a guarantee that their eigenvalues are real.

http://booksite.elsevier.com/978-0-444-59436-5
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l, j indicate the cells (a prime means that there is no contribution from the charge interaction
with itself). Since the summations over l and j extend over the whole crystal,

(2N + 1)3 ET = 1

2
(2N + 1)3

∑
pq

∑
j

P j0
qp [h0 j

pq + F0 j
pq ] + (2N + 1)3

1

2

∑
j

′∑
uv

Zu Zv

R0 j
uv

, (9.73)

because each term has an equal contribution, and the number of such terms is equal to (2N+1)3.
Therefore, the total energy per unit cell amounts to

ET = 1

2

∑
j

∑
pq

P j0
qp
(
h0 j

pq + F0 j
pq
)+ 1

2

∑
j

∑
u

′∑
v

Zu Zv

R0 j
uv

. (9.74)

The formula is correct, but we can easily see that we are to be confronted with some serious
problems. E.g., the summation over nuclei represents a divergent series and we will get +∞.
This problem appears only because we are dealing with an infinite system. We have to manage
the problem somehow.

9.12 Long-Range Interaction Problem

What is left to be clarified is the question of how to go from N to infinity.53 It will be soon
shown how dangerous this problem is.

We see from Eqs. (9.67) and (9.74) that thanks to the translational symmetry, we may treat
each k separately, infinity continues to make us a little nervous. In the expression for F0 j

pq , we

53 Let me tell you about my adventure with this problem, because I remember how as a student, I wanted to hear
about struggles with understanding matter and ideas instead of some dry summaries.
The story began quite accidentally. In 1977, at the University of Namur (Belgium), Professor Joseph Delhalle
asked the Ph.D. student Christian Demanet to perform a numerical test. The test consisted of taking a simple
infinite polymer (the infinite chain . . . LiH LiH LiH . . . had been chosen), to use the simplest atomic basis set
possible and to see what we should take as N , to obtain the Fock matrix with sufficient accuracy. Demanet first took
N = 1, then N = 2, N = 3 — the Fock matrix changed all the time. He got impatient and took N = 10, N = 15
— but the matrix continued to change. Only when he used N = 200 did the Fock matrix elements stabilize within
the accuracy of six significant figures. We could take N = 200 for an extremely poor basis set and for a few such
tests, but never in good quality calculations because their cost would become astronomic. Even for the case in
question, the computations had to be done overnight. In a casual discussion at the beginning of my six-week term
at the University of Namur, Joseph Delhalle told me about the problem. He said also that in a recent paper, the
Austrian scientists Alfred Karpfen and Peter Schuster also noted that the results depend strongly on the chosen
value of N . They made a correction after the calculations with a small N had been performed. They added the
dipole-dipole electrostatic interaction of the cell 0 with a few hundred neighboring cells, and as the dipole moment
of a cell, they took the dipole moment of the isolated LiH molecule. As a result, the Fock matrix elements changed
much less with N . This information made me think about implementing the multipole expansion right from the
beginning in the self-consistent Hartree-Fock-Roothaan procedure for a polymer. Below you will see what has
been done. The presented theory pertains to a regular polymer (a generalization to 2-D and 3-D is possible).
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have a summation (over the whole infinite crystal) of the interactions of an electron with all
the nuclei, and in the next term, a summation over the whole crystal of the electron-electron
interactions. This is of course natural, because our system is infinite. The problem is, however,
that both summations diverge: the first tends to −∞, the second to +∞. On top of this, to
compute the bond order matrix P, we have to perform another summation in Eq.(9.65) over the
FBZ of the crystal. We have a similar, very unpleasant, situation in the total energy expression,
where the first term tends to −∞, while the nuclear repulsion term goes to +∞.

The routine approach in the literature was to replace infinity by taking the first-neighbor
interactions. This approach is quite understandable because any attempt to take further neighbors
ends up with an exorbitant bill to pay.54

9.12.1 Fock Matrix Corrections

A first idea that we may think of is to separate carefully the long-range part of the Fock matrix
elements and of the total energy from these quantities as calculated in a traditional way (i.e., by
limiting the infinite-range interactions to those for the N neighbors on the left from cell 0 and
N neighbors on the right of it). For the Fock matrix element, we would have

F0 j
pq = F0 j

pq (N )+ C0 j
pq(N ), (9.75)

where C0 j
pq(N ) stands for the long-range correction, while F0 j

pq (N ) is calculated assuming
interactions with the N right and N left neighbors of cell 0:

F0 j
pq (N ) = T 0 j

pq+
h=+N∑
h=−N

(
−
∑

u

Zu V 0 j
pq

(
Ah

u

)
+

l=h+N∑
l=h−N

∑
rs

Plh
sr

((
0h

pr

∣∣ jl

qs

)
− 1

2

(
0h

pr

∣∣ l j

sq

)))

(9.76)

C0 j
pq(N ) =

#∑
h

(
−
∑

u

Zu V 0 j
pq

(
Ah

u

)
+

l=h+N∑
l=h−N

∑
rs

Plh
sr

(
0h

pr

∣∣ jl

qs

))
, (9.77)

where the symbol
∑#

h will mean a summation over all the unit cells except the section of unit cells
with numbers −N ,−N + 1, . . . , 0, 1, . . . N ; i.e., the neighborhood of cell 0 (“short-range”).
The nuclear attraction integral55

V 0 j
pq (A

h
u) = (χ0

p|
1

|r− (Au + haz)| |χ
j

q ), (9.78)

where the vector Au shows the position of the nucleus u in cell 0, while Ah
u≡ Au + haz points

to the position of the equivalent nucleus in cell h (z denotes the unit vector along the periodicity
axis).

54 The number of two-electron integrals, which quantum chemistry positively dislikes, increases with the number of

neighbors to take (N ) and the atomic basis set size per unit cell (ω) as N 3ω4. Besides, the nearest-neighbors are
indeed the most important.

55 Without the minus sign in the definition, the name is not quite adequate.
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The expression for C0 j
pq(N ) has a clear physical interpretation. The first term represents the

interaction of the charge distribution −χ0
p(1)

∗χ j
q (1) (of electron 1, hence the sign −) with all

the nuclei,56 except those enclosed in the short-range region (i.e., extending from −N to +N ).
The second term describes the interaction of the same electronic charge distribution with the
total electronic distribution outside the short-range region. How do we see this? The integral( 0h

pr | jl
qs

)
means the Coulombic interaction of the distribution under consideration−χ0

p(1)
∗χ j

q (1)

with its partner-distribution −χh
r (2)

∗χ l
s(2), doesn’t it? This distribution is multiplied by Plh

sr
and then summed over all possible atomic orbitals r and s in cell h and its neighborhood (the
sum over cells l from the neighborhood of cell h), which gives the total partner electronic
distribution −∑l=h+N

l=h−N

∑
rs Plh

sr χ
h
r (2)

∗χ l
s(2). This, however, simply represents the electronic

charge distribution of cell h. Indeed, the distribution, when integrated, gives [(just look at
Eq. (9.68)] −∑l=h+N

l=h−N

∑
rs Plh

sr Shl
rs = 2n0. Therefore, our electron distribution −χ0

p(1)
∗χ j

q (1)
interacts electrostatically with the charge distribution of all cells except those enclosed in the
short-range region, because Eq. (9.77) contains the summation over all cells h except the short-
range region. Finally,

the long-range correction to the Fock matrix elements C0 j
pq(N ) represents the Coulombic inter-

action of the charge distribution −χ0
p(1)

∗χ j
q (1) with all the unit cells (nuclei and electrons)

from outside the short-range region.

In the C0 j
pq(N ) correction, in the summation over l, we have neglected the exchange

term −1
2

∑#
h
∑l=h+N

l=h−N

∑
rs Plh

sr

( 0h
pr | l j

sq

)
. The reason for this was that we have been con-

vinced that P0h
sr vanishes fast with h. Indeed, the largest integral in the summation over l is

−1
2

∑#
h
∑

rs P0h
sr

( 0h
pr |0 j

sq

)
. This term is supposed to be small not because of the integral

( 0h
pr |0 j

sq

)
,

which can be quite important [e.g.,
( 0h

pr |0,h−1
pq

)
], but because of P0h

sr . We will come back to this

problem later in this chapter.57

9.12.2 Total Energy Corrections

The total energy per unit cell could similarly be written as

ET = ET (N )+ CT (N ), (9.79)

where ET (N ) means the total energy per unit cell as calculated by the traditional approach
(i.e., with truncation of the infinite series on the N left and N right neighbors of the cell 0).

56 Refer to the interpretation of the integral −V 0 j
pq (Ah

u) = −
(
χ0

p
(
r
) | 1
|r−Ah

u |
|χ j

q
(
r
))

.

57 Matrix element P0h
sr [i.e., the bond order contribution from the AO product: χ0

s (1)χ
h
r (1)

∗ pertaining to distant
cells 0 and h] seems to be a small number. This will turn out to be delusive. We have to stress, however, that
trouble will come only in some “pathological” situations.
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The quantity CT (N ) therefore represents the error (i.e., the long-range correction). The detailed
formulas for ET (N ) and CT (N ) are the following:

ET (N ) = 1

2

j=+N∑
j=−N

∑
pq

P j0
qp
(
h0 j

pq + F0 j
pq (N )

)+ 1

2

j=+N∑
j=−N

∑
u

′∑
v

Zu Zv

R0 j
uv

, (9.80)

CT (N ) = 1

2

∑
j

∑
pq

P j0
qp C0 j

pq(N )

+ 1

2

#∑
h

⎛
⎝∑

j

∑
pq

P j0
qp

∑
u

[
− Zu V 0 j

pq (A
h
u)
]
+
∑

u

′∑
v

Zu Zv
R0h

uv

⎞
⎠ , (9.81)

where from F0 j
pq , we have already separated its long-range contribution C0 j

pq(N ), so that CT (N )
contains all the long-range corrections.

Equation (9.81) for CT (N )may be obtained just by looking at Eq. (9.80). The first term with
C0 j

pq(N ) is evident,58 it represents the Coulombic interaction of the electronic distribution [let
us recall Eq. (9.68)] associated with cell 0 with the whole polymer chain except the short-range
region. What, therefore, is yet to be added to ET (N )? What it lacks is the Coulombic interaction
of the nuclei of cell 0 with the whole polymer chain, except for the short-range region. Let us see
whether we have it in Eq. (9.81). The last term means the Coulombic interaction of the nuclei
of cell 0 with all the nuclei of the polymer except for the short-range region (and again we know
why we have the factor 1

2 ). What, therefore, is represented by the middle term59? It is clear, that
it has to be (with the factor 1

2 ) the Coulombic interaction of the nuclei of cell 0 with the total

58 The factor 1
2 may worry us a little. Why just 1

2 ? Let us see. Imagine N identical objects i = 0, 1, 2, . . . N − 1
playing identical roles in a system (like our unit cells). We will be interested in the energy per object, ET . The
total energy may be written as (let us assume here pairwise interactions only)

N ET =
∑

j

E j +
∑
i< j

Ei j ,

where E j and Ei j are, respectively, the isolated object energy and the pairwise interaction energy. Since the
objects are identical, then

N ET = N E0 + 1

2

′∑
i, j

Ei j = N E0 + 1

2

∑
i

⎛
⎝ ′∑

j

Ei j

⎞
⎠ = N E0 + 1

2
N

⎛
⎝ ′∑

j

E0 j

⎞
⎠ ,

where the prime means excluding self-interaction and the term in parentheses means the interaction of object 0
with all others. Finally,

ET = E0 + 1

2

⎛
⎝ ′∑

j

E0 j

⎞
⎠ ,

where we have the factor 1
2 before the interaction of one of the objects with the rest of the system.

59 As we can see, we have to sum (over j) to infinity the expressions h0 j
pq , which contain T 0 j

pq [but these terms decay
very fast with j and can all be taken into account in ET (N )] and the long-range terms, the Coulombic interaction
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electronic distribution outside the short-range region. We look at the middle term now. We have
the minus sign, which is very good indeed, because we have to have an attraction. Further, we
have the factor 1

2 , which is also OK; and then we have
∑#

h , which is perfect, because we expect

a summation over only the long range, and finally, we have
∑

j
∑

pq P j0
qp
∑

u

[
− Zu V 0 j

pq (Ah
u)
]

and we do not like this. This is the Coulombic interaction of the total electronic distribution of
cell 0 with the nuclei of the long-range region, while we expected the interaction of the nuclei
of cell 0 with the electronic charge distribution of the long-range region. What is going on?
Everything is OK. Just count the interactions pairwise, and at each of them, reverse the locations
of the interacting objects – the two interactions mean the same. Therefore,

the long-range correction to the total energy per cell CT (N ) represents the Coulombic inter-
action of cell 0 with all the cells from outside the short-range region.

We are now all set to calculate the long-range corrections C0 j
pq(N ) and CT (N ). It is impor-

tant to realize that all the interactions to calculate pertain to objects that are far away in
space.60 This is what we have carefully prepared. This is the condition that enables us to
apply the multipole expansion to each of the interactions (see Appendix X available at book-
site.elsevier.com/978-0-444-59436-5).

9.12.3 Multipole Expansion Applied to the Fock Matrix

Let us first concentrate on C0 j
pq(N ). As seen from Eq. (9.77), there are two types of interactions to

calculate: the nuclear attraction integrals V 0 j
pq (Ah

u) and the electron repulsion integrals ( 0h
pr | jl

qs ).

In the second term, we may use the multipole expansion of 1
r12

given in Appendix X available

of the electronic charge distribution of cell 0 with the nuclei beyond the short-range region [the middle term in
CT (N )]. The argument about fast decay with j of the kinetic energy matrix elements mentioned before follows
from the double differentiation with respect to the coordinates of the electron. Indeed, this results in another atomic
orbital, but with the same center. This leads to the overlap integral of the atomic orbitals centered like those in

χ0
pχ

j
q . Such an integral decays exponentially with j .

60 Let us check this. What objects we are talking about? Let us begin from C0 j
pq (N ). As it is seen from the formula,

one of the interacting objects is the charge distribution of the first electron χ0
p(1)
∗χ j

q (1). The second object is
the whole polymer except for the nuclei and electrons of the neighborhood of the cell 0. The charge distributions

χ0
p(1)
∗χ j

q (1) with various j are always close to cell 0, because the orbital χ0
p(1) is anchored at cell 0, and such

a distribution decays exponentially when cell j goes away from cell 0. The fact that the nuclei with which the

distribution χ0
p(1)
∗χ j

q (1) interacts are far apart is evident, but less evident is that the electrons with which the
distribution interacts are also far away from cell 0. Let us have a closer look at the electron-electron interaction.
The charge distribution of electron 2 is χh

r (2)
∗χ l

s(2), and the summation over cells h excludes the neighborhood
of cell 0. Hence, because of the exponential decay, there is a guarantee that the distribution χh

r (2)
∗χ l

s(2) is bound
to be close to cell h, if this distribution is to be of any significance. Therefore, the charge distribution χh

r (2)
∗χ l

s(2)
is certainly far away from cell 0.

Similar reasoning may be used for CT (N ). The interacting objects are of the type χ0
p(1)
∗χ j

q (1) – i.e., always
close to cell 0 – with the nuclei of cell h, and there is a guarantee that h is far from cell 0. The long distance of
the interacting nuclei (second term) is evident.

http://booksite.elsevier.com/978-0-444-59436-5
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at booksite.elsevier.com/978-0-444-59436-5 on p. e169. In the first term, we will do the same,
but this time, one of the interacting particles will be the nucleus indicated by vector Ah

u . The
corresponding multipole expansion reads as (in a.u.; the nucleus u of the charge Zu interacts
with the electron of charge −1, nk = nl = ∞, S = min(k, l)):

− Zu

ru1
=

nk∑
k=0

nl∑
l=0

m=+S∑
m=−S

Akl|m|R−(k+l+1)M (k,m)
a (1)∗M (l,m)

b (u), (9.82)

where R stands for the distance between the origins of the coordinate system centered in cell
0 and the coordinate system in cell h, which, of course, is equal to R = ha. The multipole
moment of electron 1,M (k,m)

a (1), reads as

M (k,m)
a (1) = −rk

a P |m|k ( cos θa1) exp (imφa1), (9.83)

while
M (l,m)

b (u) = Zurl
u P |m|l ( cos θu) exp (imφu) (9.84)

denotes the multipole moment of nucleus u computed in the coordinate system of the cell h.
When this expansion, as well as the expansion for 1

r12
, are inserted into Eq. (9.77) for C0 j

pq(N ),
we obtain

C0 j
pq(N ) =

#∑
h

nk∑
k=0

nl∑
l=0

m=+S∑
m=−S

Akl|m|R−(k+l+1)
((
χ0

p|M̂ (k,m)
a (1)∗|χ j

q
)

·
[∑

u

M (l,m)
b (Ah

u)
]
+ (χ0

p|M̂ (k,m)
a (1)∗|χ j

q )

·
l ′=h+N∑
l ′=h−N

∑
rs

Pl ′h
sr

(
χh

r |M̂ (l,m)
b (2)|χ l ′

s

))

=
#∑
h

nk∑
k=0

nl∑
l=0

m=+S∑
m=−S

Akl|m|R−(k+l+1)(χ0
p|M̂ (k,m)

a (1)∗|χ j
q
)

·
[∑

u

M (l,m)
b (Ah

u)+
l ′=h+N∑
l ′=h−N

∑
rs

Pl ′h
sr

(
χh

r |M̂ (l,m)
b (2)|χ l ′

s

)]
.

Let us note that in the brackets, we have nothing but a multipole moment of unit cell h. Indeed,
the first term represents the multipole moment of all the nuclei of cell h, while the second term
is the multipole moment of electrons of unit cell h. The latter can be best seen if we recall the
normalization condition [Eq. (9.68)]:

∑l ′=h+N
l ′=h−N

∑
rs Pl ′h

sr Shl ′
rs =

∑l ′=+N
l ′=−N

∑
rs Pl ′0

sr S0l ′
rs = 2n0,

with 2n0 denoting the number of electrons per cell. Hence, we can write

C0 j
pq(N ) =

#∑
h

∑
k=0

∑
l=0

m=+S∑
m=−S

Akl|m|R−(k+l+1)(χ0
p|M̂ (k,m)

a (1)∗|χ j
q
)
M (l,m)(h), (9.85)

http://booksite.elsevier.com/978-0-444-59436-5
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where the multipole moment of cell h is given by

M (l,m)(h) =
[∑

u

M (l,m)
b (Ah

u)+
l ′=h+N∑
l ′=h−N

∑
rs

Pl ′h
sr

(
χh

r |M̂ (l,m)
b (2)|χ l ′

s

)]
, (9.86)

because the summation over u goes over the nuclei belonging to cell h, and the coordinate
system b is anchored in cell h. Now is the time to say something most important.

Despite the fact that M (l,m)(h) depends formally on h, in reality, it is h–independent, because
all the unit cells are identical.

Therefore, we may safely write that M (l,m)(h) = M (l,m).
Now we will try to avoid a well-hidden trap, and then we will be all set to prepare ourselves

to pick the fruit from our orchard. The trap is that Akl|m| depends on h. Why is this? Well,
in the Akl|m|, there is (−1)l , while the corresponding (−1)k is absent; i.e., there is a thing
that is associated with the 2l–pole in the coordinate system b, and there is no an analogous
expression for its partner, the 2k-pole of coordinate system a. Remember, however (as discussed
in Appendix X available at booksite.elsevier.com/978-0-444-59436-5), that the z-axis of each
coordinate system has been chosen in such a way that a “shoots” toward b, and b does not shoot
toward a. Therefore, the two coordinate systems are not equivalent, and hence one may have
(−1)l , and not (−1)k . The coordinate system a is associated with cell 0, and the coordinate
system b is connected to cell h. If h > 0, then it is true that a shoots to b, but if h < 0, their
roles are exchanged. In such a case, in Akl|m|, we should not put (−1)l , but (−1)k . If we do this,
then in the summation over h in Eq. (9.85), the only dependence on h appears in a simple term
(ha)−(k+l+1)!

It appears, therefore, to be a possibility of exactly summing the electrostatic interaction along
an infinite polymer chain.

Indeed, the sum ∞∑
h=1

h−(k+l+1) = ζ(k + l + 1), (9.87)

where ζ(n) stands for the Riemann dzeta function, which is known to a high accuracy and be
available in mathematical tables.61

61 For example, M. Abramovitz and I. Stegun, Eds, Handbook of Mathematical Functions, Dover, New York (1968),
p. 811.

http://booksite.elsevier.com/978-0-444-59436-5
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Georg Friedrich Bernhard Riemann (1826−1866), German mathematician and
physicist and professor at the University of Göttingen. Nearly all his papers gave
rise to a new mathematical theory. His life was full of personal tragedies; he lived
only 40 years, but despite this, he made a giant contribution to mathematics, mainly
in non-Euclidean geometries (his geometry plays an important role in the general
theory of relativity), in the theory of integrals (Riemann integral), and in the theory
of trigonometric series.

In his only paper on the number theory he considered the Riemann dzeta func-
tion and has shown its importance for understanding the distribution of prime num-
bers. He was the first to consider that physical reality may involve more than three
or four dimensions.

The interactions of cell 0 with all the other cells are enclosed in this number. When this is
inserted into C0 j

pq(N ), then we obtain

C0 j
pq(N ) =

∞∑
k=0

∞∑
l=0

U 0 j(k,l)
pq

�
(k+l+1)
N

a(k+l+1)
, (9.88)

where

U 0 j(k,l)
pq =

m=+S∑
m=−S

(−1)m[(−1)k + (−1)l] (k + l)!
(k + |m|)!(l + |m|)!M

0 j(k,m)∗
pq M (l,m) (9.89)

�
(n)
N = ζ(n)−

N∑
h=1

h−n. (9.90)

Note that the formula for C0 j
pq(N ) represents a sum of the multipole-multipole interactions. The

formula also shows that

electrostatic interactions in a regular polymer come from a multipole-multipole interaction
with different parities of the multipoles,

which can be seen from the term62 [(−1)k + (−1)l].
According to the discussion in Appendix X available at booksite.elsevier.com/978-0-444-

59436-5, to preserve the invariance of the energy with respect to translation of the coordinate

62 The term appears due to the previously discussed problem of “who shoots to whom” in the multipole expansion.
What happens is that the interaction of an even (odd) multipole of cell 0 with an odd (even) multipole on the right
side of the polymer cancels with a similar interaction with the left side. This is easy to understand. Let us imagine
the multipoles as non-pointlike objects built of the appropriate point charges. We look along the periodicity axis.
An even multipole has the same signs at both ends, while an odd one has opposite signs. Thus, when the even
multipole is located in cell 0, and the odd one on its right side, this interaction will cancel exactly, with the
interaction of the odd one located on the left side (at the same distance).

http://booksite.elsevier.com/978-0-444-59436-5
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system, when computing C0 j
pq(N ), we have to add all the terms with k + l + 1 = const , i.e.,

C0 j
pq(N ) =

∞∑
n=3,5,..

�
(n)
N

an

n−1∑
l=1

U 0 j(n−l−1,l)
pq . (9.91)

The above expression is equivalent to Eq.(9.88), but it ensures automatically the translational
invariance by taking into account all the necessary multipole-multipole interactions.63

What should we know, therefore, to compute the long-range correction C0 j
pq(N ) to the Fock

matrix64? From Eq. (9.91), it is seen that one has to know how to calculate three numbers:
U 0 j(k,l)

pq , a−n and �(n)N . The equation for the first one is given in Table 9.2; the other two are
trivial. � is easy to calculate knowing the Riemann ζ function (from tables): in fact, we have
to calculate the multipole moments, and these are one-electron integrals (easy to calculate).
Originally, before the multipole expansion method was designed, we also had a large number of
two-electron integrals (expensive to calculate). Instead of overnight calculations, the computer
time was reduced to about 1 s and the results were more accurate.

9.12.4 Multipole Expansion Applied to the Total Energy

As shown above, the long-range correction to the total energy means that the interaction of cell
0 with all the cells from the long-range region multiplied by 1

2 . The reasoning pertaining to its
computation may be repeated exactly in the way we have shown in the previous subsection.
However, we must remember a few differences:

• What interacts is not the charge distribution χ0∗
p χ

j
q , but the complete cell 0.

• The result has to be multiplied by 1
2 , for reasons discussed earlier.

Finally, we obtain

CT (N ) = 1

2

∞∑
k=0

∞∑
l=0

U (k,l)
T

�
(k+l+1)
N

ak+l+1 , (9.92)

where

U (k,l)
T =

m=+S∑
m=−S

(
(−1)k + (−1)l

) (k + l)!(−1)m

(k + |m|)!(l + |m|)!M
(k,m)∗M (l,m). (9.93)

63 Indeed,
∑n−1

l=1 U0 j(n−l−1,l)
pq = U0 j(n−2,1)

pq + U0 j(n−3,2)
pq + · · · + U0 j(0,n−1)

pq ; i.e., a review of all terms with

k + l + 1 = n except U0 j(n−1,0)
pq . This term is absent because it requires calculation of M(0,0); i.e., of the

charge of the elementary cell, which has to stay electrically neutral (otherwise the polymer falls apart). Therefore
M(0,0) = 0. Why, however, does the summation over n not simply represent n = 1, 2, . . .∞, but contains only
odd values of n except n = 1? What would happen if we took n = 1? Look at Eq. (9.88). The value n = 1 requires
k = l = 0. This leads to the “monopole–monopole” interaction, but this is 0, since the whole unit cell (and one
of the multipoles is that of the unit cell) carries no charge. The summation in Eq. (9.91) does not contain any
even values of n, because they would correspond to k and l of different parities, and such interactions (as we have
shown before) are equal to 0. Therefore, indeed, Eq. (9.91) contains all the terms that are necessary.

64 L. Piela and J. Delhalle, Intern. J. Quantum Chem. 13, 605 (1978).
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Table 9.2. The quantities U (k,l) for k + l < 7 necessary for calculating the most important long-

range corrections to the Fock matrix elements U0 j(k,l)
pq and to the total energy per unit cell U (k,l)

T .
The parentheses [ ] mean the corresponding Cartesian multipole moment. When computing the Fock
matrix correction, the first multipole moment [ ] stands for the multipole moment of the charge distri-

bution χ0
pχ

j
q , the second, of the unit cell. For example, U (0,2) for the correction C0 j

pq (N ) is equal to(
0
p

∣∣ j
q

) (∑
u Zu

(
3z2

u − r2
u

)
−∑l′=+N

l ′=−N

∑
rs Pl′0

sr

(
χ0

r |3z2 − r2|χ l′
s

))
, while U (0,2) for CT (N ) equals 0

because [1] means the charge of the unit cell, which is equal to zero. In the table, only values of U for k ≤ l are
given. If l < k, then the formula is the same, but the order of the moments is reversed.

n U (k,l), k + l + 1 = n

3 U (0,2) = [1][3z2 − r2]
U (1,1) = 2[x][x] + 2[y][y] − 4[z][z]

5 U (0,4) = 1
4 [1][35z4 − 30z2r2 + 3r4]

U (1,3) = 4[z][3r2z − 5z3] + 3[x][5xz2 − r2x] + 3[y][5yz2 − r2 y]
U (2,2) = 3[3z2 − r2][3z2 − r2] − 24[xz][xz] − 24[yz][yz]

+ 3
2 [x2 − y2][x2 − y2] + 6[xy][xy]

7 U (0,6) = 1
8 [1][231z6 − 315z4r2 + 105z2r4 − 5r6]

U (1,5) = − 3
2 [z][63z5 − 70z3r2 + 15zr4] + 15

4 [x][21z4x − 14z2xr2 + xr4]
+ 15

4 [y][21z4 y − 14z2 yr2 + yr4]
U (2,4) = 15

8 [3z2 − r2][35z4 − 30z2r2 + 3r4] − 30[xz][7z3x − 3xzr2]
−30[yz][7z3 y − 3yzr2] + 15

4 [x2 − y2][7z2(x2 − y2)− r2(x2 − y2)]
+15[xy][7z2xy − xyr2]

U (3,3) = −10[5z3 − 3zr2][5z3 − 3zr2] + 45
4 [5z2x − xr2][5z2x − xr2]

+ 45
4 [5z2 y − yr2][5z2 y − yr2] − 45[zx2 − zy2][zx2 − zy2]

−180[xyz][xyz] + 5
4 [x3 − 3xy2][x3 − 3xy2] + 5

4 [y3 − 3x2 y][y3 − 3x2 y]

Let us note that (for the same reasons as before)

the interaction of multipoles of different parities equals zero.

and this time we have to do with the interaction of the multipoles of complete cells. The quantities
U (k,l)

T are given in Table 9.2.

Do the Fock Matrix Elements and the Total Energy per Cell Represent Finite Values?

If the Fock matrix elements were infinite, then we could not manage to carry out the Hartree-
Fock-Roothaan self-consistent procedure. If ET were infinite, the periodic system could not
exist at all. It is, therefore, important to know when we can safely model an infinite system.

For any finite system, there is no problem: the results are always finite. The only danger,
therefore, is summation to infinity (“lattice sums”), which always ends with the interaction of
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a part or whole unit cell with an infinite number of distant cells. Let us take such an example in
the simplest case of a single atom per cell. Let us assume that the atoms interact by the Lennard-

Jones pairwise potential (p. 347): E = ε
[( r0

r

)12 − 2
( r0

r

)6], where r means the interatomic

distance, r0 means the equilibrium distance, and ε is the depth of the potential well. Let us try
to compute the lattice sum

∑
j E0 j , where E0 j means the interaction energy of the cells 0 and

j . We see that, due to the form of the potential over long distances, what counts is uniquely the
attractive term −2ε

( r0
r

)6. When we take such interactions that pertain to a sphere of the radius
R (with the origin located on atom 0), each individual term (i.e., its absolute value) decreases
with increasing R. This is very important, because when we have a 3-D lattice, the number of
such interactions within the sphere increases as R3. We see that the decay rate of the interactions
will finally win and the lattice sum will converge. However, we can easily see that if the decay
of the pairwise interaction energy were slower, then we might have had trouble calculating the
lattice sum. For example, if, instead of the neutral Lennard-Jones atoms, we took ions of the
same charge, the interaction energy would explode to∞. It is evident, therefore, that for each
periodic system, there are some conditions to be fulfilled if we want to have finite lattice sums.

These conditions are more severe for the Fock matrix elements because each of the terms
represent the interaction of a charge with complete distant unit cells. The convergence depends
on the asymptotic interaction energy of the potential. In the case of the multipole-multipole
interaction, we know what the asymptotic behavior looks like: it is R−

(
0+l+1

)
= R−

(
l+1

)
,

where R stands for the intercell distance. The lattice summation in a nD lattice (n = 1, 2, 3)
gives the partial sum dependence on R as Rn

Rl+1 = Rn−l−1. This means that65

in 1-D, the unit cell cannot have any nonzero net charge (l = 0); in 2-D, it cannot have a
nonzero charge and dipole moment (l = 1); and in 3-D, it cannot have a nonzero charge,
dipole moment, and quadrupole moment (l = 2).

9.13 Back to the Exchange Term

The long-range effects discussed so far result from the Coulomb interaction in the Fock equa-
tion for a regular polymer. There is, however, also an exchange contribution, which has been
postponed in the long-range region. It is time now to reconsider this contribution. The exchange
term in the Fock matrix element F0 j

pq had the following form [see Eq. (9.67)]:

− 1

2

∑
h,l

∑
rs

Plh
sr (

0h
pr |l j

sq) (9.94)

and gave the following contribution to the total energy per unit cell:

Eexch =
∑

j

Eexch( j), (9.95)

65 L.Z. Stolarczyk and L. Piela, Intern.J.Quantum Chem. 22, 911 (1982).
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where the cell 0–cell j interaction has the form [see Eq. (9.81)]:

Eexch( j) = −1

4

∑
h,l

∑
pqrs

P j0
qp Plh

sr (
0h
pr |l j

sq). (9.96)

It would be very nice to have the exchange contribution Eexch( j)decaying fast, when j increases,
because it could be enclosed in the short-range contribution. Do we have good prospects for this?
The above formula shows (the integral) that the summation over l is safe: the contribution of
those cells l that are far from cell 0 is negligible due to differential overlaps of type χ0

p(1)
∗χ l

s(1).
The summation over cells h is safe as well (for the same reasons), because it is bound to be
limited to the neighborhood of cell j (see the integral).

In contrast, the only guarantee of a satisfactory convergence of the sum over j is that we hope
the matrix element P j0

qp decays fast if j increases.

So far, exchange contributions have been neglected, and there has been an indication that
suggested this was the right procedure. This was the magic word “exchange”. All the experience
of myself and my colleagues in intermolecular interactions whispers, “This is surely a short-
range type.” In a manuscript by Sandor Suhai, I read that the exchange contribution is of a long-
range type. To our astonishment, this turned out to be right (just a few numerical experiments).
We have a long-range exchange. After analysis was performed, it turned out that

the long-range exchange interaction appears if and only if the system is metallic.

A metallic system is notorious for its HOMO–LUMO quasidegeneracy; therefore, we began
to suspect that when the HOMO–LUMO gap decreases, the P j0

qp coefficients do not decay with j .
Such things are most clearly seen when the simplest example is taken, and the hydrogen

molecule at long internuclear distance is the simplest prototype of a metal. Indeed, this is a
system with half-filled orbital energy levels when the LCAO MO method is applied (in the
simplest case: two atomic orbitals). Note that, after subsequently adding two extra electrons,
the resulting system (let us not worry too much that such a molecule could not exist!) would
model an insulator; i.e., all the levels are doubly occupied.66

Analysis of these two cases convinces us that indeed our suspicions were justified. Here are the
bond order matrices that we obtain in both cases (see Appendix S available at booksite.elsevier.
com/978-0-444-59436-5, p. e143), S denotes the overlap integral of the 1s atomic orbitals of

66 Of course, we could take two helium atoms. This also would be good. However, the first principle in research is
“In a single step, only change a single parameter, analyze the result, draw the conclusions, and take the second
step.”
Just in passing, a second principle also applies here. If we do not understand an effect, what should we do? Just
divide the system in two parts and look where the effect persists. Keep dividing until the effect disappears. Take
the simplest system in which the effect still exists, analyze the problem, understand it, and go back slowly to the
original system (this is why we have H2 and H2−

2 here).

http://booksite.elsevier.com/978-0-444-59436-5
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atoms a and b):

P = (1+ S)−1
(

1 1
1 1

)
for H2 (9.97)

P = (1− S2)−1
(

1 −S
−S 1

)
for H−2 . (9.98)

We see67 how profoundly these two cases differ in the off-diagonal elements (they are analogues
of P j0

qp for j �= 0).

In the second case, the proportionality of P j0
qp and S ensures an exponential, therefore very

fast, decay if j tends to∞. In the first case, there is no decay of P j0
qp at all.

A detailed analysis for an infinite chain of hydrogen atoms (ω = 1) leads to the following
formula68 for P j0

qp :

P j0
11 =

2

π j
sin

(
π j

2

)
. (9.99)

This means an extraordinarily slow decay of these elements (and therefore of the exchange
contribution) with j . When the metallic regime is even slightly removed, the decay gets much,
much faster.

This result shows that the long-range character of the exchange interactions does not exist in
reality. It seems to represent an indication that the Hartree-Fock method fails in such a case.

9.14 Choice of Unit Cell

The concept of the unit cell has been important throughout this chapter. The unit cell represents
an object that, when repeated by translations, gives an infinite crystal. In this simple definition,
almost every word can be a trap.

Is this feasible? Is the choice unique? If not, then what are the differences among them? How is
the motif connected to the unit cell choice? Is the motif unique? Which motifs may we consider?

As we have already noted, the choice of unit cell as well as of motif is not unique. This is easy
to see. Indeed Fig. 9.22 shows that the unit cell and the motif can be chosen in many different
and equivalent ways.

Moreover, there is no chance of telling in a responsible way which of the choices are reason-
able and which are not. And it happens that in this particular case, we really have a plethora of
choices. Putting no limits to our fantastic scenario, we may choose a unit cell in a particularly
capricious way (see Figs. 9.22b and 9.23).

67 L. Piela, J.-M. André, J.G. Fripiat, and J. Delhalle,Chem. Phys. Lett. 77, 143 (1981).
68 I.I. Ukrainski, Theor.Chim.Acta 38, 139 (1975); q = p = 1 means that we have a single 1s hydrogen orbital per

unit cell.
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(a)

(b)

Fig. 9.22. Three of many possible choices of the unit cell motif. (a) choices I and II differ, but both look “reasonable”; (b) choice
III might be called strange. Despite of this strangeness, choice III is as legal (from the point of view of mathematics) as I or II.

cell 0

Fig. 9.23. Six different choices (I-VI) of unit cell content (motifs) for a linear chain (LiH)∞. Each cell has the same length
a = 6.3676 a.u. There are two nuclei: Li3+ and H+ and two Gaussian doubly occupied 1s atomic orbitals (denoted by χ1 and
χ2, with exponents 1.9815 and 0.1677, respectively) per cell. Motif I corresponds to a common sense situation: both nuclei and
electron distribution determined by χ1 and χ2 are within the section (0, a). The other motifs (II-VI), all corresponding to the same
unit cell (0, a) of length a are very strange. Each motif is characterized by the symbol (k, l,m, n), which means that the Li nucleus,
H nucleus, χ1 and χ2 are shifted to the right by ka, la,ma, and na, respectively. All the unit cells with their contents (motifs) are
fully justified, equivalent from the mathematical point of view, and, therefore, “legal” from the point of view of physics. Note that
the nuclear framework and the electronic density corresponding to a cell are very different for all the choices.
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Fig. 9.23 shows six different, fully legitimate, choices of motif associated with a unit cell in a
1-D “polymer” (LiH)∞. Each motif consists of the lithium nucleus, a proton, and an electronic
charge distribution in the form of two Gaussian 1s orbitals that accommodate four electrons
altogether. By repeating any of these motifs, we reconstitute the same original chain.

We may say there may be many legal choices of motif, but this is without any theoretical
meaning because all the choices lead to the same infinite system. Well, this is true with respect
to theory, but in practical applications, the choice of motif may be of prime importance. We can
see this from Table 9.22, which corresponds to Fig. 9.23.

The results, without taking into account the long-range interactions, depend very strongly on
the choice of unit cell motif.

Use of the multipole expansion greatly improves the results and, to very good accuracy, makes
them independent of the choice of unit cell motif as it should be.

Table 9.3. Total energy per unit cell ET in the “polymer” LiH as a function of unit cell
definition (Fig. 9.23). For each choice of unit cells, this energy is computed in four ways: (1)
without long-range forces (long range = 0); i.e., unit cell 0 interacts with N = 6 unit cells
on its right-hand side and N unit cells on its left-hand-side (2), (3), (4) with the long range
computed with multipole interactions up to the a−3, a−5 and a−7 terms, respectively. The
bold figures are exact. The corresponding dipole moment μ of the unit cell (in Debyes) is also
given.

Unit Cell Long Range μ −ET

I 0 6.6432 6.610869
a−3 6.6432 6.612794692
a−5 6.6432 6.612794687
a−7 6.6432 6.612794674

II 0 −41.878 6.524802885
a−3 −41.878 6.612519674
a−5 −41.878 6.612790564
a−7 −41.878 6.612794604

III 0 −9.5305 6.607730984
a−3 −9.5305 6.612788446
a−5 −9.5305 6.612794633
a−7 −9.5305 6.612794673

IV 0 22.82 6.57395630
a−3 22.82 6.612726254
a−5 22.82 6.612793807
a−7 22.82 6.612794662

V 0 −90.399 6.148843431
a−3 −90.399 6.607530384
a−5 −90.399 6.612487745
a−7 −90.399 6.612774317
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Note that the larger the dipole moment of the unit cell, the worse the results with the short-
range forces only. This is understandable because the first non-vanishing contribution in the mul-
tipole expansion is the dipole-dipole term (see Appendix X available at booksite.elsevier.com/
978-0-444-59436-5). Note how considerably the unit cell dependence drops after this term is
switched on (a−3).

The conclusion is that in the standard (i.e., short-range) calculations, we should always choose
the unit cell motif that corresponds to the smallest dipole moment. It seems, however, that such
a motif is what everybody would choose using common sense.

9.14.1 Field Compensation Method

In a moment, we will unexpectedly find a very different conclusion. The logical chain of steps
that led to it has, in my opinion, a didactic value, and contains a considerable amount of
optimism. When this result was obtained by Leszek Stolarczyk and myself, we were stunned
by its simplicity.

Is it possible to design a unit cell motif with a dipole moment of zero? This would be a great
unit cell because its interaction with other cells would be weak and it would decay fast with
intercellular distance. We could therefore compute the interaction of a few cells like this and
the job would be done: we would have an accurate result at very low cost.

There is such a unit cell motif.
Imagine that we start from the concept of the unit cell with its motif (with lattice constant a).

This motif is, of course, electrically neutral (otherwise, the total energy would be+∞), and its
dipole moment component along the periodicity axis is equal to μ. Let us put its symbol in the
unit cell (see Fig. 9.24a).

Now let us add to the motif two extra (i.e., fictitious) pointlike opposite charges (+q and
−q), located on the periodicity axis and separated by a. The charges are chosen in such a way
(q = μ

a ) that they alone give the dipole moment component along the periodicity axis equal to
−μ; Fig. 9.24b.

In this way, the new unit cell dipole moment (with the additional fictitious charges included)
is equal to zero. Is this an acceptable choice of motif? Well, what does acceptable mean in this
context? The only requirement is that by repeating the new motif with period a, we have to
reconstruct the whole crystal. What will we get when repeating the new motif? Let us see (by
taking a look at Fig. 9.24c).

We get the original periodic structure because the charges all along the polymer, except the
boundaries, have cancelled each other out. Simply, the pair of charges+q and−q, when located
at a point, result in nothing.

In practice, we would like to repeat just a few neighboring unit cell motifs (a cluster) and
then compute their interaction. In such case, we will observe the charge cancellation inside the
cluster, but no cancellation on its boundaries (“surface”).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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(a)

(b)

(c)

Fig. 9.24. Field compensation method. (a) The unit cell with length a and dipole moment μ > 0. (b) The modified unit cell with
additional fictitious charges (|q| = μ

a ) that cancel the dipole moment. (c) The modified unit cells (with μ′ = 0) give the original
polymer when added together.

Therefore, we get a sort of point charge distribution at the boundaries.

If the boundary charges did not exist, it would correspond to the traditional calculations of
the original unit cells without taking any long-range forces into account. The boundary charges,
therefore, play the important role of replacing the electrostatic interaction with the rest of the infi-
nite crystal, by the boundary charge interactions with the cluster (“field compensation method’’).

This is all. The consequences are simple.

Let us not only kill the dipole moment, but also other multipole moments of the unit cell content
(up to a maximum moment). The resulting cell will be unable to interact electrostatically with
anything. Therefore, interaction within a small cluster of such cells will give us an accurate
energy per cell result.

This multipole killing (field compensation) may be carried out in several ways.69

Application of the method is extremely simple. Imagine unit cell 0 and its neighboring unit
cells (a cluster). Such a cluster is sometimes treated as a molecule and its role is to represent
a bulk crystal. This is a very expensive way to describe the bulk crystal properties, for the
cluster surface atom ratio to the bulk atom is much higher than we would wish (the surface
still playing an important role). What is lacking is the crystal field that will change the cluster
properties. In the field compensation method, we do the same, but there are some fictitious
charges at the cluster boundaries that take care of the crystal field. This enables us to use a
smaller cluster than before (low cost) and still get the influence of the infinite crystal. The ficti-
tious charges are treated the same way in computations as the nuclei (even if some of them are

69 L. Piela and L.Z. Stolarczyk, Chem.Phys.Letters 86, 195 (1982).
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negatively charged). However artificial it may seem, the results are far better when using the
field compensation method than without it.70

9.14.2 The Symmetry of Subsystem Choice

The example described above raises an intriguing question, pertaining to our understanding of
the relation between a part and the whole.

There are an infinite number of ways to reconstruct the same system from parts. These ways
are not equivalent in practical calculations if, for any reason, we are unable to compute all the
interactions in the system. However, if we have a theory (in our case the multipole method)
that is able to compute the interactions,71 including the long-range forces, then it turns out the
final result is virtually independent of the choice of unit cell motif. This arbitrariness of choice
of subsystem looks analogous to the arbitrariness of the choice of coordinate system. The final
results do not depend on the coordinate system used, but still the numerical results (as well as
the effort to get the solution) do.

The separation of the whole system into subsystems is of key importance to many physi-
cal approaches, but we rarely think of the freedom associated with the choice. For example,
an atomic nucleus does not in general represent an elementary particle, and yet in quantum
mechanical calculations, we treat it as a point particle, without an internal structure, and we
can do this successfully.72 Further, in the Bogolyubov73transformation, the Hamiltonian is
represented by creation and annihilation operators, each being a linear combination of the
creation and annihilation operators for electrons (described in Appendix U available at book-
site.elsevier.com/978-0-444-59436-5, p. e153). The new operators also fulfill the anticommu-
tation rules, only the Hamiltonian contains more additional terms than before (see Appendix U
available at booksite.elsevier.com/978-0-444-59436-5). A particular Bogolyubov transforma-
tion may describe the creation and annihilation of quasi-particles, such as the electron hole
(and others). We are dealing with the same physical system as before, but we look at it from
a completely different point of view, by considering it as being composed of something else.
Is there any theoretical (i.e., serious) reason for preferring one division into subsystems over
another? Such a reason may be only of practical importance.74 Any correct theory should give
the same description of the total system independently of subsystems that we decide to choose.

70 Using “negative nuclei” looked so strange that some colleagues doubted receiving anything reasonable from such
a procedure.

71 This is done with controlled accuracy; i.e., we still neglect the interactions of higher multipoles.
72 This represents only a fragment of the storylike structure of science (cf. p. 67), one of its most intriguing features.

It makes science work; otherwise, when considering the genetics of peas in biology, we would have to struggle
with the quark theory of matter.

73 Nicolai Nicolaevitch Bogolyubov (1909–1992) was a Russian physicist, director of the Dubna Nuclear Institute,
and an outstanding theoretician.

74 For example, at temperature t < 0◦C, we may solve the equations of motion for N frozen water drops, and we
may obtain reasonable dynamics of the system. At t > 0◦C, obtaining such dynamics will be virtually impossible.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Symmetry with Respect to Division into Subsystems

The symmetry of objects is important for the description of them, and therefore may be
viewed as being of limited interest. The symmetry of the laws of nature [i.e., of the theory
that describes all objects (whether symmetric or not)] is much more important. This has been
discussed in detail in Chapter 2 (cf. p. 68), but it seems that we did not list there a fundamental
symmetry of any correct theory: the symmetry with respect to the choice of subsystems. A
correct theory has to describe the total system independently of what we decide to treat as
subsystems.

We will meet this problem once more in intermolecular interactions (in Chapter 13). However,
in the periodic system, it has been possible to use, in computational practice, the symmetry
described above.

Our problem resembles an excerpt from “Dreams of a Final Theory” by Steven Weinberg75

pertaining to gauge symmetry: “The symmetry underlying it has to do with changes in our point
of view about the identity of the different types of elementary particle. Thus it is possible to have
a particle wave function that is neither definitely an electron nor definitely a neutrino, until we
look at it.” Here we have freedom in the choice of subsystems as well, and a correct theory has
to reconstitute the description of the whole system.

This is an intriguing problem.

Summary
• A crystal is often approximated by an infinite crystal (primitive) lattice, which leads to the concept of the unit

cell. By translational repeating of a chosen atomic motif associated with a unit cell, we reconstruct the whole
infinite crystal.

• The one-electron Hamiltonian is invariant with respect to translations by any lattice vector. Therefore, its
eigenfunctions (crystal orbitals) are simultaneously eigenfunctions of the translation operators (Bloch theorem):
T̂ (R j )φk

(
r
) = φk(r− R j ) = exp

(−ikR j
)
φk(r) and transform according to the irreducible representation of

the translational group labeled by the wave vector k.
• Bloch functions may be treated as atomic symmetry orbitals φ =∑ j exp

(
ikR j

)
χ
(
r− R j

)
formed from the

atomic orbital χ
(
r
)
. Their symmetry is determined by k.

• The crystal lattice basis vectors allow the formation of the basis vectors of the inverse lattice. Linear combinations
of them (with integer coefficients) determine the inverse lattice subject to translational symmetry.

• A special (Wigner-Seitz) unit cell of the inverse lattice is called the First Brillouin Zone (FBZ).
• The vectors k inside the FBZ label possible non-equivalent irreducible representations of the translational group.
• The wave vector plays a triple role:

– It indicates the direction of the wave, which is an eigenfunction of T̂ (R j ) with eigenvalue exp (−ikR j ).
– It labels the irreducible representations of the translational group.
– The longer the wave vector k, the more nodes the wave has.

• In order to neglect the crystal surface, we apply the Born–von Kármán boundary condition: “Instead of a
stick-like system, we take a circle.”

75 Pantheon Books, New York (1992), Chapter 6.
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• In full analogy with molecules, we can formulate the SCF LCAO CO Hartree-Fock-Roothaan method (a CO
instead of an MO). Each CO is characterized by a vector k ∈ FBZ and is a linear combination of the Bloch
functions with the same k.

• The orbital energy dependence on k ∈ FBZ is called the energy band. The stronger the intercell interaction, the
wider the bandwidth (dispersion).

• Electrons occupy the valence bands, and the conduction bands are empty. The Fermi level is the HOMO energy
of the crystal. If the HOMO-LUMO energy difference (energy gap between the valence and conduction bands)
is zero, we have a metal; if it is large, we have an insulator; if it is medium, we have a semiconductor.

• Semiconductors may be intrinsic, or n–type (if the donor dopant levels are slightly below the conduction band),
or p–type (if the acceptor dopant levels are slightly above the occupied band)

• Metals when cooled may undergo what is known as the Peierls transition, which denotes lattice dimerization
and band gap formation. In this way, the system changes from a metal to a semiconductor or insulator. This
transition corresponds to the Jahn-Teller effect in molecules.

• Polyacetylene is an example of a Peierls transition (dimerization), which results in shorter bonds (a little less
multiple than double ones) and longer bonds (a little more multiple than single ones). Such a dimerization
introduces the possibility of a defect separating two rhythms (“phases”) of the bonds: from double-single to
single-double. This defect can move within the chain, which may be described as a solitonic wave. The soliton
may become charged, and in this case, participates in electric conduction (increasing it by many orders of
magnitude).

• In polyparaphenylene, a soliton wave is not possible because the two phases, quinoid and aromatic, are not of
the same energy, which excludes free motion. A double defect is possible though, a bipolaron. Such a defect
represents a section of the quinoid structure (in the aromatic-like chain), at the end of which we have two
unpaired electrons. The electrons, when paired with extra electrons from donor dopants or when removed by
acceptor dopants, form a double ion (bipolaron), which may contribute to electric conductance.

• The band structure may be foreseen in simple cases and logically connected to the subsystem orbitals.
• To compute the Fock matrix elements or the total energy per cell, we have to calculate the interaction of cell 0

with all other cells.
• The interaction with neighboring cells is calculated without approximations, while that with distant cells uses

multipole expansion. Multipole expansion applied to the electrostatic interaction gives accurate results, while
the numerical effort is dramatically reduced.

• In some cases (metals), we meet long-range exchange interaction, which disappears as soon as the energy gap
emerges. This indicates that the Hartree-Fock method is not applicable in this case.

• The choice of unit cell motif is irrelevant from the theoretical point of view, but leads to different numerical
results when the long-range interactions are omitted. When taking into account the long-range interactions, the
theory becomes independent of the division of the whole system into arbitrary motifs.

Main Concepts, New Terms

band (p. 532)
band gap (p. 533)
band structure (p. 523)
band width (p. 532)
biorthogonal basis (p. 513)
bipolaron (p. 535)
Bloch function (p. 512)
Bloch theorem (p. 511)
Born–von Kármán boundary condition (p. 524)
cyclic group (p. 527)
conduction band (p. 534)

crystal orbitals (COs) (p. 528)
energy gap (p. 533)
Fermi level (p. 533)
field compensation method (p. 568)
First Brillouin Zone (FBZ) (p. 516)
Hartree-Fock method (p. 548)
insulators (p. 533)
intrinsic semiconductor (p. 537)
inverse lattice (p. 513)
Jahn-Teller effect (p. 535)
lattice constant (p. 508)
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LCAO CO (p. 528)
long-range exchange (p. 564)
long-range problem (p. 553)
metals (p. 534)
motif (p. 509)
multipole expansion (p. 557)
multipole moment (p. 558)
n–type semiconductor (p. 537)
Peierls transition (p. 534)
primitive lattice (p. 509)
p-type semiconductor (p. 537)
quasicrystal (p. 507)

Riemann dzeta function (p. 559)
SCF LCAO CO (p. 531)
soliton (p. 535)
symmetry of division into subsystems (p. 570)
symmetry orbital (p. 513)
translational symmetry (p. 508)
translation operator (p. 509)
translation vector (p. 509)
unit cell (p. 509)
valence band (p. 537)
wave vector (p. 510)
Wigner-Seitz cell (p. 516)

From the Research Front
The Hartree-Fock method for periodic systems nowadays represents a routine approach coded in several ab initio
computer packages. We may analyze the total energy, its dependence on molecular conformation, the density of states,
the atomic charges, etc. Also, calculations of first-order responses to the electric field (polymers are of interest for
optoelectronics) have been successful in the past. However, nonlinear problems (like the second harmonic generation;
see Chapter 12) still represent a challenge.

Ad Futurum
Probably there will soon be no problem in carrying out the Hartree-Fock or DFT (see Chapter 11) calculations,
even for complex polymers and crystals. What will remain for a few decades is the very important problem of
lowest-energy crystal packing and of solid-state reactions and phase transitions. Post-Hartree-Fock calculations
will be more and more important taking into account electronic correlation effects. The real challenge will start in
designing non-periodic materials, where the polymer backbone will serve as a molecular rack for installing some
functions (transport, binding, releasing, signal transmitting). The functions will be expected to cooperate (“intelligent
materials,” cf. Chapter 15).

Additional Literature
R. Hoffmann, Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures, VCH Publishers, New
York (1988).

A masterpiece written by a Nobel Prize winner, one of the founders of solid-state quantum chemistry. Solid-state
theory was traditionally the domain of physicists. Some concepts typical of chemistry, such as atomic orbitals, bond-
ing and antibonding effects, chemical bonds, and localization of orbitals, were usually absent in such descriptions.
They are highlighted in this book.

J.-M. André, J. Delhalle, and J.-L. Brédas, Quantum Chemistry Aided Design of Organic Polymers, World Scientific,
Singapore, 1991.

A well-written book oriented mainly toward the response of polymers to the electric field.

Questions
1. Bloch theorem [φk(r) stands for a crystal orbital (CO), R j is a lattice vector, k is a wave vector]:

a. pertains to the eigenvalue (corresponding to φk) of the translation operator by a lattice vector
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b. |φk(r)| =
∣∣φk(r − R j )

∣∣
c. |φk(r)|2 exhibits the same symmetry as the potential energy V (r)
d. if φk(r) corresponds to the wave vector k, φk(r − R j ) = exp

(−ik · R j
)
φk(r)

2. The First Brillouin Zone (FBZ)

a. means the smallest unit cell of a primitive lattice
b. means a smallest motif to be repeated in a crystal
c. does not contain in its inner part any pair of equivalent wave vectors
d. the wave vectors that correspond to the surface of the FBZ may differ by an inverse lattice vector

3. A function φk corresponding to the wave vector k

a. for k = 0 the function φk, build of 1s atomic orbitals, does not have any nodal planes
b. represents a wave with the front perpendicular to k
c. the larger |k| the greater the number of nodes
d. has to be a crystal orbital (CO)

4. A crystal orbital (CO)

a. represents any linear combination of the atomic orbitals of the atoms the crystal is composed of
b. is characterized by its wave vector k
c. with k = 0 corresponds to the lowest energy for a given electronic band
d. two COs with k that differ by any inverse lattice vector are identical

5. An infinite polyacetylene chain

a. represents a conductor
b. exhibits an alternation of the CC bond lengths
c. exhibits a nonzero energetic gap between the valence band and the conduction band
d. conducts the electric current thanks to the solitonic defects that result from donor or acceptor doping

6. The band width (CO means a crystal orbital) increases if

a. one goes from the COs that correspond to the inner electronic shells to the COs corresponding to valence
electrons

b. one increases a pressure
c. the distance between atoms gets larger
d. the atomic orbitals overlap more

7. A semiconductor

a. exhibits a small energy gap
b. has about a half of the conductivity of copper
c. has the energy gap equal to zero
d. conducts electricity, but only in one direction

8. The Fermi level

a. represents an electronic energy level from which removing an electron needs the least energy
b. has the energy corresponding to the HOMO orbital of the crystal
c. means the mean energy of the occupied electronic states
d. is the lowest energy of the conducting band

9. The dipole-quadrupole interaction per unit cell in a regular polymer is

a. 0
b. equal to the difference between the dipole-dipole and quadrupole-quadrupole interactions
c. equal to the mean value o the dipole-dipole and quadrupole-quadrupole interactions
d. a sum of the interaction of the dipole of the unit cell 0 with the quadrupoles from beyond the section of

cells −N , . . . N
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10. The unit cell dipole moment in a regular polymer

a. is uniquely defined for an electrically neutral polymer
b. does not depend on the position of the cell with respect to cell 0
c. must be equal 0, otherwise the total dipole-dipole interaction energy would be equal∞
d. does depend on the choice of the unit cell

Answers
1a,b,c,d, 2c,d, 3a,b,c, 4b,d, 5b,c,d, 6a,b,d, 7a, 8a,b, 9a,d, 10b,d





CHAPTER 10

Correlation of the Electronic
Motions

“God does not care about our mathematical difficulties, He integrates empirically.”
Albert Einstein

Where Are We?

The main road on the trunk leads us to the right part of the crown of the tree.

An Example

As usual, let us consider the simplest example: the hydrogen molecule. The normalized Hartree-Fock determinant,

ψR H F
(
1, 2

) = 1√
2

∣∣∣∣φ1(1) φ1(2)
φ2(1) φ2(2)

∣∣∣∣ ,
with double occupancy of the normalized molecular orbital ϕ(φ1 = ϕα, φ2 = ϕβ), after expansion, immediately
gives

ψR H F (1, 2) = ϕ(1)ϕ(2) 1√
2
{α(1)β(2)− β(1)α(2)}.

The key quantity here is |ψR H F (1, 2)|2, since it tells us about the probability density of the occurrence of certain
coordinates of the electrons. We will study the fundamental problem for the motion of electrons: whether the electrons
react to their presence.

Let us ask a few very important questions. What is the probability density of occurrence of the situation when
electron 1 occupies different positions in space on the contour line ϕ = const and has spin coordinate σ1 = 1/2
while electron 2 has spin coordinate σ2 = −1/2, and its space coordinates are x2, y2, z2 (conditional probability)?

We calculate∣∣ψR H F
(
1, 2

)∣∣2 = [ϕ(1)ϕ(2) 1√
2
{α (σ1

)
β
(
σ2
)− β (σ1

)
α
(
σ2
)}]2

=
[

const × ϕ (x2, y2, z2
) 1√

2
{α (1/2)β (−1/2

)− β (1/2)α (−1/2
)}]2

=
[

const × ϕ (x2, y2, z2
) 1√

2
{1× 1− 0× 0}

]2

= 1

2

(
const

)2 × ϕ2 (x2, y2, z2
)

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00010-6
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Electron 1 changes its position on the contour line, but the distribution of the probability density of electron 2 (of
the opposite spin) does not change a bit, although electron 2 should move away from its partner, since the electrons
repel each other. Electron 2 is not afraid to approach electron 1. The latter can even touch electron 2, and it does not
react at all. For such a deficiency, we have to pay through the high average value of the Hamiltonian (since there is
a high average energy of the electron repulsion). The Hartree-Fock method, therefore, has an obvious shortcoming.

We now ask about the probability density of finding a situation in which we leave everything the same as before, but
now electron 2 has spin coordinate σ2 = 1/2 (so this is the situation where both electrons have identical projections

of spin angular momentum1). What will the response to this change be of
∣∣ψR H F

(
1, 2

)∣∣2 as a function of the position
of electron 2?

Again, we calculate

∣∣ψR H F
(
1, 2

)∣∣2 = [const ϕ
(
x2, y2, z2

) 1√
2

{
α

(
1

2

)
β

(
1

2

)
− β

(
1

2

)
α

(
1

2

)}]2

=
[

const ϕ(x2, y2, z2)
1√
2
{1× 0− 0× 1}

]2
= 0.

We ask about the distribution of the electron of the same spin. The answer is that this distribution is everywhere
equal to zero; i.e., we do not find electron 2 with spin coordinate 1

2 independent of the position of the electron 1 with

spin coordinate 1
2 (in whatever point on the contour line or beyond it).

The second conclusion can be accepted, since it follows from the pairing of the spins,2 but the first conclusion
is just absurd. Such nonsense is admitted by the Hartree-Fock method. In this chapter, we will ponder how can we
introduce a correlation of electronic motions.

We define the electronic correlation energy as

Ecorel = E − ER H F ,

where E is the energy entering the Schrödinger equation,3 and ER H F is the Restricted Hartree-Fock energy.4 One
has to note that the Hartree-Fock procedure takes into account the Pauli exclusion principle, so it also considers the
correlation of electrons of the same spin coordinate. Hence, the correlation energy Ecorel is defined here with respect
to the Hartree-Fock level of electron correlation.

What Is It All About?

The outline of the chapter is as follows:

• First, we will discuss the methods that explicitly (via the form of the suggested wave function) allow the electrons
to control their mutual distance (“a correlation of motions”).

1 We may ask: “Why is this?” After all, we consider a singlet state, hence the spin projections are opposite. We will
not find the situation with parallel spin projections. But this is nothing to worry about. If, in fact, we are right,
then we will get 0 as the density of the respective conditional probability. Let us see whether it will really be so.

2 This is ensured by the singlet form of the spin part of the function.
3 This is the rigorous nonrelativistic energy of the system in its ground state. This quantity is not available exper-

imentally; we can evaluate it by subtraction of the calculated relativistic corrections from the energy of the total
ionization of the system.

4 Usually, we define the correlation energy for the case of double occupancy of the molecular orbitals (the RHF
method; see p. 394). In the case of open shells, especially when the multideterminantal description is required,
the notion of correlation energy still remains to be defined. These problems will not be discussed in this book.
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• In the second part of the chapter, the correlation will be less visible, since it will be accounted for by application
of linear combinations of the Slater determinants. We will discuss the variational methods (VB, CI, MC SCF),
and then the non-variational ones (CC, EOM-CC, MBPT).

Size Consistency Requirement p. 582

VARIATIONAL METHODS USING EXPLICITLY CORRELATED WAVE FUNCTION (�) p. 584

Correlation Cusp Condition p. 584
The Hylleraas CI Method p. 587
Two-Electron Systems p. 589

• The Harmonic Helium Atom
• The James-Coolidge and Kołos-Wolniewicz Functions
• Neutrino Mass

Exponentially Correlated Gaussian Functions p. 589
Electron Holes p. 595

• Coulomb Hole (Correlation Hole)
• Exchange Hole (Fermi Hole)

VARIATIONAL METHODS WITH SLATER DETERMINANTS (����) p. 602

Static Electron Correlation (�) p. 602
Dynamic Electron Correlation (�) p. 602

• Example of Beryllium

Anticorrelation, or Do Electrons Stick Together in Some States? (��) p. 608
Valence Bond (VB) Method (���) p. 610

• Resonance Theory – Hydrogen Molecule
• Resonance Theory – Polyatomic Case

Configuration Interaction (CI) Method (�♦��) p. 615

• Brillouin Theorem
• Convergence of the CI Expansion
• Example of H2O
• Which Excitations Are Most Important?
• Natural Orbitals (NOs)
• Size Inconsistency of the CI Expansion

Direct CI Method (�) p. 622
Multireference CI Method (�) p. 623
Multiconfigurational Self-Consistent Field Method (MC SCF)(��) p. 624

• Classical MC SCF Approach (�)
• Unitary MC SCF Method (�)
• Complete Active Space (CAS SCF) Method (���♦)

NON-VARIATIONAL METHODS WITH SLATER DETERMINANTS (���) p. 629

Coupled Cluster (CC) Method (�♦) p. 629

• Wave and Cluster Operators
• Relationship Between CI and CC Methods
• Solution of the CC Equations
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• Size-Consistency of the CC Method
• Example: CC with Double Excitations

Equation-of-Motion Coupled Cluster (EOM-CC) Method (�) p. 638

• Similarity Transformation
• Derivation of the EOM-CC Equations

Many-body Perturbation Theory (MBPT) (�) p. 641

• Unperturbed Hamiltonian
• Perturbation Theory–Slightly Different Presentation

• Reduced Resolvent or the “Almost” Inverse of (E
(
0
)

0 − Ĥ
(
0
)
)

• MBPT Machinery–Part 1: Energy Equation
• MBPT Machinery–Part 2: Wave Function Equation
• Brillouin-Wigner Perturbation Theory
• Rayleigh-Schrödinger Perturbation Theory

Møller-Plesset Version of Rayleigh-Schrödinger Perturbation Theory(�♦) p. 648

• Expression for MP2 Energy
• Convergence of the Møller-Plesset Perturbational Series
• Special Status of Double Excitations

In the previous chapter, we dealt with the description of electronic motion in the mean field approximation.
Now we use this approximation as a starting point toward methods that account for electron correlation. Each of
the methods considered in this chapter, when rigorously applied, should give an exact solution of the Schrödinger
equation. Thus, this chapter will give us access to methods providing accurate solutions of the Schrödinger equation.

Why Is This Important?

Perhaps, in our theories, the electrons do not need to correlate their motion and the results will be still acceptable?
Unfortunately, this is not so. The mean field method provides ca. 99% of the total energy of the system. This is
certainly a lot, and in many cases, the mean field method gives very satisfactory results, but still falls short of treating
several crucial problems correctly. For example,

• Only through electron correlation do the noble gas atoms attract each other in accordance with experiment
(liquefaction of gases).

• According to the Hartree-Fock method, the F2 molecule does not exist at all, whereas the fact is that it exists,

and is doing quite well (bonding energy equal to 38 kcal/mol).5

• About half the interaction energy of large molecules (often of biological importance) calculated at the
equilibrium distance originates purely from the correlation effect.

• The Restricted Hartree-Fock (RHF) method used to describe the dissociation of the chemical bond gives simply
tragic results (cf. Chapter 8, p. 437), qualitatively wrong; on the other hand, the Unrestricted Hartree-Fock
(UHF) method gives a qualitatively correct description.

We see that in many cases, electronic correlation must be taken into account.

What Is Needed?
• Operator algebra (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5)
• Hartree-Fock method (Chapter 8)

5 Yet this is not a strong bond. For example, the bonding energy of the H2 molecule equals 104 kcal/mol, of the
HF - 135 kcal/mol.

http://booksite.elsevier.com/978-0-444-59436-5
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• Eigenvalue problem (see Appendix L available at booksite.elsevier.com/978-0-444-59436-5, p. e107)
• Variational method (Chapter 5)
• Perturbation theory (Chapter 5, recommended)
• Matrix diagonalization (see Appendix K available at booksite.elsevier.com/978-0-444-59436-5, p. e105,

recommended)
• Second quantization (see Appendix U available at booksite.elsevier.com/978-0-444-59436-5, p. e153)

Classic Papers

The first calculations with electron correlation for molecules were performed by Walter Heitler and Fritz Wolfgang
London in a paper called “Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik,”
published in Zeitschrift für Physik, 44, 455 (1927). The covalent bond (in the hydrogen molecule) could be correctly
described only after the electron correlation was included. June 30, 1927, when Heitler and London submitted this
paper, is the birth date of quantum chemistry. � The first calculations incorporating electron correlation in an atom
(helium) were published by Egil Andersen Hylleraas in an article called “Neue Berechnung der Energie des Heliums
im Grundzustande, sowie des tiefsten Terms von Ortho-Helium,” published in Zeitschrift für Physik, 54, 347 (1929).
� Later, significantly more accurate results were obtained for the hydrogen molecule by Hubert M. James and Albert
S. Coolidge in an article called “The ground state of the hydrogen molecule,” published in the Journal of the
Chemical Physics, 1, 825 (1933), and a contemporary reference point for that molecule are several papers by
Włodzimierz Kołos and Lutosław Wolniewicz, among which was an article entitled “Potential energy curves for
the X1�+g , B3�+u ,C1	u states of the hydrogen molecule” published in the Journal of Chemical Physics, 43,
2429 (1965). � Christian Møller and Milton S. Plesset in Physical Review, 46, 618 (1934), published a paper
called “Note on an approximation treatment for many-electron systems,” where they presented a perturbational
approach to electron correlation. � The first calculations with the Multi-configurational self-consistent field (MC
SCF) method for atoms was published by Douglas R. Hartree, his father, William Hartree, and Bertha Swirles
in a paper called “Self-consistent field, including exchange and superposition of configurations, with some results
for oxygen,” Philosophical Transactions of the Royal Society (London), A238, 229 (1939), and the general MC
SCF theory was presented by Roy McWeeny in a work called “On the basis of orbital theories,” Proceedings of
the Royal Society (London), A232, 114 (1955). � As a classic paper in electronic correlation, we also recom-
mend an article by Per-Olov Löwdin, “Correlation problem in many-electron quantum mechanics,” published in
Advances in Chemical Physics, 2, 207 (1959). � The idea of the coupled cluster (CC) method was introduced
by Fritz Coester in a paper in Nuclear Physics, 7, 421 (1958), entitled “Bound states of a many-particle system.”
� Jiří Čížek introduced the (diagrammatic) CC
method into electron correlation theory in a paper
“On the correlation problem in atomic and molecular
systems. Calculation of wavefunction components
in Ursell-type expansion using quantum-field
theoretical methods,” published in the Journal of
Chemical Physics, 45, 4256 (1966). � The book
“Three Approaches to Electron Correlation in
Atoms” (Yale University Press, New Haven, CT,
and London; 1970), edited by Oktay Sinanoğlu and
Keith A. Brueckner, contains several reprints of the
papers that cleared the path toward the CC method.
� A derivation of the CC equations for interact-
ing nucleons was presented by Herman Kümmel
and Karl-Heinz Lührmann, Nuclear Physics,
A191, 525 (1972), in a paper entitled “Equations for
linked clusters and the energy variational principle.”

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Size Consistency Requirement

The methods presented in this chapter will take into account the electronic correlation. A par-
ticular method may be a better or worse way to deal with this difficult problem. The better the
solution, the more convincing its results are.

There is, however, one requirement that we believe to be a natural one for any method.
Namely,

any reliable method when applied to a system composed of very distant (i.e., non-
interacting) subsystems should give the energy, which is a sum of the energies for the
individual subsystems. A method having this feature is known as size consistent.a

a The size consistency has some theoretical issues to be solved. One may define the subsystems and their
distances in many different ways, some of them quite weird. For instance, one may consider all possible
dissociation channels (with different products) with unclear electronic states to assume. Here, we consider
the simplest cases: the closed-shell character of the total system and of the subsystems. Even this is not
unique, however.

Before we consider other methods, let us check whether our fundamental method (i.e., the
Hartree-Fock method) is size consistent or not.

Hartree-Fock Method

As shown on p. 417, the Hartree-Fock electronic energy reads as E ′H F = ∑SMO
i 〈i |ĥ|i〉 +

1
2

∑SMO
i, j=1[〈i j |i j〉 − 〈i j | j i〉], while the total energy is EH F = E ′H F + Vnn , where the last term

represents a constant repulsion of the nuclei. When the intersubsystem distances are infinite
(they are then non-interacting), one can divide the spinorbitals |i〉 , i = 1, 2, . . . N into non-
overlapping sets i ∈ A, i ∈ B, i ∈ C, . . ., where i ∈ A means the molecular spinorbital |i〉
is localized on the subsystem A and represents a Hartree-Fock spinorbital of molecule A, etc.
Then, in the limit of large distances (symbolized by lim, VB stands for the operator of the
interaction of the nuclei of molecule B with an electron, while lim Vnn =∑A Vnn,A, with Vnn,A

representing the nuclear repulsion within molecule A, and EH F (A) denotes the Hartree-Fock
energy of molecule A):

lim EH F =
SMO∑

i

lim〈i |ĥ|i〉 + 1

2
lim

SMO∑
i, j=1

[〈i j |i j〉 − 〈i j | j i〉] + lim Vnn

=
∑

A

⎡
⎣SMO∑

i∈A

〈i |ĥ A|i〉 + lim
SMO∑
i∈A

〈i |
∑
B �=A

VB |i〉
⎤
⎦+ 1

2

SMO∑
i, j∈A

[〈i j |i j〉 − 〈i j | j i〉]
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+ 1

2
lim

SMO∑
i∈A, j∈B

[〈i j |i j〉 − 〈i j | j i〉] +
∑

A

Vnn,A

=
∑

A

⎡
⎣SMO∑

i∈A

〈i |ĥ A|i〉 + 0+ 1

2

SMO∑
i, j∈A

[〈i j |i j〉 − 〈i j | j i〉] + 0+ Vnn,A

⎤
⎦

=
∑

A

EH F (A).

The zeros in the above formula appeared instead of the terms that vanish because of the
Coulombic interaction of the objects that are farther and farther from one another. For example,
in the mixed terms 1

2

∑SMO
i∈A, j∈B[〈i j |i j〉−〈i j | j i〉], the spinorbitals |i〉 and | j〉 belong to different

molecules, all integrals of the type 〈i j |i j〉 vanish because they correspond to the Coulomb
interaction of electron 1, with the probability density distribution φ∗i (1)φi (1) in molecule A,
and electron 2, with the distribution φ∗j (2)φ j (2) centered on molecule B. Such an interaction
vanishes as the inverse of the AB distance; i.e., it goes to zero in the limit under consideration.
The integrals 〈i j | j i〉 vanish even faster because they correspond to the Coulombic interaction
of φ∗i (1)φ j (1) with φ∗j (2)φi (2) and each of these distributions itself vanishes exponentially if
the distance AB goes to infinity. Hence, all the mixed terms tend to zero.

Thus,

The Hartree-Fock method is size consistent.

∗ ∗ ∗
We have learned, from the example given at the beginning of this chapter, that the “genetic

defect” of the mean field methods is that they describe electrons that ignore the fact that they
are close to or far from each other. For instance, in the two-electron case previously considered,
where we established the coordinates of electron 1, electron 2 has a certain distribution of the
probability density. This distribution does not change when electron 1 moves to a different
position. This means that the electrons are not “afraid” to get close to each other, although they
should, since when electrons are close, the energy increases (Fig.10.1a,b).

The explicitly correlated wave function (which we will explain in a moment) has the inter-
electronic distance built in its mathematical form. We may compare this to making the electrons
wear spectacles.6 Now they avoid each other. One of my students said that it would be the best
if the electrons moved apart to infinity. Well, they cannot. They are attracted by the nucleus

6 Of course, the methods described further also provide their own “spectacles” (otherwise, they would not give
the solution of the Schrödinger equation), but the spectacles in the explicitly correlated functions are easier to
construct with a small number of parameters.
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(a) (b)

Fig. 10.1. Absence of electronic correlation in the helium atom as seen by the Hartree-Fock method. Visualization of the cross-
section of the square of the wave function (probability density distribution) describing electron 2 within the plane xy, provided that
electron 1 is located in a certain point in space: (a) at (−1, 0, 0); b) at (1, 0, 0). Note that in both cases, the conditional probability
density distributions of electron 2 are identical. This means electron 2 does not react to the motion of electron 1; i.e., there is no
correlation whatsoever of the electronic motions (when the total wave function is the Hartree-Fock one).

(energy gain), and, being close to it, must be close to each other too (energy loss). There is a
compromise to achieve.

VARIATIONAL METHODS USING EXPLICITLY
CORRELATED WAVE FUNCTION

10.1 Correlation Cusp Condition

Short distances are certainly the most important for the Coulombic interaction of two charges,
although obviously the regions of configurational space connected with the long interelectronic
distances are much larger. Thus, the region is not large, but important, within it the “collisions”
take place. It turns out that the wave function calculated in the region of a collision must satisfy
some very simple mathematical condition (called the correlation cusp condition). This is what
we want to demonstrate. The derived formulas7 are universal, and they apply to any pair of
charged particles.

Let us consider two particles with charges qi and q j and masses mi and m j separated
from other particles. This makes sense since simultaneous collisions of three or more particles
occur very rarely compared to two-particle collisions. Let us introduce a Cartesian system of
coordinates (say, in the middle of the beautiful market square in Brussels), so that the system

7 T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
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of two particles is described with six coordinates. Then (atomic units are used) the sum of the
kinetic energy operators of the particles is

T̂ = − 1

2mi

i − 1

2m j

 j . (10.1)

Now we separate the motion of
the center of mass of the two
particles with position vectors ri

and r j . The center of mass in
our coordinate system is indi-
cated by the vector RC M =
(XC M , YC M , ZC M):

RC M = mi ri + m j r j

mi + m j
(10.2)

Let us also introduce the total
mass of the system M =
mi + m j , the reduced mass

Tosio Kato (1917–1999) was an
outstanding Japanese physicist
and mathematician. His studies
at the University of Tokyo were
interrupted by World War II. After
the war, he got his Ph.D. at this
university (his thesis was about
convergence of the perturbational
series), and obtained the title of
professor in 1958.

In 1962, Kato became profes-
sor at the University of Berkeley,
California. He admired the botanic
garden there, knew a lot of Latin

names of plants, and appreciated
very much the Charles Linnaeus
classification of plants.

of the two particlesμ = mi m j
mi+m j

and the vector of their relative positions r = ri−r j . Introducing
the three coordinates of the center of mass measured with respect to the market square in Brussels
and the three coordinates x, y, and z, which are components of the vector r,we get (see Appendix
I available at booksite.elsevier.com/978-0-444-59436-5 on p. e93, example 1)

T̂ = − 1

2M

CM − 1

2μ

, (10.3)


C M = ∂2

∂X2
C M

+ ∂2

∂Y 2
C M

+ ∂2

∂Z2
C M

, (10.4)


 = ∂2

∂x2 +
∂2

∂ y2 +
∂2

∂z2 . (10.5)

After this operation, the Schrödinger equation for the system is separated (as always in the
case of two particles; see Appendix I available at booksite.elsevier.com/978-0-444-59436-5)
into two equations: the first describing the motion of the center of mass (seen from Brussels)
and the second describing the relative motion of the two particles (with Laplacian of x, y, z,
and reduced mass μ). We are not interested in the first equation; the second one (Brussels-
independent) is what we are after. Let us write down the Hamiltonian corresponding to the
second equation:

Ĥ = − 1

2μ

+ qi q j

r
. (10.6)

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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We are interested in how the wave function looks when the distance of the two particles
r is getting very small. If r is small, it makes sense to expand the wave function in a power
series8 of r : ψ = C0 + C1r + C2r2 + · · · Let us calculate Ĥψ close to r = 0. The Laplacian
expressed in the spherical coordinates represents the sum of three terms (see Appendix H
available at booksite.elsevier.com/978-0-444-59436-5, p. e91, Eq. H.1): the first, which contains
the differentiation with respect to r , and the remaining two, which contain the differentiation
with respect to the angles θ and φ : 
 = 1

r2
∂
∂r r2 ∂

∂r+ terms depending on θ and φ. Since we
have assumed the function to be dependent on r only, upon the action of the Laplacian, only
the first term gives a nonzero contribution.

We obtain

Ĥψ =
(
− 1

2μ

+ qi q j

r

)
ψ (10.7)

= − 1

2μ

(
1

r2

∂

∂r
r2 ∂

∂r
+ · · ·

)
(C0 + C1r + C2r2 + · · · ) (10.8)

+ qi q j

r
(C0 + C1r + C2r2 + · · · ) (10.9)

= 0− 1

2μ

(
2C1

r
+ 6C2 + 12C3r + · · ·

)
(10.10)

+C0
qi q j

r
+ C1qi q j + C2qi q jr + · · · (10.11)

The wave function cannot go to infinity when r goes to zero, while in the above expression, we
have two terms (− 1

2μ
2C1

r and C0
qi q j

r ), which would then “explode” to infinity.

These terms must cancel each other out.

Hence, we obtain

C0qi q j = C1

μ
. (10.12)

This condition is usually expressed in another way. We use the fact that ψ(r = 0) = C0 and(
∂ψ
∂r

)
r=0
= C1 and obtain the cusp condition as follows:

8 Assuming such a form, we exclude the possibility that the wave function goes to±∞ for r → 0. This must be so,
since otherwise, either the respective probability would go to infinity or the operators would become non-Hermitian
(cf. p. 80). Both possibilities are unacceptable. We covertly assumed also (to simplify our considerations) that
the wave function does not depend on the angles θ and φ. This dependence can be accounted for by making the
constants C0,C1,C2 the functions of θ and φ. Then the final result still holds, but for the coefficients C0 and C1
averaged over θ and φ.

http://booksite.elsevier.com/978-0-444-59436-5
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(
∂ψ

∂r

)
r=0
= μqi q jψ(r = 0).

• The case of two electrons:
Then mi = m j = 1; hence, μ = 1

2 and qi = q j = −1. We get the cusp condition for the
collision of two electrons as (

∂ψ

∂r

)
r=0
= 1

2
ψ(r = 0)

or (introducing variable r = r12 together with particles’ position vectors r1 and r2)

the wave function should be of the form
ψ = φ(r1, r2)

[
1+ 1

2r12 + · · ·
]
,

where + · · · means higher powers of r12.
• The nucleus-electron case:

When one of the particles is a nucleus of charge Z , then μ � 1, and we get(
∂ψ

∂r

)
r=0
= −Zψ(r = 0).

Thus

the correct wave function for the electron in the vicinity of a nucleus should have an
expansion ψ = const(1 − Zra1 + · · · ), where ra1 replacing r is the distance from the
nucleus.

Let us see how it is with the 1s function for the hydrogen-like atom (the nucleus has charge
Z ) expanded in a Taylor series in the neighborhood of r = 0. We have 1s = N exp (−Zr) =
N (1− Zr + · · · ), which works.

The correlation cusp makes the wave function not differentiable at r = 0.

10.2 The Hylleraas CI Method

In 1929, two years after the birth of quantum chemistry, a paper by Egil Hylleraas9 appeared,
where, for the ground state of the helium atom, a trial variational function, containing the inter-

9 E.A. Hylleraas, Zeit. Phys., 54, 347 (1929). Egil Andersen Hylleraas arrived in 1926 in Göttingen, Germany, to
collaborate with Max Born. His professional experience was related to crystallography and to the optical properties
of quartz. When one of the employees fell ill, Born told Hylleraas to continue his work on the helium atom in
the context of the newly developed quantum mechanics. The helium atom problem had already been attacked by
Albrecht Unsöld in 1927 using first-order perturbation theory, but Unsöld obtained the ionization potential equal
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electronic distance explicitly, was applied. This was a brilliant idea, since it showed that already
a small number of terms provide very good results. Even though no fundamental difficulties
were encountered for larger atoms, the enormous numerical problems were prohibitive for atoms
with larger numbers of electrons. In this case, the century-long progress means going from 2-
to 10-electron systems.

In the Hylleraas-CI method,10 the Hylleraas idea has been exploited when designing a method
for larger systems. The electronic wave function is proposed as a linear combination of Slater
determinants, and in front of each determinant i (1, 2, 3, . . . , N ), we insert, next to the vari-
ational coefficient ci , correlational factors with some powers (v, u, . . . ) of the interelectronic
distances (rmn between electron m and electron n, etc.):

ψ =
∑

i

ci Â
[
rvi

mnrui
kl · · ·i (1, 2, 3, . . . , N )

]
, (10.13)

where Â denotes an antisymmetrization operator (see Appendix M available at booksite.
elsevier.com/978-0-444-59436-5, p. e109). If vi = ui = 0, we have the CI expansion:
ψ = ∑

i cii (which we will discuss on p. 615). If vi �= 0 or ui �= 0, we include a varia-
tionally proper treatment of the appropriate distances rmn or rkl ; i.e., correlation of the motions
of the electrons m and n, or k and l, etc. The antisymmetrization operator ensures the require-
ment for symmetry of the wave function with respect to the exchange of the arbitrary two
electrons. The method described was independently proposed in 1971 by Wiesław Woźnicki11

and by Sims and Hagstrom.12 The method of correlational factors has a nice feature, in that
even a short expansion should give a very good total energy for the system, since we com-
bine the power of the CI method with the great success of the explicitly correlated approaches.
Unfortunately, the method has also a serious drawback. To make practical calculations, it is nec-
essary to evaluate the integrals occurring in the variational method, and they are very difficult to
calculate.13

to 20.41 eV, while the experimental value was equal to 24.59 eV. In the reported calculations (done on a recently
installed calculator), Hylleraas obtained a value of 24.47 eV (cf. contemporary accuracy, p. 148).

10 Here, CI stands for “Configuration Interaction.”
11 W. Woźnicki, in Theory of Electronic Shells in Atoms and Molecules (A. Yutsis, ed.), Mintis, Vilnius (1971),

p. 103.
12 J.S. Sims and S.A. Hagstrom, Phys. Rev. A4, 908 (1971).
13 It is enough to realize that, in the matrix element of the Hamiltonian containing two terms of the above expansion,

we may find, e.g., a term 1/r12 (from the Hamiltonian) and r13 (from the factor in front of the determinant), as
well as the product of six spinorbitals describing the electrons 1, 2, 3. Such integrals have to be computed, and
the existing algorithms are inefficient.

http://booksite.elsevier.com/978-0-444-59436-5
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10.3 Two-Electron Systems

10.3.1 The Harmonic Helium Atom

An unpleasant feature of the electron correlation is that we deal either with intuitive concepts
or, if our colleagues want to help us, they bring wave functions with formulas so long as the
distance from Cracow to Warsaw (or longer14) and say: look, this is what really happens.
It would be good to analyze such formulas term by term, but this approach does not make sense
because there are too many terms. Even the helium atom, when we write down the formula
for its ground-state wave function, becomes a mysterious object. Correlation of motion of any
element seems to be so difficult to grasp mathematically that we easily give up. A group of
scientists published a paper in 1993 that has generated interest on this point. They obtained a
rigorous solution of the Schrödinger equation (described in Chapter 4, p. 212), the only exact
solution which has been obtained so far for correlational problems.15

Note that the exact wave function (its spatial part16) is a geminal (i.e., two-electron function).

ψ
(
r1, r2

) = N

(
1+ 1

2
r12

)
e−

1
4

(
r2

1+r2
2

)
. (10.14)

Let me be naive. Do we have two harmonic springs here? Yes, we do (see Fig. 4.26, p. 212).
Then, let us treat them first as independent oscillators and take the product of the ground-state
functions of both oscillators: exp

[−1
4

(
r2

1 + r2
2

)]
. Well, it would be good to account for the

cusp condition ψ = φ(r1, r2)
[
1+ 1

2r12 + · · ·
]

and take care of it, even in a naive way. Let
us just implement the crucial correlation factor

(
1+ 1

2r12
)
, the simplest that satisfies the cusp

condition (see p. 587). It turns out that such a recipe leads to a rigorous wave function!17

From Eq. (10.14), we see that for r1 = r2 = const (in such a case, both electrons move on
the surface of the sphere), the larger value of the function (and eo ipso of the probability) is
obtained for larger r12. This means that, it is most probable that the electrons prefer to occupy
opposite sides of a nucleus. This is a practical manifestation of the existence of the Coulomb
hole around electrons (i.e., the region of the reduced probability of finding a second electron):

14 This is a very conservative estimate. Let us calculate–half jokingly. Writing down a single Slater determinant
would easily take up 10 cm of space. The current world record amounts to several billion such determinants
in the CI expansion (say, 3 billion). Now let us calculate: 10 cm × 3 × 109 = 3 × 1010 cm = 3 × 108 m =
3× 105 km = 300000 km. So, this not Warsaw to Cracow, but Earth to the Moon.

15 S. Kais, D.R. Herschbach, N.C. Handy, C.W. Murray, and G.J. Laming, J. Chem. Phys. 99, 417 (1993).
16 For one- and two-electron systems, the wave function is a product of the spatial and spin factors. A normalized

spin factor for two-electron systems 1√
2
{α(1)β(2) − β(1)α(2)} guarantees that the state in question is a singlet

(see Appendix Q available at booksite.elsevier.com/978-0-444-59436-5 p. e133). Since we will only manipulate
the spatial part of the wave function, the spin is the default. Since the total wave function has to be antisymmetric,
and the spin function is antisymmetric, the spatial function should be symmetric–and it is.

17 As a matter of fact, that is true only for a single force constant. Nevertheless, the unusual simplicity of that analytic
formula is most surprising.

http://booksite.elsevier.com/978-0-444-59436-5
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the electrons simply repel each other. They cannot move apart to infinity since both are held by
the nucleus. The only thing they can do is to be close to the nucleus and to avoid each other–and
this is what we observe in Eq. (10.14).

10.3.2 The James-Coolidge and Kołos-Wolniewicz Functions

One-electron problems are the simplest. For systems with two electrons,18 we can apply certain
mathematical tricks that allow very accurate results. We are going to talk about such calculations
in a moment.

Kołos and Wolniewicz applied the Ritz variational method (see Chapter 5) to the hydrogen
molecule with the following trial function:

� = 1√
2

[
α(1)β(2)− α(2)β(1)] M∑

i

ci

(
i (1, 2)+i (2, 1)

)
,

i (1, 2) = exp (−Aξ1− Āξ2)ξ
ni
1 η

ki
1 ξ

mi
2 η

li
2

(
2r12

R

)μi

·
(

exp (Bη1 + B̄η2)+ (−1)ki+li exp (−Bη1 − B̄η2)
)
, (10.15)

where the elliptic coordinates of the electrons with index j = 1, 2 are given by

ξ j = raj + rbj

R
, (10.16)

η j = raj − rbj

R
, (10.17)

where R denotes the internuclear distance, raj and rbj are nucleus-electron distances (the nuclei
are labeled by a, b), r12 is the (crucial to the method) interelectronic distance, ci , A, Ā, B, B̄
are variational parameters, and n, k, l,m, μ are integers (smaller than selected limiting values).

The simplified form of this function with A = Ā and B = B̄ = 0 is the James-Coolidge19

function, thanks to which these authors enjoyed the most accurate result for the hydrogen
molecule for 27 years.

18 For a larger number of electrons, it is much more difficult.
19 H.M. James and A.S. Coolidge, J. Chem. Phys., 1, 825 (1933). Hubert M. James in the 1960s was professor at

Purdue University.
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Kołos and Roothaan,20 and later
on, Kołos and Wolniewicz,21 Kołos
and Rychlewski, and others,22 applied
longer and longer expansions (helped
by the fact that computer technology
was improving fast) up to M of the
order of thousands; see Table 10.1.

As can be seen from Table 10.1,
there was a competition between
theoreticians and the experimental
laboratory of Herzberg. When, in
1964 Kołos and Wolniewicz obtained
36117.3 cm−1 (see Table 10.1) for
the dissociation energy of the hydro-
gen molecule, quantum chemists held
their breath. The experimental result
of Herzberg and Monfils, obtained
four years earlier (see Table 10.1), was

Włodzimierz Kołos (1928–1996),
Polish chemist and professor at
the Warsaw University. His calcu-
lations on small molecules (with
Roothaan, Wolniewicz, and Rych-
lewski) had an unprecedented
accuracy in quantum chemistry.

The Department of Chemistry
of Warsaw University and the
Polish Chemical Society estab-
lished the Włodzimierz Kołos Medal
accompanying a lecture (the first
lecturers were Roald Hoffmann,
Richard Bader, and Paul von Ragué
Schleyer). In the Ochota quarter
in Warsaw, there is a Włodzimierz
Kołos Street. Lutosław Wolniewicz
(born 1930), Polish physicist and
professor at the Nicolaus Copernicus
University in Toruń.

smaller, and this seemed
to contradict the varia-
tional principle (Chapter
5; i.e., as if the theoretical
result were below the
ground-state energy), the
foundation of quantum
mechanics. There were
only three possibilities:
either the theoretical or
experimental results are

Gerhard Herzberg (1904–1999),
Canadian chemist of German ori-
gin and professor at the National
Research Council and at the Univer-
sity of Saskatchewan in Saskatoon
and the University of Ottawa. The
greatest spectroscopist of the 20th
century. Herzberg laid the founda-
tions of molecular spectroscopy, is
author of the fundamental mono-
graph on this subject, and received a
Nobel prize in 1971 “for his contribu-
tion to knowledge of the electronic

structure and geometry of molecules,
particularly free radicals.”

wrong or quantum mechanics has internal inconsistency. Kołos and Wolniewicz increased the
accuracy of their calculations in 1968 and excluded the first possibility. It soon turned out that
the problem lay in the accuracy of the experiment.23 When Herzberg increased the accuracy,

20 W. Kołos and C.C.J. Roothaan, Rev. Modern Phys., 32, 205 (1960).
21 For the first time in quantum chemical calculations, relativistic corrections and corrections resulting from quantum

electrodynamics were included. This accuracy was equivalent to hitting, from Earth, an object on the Moon the size
of a car. These results are cited in nearly all textbooks on quantum chemistry to demonstrate that the theoretical
calculations have a solid background.

22 The description of these calculations is given in the review article by Piszczatowski et al. cited in Table 10.1
23 At that time, Herzberg was hosting them in Canada and treated them to a homemade fruit liquor, which was

considered by his coworkers to be absolutely exceptional. This is probably the best time to give the recipe for the
exquisite drink, which is known in the circles of quantum chemists as “kolosovka”:
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Table 10.1. Dissociation energy of H2 in the ground state (in cm−1). Comparison of the results of theoretical
calculations and experimental measurements. The figures in parentheses mean the error in units of the last digit
reported. Bold numbers are used to indicate the values connected with the Herzberg-Kołos-Wolniewicz controversy.

Year Author Experiment Theory

1926 Witmer 35000
1927 Heitler-London 23100a

1933 James-Coolidge 36104a

1935 Beutler 36116(6)
1960 Kołos-Roothaan 36113.5a

1960 Herzberg-Monfils 36113.6(3)
1964 Kołos-Wolniewicz 36117.3a

1968 Kołos-Wolniewicz 36117.4a

1970 Herzberg 36118.3c

1970 Stwalley 36118.6(5)
1975 Kołos-Wolniewicz 36118.0
1978 Kołos-Rychlewski 36118.12b

1978 Bishop-Cheung 36117.92
1983 Wolniewicz 36118.01
1986 Kołos-Szalewicz-Monkhorst 36118.088
1991 McCormack-Eyler 36118.26(20)
1992 Balakrishnan-Smith-Stoicheff 36118.11(8)
1992 Kołos-Rychlewski 36118.049
1995 Wolniewicz 36118.069
2009 Piszczatowski et al. 36118.0695(10)d

2009 Liu et al. 36118.0696(4)
aObtained from calculated binding energy by subtracting the energy of zero vibrations.
bObtained by treating the improvement of the binding energy as an additive correction to the dissociation energy.
cUpper bound.
dThe references to the cited works can be found in the paper by K. Piszczatowski, G. Łach, M. Przybytek, J. Komasa, K.
Pachucki, and B. Jeziorski, J.Chem.Theory and Comput., 5, 3039 (2009).

he obtained 36118.3 cm−1 as the dissociation energy (Table 10.1), which was then consistent
with the variational principle.

The theoretical result of 2009 given in the table includes non-adiabatic, relativistic and
quantum electrodynamic (QED) corrections. The relativistic and QED corrections have been
calculated assuming the adiabatic approximation and, by taking into account all the terms up to(1

c

)3
and the leading term in the QED

(1
c

)4
contribution, some effects never taken into account

before for any molecule. To get an idea about the importance of the particular levels of theory, let
me report their contributions to the H2 dissociation energy (the number in parentheses means

the error in the units of the last digit given). The
(1

c

)0
contribution (i.e., the solution of the

Schrödinger equation) gives 36118.7978(2) cm−1, the
(1

c

)1
is equal to zero,

(1
c

)2
is the Breit

Pour a pint of pure spirit into a beaker. Hang an orange on a piece of gauze directly over the meniscus. Cover
tightly and wait for two weeks. Then throw the orange away–there is nothing of value left in it–and turn your
attention to the spirit. It should contain now all the flavors from the orange. Next, slowly pour some spring water
into the beaker until the liquid becomes cloudy, and then some more spirit to make it clear again. Propose a toast
to the future of quantum chemistry!
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correction (see p. 145) and turned out to be −0.5319(3) cm−1, the QED (see p. 148)
(1

c

)3
correction is −0.1948(2) cm−1, while the

(1
c

)4
contribution is −0.0016(8) cm−1. We see that

to obtain such agreement with the experimental value as shown in Table 10.1, one needs to
include all the abovementioned corrections.

10.3.3 Neutrino Mass

Calculations like those above
required unique software, espe-
cially in the context of the non-
adiabatic effects included. Addi-
tional gains appeared unexpect-
edly when Kołos and others24

initiated work aiming at explain-
ing whether the electronic neu-
trino has a nonzero mass.25 In
order to interpret the expen-
sive experiments, precise calcu-
lations were required for the β-
decay of the tritium molecule as
a function of the neutrino mass.
The emission of the antineutrino
(ν) in the process of β-decay:

T2 → HeT+ + e + ν

Alexandr Alexandrovitch Fried-
mann (1888–1925), Russian
mathematician and physicist, in
his article in Zeit. Phys., 10, 377
(1922), proved on the basis of Ein-
stein’s general theory of relativity
that the curvature of the Universe
must change, which became the
basis of cosmological models of
the expanding Universe. During
World War I, Friedman was a pilot
in the Russian army and made
bombing raids over my beloved
Przemyśl.

In one of his letters, he asked
his friend, the eminent Russian
mathematician Steklov, for advice
about the integration of equations
he derived to describe the tra-
jectories of his bombs. Later, in
a letter to Steklov dated Febru-
ary 28, 1915, he wrote: “Recently I

had an opportunity to verify
my theory during a flight over
Przemyśl, the bombs fell exactly in
the places predicted by the theory.
To get the final proof of my theory
I intend to test it in flights during
next few days.”

More information can be found
at http://www-groups.dcs.st-and.
ac.uk/∼history/Mathematicians/
Friedmann.html.

should have consequences for the final quantum states of the HeT+ molecule. To enable eval-
uation of the neutrino mass by the experimentalists Kołos et al. performed precise calculations
of all possible final states of HeT+ and presented them as a function of the hypothetical mass of
the neutrino. There is such a large number of neutrinos in the Universe that if its mass exceeded
a certain, even very small threshold value of the order of26 1 eV, the mass of the Universe would
exceed the critical value predicted by Alexander Friedmann in his cosmological theory (based on

24 W. Kołos, B. Jeziorski, H.J. Monkhorst, and K. Szalewicz, Int. J. Quantum Chem., S19, 421 (1986).
25 Neutrinos are stable fermions of spin 1

2 . Three types of neutrinos exist (each has its own antiparticle): electronic,
muonic, and taonic. The neutrinos are created in the weak interactions (e.g., inβ-decay) and do not participate either
in the strong interactions, or in electromagnetic interactions. The latter feature expresses itself in an incredible
ability to penetrate matter (e.g., crossing the Earth as though through a vacuum). The existence of the electronic
neutrino was postulated in 1930 by Wolfgang Pauli and discovered in 1956 by F. Reines and C.L. Cowan; the
muonic neutrino was discovered in 1962 by L. Lederman, M. Schwartz, and J. Steinberger.

26 The mass of the elementary particle is given in the form of its energetic equivalent mc2.

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Friedmann.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Friedmann.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Friedmann.html


594 Chapter 10

Einstein’s general theory
of relativity). This would
mean that the currently
occurring expansion of
the Universe (discov-
ered by Hubble) would
finally stop, and its col-
lapse would follow. If
the neutrino mass turned
out to be too small,
then the Universe would

Edwin Powell Hubble (1889–1953),
American astronomer and explorer
of galaxies, found in 1929 that the
distance between galaxies is pro-
portional to the infrared shift in their
spectrum caused by the Doppler
effect, which is consequently inter-
preted as expansion of the Universe.
A surprise from recent astronomical
studies is that the expansion is faster
and faster (for unknown reasons).

continue its expansion. Thus, quantum chemical calculations for the HeT+ molecule may turn
out to be helpful in predicting our fate (unfortunately, being crushed or frozen). So far, the
estimate of neutrino mass gives a value smaller than 1 eV, which indicates the expansion of the
universe.27

10.4 Exponentially Correlated Gaussian Functions

In 1960, Boys28 and Singer29 noticed that the functions that are products of Gaussian orbitals and

correlational factors of Gaussian type, exp
(
−br2

i j

)
, where ri j is the distance between electron

i and electron j , generate relatively simple integrals in the quantum chemical calculations. A
product of two Gaussian orbitals, with positions shown by the vectors A, B, and of an exponential
correlation factor is called an exponentially correlated Gaussian geminal30:

g
(
ri , r j ;A,B, a1, a2, b

) = Ne−a1
(
ri−A

)2
e−a2

(
r j−B

)2
e−br2

i j .

A geminal is an analog of an orbital–there is a one-electron function, and here is a two-
electron one. A single geminal is very rarely used in computations,31 we apply hundreds or
even thousands of Gaussian geminals. When we want to find out the optimal positions A,B and

27 At this moment, there are other candidates for contributing significantly to the mass of the Universe, mainly the
mysterious “dark matter.” This constitutes the major part of the mass of the Universe. We know very little about it.

Recently, it turned out that neutrinos undergo what are called oscillations; e.g., an electronic neutrino travels
from the Sun and on its way spontaneously changes to a muonic neutrino. The oscillations indicate that the mass
of the neutrino is nonzero. According to current estimations, however, it is much smaller than the accuracy of the
tritium experiments.

28 S.F. Boys, Proc. Royal Soc. A258, 402 (1960).
29 K. Singer, Proc. Royal Soc. A258, 412 (1960).
30 This is an attempt to go beyond the two-electron systems with the characteristic for the systems approach of James,

Coolidge, Hylleraas, Kołos, Wolniewicz, and others.
31 Ludwik Adamowicz introduced an idea of the minimal basis of the Gaussian geminals [equal to the number of

the electron pairs) and applied to the LiH and HF molecules, L. Adamowicz and A.J. Sadlej, J. Chem. Phys., 69,
3992 (1978).
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the optimal exponents a and b in these thousands of geminals, it turns out that nothing certain
is known about them, the A,B positions are scattered chaotically32; in the a > 0 and b > 0
exponents, there is no regularity either. Nevertheless, the above formula for a single Gaussian
geminal looks as if it suggested b > 0.

10.5 Electron Holes

10.5.1 Coulomb Hole (Correlation Hole)

It is always good to count “on fingers” to make sure that everything is all right. Let us see how
a single Gaussian geminal describes the correlation of the electronic motion. Let us begin with
the helium atom with the nucleus in the position A = B = 0. The geminal takes the form

gHe = Ne−a1r2
1 e−a1r2

2 e−br2
12, (10.18)

where N > 0 is a normalization factor. Let us assume33 that electron 1 is at (x1, y1, z1) =
(1, 0, 0). In such a situation, where does electron 2 prefer to be? We will discover this (Fig. 10.2)
from the position of electron 2 for which gHe assumes the largest value.

Just to get an idea, let us try to restrict the motion of electron 2. For instance, let us demand
that it moves only on the sphere of radius equal to 1 centered at the nucleus. So we insert
r1 = r2 = 1. Then, gHe = const exp

[−br2
12

]
and we will find out easily what electron 2 likes

most. With b > 0, the latter factor tells us that what electron 2 likes best is just to sit on electron
1. Is it what the correlation is supposed to mean that one electron sits on the other? Here, we
have rather an anticorrelation. Something is going wrong. According to this analysis, we should
rather take the geminal of the form, e.g.:

gHe = Ne−a1r2
1 e−a1r2

2

[
1− e−br2

12

]
.

Now everything is qualitatively in order. When the interelectronic distance increases, the
value of the gHe function also increases, which means that such a situation is more probable
than that corresponding to a short distance. If the electrons become too agitated and begin to
think that it would be better when their distance gets very large, they would be called to order by
the factors exp

[−a1r2
1

]
exp

[−a1r2
2

]
. Indeed, in such a case, the distance between the nucleus

and at least one of the electrons is long and the probability of such a situation is quenched
by one or both exponential factors. For large r12 distances, the factor

[
1− exp

[−br2
12

]]
is

practically equal to 1. This means that for large interelectronic distances, gHe is practically equal
to N exp

[−a1r2
1

]
exp

[−a1r2
2

]
; i.e., to the product of the orbitals (no correlation of motions at

long interelectronic distances and rightly so).

32 The methods in which those positions are selected at random achieved a great success.
33 We use atomic units.
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Around electron 1, there is a region of low probability of finding electron 2. This region is
called the Coulomb hole.

The Gaussian geminals do not satisfy the correlation cusp condition (p. 587), because of

factor exp (−br2
i j ). It is required (for simplicity, we write ri j = r ) that

(
∂g
∂r

)
r=0
= 1

2 g(r = 0),

whereas the left side is equal to 0, while the right side 1
2 N exp[−a1(ri−A)2] exp[−a2(r j−B)2]

is not equal to zero. This is not a disqualifying feature, since the region of space in which this
condition should be fulfilled is very small.

The area of application of this method is–for practical (computational) reasons–relatively
small. The method of Gaussian geminals has been applied in unusually accurate calculations
for three- and four-electron systems.34

10.5.2 Exchange Hole (Fermi Hole)

The mutual avoidance of electrons in the helium atom or in the hydrogen molecule is caused
by Coulombic repulsion of electrons (described in the previous subsection). As we have shown
in this chapter, in the Hartree-Fock method the Coulomb hole is absent, whereas methods that
account for electron correlation generate such a hole. However, electrons avoid each other also
for reasons other than their charge. The Pauli principle is another reason this occurs. One of
the consequences is the fact that electrons with the same spin coordinate cannot reside in the
same place; see p. 34. The continuity of the wave function implies that the probability density
of them staying in the vicinity of each other is small; i.e.,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 10.2. Illustration of the correlation and anticorrelation of the electrons in the helium atom. Panels (a) and (b) present the

machinery of the “anticorrelation” connected with the geminal gHe = N exp
[
−r2

1

]
exp

[
−r2

2

]
exp

[
−2r2

12

]
. In (a), electron 1

has a position (0, 0, 0), while (b) corresponds to electron 1 being at point (1, 0, 0) (cutting off the top parts of the plots is caused
by graphical limitations, not by the physics of the problem). It can be seen that electron 2 holds to electron 1; i.e., it behaves in a
completely unphysical manner (since the electrons repel each other). Panels (c) and (d) show how electron 2 will respond to such

two positions of electron 1, if the wave function is described by the geminal gHe = N exp
[
−r2

1

]
exp

[
−r2

2

] [
1− exp

[
−2r2

12

]]
.

In (c), we see that electron 2 runs away “with all its strength” (the hollow in the middle) from electron 1 placed at (0, 0, 0), we have
correlation. Similarly, in (d), if electron 1 is in point (1, 0, 0), then it causes a slight depression for electron 2 in this position, we
do have correlation. However, the graph is different than in case (c). This is understandable since the nucleus is all the time in the
point (0, 0, 0). Panels (e) and (f) correspond to the same displacements of electron 1, but this time, the correlation function is equal

to ψ(r1, r2) =
(

1+ 1
2 r12

)
exp

[
−
(

r2
1 + r2

2

)]
; i.e., it is similar to the wave function of the harmonic helium atom. It can be seen

(particularly in panel e) that there is a correlation, although much less visible than in the previous examples. To amplify (artificially)

the correlation effect, panels (g) and (h) show the same as (e) and (f), but for the functionψ(r1, r2) = (1+25r12) exp
[
−
(

r2
1 + r2

2

)]
,

which [unlike in (e) and (f)] does not satisfy the correlation cusp condition.

34 W. Cencek, Ph.D. thesis, Adam Mickiewicz University, Poznań, 1993; also J. Rychlewski, W. Cencek, and
J. Komasa, Chem. Phys. Letters, 229, 657 (1994); W. Cencek, and J. Rychlewski, Chem. Phys. Letters, 320,
549 (2000).



598 Chapter 10

around the electron, there is a no-parking area for other electrons with the same spin
coordinate (known as the exchange, or Fermi hole).

Let us see how such exchange holes arise. We will try to make the calculations as simple as
possible.

We have shown above that the Hartree-Fock function does not include any electron cor-
relation. We must admit, however, that we have come to this conclusion on the basis of the
two-electron, closed-shell case. This is a special situation, since both electrons have different
spin coordinates

(
σ = 1

2 and σ = −1
2

)
. Is it really true that the Hartree-Fock function does not

include any correlation of electronic motion?
We take the H−2 molecule in the simplest formulation of the LCAO MO method.35 We

have three electrons. As a wave function, we will take the single (normalized) Hartree-Fock
determinant (of the UHF type) with the following orthonormal spinorbitals occupied: φ1 =
ϕ1α, φ2 = ϕ1β, φ3 = ϕ2α:

ψU H F (1, 2, 3) = 1√
3!

∣∣∣∣∣∣
φ1(1) φ1(2) φ1(3)
φ2(1) φ2(2) φ2(3)
φ3(1) φ3(2) φ3(3)

∣∣∣∣∣∣ .
Example 1: The Great Escape

We are interested in electron 3 with electron 1 residing at nucleus a with space coordinates
(0, 0, 0) and with spin coordinate σ1 = 1

2 and with electron 2 located at nucleus b with coor-
dinates (R, 0, 0) and σ2 = −1

2 , whereas the electron 3 itself has spin coordinate σ3 = 1
2 .

The square of the absolute value of the function ψUHF calculated for these values depends on
x3, y3, z3 and represents the conditional probability density distribution for finding electron 3
(provided electrons 1 and 2 have the fixed coordinates given above and denoted by 10, 20). So,
let us calculate individual elements of the determinantψU H F (10, 20, 3), taking into account the
properties of spin functions α and β (cf. p. 27):

ψU H F (10, 20, 3) = 1√
3!

∣∣∣∣∣∣
ϕ1(0, 0, 0) 0 ϕ1(x3, y3, z3)

0 ϕ1(R, 0, 0) 0
ϕ2(0, 0, 0) 0 ϕ2(x3, y3, z3)

∣∣∣∣∣∣ .
Using the Laplace expansion (see Appendix A available at http://booksite.elsevier.com/978-0-

444-59436-5 on p. e1), we get

ψU H F (10, 20, 3) = 1√
3! [ϕ1(0, 0, 0)ϕ1(R, 0, 0)ϕ2(x3, y3, z3)

−ϕ1(x3, y3, z3)ϕ1(R, 0, 0)ϕ2(0, 0, 0)].
35 This involves two atomic orbitals only: 1sa = χa and 1sb = χb, two molecular orbitals: [bonding ϕ1 =

1√
2(1+S)

(χa+χb)], and antibonding [ϕ2 = 1√
2(1−S)

(χa−χb), cf. p. 437] and the overlap integral S ≡ (χa |χb).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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The plot of this function (the overlap integral S is included in normalization factors of the
molecular orbitals) is given in Fig.10.3.

Qualitatively, however, everything is clear even without the calculations. Due to the forms
of the molecular orbitals (S is small) ϕ1(0, 0, 0) = ϕ1(R, 0, 0) ≈ ϕ2(0, 0, 0) = const, we get

ψU H F (10, 20, 3) ≈ −const2
1√
3
χb(3),

so the conditional probability of finding electron 3 is

ρ(3) ≈ 1

3
const4 [χb(3)]2. (10.19)

We can see that for some reason, electron 3 has chosen to be in the vicinity of nucleus b.
What scared it so much when we placed one electron on each nucleus? Electron 3 ran to be as
far as possible from electron 1 residing on a. It hates electron 1 so much that it has just ignored
the Coulomb repulsion, of electron 2 sitting on b, and jumped on it!36 What has happened?

Fig. 10.3. Demonstration of the power of the Pauli exclusion principle, or the Fermi hole formation for the H−2 molecule in
the UHF model (p. 448, a wave function in the form of a single Slater determinant). The two protons (a and b), indicated by
“+,” occupy positions (0, 0, 0) and (2, 0, 0) in a.u., respectively. The space and spin coordinates (the latter shown as arrows) of

electrons 1 and 2 [
(

x1, y1, z1, σ1 = 1
2

)
and

(
x2, y2, z2, σ2 = − 1

2

)
, so they have opposite spins] as well as the spin coordinate

of electron 3 (σ3 = 1
2 , the same as the spin coordinate of electron 1) will be fixed at certain values: electron 2 will always sit on

nucleus b, electron 1 will occupy some chosen positions on the x-axis (i.e., we keep y1 = 0, z1 = 0). In this way, we will have
to work with a section ψ(x3, y3, z3) of the wave function, visualized in the figure by setting z3 = 0. The square of the resulting
function represents a conditional probability density of finding electron 3, if electrons 1 and 2 have the assigned coordinates. (a)
Corresponds to example 1: electron 1 sits on nucleus a. Electron 3 runs away to the nucleus b, despite the fact that there is already
electron 2! (b) Corresponds to example 2: electron 1 sits on nucleus b together with electron 2. Electron 3 runs away to the nucleus
a. (c) Corresponds to example 3–a dilemma for electron 3: electron 1 sits in the middle between the nuclei. Electron 3 chooses the
antibonding molecular orbital (c1), because it offers a node exactly at the position of electron 1 (with same spin), when squared it
creates a Fermi hole (c2)! (d1) is an even tougher case: electron 1 sits at 1

3 of the internuclear distance; so, what is electron 3 going
to do? Electron 3 chooses such a combination of the bonding and of the antibonding molecular orbitals that creates a node (and
a Fermi hole, d2) precisely at the position of electron 1 with the same spin. Clearly, with a single Slater determinant as the wave
function, electrons with the same spin hate one another (Fermi hole), while electrons with the opposite spin just ignore each other
(no Coulomb hole).

36 In fact it does not see electron 2 (because of the one-determinantal wave function).
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Fig. 10.3. (Continued).

Well, we have some suspicions. Electron 3 could have been scared only by the spin coordinate
of electron 1, the same as its own.

This is just an indication of the exchange hole around each electron.

Example 2: Another Great Escape
Maybe electron 3 does not run away from anything, but simply always resides at nucleus b.

Let us make sure of that by moving electron 1 to nucleus b (electron 2 is already sitting over
there, but that does not matter). What, then, will electron 3 do? Let us see. We have electrons
1 and 2 at nucleus b with space coordinates (R, 0, 0) and spin coordinates σ1 = 1

2 , σ2 = −1
2 ,

whereas electron 3 has spin coordinate σ3 = 1
2 . To calculate the conditional probability, we

have to calculate the value of the wave function.
This time,

ψU H F (10, 20, 3) = 1√
3!

∣∣∣∣∣∣
ϕ1(R, 0, 0) 0 ϕ1(x3, y3, z3)

0 ϕ1(R, 0, 0) 0
ϕ2(R, 0, 0) 0 ϕ2(x3, y3, z3)

∣∣∣∣∣∣ ≈ const2
1√
3
χa(3)

or

ρ(3) ≈ 1

3
const4[χa(3)]2. (10.20)
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We see that electron 3 with spin coordinate σ3 = 1
2 runs in panic to nucleus a, because it is

as scared of electron 1 with spin σ1 = 1
2 as the devil is of holy water.

Example 3: A Dilemma
And what would happen if we made the decision for electron 3 more difficult? Let us put

electron 1
(
σ1 = 1

2

)
in the center of the molecule and electron 2

(
σ2 = −1

2

)
as before, at

nucleus b. According to what we think about the whole machinery, electron 3 (with σ3 = 1
2 )

should run away from electron 1 because both electrons have the same spin coordinates, and
this is what they hate most. But where should it run? Will electron 3 select nucleus a or nucleus
b? The nuclei do not look equivalent. There is an electron sitting at b, while the a center is
empty. Maybe electron 3 will jump to a then? Well, the function analyzed is the Hartree-Fock
type, electron 3 ignores the Coulomb hole (it does not see electron 2 sitting on b) and therefore,
it will not prefer the empty nucleus a to sit at. It looks like electron 3 will treat both nuclei on
the same basis. In the case of two atomic orbitals, electron 3 has a choice: either bonding orbital
ϕ1 or antibonding orbital ϕ2 (either of these situations corresponds to equal electron densities
on a and on b). Out of the two molecular orbitals, ϕ2 looks much more attractive to electron 3,
because it has a node37 exactly, where electron 1 with its nasty spin is. This means that there is
a chance for electron 3 to take care of the Fermi hole of electron 1: we predict that electron 3
will “choose” only ϕ2. Let us check this step by step:

ψU H F (10, 20, 3) = 1√
3!

∣∣∣∣∣∣
ϕ1
( R

2 , 0, 0
)

0 ϕ1(x3, y3, z3)

0 ϕ1(R, 0, 0) 0
ϕ2
( R

2 , 0, 0
)

0 ϕ2(x3, y3, z3)

∣∣∣∣∣∣
= 1√

3!

∣∣∣∣∣∣
ϕ1
( R

2 , 0, 0
)

0 ϕ1(x3, y3, z3)

0 ϕ1(R, 0, 0) 0
0 0 ϕ2(x3, y3, z3)

∣∣∣∣∣∣
= 1√

3!ϕ1

(
R

2
, 0, 0

)
ϕ1(R, 0, 0)ϕ2(x3, y3, z3) = const1ϕ2(x3, y3, z3).

And it does exactly that.
In Fig.10.3, in panel (d1), we give an example with electron 1 at 1

3 R. The result is similar: a
Fermi hole is precisely at the position of electron 1.

Which hole is more important: Coulomb or exchange? This question will be answered in
Chapter 11.

37 That is, low probability of finding electron 3 over there.
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VARIATIONAL METHODS WITH SLATER DETERMINANTS

In all of these methods, the variational wave function will be sought in the form of a linear
combination of Slater determinants. As we have seen a while ago, even a single Slater deter-
minant assures a very serious avoiding of electrons with the same spin coordinate. Using a
linear combination of Slater determinants means an automatic (based on variational principle)
optimization of the exchange hole (Fermi hole).

What about the Coulomb hole? If this hole were also optimized, a way to the solution of the
Schrödinger equation would open up. However, as we have carefully checked before, a single
Slater determinant does not know anything about the Coulomb hole. If it does not know, then per-
haps a linear combination of guys, each of them not knowing anything, will not do any better…
Wrong! A linear combination of Slater determinants is able to describe the Coulomb hole.38

10.6 Static Electron Correlation

Some of these Slater determinants are necessary for fundamental reasons. For example, con-
sider the carbon atom ground state, its (triplet) ground state corresponding to the 1s22s22p2

configuration. The configuration does not define which of the triply degenerate 2p orbitals
have to be included in the Slater determinant. Any choice of the 2p orbitals will be therefore
non-satisfactory: one is forced to go beyond a single Slater determinant. A similar situation
occurs if an obvious quasi-degeneracy occurs, like for the hydrogen molecule at large distances
(see Chapter 8). In such a case, we are also forced to include in calculations another Slater
determinant. One may say that

what is known as a static correlation represents an energy gain coming from considering in
the wave function (in the form of a linear combination of Slater determinants) low-energy
Slater determinants, which follow from occupying a set of degenerate or quasi-degenerate
orbitals.

10.7 Dynamic Electron Correlation

The dynamic electron correlation means the rest of the correlation effect, beyond the static
one. It corresponds also to occupying orbital energies, but not those related to the degeneracy
or quasi-degeneracy of the ground state. As we see, the distinction between the static and the
dynamic correlation is a bit arbitrary.

38 Not all linear combinations of Slater determinants describe the Coulomb hole. Indeed, for example, a Hartree-Fock
function in the LCAO MO approximation may be expanded in a series of Slater determinants (see Appendix A
available at booksite.elsevier.com/978-0-444-59436-5) with the atomic orbitals, but no Coulomb hole is described
by this function.

http://booksite.elsevier.com/978-0-444-59436-5
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Example of Beryllium

Let us take a beryllium atom as an illustration. The beryllium atom has four electrons (1s22s2

configuration). Beryllium represents a tough case in quantum chemistry because the formally
occupied 2s orbital energy is quite close to the formally unoccupied orbital energy of 2p. In
the present example, we will claim this as a dynamic correlation, but to tell the truth, it is just
between the static and dynamic correlation. One may, therefore, suspect that the excited configu-
rations 2s12p1 and 2p2 will be close in energy scale to the ground-state configuration 2s2. There
is, therefore, no legitimate arguments for neglecting these excited configurations in the wave
function (what the Hartree-Fock method does). Since the Hartree-Fock method is poor in this
case, this means the electronic correlation energy must be large for the beryllium
atom.39

Why to worry then about the closed-shell electrons 1s2? Two of the electrons are bound
very strongly (1s2)–so strongly that we may treat them as passive observers that do not react to
anything that may happen. Let us just ignore the inner shell40 in such a way that we imagine an
“effective nucleus of the pseudoatom” of beryllium as a genuine beryllium nucleus surrounded
by the electronic cloud 1s2. The charge of this “nucleus” is 4− 2 = 2. Then, the ground-state
Slater determinant for such a pseudoatom reads as

ψ0 = 1√
2!
∣∣∣∣2s(1)α(1) 2s(2)α(2)
2s(1)β(1) 2s(2)β(2)

∣∣∣∣ , (10.21)

where we decide to approximate the function 2s as a normalized Slater orbital41 (ζ > 0):

2s =
√
ζ 5

3π
r exp (−ζr).

Since the Hartree-Fock method looks to be a poor tool for beryllium, we propose a more
reasonable wave function in the form of a linear combination of the ground-state configuration
[Eq. (10.21)] and the configuration given by the following Slater determinant:

ψ1 = 1√
2!
∣∣∣∣2px (1)α(1) 2px (2)α(2)
2px (1)β(1) 2px (2)β(2)

∣∣∣∣ , (10.22)

where just to keep things as simple as possible, we use the 2px orbital.

39 This is why we took the beryllium atom and not just the helium atom, in which the energy difference between the
orbital levels 1s and 2s is much larger (i.e., the correlation energy much smaller).

40 The reasoning below may be repeated with the 1s2 shell included; the calculations will be a bit more complicated,
but the final result very similar.

41 Let us check whether the normalization coefficient is correct:
∫
(2s)2dV = ζ 5

3π

∫
r2 exp (−2ζr)dV =

ζ 5

3π

∫∞
0 r4 exp (−2ζr)dr

∫ π
0 sin θdθ

∫ 2π
0 dφ= 4πζ 5

3π

∫∞
0 r4 exp (−2ζr)dr = 4πζ 5

3π 4!(2ζ )−5= 1, as it should be.
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Such a function, being a linear combination of antisymmetric functions, is itself antisym-
metric with respect to the electron exchange (as it should be–see Chapter 1). Just to grasp the
essence of the problem, we omit all other excitations, including 2s2 → 2p2 with the orbitals
2py, 2pz as well as the excitations of the type 2s2 → 2s12p1. The latter excitation seems to
require low energy, so it is potentially important. However, it will be shown later in this chapter
that there are arguments for neglecting it (because of a weak coupling with the ground-state
configuration). The x-axis has been highlighted by us (through taking 2px orbitals only) for
purely didactic reasons, because soon we are going to frighten electron 2 by using electron 1 in
certain points on the x-axis (therefore, this axis is expected to be the main direction of escaping
for electron 2):

2px = ζ
√
ζ 3

π
x exp (−ζr) = ζ x (2s).

The drastically simplified wave function reads, therefore, as

ψ = ψ0 + κψ1, (10.23)

where κ stands for a coefficient to be determined, which measures how much of the 2p2

configuration has to be added to the 2s2 configuration in order to describe correctly the physical
behavior of the electrons42 (for example, this is forced by the variational method or by a
perturbational approach, see Chapter 5). Let us use a perturbational approach, in which we
assume ψ0 as a unperturbed wave function. Eq. (5.24), p. 245 says, that with our current
notation, the coefficient κ may be estimated as

κ =
〈
ψ1|Ĥ (1)ψ0

〉
E0 − E1

, (10.24)

where the energies E0 and E1 correspond to the ground-state configuration (ψ0) and the
excited-state configuration (ψ1), while Ĥ (1) stands for the perturbation. Right now, we have
no idea what this perturbation is, but it is not necessary to know this since (see Chapter 5)〈
ψ1|Ĥ (1)ψ0

〉
=
〈
ψ1|(Ĥ − Ĥ (0))ψ0

〉
=
〈
ψ1|Ĥψ0

〉
− E0 〈ψ1|ψ0〉=

〈
ψ1|Ĥψ0

〉
− 0=

〈
ψ1|Ĥψ0

〉
,

where Ĥ (0)ψ0 = E0ψ0 and 〈ψ1|ψ0〉 = 0 (the latter because of the orthogonality of 2s and
2px ).

It is seen, therefore, that we have to do with a matrix element of the Hamiltonian calcu-
lated with two Slater determinants containing orthonormal spinorbitals: 2sα, 2sβ, 2pxα, 2pxβ,
the first two composing ψ0, the last ones present in ψ1. Hence, all necessary conditions are

42 We are not intending to get a perfect description of the system because with such a trial function, there is no
chance to solve the Schrödinger equation anyway. Rather, we are here to grasp a qualitative picture: will it be a
Coulomb hole or not?
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satisfied for operating the third Slater-Condon rule (see appendix M available at booksite.
elsevier.com/978-0-444-59436-5, p. e109). We get〈

ψ1|Ĥψ0

〉
= 〈2sα2sβ|2pxα2pxβ〉 − 〈2sα2sβ|2pxβ2pxα〉
= 〈2sα2sβ|2pxα2pxβ〉 − 0 = (2s2s|2px 2px )

≡
∫ [

2s(1)2px (1)
] 1

r12

[
2s(2)2px (2)

]
dV1dV2 > 0.

We have got a key inequality,43 because from Eq. (10.24) and E0 < E1, it follows that

κ < 0. (10.25)

Our qualitative conclusions will depend only on the sign of κ , not on its particular value.
Let us make a set of exercises listed below (all distances in a.u.), first with ψ0, then with ψ1,
and finally with ψ = ψ0 + κψ1. In all of them, the following is true:

• The nucleus is immobilized at (0, 0, 0).
• Let us put electron 1, having the spin coordinate σ1 = 1

2 , at (−1, 0, 0).
• We will search the probability distribution of finding electron 2 with the spin coordinate

σ2 = −1
2 .

• We will repeat the two last points with electron 1 at (+1, 0, 0); i.e., on the opposite side of
the nucleus and at the same electron-nucleus distance.

• We will compare the two probability distributions. If they were identical, there would be
no correlation whatsoever; otherwise, there would be a correlation.

To this end, we will need three numbers to be calculated (the three numbers in parentheses
represent x, y, and z):

2s(−1, 0, 0) = 2s(1, 0, 0) =
√
ζ 5

3π
exp (−ζ ) ≡ A > 0,

2px (1, 0, 0) = ζ
√
ζ 3

π
exp (−ζ ) = B > 0,

2px (−1, 0, 0) ≡ ζ
√
ζ 3

π
(−1) exp (−ζ ) ≡ −B.

Function ψ0.
We expand the determinant [Eq. (10.21)] for electron 1 being at position (−1, 0, 0) and obtain

a function of position of electron 2 in the form44 1√
2

A · 2s(2). Therefore, the (conditional)

43 The inequality follows from evident repulsion of two identical electron clouds (of electron 1 and of electron 2),
because they sit on top of each other.

44 Only the diagonal elements of the Slater determinant are nonzero (the rest of elements vanish because of the spin
functions), so we get the result right away.

http://booksite.elsevier.com/978-0-444-59436-5
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(a)
1 2

(b)

(c)
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probability density distribution of electron 2 is 1
2 A2[2s(2)]2; (see Fig. 10.4a1). We repeat the

same for position (1, 0, 0) of electron 1 and get the identical result (see Fig. 10.4a2). Conclusion:
there is no Coulomb hole for the ground-state Slater determinant. Well, this is what we should
expect. However, it may be that this result depends on a type of Slater determinant. Let us take
the Slater determinant ψ1.

Function ψ1.
Expanding [Eq. (10.22)] for a fixed position (−1, 0, 0) of electron 1, one gets a function

depending on the position of electron 2 in the form 1√
2
(−B) · 2px (2), and therefore the condi-

tional probability of finding electron 2 is 1
2 B2[2px (2)]2 (Fig.10.5b1). Repeating the same for

position (1, 0, 0) of electron 1, we obtain a function: 1√
2

B · 2px (2), but still we get the same

probability distribution: 1
2 B2[2px (2)]2 (see Fig. 10.5b2). Once again, we obtain no Coulomb

hole.
Function ψ = ψ0 + κψ1.
We calculateψ = ψ0+κψ1 for position

(−1, 0, 0
)

of electron 1 and we obtain a function of

position of electron 2 in the form 1√
2

A · 2s(2)+ κ
[

1√
2
(−B) · 2px (2)

]
with the corresponding

conditional probability distribution of electron 2 as ρ−(2) = 1
2 A2[2s(2)]2+ 1

2κ
2 B2[2px (2)]2−

κAB ·2s(2) ·2px (2) (Fig. 10.4c1). When repeating the same for position (1, 0, 0) of electron 1,

we obtain a different result: 1√
2

A ·2s(2)+κ
[

1√
2

B · 2px (2)
]

and therefore a different probability

distribution: ρ+(2) = 1
2 A2[2s(2)]2+ 1

2κ
2 B2[2px (2)]2+κAB ·2s(2) ·2px (2) (see Fig. 10.4c2).

So, there is a correlation of the electronic motion. It would be even better to have this correlation
reasonable.45 Panels (c1) and (c2) of Fig. 10.4 show that indeed, the correlation stands to
reason: the two electrons avoid one another, if electron 1 is on the left side, electron 2 is on the
right side and vice versa.

If we did not have the inequality [Eq. (10.25)], this conclusion could not be derived. For
κ > 0, electron 2 would accompany electron 1 (“anticorrelation”), which means “a completely
non-physical” behavior. For κ = 0 or κ = ±∞, there would be no correlation.46 All, therefore,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 10.4. A single Slater determinant cannot describe any Coulomb correlation, but a linear combination of the Slater determinants
can. The image shows the beryllium atom, with a pseudonucleus (of charge +2) shown as a large sphere in the center. All the
images show the sections (z = 0) of the (conditional) probability density distribution of finding electron 2 (a, upper row–for the
single Slater determinant ψ0; b, second row–for the single Slater determinant ψ1; c, bottom row–for a two-determinantal wave
function ψ = ψ0 + κψ1), when electron 1, symbolized by a small sphere, resides at (−1, 0, 0) (the left side has the symbol 1) or
at (1, 0, 0) (the right side has the symbol 2). Only in the case of the two-determinantal wave function ψ = ψ0 + κψ1, one obtains
any difference between the probability distributions, when electron 1 occupies two positions: (−1, 0, 0) and (1, 0, 0). The values
κ < 0 correspond to mutual avoiding of the two electrons (in such a case, the wave function takes into account the Coulomb hole),
κ = 0 means mutual ignoring of the two electrons, κ > 0 would correspond to a very bad wave function, that describes the two
electrons sticking one to the other. In order to highlight the correlation effect (purely didactic reasons), we took quite arbitrarily
κ = −0.7 and ζ = 1.

45 A unreasonable correlation would be, for example, when the two electrons were sticking to each other.
46 All these cases correspond to a single determinant ψ0 (for κ = 0) and ψ1 or −ψ1 (for κ = ±∞).
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depends on the coefficients of the linear combination of Slater determinants. This is the vari-
ational principle or the perturbational theory that takes care that the wave function was close
to the solution of the Schrödinger equation for the ground state. This forces a physics-based
description of the electronic correlation–in our case, κ < 0.

A two-determinantal function ψ = ψ0 + κψ1 with κ < 0 can (in contrast with the single
determinantal functions ψ0 and ψ1) approximate the effect of the dynamic correlation
(Coulomb hole). Of course, a combination of many Slater determinants with appropriate
coefficients can do it better.

10.8 Anticorrelation, or Do Electrons Stick Together in Some States?

What about electronic correlation in excited electronic states? Not much is known for excited
states in general. In our case of Eq. (10.23), the Ritz variational method would give two solutions.
One would be of lower energy corresponding toκ < 0 (this solution has been approximated by us
using the perturbational approach). The second solution (the excited electronic state) will be of
the formψexc = ψ0+κ ′ψ1. In such a simple two-state model, the coefficient κ ′ can be found just
from the (necessary) orthogonality of the two solutions: 〈ψexc|ψ〉 =

〈
ψ0 + κ ′ψ1|ψ0 + κψ1

〉 =
1+ κκ ′∗ + κ ′∗ 〈ψ1|ψ0〉 + κ 〈ψ0|ψ1〉 = 1+ κκ ′∗ = 0.

Hence, κ ′∗ = − 1
κ
> 0. We have, therefore, κ ′ > 0 and it is quite intriguing that our excited

state corresponds now to what we call here an “anticorrelation.” In the excited state, we got the
two electrons sticking to each other. This result certainly cannot be thought as of general value
for excited states. It is probable that in excited electronic states, the electronic correlation gets
weaker, but according to what we have found in our two-state model, some excited states might
exhibit the electronic anticorrelation! This indication may be less surprising than it sounds. For
example, the hydrogen molecule has not only the covalent states, but also the excited states of
ionic character (as we will discuss next). In the ionic states, the two electrons prefer to occupy
the same space (still repelling each other), as if there were a kind of “attraction” between them.

Electrons Attract Themselves!

Do the electrons repel each other? Of course. Does this mean that the electrons try to be as
far from themselves as possible? Yes, but the words “as possible” are important. What does
that mean? Usually, this means a game between the electrons strongly attracted by a nucleus
and their important repulsion through the Pauli exclusion principle (Fermi hole), together with
much less important Coulomb repulsion (Coulomb hole).

Let us try to simplify the situation. First, let us remove the presence of the nuclei and see what
electrons like without them. Then, while all the time keeping the Coulomb repulsion, we will
either switch on the Fermi hole by considering the triplet states with the two electrons having
opposite spins or switch off the Fermi hole by taking the singlet states of these two electrons.
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Let us take a toy (a model): a circle of radius R (the potential energy within the circle set to
zero, the infinity outside) and two electrons moving along the circle. Thus, there is no nuclei,
only a circle with two electrons living in it. Independent of the singlet or triplet states considered,
our common sense says that these two electrons will avoid each other; i.e., they will prefer to
be on the opposite sites of the circle. Let us check whether this idea is true.

When you write down the corresponding Hamiltonian, it will depend on φ1 and φ2 (two
position angles) and contain the kinetic energy operator of the two electrons plus the Coulombic
repulsion of the electrons e2

r12
. Now, we can introduce the center of mass angular coordinate

(proportional to φ1 + φ2) and the relative coordinate φ = φ1 − φ2. After exact separation of
the center-of-mass motion, we get the Schrödinger equation for φ (μ is the reduced mass of the
two electrons): (

− �
2

2μR2

∂2

∂φ2 +
e2

r12

)
ψ(φ) = Eψ(φ).

If the Coulombic repulsion were absent, the solutions would be const, exp (imφ) and
exp (−imφ),m = 1, 2, . . .which means the non-degenerate nodeless ground state and all other
states doubly degenerate. In the future, we will use their combinations ( sin mφ and cos mφ) as
the expansion functions for the wave function.

Now we reconsider the Coulombic repulsion. In fact, after separation is done, we may treat
electron 1 as sitting all the time at φ = 0 and electron 2 (with the coordinate φ) moving. The
eigenfunctions for this problem are:

• The nodeless ground stateψ0, which because of the Coulombic term, will not be a constant,
but have a maximum at φ = 180

◦
(i.e., the farthest distance from electron 1). The spatial

function is a symmetric function of φ, so this describes the singlet ground-state.
• The first excited state ψ1 has one node, and this nodal line should be along a straight line:

electron 1 and position φ = 180
◦
, This function is antisymmetric with respect to exchange

of the electrons (φ → −φ), so this is the (lowest) triplet state. This state will be of low-
energy, because it takes care of the Fermi hole, the wave function equal zero for electron 2
at the position of electron 1.

• The second excited state (ψ2) will also have one node (recall the benzene π orbitals, or
think about m and −m), but the nodal plane has to be orthogonal to that of ψ1 (symmetric
function; i.e., the first excited singlet). The function ψ2 has to be orthogonal to ψ0 and ψ1.
The orthogonality to ψ0 means it has to have larger absolute amplitude at the position of
electron 1 than on the opposite site (φ = 180

◦
). So we see that already such a low-energy

state as ψ2 is of the kind that electron 2 prefers to be closer to electron 1.
• Similar phenomenon will appear for higher states.

The above description has a resemblance to the rigid dipolar rotator rotating in plane with
a uniform electric field within this plane (with orientation φ = 0); see p. 736. There is only
one difference with respect to the problem of two electrons: the reason why the negative pole
of the dipole hates to get the orientation φ = 0 (which corresponds to electron 2 avoiding
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electron 1 at φ = 0) is the uniform electric field and not the non-uniform electric field created
by electron 1. This difference is of secondary importance. So, the very fact that there are
experimental observations of what is known as low-field seeker dipole molecules (with the
dipole moment against the electric field, see p.736) represents a strong indication that the same
should happen here. So

there will be excited states that describe electrons close to each other, as if they attracted
themselves!

10.9 Valence Bond (VB) Method

10.9.1 Resonance Theory–Hydrogen Molecule

Slater determinants are usually constructed from molecular spinorbitals. If, instead, we use
atomic spinorbitals and the Ritz variational method (Slater determinants as the expansion func-
tions), we would get the most general formulation of the valence bond (VB) method. The
beginning of VB theory goes back to papers by Heisenberg, the first application was made by
Heitler and London, and later theory was generalized by Hurley, Lennard-Jones, and Pople.47

The essence of the VB method can be explained by an example. Let us take the hydrogen
molecule with atomic spinorbitals of type 1saα and 1sbβ (abbreviated as aα and bβ) centered
at two nuclei. Let us construct from them several (non-normalized) Slater determinants, for
instance:

ψ1 = 1√
2

∣∣∣∣a(1)α(1) a(2)α(2)
b(1)β(1) b(2)β(2)

∣∣∣∣ = 1√
2

[
a(1)α(1)b(2)β(2)− a(2)α(2)b(1)β(1)

]
,

ψ2 = 1√
2

∣∣∣∣a(1)β(1) a(2)β(2)
a(1)α(1) a(2)α(2)

∣∣∣∣ = 1√
2

[
a(1)β(1)b(2)β(2)− a(2)β(2)b(1)α(1)

]
,

ψ3 = 1√
2

∣∣∣∣a(1)α(1) a(2)α(2)
a(1)β(1) a(2)β(2)

∣∣∣∣ = 1√
2

[
a(1)α(1)a(2)β(2)− a(2)α(2)a(1)β(1)

]
= a(1)a(2) · 1√

2
[α(1)β(2)− α(2)β(1) ≡ ψH−H+

ψ4 = 1√
2

∣∣∣∣b(1)α(1) b(2)α(2)
b(1)β(1) b(2)β(2)

∣∣∣∣ = b(1)b(2) · 1√
2
[α(1)β(2)− α(2)β(1) ≡ ψH+H− .

The functions ψ3, ψ4 and the normalized difference NH L(ψ1 − ψ2) ≡ ψH L (NH L is a
normalization factor)

47 W. Heisenberg, Zeit. Phys., 38, 411 (1926); ibid., 39, 499 (1926); ibid. 41, 239 (1927); W. Heitler and F. London,
Zeit. Phys., 44, 455 (1927); A.C. Hurley, J.E. Lennard-Jones, and J.A. Pople, Proc. Roy. Soc. London, A220, 446
(1953).
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HEITLER− LONDON FUNCTION (10.26)

ψH L = NH L
[
a(1)b(2)+ a(2)b(1)

] · 1√
2

[
α(1)β(2)− α(2)β(1)] (10.27)

are eigenfunctions of the operators Ŝ2 and Ŝz (cf. Appendix Q available at book-
site.elsevier.com/978-0-444-59436-5, p. e133) corresponding to the singlet state. The functions
ψ3, ψ4 for obvious reasons are called ionic structures (H−H+ and H+H−),48 whereas the
function ψH L is called a Heitler-London function or a covalent structure.49

The VB method relies on optimization of the expansion coefficients c in front of these structures
in the Ritz procedure (p. 238):

ψ = ccovψH L + cion1ψH−H+ + cion2ψH+H− . (10.28)

Fritz Wolfgang London (1900–1954) was born in Bres-
lau (now Wrocław) and studied in Bonn, Frankfurt,
Göttingen, Munich (getting his Ph.D. at 21), and Paris.
Later, he worked in Zurich, Rome, and Berlin. He
escaped from Nazism to the United Kingdom, where
he worked at Oxford University (1933–1936). In 1939,
London emigrated to the United States, where he
became professor of theoretical chemistry at Duke
University in Durham, North Carolina.

Fritz London rendered great services to quantum
chemistry. He laid the foundations of the theory of
the chemical (covalent) bond and also introduced
dispersion interactions, one of the most important
intermolecular interactions. This is nearly all of what

chemistry is about. He also worked in the field of
superconductivity.

The covalent structure itself, ψH L , was one great success of Walter Heitler50 and Fritz
London. For the first time, the qualitatively correct description of the chemical bond was
obtained. The crucial point turned out to be an inclusion, in addition to the product function
a(1)b(2), its counterpart with exchanged electron numbers a(2)b(1), since the electrons are

48 This is because both electrons reside at the same nucleus.
49 This is because both electrons belong to the same extent to each of the nuclei.
50 Walter Heitler (1904–1981) was a German chemist and professor at the University in Göttingen, and later he

worked in Bristol and Zürich.

http://booksite.elsevier.com/978-0-444-59436-5
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indistinguishable. If we expand the Hartree-Fock determinant with doubly occupied bonding
orbital a + b, we would also obtain a certain linear combination of the three structures men-
tioned,51 but with the constant coefficients independent of the interatomic distance:

ψRH F = N

(
1

NH L
ψH L + ψH−H+ + ψH+H−

)
. (10.29)

This leads to a very bad description of the H2 molecule at long internuclear distances with
the Hartree-Fock method. Indeed, for long internuclear distances, the Heitler-London function
should dominate, because it corresponds to the (correct) dissociation limit (two ground-state
hydrogen atoms). The trouble is that with fixed coefficients, the Hartree-Fock function over-
estimates the role of the ionic structure for long interatomic distances. Fig. 10.5 shows that
the Heitler-London function describes the electron correlation (Coulomb hole), whereas the
Hartree-Fock function does not.

10.9.2 Resonance Theory–Polyatomic Case

The VB method was developed by Linus Pauling with the name of theory of resonance.

Linus Carl Pauling (1901–1994), American physi-
cist and chemist; in the years 1931–1964, he was
a professor at the California Institute of Technol-
ogy in Pasadena; in 1967–1969, he was a pro-
fessor at the University of California, San Diego;
and from 1969–1974 at the Stanford University.
He received the 1954 Nobel prize “for his research
into the nature of the chemical bond and its appli-
cation to the elucidation of the structure of com-
plex substances.” In 1962, he received the Nobel
peace prize. His major achievements are the devel-
opment of the theory of chemical bond–the VB method

(also called resonance theory ), and determining the
structure of one of the fundamental structural ele-
ments of proteins, the α−helix.

51 Indeed, the normalized Hartree-Fock determinant [double occupation of the molecular orbital ϕ1 =
1√

2(1+S)
(a + b), where the overlap integral between the atomic orbitals S = (a|b)] can be rewritten as

ψH F = 1√
2!
∣∣∣∣ ϕ1(1)α(1) ϕ1(2)α(2)
ϕ1(1)β(1) ϕ1(2)β(2)

∣∣∣∣
= 1

2(1+ S)

[
a(1)a(2)+ b(1)b(2)+ a(1)b(2)+ a(2)b(1)

] 1√
2
[α(1)β(2)− α(2)β(1)]

= 1

2(1+ S)

[
ψH−H+ + ψH+H− +

1

NH L
ψH L

]
.
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Fig. 10.5. Illustration of electron correlation in the hydrogen molecule. The nuclear positions are (0, 0, 0) and (4, 0, 0) in a.u.
Slater orbitals of 1s type have an orbital exponent equal to 1. (a) Visualization of the xy cross-section of the wave function of
electron 2, assuming that electron 1 resides on the nucleus (either the first or the second one), has spin coordinate σ1 = 1

2 , whereas

electron 2 has spin coordinate σ2 = − 1
2 and the total wave function is equal ψ = N {ab + ba + aa + bb}{αβ − βα}; i.e., it is

a Hartree-Fock function. The plot is the same independent of which nucleus electron 1 resides; i.e., we observe the lack of any

correlation of the motions of electrons 1 and 2. If we assume the spins to be parallel
(
σ2 = 1

2

)
, the wave function vanishes. (b) A

similar plot, but for the Heitler-London function ψH L = NH L [a(1)b(2)+ a(2)b(1)] 1√
2
[α(1)β(2)− α(2)β(1)] and with electron

1 residing at nucleus (0, 0, 0). Electron 2 runs to the nucleus in position (4, 0, 0). We have the correlation of the electronic motion.

If we assume parallel spins
(
σ2 = 1

2

)
, the wave function vanishes.

The method can be applied to all molecules, although a particularly useful field of applications
of resonance theory can be found in the organic chemistry of aromatic systems. For example,
the total electronic wave function of the benzene molecule is presented as a linear combination
of resonance structures52:

ψ =
∑

I

cII , (10.30)

and to each one (in addition to the mathematical form), a graph is assigned. For example, six π
electrons can participate in the following “adventures” (forming covalent and ionic bonds).

The first two structures are famous Kekulé structures, the next three are Dewar structures,
and the sixth is an example of the possible mixed covalent-ionic structures. From these graphs,
we may deduce which atomic orbitals (out of the 2pz orbital of carbon atoms, z is perpendicular
to the plane of the benzene ring) take part in the covalent bond (of the π type). As far as the
mathematical form of the 1 structure is concerned, we can write it as the antisymmetrized

52 Similar to the original applications, we restrict ourselves to the π electrons and the σ electrons are treated as
inactive in each structure, forming, among other things, the six C–C bonds.
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(cf. antisymmetrization operator; p. e107) product of three Heitler-London functions (involving
the proper pairs of 2pz carbon atomic orbitals), the first for electrons 1, 2, the second for electrons
3, 4, and the third for 5, 6. Within the functionsI , the ionic structures can also occur. The rules
for writing the structures were not quite clear, and the electrons were located to some extent in an
arbitrary manner, making the impression that it is up to theoretical chemists to use their imagina-
tions and draw imaginary pictures, and next to translate them into mathematical form to obtain–
after applying the variational method–an approximation to the wave function (and to the energy).

In fact, the problem is connected to the Ritz method and to expansion into the complete set
of functions53 (i.e., with a purely mathematical problem). Although it may seem very strange
to students (fortunately), many people were threatened for supporting the theory of resonance.
Scientists serving the totalitarian regime decided to attack Eq. (10.30). Why was this54? The
Stalinists did not like the idea that “the sum of fictitious structures can describe reality.” But wait!
If some artificial functions could interfere with reality, then socialist realism loses to abstraction,
a kolkhoz (collective farm) member to an intellectual, Lysenkoism to Mendelism,55 gulags to
the idea of freedom, and you are on the brink of disaster (if you are a Stalinist, that is).

53 In principle, they should form the complete set, but even so, in practical calculations, we never deal with true
complete sets.

54 Of course, the true reason was not a convergence of a series in the Hilbert space, but their personal careers at any
price. Totalitarian systems never have problems finding such “scientists.” In chemistry, there was the danger of
losing a job–and in biology, lives were actually at risk.

It is rather difficult to think about Joseph Stalin as a quantum chemist. He was, however, kept informed about
the current situation in the group of people involved in carrying out summation in Eq. (10.30); i.e., working in the
resonance theory. To encourage young people to value and protect the freedom they have, and to reflect on human
nature, some exempts from the resolution adopted by the All Soviet Congress of Chemists of the Soviet Union
are reported. The resolution pertains to the theory of resonance (after the disturbing and reflective book by S.E.
Shnoll, Gheroy i zladieyi rossiyskoy nauki Kron-Press, Moscow, 1997, p. 297):

“Dear Joseph Vissarionovich (Stalin),
the participants of the All Soviet Congress send to you, the Great Leader and Teacher of all progressive

mankind, our warm and cordial greetings. We Soviet chemists gathered together to decide, by means of broad
and free discussion, the fundamental problems of the contemporary theory of the structure of molecules, want to
express our deepest gratitude to you for the everyday attention you pay to Soviet science, particularly to chem-
istry. Our Soviet chemistry is developing in the Stalin era, which offers unlimited possibilities for the progress of
science and industry. Your brilliant work in the field of linguistics put the tasks for still swifter progress in front
of all scientists of our fatherland (…). Motivated by the resolutions of the Central Committee of the Bolshevik
Communist Party concerning ideological matters and by your instructions, Comrade Stalin, the Soviet chemists
wage war against the ideological concepts of bourgeois science. The lie of the so called “resonance theory” has
been disclosed, and the remains of this idea will be thrown away from the Soviet chemistry. We wish you, our dear
Leader and Teacher, good health and many, many years of famous life to the joy and happiness of the whole of
progressive mankind (…).”

The events connected with the theory of resonance started in the autumn of 1950 at Moscow University. Quan-
tum chemistry lecturers, Yakov Kivovitch Syrkin and Mirra Yefimovna Diatkina, were attacked. The accusation
was about diffusion of the theory of resonance and was launched by former assistants of Syrkin. Since everything
was in the hands of the professionals, Syrkin and Diatkina confessed guilty to each of the charges.

55 Trofim Lysenko (1898–1976), Soviet scientist of enormous political influence, rejected the genetic laws of Mendel.
In my seventh-grade biology textbook, virtually only his “theory” was mentioned. As a pupil, I recall wanting
to learn this theory. It was impossible to find any information. With difficulty, I finally found something: acorns
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Gregor Johann Mendel (1822–1884), modest Moravian monk,
from 1843 a member of the Augustinian order at Brno from 1843
on (abbot beginning in 1868). His unusually precise and patient
experiments with sweet peas of two colors and seeds of two
degrees of smoothness, allowed him to formulate the princi-
pal laws of genetics. Only in 1900 were his fundamental results
remembered, and since then, the rapid progress of contempo-
rary genetics began.

10.10 Configuration Interaction (CI) Method

In the configuration interaction method,56

the variational wave function is a linear combination of Slater determinants constructed
from molecular spinorbitals, Eq. (10.30): ψ =∑M

I=0 cII .

In most cases, we are interested in the functionψ for the electronic ground state of the system
(in addition, when solving the CI equations we also get approximations to the excited states
with different values of the cI coefficients).

Generally, we construct the Slater determinants I by placing electrons on the molecular
spinorbitals obtained with the Hartree-Fock method,57 in most cases, the set of determinants is
also limited by imposing an upper bound for the orbital energy. In that case, the expansion in
Eq. (10.30) is finite. The Slater determinants I are obtained by the replacement of occupied
spinorbitals with virtual ones in the single Slater determinant, which is the Hartree-Fock function

should be placed in a hole in the ground in large numbers to permit something like the class struggle. The winner
will be the strongest oak-tree, which is what we all want.

56 This is also called the method of superposition of configurations or configuration mixing.
57 In this method, we obtain M molecular orbitals; i.e., 2M molecular spinorbitals, where M is the number of

atomic orbitals employed. The Hartree-Fock determinant 0 is the best form of wave function so long as the
electronic correlation is not important. The criterion of this “goodness” is the mean value of the Hamiltonian.
If we want to include the electron correlation, we may think of another form of the 1-D function more suitable
as the starting point. We do not change our definition of correlation energy; i.e., we consider the RHF energy
as that which does not contain any correlation effects. For instance, we may ask which of the normalized
single-determinant functions is closest to the normalized exact function ψ . As a measure of this, we might use:

|〈ψ |〉| = maximum. (10.31)

The single determinantal function  = B , which fulfills the above condition, is called a Bruckner function (O.
Sinanoğlu and K.A. Brueckner Three Approaches to Electron Correlation in Atoms Yale Univ. Press, New Haven
and London, 1970).



616 Chapter 10

(0; i.e., ψRH F ) in most cases. When one spinorbital is replaced, the resulting determinant is
called singly excited, when two it is doubly excited, etc.58,59

The virtual spinorbitals form an orthonormal basis in the virtual space. If we carry out any
non-singular linear transformation (cf. p. 467) of virtual spinorbitals, each “new” n-tuply excited
Slater determinant becomes a linear combination of all “old” n-tuply excited determinants and
only n-tuply excited ones.60 In particular, the unitary transformation would preserve the mutual
orthogonality of the n-tuply excited determinantal functions.

Thus, the total wave function [Eq. (10.30)] is a linear combination of the known Slater
determinants (we assume that the spinorbitals are always known) with unknown c coefficients.

The name of the CI methods refers to the linear combination of the configurations rather than
to the Slater determinants.

A configuration (i.e., a configuration state function, or CSF) is a linear combination of
determinants that is an eigenfunction of the operators: Ŝ2 and Ŝz , and belongs to the proper
irreducible representation of the symmetry group of the Hamiltonian. We say that this is
a linear combination of the (spatial and spin) symmetry adapted determinants. Sometimes
we refer to the spin-adapted configurations, which are eigenfunctions only of the Ŝ2 and
Ŝz operators.

The particular terms in the CI expansion may refer to the respective CSFs or to the Slater
determinants. Both versions lead to the same results, but using CSFs may be more efficient

58 In the language of the second quantization (see Appendix U available at booksite.elsevier.com/978-0-444-59436-5,
p. e153), the wave function in the CI method has the form (the 0 function is a Slater determinant which does
not necessarily need to be a Hartree-Fock determinant):

ψ = c00 +
∑
a,p

ca
p p̂†â0 +

∑
a<b,p<q

cab
pq q̂† p̂†âb̂0

+ higher excitations, (10.32)

where c are the expansion coefficients, the creation operators q̂†, p̂†, . . . refer to the virtual spinorbitalsφp, φq , . . .

and the annihilation operators â, b̂, . . . refer to occupied spinorbitals φa, φb, . . . (the operators are denoted with
the same indices as spinorbitals but the former are equipped with hat symbols), and the inequalities satisfied by
the summation indices ensure that the given Slater determinant occurs only once in the expansion.

59 The Hilbert space corresponding to N electrons is the sum of the orthogonal subspaces �n, n = 0, 1, 2, . . . N ,
which are spanned by the n-tuply excited (orthonormal) Slater determinants. Elements of the space �n are all
linear combinations of n-tuply excited Slater determinants. It does not mean, of course, that each element of this
space is an n-tuply excited Slater determinant. For example, the sum of two doubly excited Slater determinants is
a doubly excited Slater determinant only when one of the excitations is common to both determinants.

60 Indeed, the Laplace expansion (see Appendix A available at booksite.elsevier.com/978-0-444-59436-5) along the
row corresponding to the first new virtual spinorbital leads to the linear combination of the determinants containing
new (virtual, which means that the rank of excitation is not changed by this) orbitals in this row. Continuing this
procedure with the Slater determinants obtained, we finally get a linear combination of n-tuply excited Slater
determinants expressed in old spinorbitals.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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if we are looking for a wave function that transforms itself according to a single irreducible
representation.

Next, this problem is reduced to the Ritz method (see Appendices L, p. e107 and K, p. e105),
and subsequently to the secular equations (H − εS) c = 0. It is worth noting here that, e.g., the
CI wave function for the ground state of the helium atom would be linear combinations of the
determinants where the largest c coefficient occurs in front of the 0 determinant constructed
(say from the spinorbitals 1sα and 1sβ), but the nonzero contribution would also come from the
other determinants constructed from the 2sα and 2sβ spinorbitals (one of the doubly excited
determinants). The CI wave functions for all states (ground and excited) are linear combinations
of the same Slater determinants; they differ only in the c coefficients.

The state energies obtained from the solution of the secular equations always approach the
exact values from above.

10.10.1 Brillouin Theorem

In the CI method, we have to calculate matrix elements HI J of the Hamiltonian.

The Brillouin theorem says that
〈0|Ĥ1〉 = 0 (10.33)

if0 is a solution of the Hartree-Fock problem (0 ≡ ψRH F ), and1 is a singly excited
Slater determinant in which the spinorbital φi ′ is orthogonal to all spinorbitals used in0.

Proof:
From the second Slater-Condon rule (see Appendix M available at booksite.elsevier.com/
978-0-444-59436-5 p. e109), we have

〈0|Ĥ1〉 = 〈i |ĥi ′〉 +
∑

j

[〈
i j |i ′ j 〉− 〈i j | j i ′〉] . (10.34)

On the other hand, considering the integral 〈i |F̂i ′〉, where F̂ is a Fock operator, we obtain
from 8.28 (using the definition of the Coulomb and exchange operators from p. 403):

〈i |F̂i ′〉 = 〈i |ĥi ′〉 +
∑

j

[〈i | Ĵ j i
′〉 − 〈i |K̂ j i

′〉] = 〈i |ĥi ′〉 +
∑

j

[〈i j |i ′ j〉 − 〈i j | j i ′〉] = 〈0|Ĥ1〉.

From the Hermitian character of F̂ , it follows that

〈i |F̂i ′〉 = 〈F̂i |i ′〉 = εiδi i ′ = 0. (10.35)

We have proved the theorem.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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The Brillouin theorem is sometimes useful in discussion of the importance of particular terms
in the CI expansion for the ground state.

10.10.2 Convergence of the CI Expansion

Increasing the number of expansion functions by adding a new function lowers the energy
(due to the variational principle). It often happens that the inclusion of only two determinants
gives qualitative improvement with respect to the Hartree-Fock method; however, when going
further, the situation becomes more difficult. The convergence of the CI expansion is slow
(i.e., to achieve a good approximation to the wave function), the number of determinants in the
expansion must usually be large. Theoretically, the shape of the wave function ensures solution
of the Schrödinger equation Hψ = Eψ , but in practice, we are always limited by the basis of
the atomic orbitals employed.

To obtain satisfactory results, we need to increase the number M of atomic orbitals in
the basis. The number of molecular orbitals produced by the Hartree-Fock method is also
equal to M , hence the number of spinorbitals is equal to 2M . In this case, the number of

all determinants is equal to
(

2M
N

)
, where N refers to the number of electrons.

10.10.3 Example of H2O

We are interested in the ground state of the water molecule, which is a singlet state (S = 0,
MS = 0).

The minimal basis set, composed of seven atomic orbitals (two 1s orbitals of the hydrogen
atoms, 1s, 2s, and three 2p orbitals of the oxygen atom), is considered too poor; therefore,
we prefer what is called the double dzeta basis, which provides two functions with different
exponents for each orbital of the minimal basis. This creates a basis of M = 14 atomic orbitals.

There are 10 electrons, so
(

28
10

)
gives 13 million Slater determinants. For a matrix of that size

to be diagonalized is certainly impressive. Even more impressive is that we achieve only an
approximation to the correlation energy which amounts to about 50% of the exact correlation
energy,61 since M is only equal to 14, but in principle, it should be equal to∞. Nevertheless,
for comparative purposes, we assume that the correlation energy obtained is 100%.

The simplest remedy is to get rid of some determinants in such a way that the correlation
energy is not damaged. Which ones? Well, many of them correspond to the incorrect projection
Sz of the total spin or the incorrect total spin S. For instance, we are interested in the singlet
state (i.e., S = 0 and Sz = 0), but some determinants are built of spinorbitals containing
exclusively α spin functions. This is a pure waste of resources, since the non-singlet functions

61 We see here how vicious the dragon of electron correlation is.
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do not make any contributions to the singlet state. When we remove these and other incorrect
determinants, we obtain a smaller matrix to be diagonalized. The number of Slater determinants

with Sz = 0 equals
(

M
N/2

)2
. In our case, this makes slightly over 4 million determinants (instead

of 13 million). What would happen if we diagonalized the huge original matrix anyway? Well,
nothing would happen. There would be more work, but the computer would create the block
form62 from our enormous matrix, and each would correspond to the particular S2 and Sz ,
while the whole contribution to the correlation energy of the ground state comes from the block
corresponding to S = 0 and Sz = 0.

Let us continue throwing away determinants. This time, however, we have to make a compro-
mise; i.e., some of the Slater determinants are arbitrarily considered not to be important (which
will worsen the results, if they are rejected). Which of the determinants should be considered as
not important? The general opinion in quantum chemistry is that the multiple excitations are less
and less important (when the multiplicity increases). If we take only the singly, doubly, triply,
and quadruply excited determinants, the number of determinants will reduce to 25000 and we
will obtain 99% of the approximate correlation energy defined above. If we take the singly and
doubly excited determinants only, there are only 360 of them, and 94% of the correlation effect
is obtained. This is why this CI Singles and Doubles (CISD) method is used so often.

For larger molecules, this selection of determinants becomes too demanding, therefore we
have to decide individually for each configuration: to include or reject it? The decision is made
either on the basis of the perturbational estimate of the importance of the determinant63 or by
a test calculation with inclusion of the determinant in question (see Fig. 10.6).

To obtain good results, we need to include a large number of determinants (e.g., of the
order of thousands, millions, or even billions). This means that contemporary quantum chem-
istry has made enormous technical progress.64 This, however, is a sign, not of the strength of
quantum chemistry, but of its weakness. What are we going to do with such a function? We
may load it back into the computer and calculate all the properties of the system with high
accuracy (although this cannot be guaranteed). To answer the question about why we obtained
some particular numbers, we have to answer that we do not know–it is the computer that
knows. This is a trap. It would be better to get, say, two Slater determinants, which describe
the system to a reasonable approximation, and we can understand what is going on in the
molecule.

62 These square blocks would be easily noticed after proper ordering of the expansion functions.
63 The perturbational estimate mentioned relies on the calculation of the weight of the determinant based on the first-

order correction to the wave function in perturbation theory (p. 245). In such an estimate, the denominator contains
the excitation energy evaluated as the difference in orbital energies between the Hartree-Fock determinant and
the one in question. In the numerator, there is a respective matrix element of the Hamiltonian calculated with the
help of the known Slater-Condon rules (see Appendix M available at booksite.elsevier.com/978-0-444-59436-5,
p. e109).

64 To meet such needs, quantum chemists have had to develop entirely new techniques of applied mathematics.

http://booksite.elsevier.com/978-0-444-59436-5
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(a)

(b)

Fig. 10.6. Symbolic illustration of the principle of the CI method with one Slater determinant 0 dominant in the ground state
(this is a problem of the many electron wave functions so the picture cannot be understood literally). The purpose of this diagram
is to emphasize a relatively small role of electronic correlation (more exactly, of what is known as the dynamical correlation; i.e.,
correlation of electronic motion). The function ψC I is a linear combination (the c coefficients) of the determinantal functions of
different shapes in the many-electron Hilbert space. The shaded regions correspond to the negative sign of the function; the nodal
surfaces of the added functions allow for the effective deformation of ψ0 to have lower and lower average energy. (a) Since c1 is
small in comparison to c0, the result of the addition of the first two terms is a slightly deformed ψ0. (b) Similarly, the additional
excitations just make cosmetic changes in the function (although they may substantially affect the quantities calculated with it).

10.10.4 Which Excitations Are Most Important?

The convergence can be particularly bad if we use the virtual spinorbitals obtained by the Hartree-
Fock method. Not all excitations are equally important. It turns out that usually, although this
is not a rule, low excitations dominate the ground-state wave function.65 The single excitations
themselves do not contribute anything to the ground-state energy (if the spinorbitals are gen-
erated with the Hartree-Fock method, then the Brillouin theorem mentioned above applies).
They are crucial, however, for excited states or in dipole moment calculations. For the ground
state, only when coupled to other types of excitation do they assume nonzero (although small)
contribution. Indeed, if in the CI expansion we only use the Hartree-Fock determinant and the
determinants corresponding to single excitations, then, due to the Brillouin theorem, the secular
determinant would be factorized.66 This factorization (Fig. 10.7) pertains to the single determi-
nant corresponding to the Hartree-Fock function and to the determinants corresponding exclu-
sively to single excitations. Since we are interested in the ground state, only the first determinant

65 That is, those that require the lowest excitation energies. Later, a psychological mechanism began to work supported
by economics: the high-energy excitations are numerous and, because of that, very expensive and they correspond
to a high number of electrons excited. Due to this, a reasonable restriction for the number of configurations in the
CI expansion is excitation rank. We will come back to this problem later.

66 That is, it could be written in block form, which would separate the problem into several smaller subproblems.
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Fig. 10.7. The block structure of the Hamiltonian matrix (H) is the result of the Slater-Condon rules (see Appendix M available
at booksite.elsevier.com/978-0-444-59436-5, p. e119). S indicates single excitations, D indicates double excitations, T indicates
triple excitations, and Q indicates quadruple excitations. (a) A block of zero values due to the Brillouin theorem. (b) A block of zero
values due to the fourth Slater-Condon rule, (II) the nonzero block obtained according to the second and third Slater-Condon rules,
(III) the nonzero block obtained according to the third Slater-Condon rule. All the nonzero blocks are sparse matrices dominated
by zero values, which is important in the diagonalization process.

is of importance to us, and the result does not change whether we include or not a contribution
coming from single excitations into the wave function.

Usually, performing CI calculations with the inclusion of all excitations (for the assumed
value of M ; i.e., the full CI ), is not possible in practical calculations due to the extremely long
expansion. We are forced to truncate the CI basis somewhere. It would be good to terminate it in
such a way that all essential terms are retained. The problem with this, however, is determining
what we mean by essential. The most significant terms for the correlation energy come from
the double excitations since these are the first excitations coupled to the Hartree-Fock function.
Smaller, although important, contributions come from other excitations (usually of low excita-
tion rank). We certainly wish that it would be like this for large molecules. Nobody knows what
the truth is.

10.10.5 Natural Orbitals (NOs)

The fastest convergence is achieved in the basis set of natural orbitals (NOs); i.e., when we con-
struct spinorbitals with these orbitals and from them the Slater determinants. The NO is defined
a posteriori in the following way. After carrying out the CI calculations, we construct the density
ρ (see Appendix S available at booksite.elsevier.com/978-0-444-59436-5, p. e143) as follows:

ρ(1) = N
∫
ψ∗(1, 2, 3, . . . N )ψ(1, 2, 3, . . . , N )dτ2dτ3 · · · dτN

=
∑

i j

D jiφ
∗
i (1)φ j (1); Di j = D∗j i , (10.36)

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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where the summation runs over all the spinorbitals. By diagonalization of matrix D (a rotation
in the Hilbert space spanned by the spinorbitals), we obtain the density expressed in the natural
spinorbitals (NOs) transformed by the unitary transformation

ρ(1) =
∑

i

(Ddiag)i iφ
′∗
i (1)φ

′
i (1). (10.37)

The most importantφ′i from the viewpoint of the correlation are the NOs with large occupancies;
i.e., (Ddiag)i i values. Inclusion of only the most important φ′i in the CI expansion creates a
short and quite satisfactory wave function.67

10.10.6 Size Inconsistency of the CI Expansion

A truncated CI expansion has one unpleasant feature that affects the applicability of the method.
Let us imagine that we want to calculate the interaction energy of two beryllium atoms, and

that we decide that to describe the beryllium atom, we have to include not only the 1s22s2

configuration, but also the doubly excited one, 1s22p2. In the case of beryllium, this is a very
reasonable step, since both configurations have very close energies. Let us assume now that we
calculate the wave function for two beryllium atoms. If we want this function to describe the
system correctly, also at large interatomic distances, we have to make sure that the departing
atoms have appropriate excitations at their disposition (i.e., in our case 1s22p2 for each). To
achieve this, we must incorporate quadruple excitations into the method.68

If we include quadruples, we have a chance to achieve (an approximate) size consistency;
i.e., the energy will be proportional to good accuracy to the number of atoms, or else our
results will not be size consistent.

Let us imagine 10 beryllium atoms. In order to have size consistency we need to include
20-fold excitations. This would be very expensive. We clearly see that, for many systems, the
size consistency requires inclusion of multiple excitations. If we carried out CI calculations for
all possible (for a given number of spinorbitals) excitations, such a CI method (i.e., FCI) would
be size consistent.

10.11 Direct CI Method

We have already mentioned that the CI method converges slowly. Due to this, the Hamiltonian
matrices and overlap integral matrices are sometimes so large that they cannot fit into the

67 Approximate natural orbitals can also be obtained directly without performing the CI calculations.
68 See J.A. Pople, R. Seeger, and R. Krishnan, Intern. J. Quantum Chem. S11, 149 (1977), as well as p. 47 of the

book by P. Jørgensen and J. Simons Second Quantization–Based Methods in Quantum Chemistry Academic Press
(1981).
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computer memory. In practice, such a situation occurs in all high-quality calculations for small
systems and in all calculations for medium and large systems. Even for quite large atomic orbital
basis, the number of integrals is much smaller than the number of Slater determinants in the CI
expansion.

Björn Roos69 first noticed that to find the lowest eigenvalues and their eigenvectors, we
do not need to store a huge H matrix in computer memory. Instead, we need to calculate the
residual vector σ = (H − E1)c, where c is a trial vector (defining the trial function in the
variational method, p. 232). If σ = 0, it means that the solution is found. Knowing σ , we may
find (on the basis of first-order perturbation theory) a slightly improved c, etc. The product
Hc can be obtained by going through the set of integrals and assigning to each a coefficient
resulting from H and c, and next adding the results to the new c vector. Then the procedure is
repeated. Until 1971, CI calculations with 5000 configurations were considered a significant
achievement. After Roos’s paper, there was a leap of several orders of magnitude, bringing the
number of configurations to the range of billions. For the computational method, this was a
revolution.

10.12 Multireference CI Method

Usually in the CI expansion, the dominant determinant is Hartree-Fock. We construct the CI
expansion, replacing the spinorbitals in this determinant (single reference method). We can
easily imagine a situation in which taking one determinant is not justified, since the shell is not
well closed (e.g., four hydrogen atoms). We already know that certain determinants (or, in other
words: configurations) absolutely need be present (“static correlation”) in the correct wave
function. To be sure, we are the judges, deciding which is good or bad. This set of determinants
is a basis in the model space.

In the single reference CI method, the model space (Fig. 10.8) is formed by a single
Slater determinant. In the multireference CI method, the set of determinants constitute the
model space. This time, the CI expansion is obtained by replacement of the spinorbitals
participating in the model space by other virtual orbitals. We proceed further as in CI.

There is no end to the problems yet, since again, we have billions of possible excitations.70

We do other tricks to survive in this situation. We may, for instance, get the idea not to excite

69 B.O. Roos, Chem. Phys. Letters, 15, 153 (1972).
70 There is another trouble too called intruder states; i.e., states that are of unexpectedly low energy. How could

these states appear? First, the CI states known as “front-door intruders” appear if some important (low-energy)
configurations were for some reason not included into the model space. Second, we may have the “back-door
intruder” states, when the energy gap between the model space and the other configurations was too small (quasi-
degeneracy), and some CI states became of low energy (enter the model space energy zone) even if they are not
composed of the model space configurations.
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Fig. 10.8. Illustration of the model space in the multireference CI method used mainly in the situation when no single Slater
determinant dominates the CI expansion. The orbital levels of the system are presented here. Part of them are occupied in all Slater
determinants considered (“frozen spinorbitals”). Above them is a region of closely spaced orbital levels called active space. In the
optimal case, a significantly large energy gap occurs between the latter and unoccupied levels lying higher. The model space is
spanned by all or some of the Slater determinants obtained by various occupancies of the active space levels.

the inner-shell orbitals, since the numerical effort is serious, the lowering of the total energy
can also be large, but the effect on the energy differences (this is what chemists are usually
interested in) is negligible. We say that such orbitals are frozen. Some of the orbitals are kept
doubly occupied in all Slater determinants but we optimize their shape. Such orbitals are called
inactive. Finally, the orbitals of varied occupancy in different Slater determinants are called
active. The frozen orbitals are, in our method, important spectators of the drama, the inactive
orbitals contribute a little toward lowering the energy, but the most efficient work is done by the
active orbitals.

10.13 Multiconfigurational Self-Consistent Field Method (MC SCF)

In the configuration interaction method, it is sometimes obvious that certain determinants of
the CI expansion must contribute to the wave function if the latter is to correctly describe the
system. For example, if we want to describe the system in which a bond is being broken (or is



Correlation of the Electronic Motions 625

being formed), for its description, we need several determinants for sure (cf. the description of
the dissociation of the hydrogen molecule on p. 437).

Why is this? In the case of the dissociation with which we are dealing here, there is a quaside-
generacy of the bonding and antibonding orbital of the bond in question; i.e., the approximate
equality of their energies (the bond energy is of the order of the overlap integral and the latter
goes to zero when the bond is being broken). The determinants, which can be constructed by
various occupancies of these orbitals, have very close energies and, consequently, their contri-
butions to the total wave function are of similar magnitude and should be included in the wave
function.

In the multiconfigurational self-consistent field (MC SCF) method, as in CI, it is up to us to
decide which set of determinants we consider sufficient for the description of the system.

Each of the determinants is constructed from molecular spinorbitals that are not fixed (as
in the CI method) but are modified in such a way as to have the total energy as low as
possible.

The MC SCF method is the most general scheme of the methods that use a linear combination
of Slater determinants as an approximation to the wave function. In the limiting case of the MC
SCF, when the number of determinants is equal to 1, we have, of course, the Hartree-Fock
method.

10.13.1 Classical MC SCF Approach

We will describe first the classical MC SCF approach, which is a variational method. As was
mentioned, the wave function in this method has the form of a finite linear combination of Slater
determinants I :

ψ =
∑

I

dII , (10.38)

where d are variational coefficients.

In the classical MC SCF method, we do the following:

1. Take a finite CI expansion (the Slater determinants and the orbitals for their construction
are fixed)

2. Calculate the coefficients for the determinants by the Ritz method (the orbitals do not
change)

3. Vary the LCAO coefficients in the orbitals at the fixed CI coefficients to obtain the best
MOs

4. Return to point 1 until self-consistency is achieved
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10.13.2 Unitary MC SCF Method

Another version of the MC SCF problem, a unitary method suggested by Lévy and Berthier71 and
later developed by Daalgaard and Jørgensen,72 is gaining increasing importance. The eigenvalue
problem does not appear in this method.

We need two mathematical facts to present the unitary MC SCF method. The first is a theorem:
If Â is a Hermitian operator (i.e., Â† = Â), then Û = exp (i Â) is a unitary operator satisfying

Û †Û = 1.
Let us see how Û † looks:

Û † =
(

exp (i Â)
)† =

(
1+ i Â + 1

2!(i Â)2 + 1

3!(i Â)3 + · · ·
)†

=
(

1+ (−i) Â† + 1

2!(−i Â†)2 + 1

3!(−i Â†)3 + · · ·
)

=
(

1+ (−i) Â + 1

2!(−i Â)2 + 1

3!(−i Â)3 + · · ·
)
= exp (−i Â)

Hence, ÛÛ † = 1; i.e., Û is a unitary operator.73

Now we will look at the second mathematical fact, which is a commutator expansion:

e− Â Ĥe Â = Ĥ + [Ĥ , Â] + 1

2! [[Ĥ , Â], Â] + 1

3! [[[Ĥ , Â], Â], Â] + · · · (10.39)

This theorem can be proved by induction, expanding the exponential functions.
Now we are all set to describe the unitary method. We introduce two new operators:

λ̂ =
∑

i j

λi j ı̂
†ĵ , (10.40)

where ı̂† and ĵ are the creation and annihilation operators, respectively, associated to spinorbitals
i, j (see Appendix U available at booksite.elsevier.com/978-0-444-59436-5). Further,

Ŝ =
∑
I J

SI J |I 〉〈J |. (10.41)

71 B. Lévy and G. Berthier, Intern. J. Quantum Chem., 2, 397 (1968).
72 E. Dalgaard and P. Jørgensen, J. Chem. Phys., 69, 3833 (1978).
73 Is an operator (Ĉ) of multiplication by a constant Hermitian? Let us see: 〈ϕ|Ĉψ〉 ?=〈Ĉϕ|ψ〉; l.h.s = 〈ϕ|cψ〉 =

c〈ϕ|ψ〉; r.h.s. = 〈cϕ|ψ〉 = c∗〈ϕ|ψ〉. l.h.s. = r.h.s., if c = c∗. An operator conjugate to c is, therefore, c∗. Further,
if B̂ = i Â, what is a form of B̂†? We have 〈B̂†ϕ|ψ〉 = 〈ϕ B̂|ψ〉, then 〈ϕ|i Â|ψ〉 = 〈−i Â†ϕ|ψ〉, and finally
B̂† = −i Â†.

http://booksite.elsevier.com/978-0-444-59436-5
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We assume that λi j and SI J are elements of the Hermitian matrices74 (their determination is the
goal of the whole method), andI are determinants from the MC SCF expansion [Eq. (10.38)].

It can be seen that the λ̂ operator replaces a single spinorbital in a Slater determinant
and forms a linear combination of such modified determinantal functions; the Ŝ operator
replaces such a combination with another. The “knobs” that control these changes are
coefficients λi j and SI J .

We will need the unitary transformations exp (i λ̂) and exp (i Ŝ). They are very convenient,
since when starting from some set of the orthonormal functions (spinorbitals or Slater determi-
nants) and applying this transformation, we always retain the orthonormality of new spinorbitals
(due to λ̂) and of the linear combination of determinants (due to Ŝ). This is an analogy to the
rotation of the Cartesian coordinate system. It follows from the above equations that exp (i λ̂)
modifies spinorbitals (i.e., operates in the one-electron space), and exp (i Ŝ) rotates the determi-
nants in the space of many-electron functions.

Now we suggest the form of our variational function for the ground state:

|0̃〉 = exp (i λ̂) exp (i Ŝ)|0〉, (10.42)

where |0〉 denotes a starting combination of determinants with specific spinorbitals and the
matrices λ and S contain the variational parameters. So, we modify the spinorbitals and change
the coefficients in front of the determinants to obtain a new combination of the modified deter-
minants, |0̃〉. The mean energy value for that function is75

E = 〈0̃|Ĥ |0̃〉 = 〈0| exp (−i Ŝ) exp (−i λ̂)Ĥ exp (i λ̂) exp (i Ŝ)|0〉, (10.43)

Taking advantage of the commutator expansion [Eq. (10.39)], we have

E = 〈0|Ĥ |0〉 − i〈0|[Ŝ + λ̂, Ĥ ]|0〉 + 1

2
〈0|[Ŝ, [Ĥ , Ŝ]]|0〉 + 1

2
〈0|[λ̂, [Ĥ , λ̂]]|0〉

+〈0|[Ŝ, [Ĥ , λ̂]]|0〉 + · · ·

It follows from the last equation that in order to calculate E , we have to know the result of
the operation of λ̂ on |0〉 (i.e., on the linear combination of determinants), which comes down
to the operation of the creation and annihilation operators on the determinants, which is simple.
It can also be seen that we need to apply the operator Ŝ to |0〉, but its definition shows that this

74 Considering the matrix elements of the operators λ̂ and Ŝ, we would easily be convinced that both operators are
also Hermitian.

75 Here, we use the equality [exp (i Â)]† = exp (−i Â).
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is trivial. This expression76 can now be optimized; i.e., the best Hermitian matrices λ and S can
be selected. It is done in the same step (this distinguishes the current method from the classical
one). Usually the calculations are carried out in the matrix form, neglecting the higher terms
and retaining only the quadratic ones in Ŝ and λ̂. Neglecting the higher terms is equivalent to
allowing for very small rotations in Eq. (10.42), but instead we have a large number of rotations
(iterative solution).77

The success of the method depends on the starting point. The latter strongly affects the energy
and its hypersurface (in the space of the parameters of the matrices λ and S) is very complicated,
it has many local minima. This problem is not yet solved, but various procedures accelerating the
convergence are applied; e.g., the new starting point is obtained by averaging the starting points
of previous iterations. The method also has other problems, since the orbital rotations partially
replace the rotation in the space of the Slater determinants (the rotations do not commute and
are not independent). In consequence, linear dependencies may appear.

10.14 Complete Active Space SCF (CAS SCF) Method

An important special case of the MC SCF method is the complete active space SCF (CAS SCF)
method of Roos, Taylor, and Siegbahn (see Fig. 10.9).78 Let us assume that we are dealing
with a closed-shell molecule. The RHF method (p. 394) provides the molecular orbitals and
the orbital energies. From them, we select the low-energy orbitals. Part of them are inactive;
i.e., they are doubly occupied in all determinants, but they are varied, which results in lowering
the mean value of the Hamiltonian (some of the orbitals may be frozen–i.e., kept unchanged).
These are the spinorbitals corresponding to the inner shells. The remaining spinorbitals belong
to the active space. Now we consider all possible occupancies and excitations of the active
spinorbitals (this is where the adjective complete comes from) to obtain the set of determinants
in the expansion of the MC SCF. By taking all possible excitations within the active space, we
achieve a size consistency; i.e., when dividing the system into subsystems and separating them
(infinite distances) we obtain the sum of the energies calculated for each subsystem separately.
By taking the complete set of excitations, we also determine that the results do not depend on
any (non-singular) linear transformation of the molecular spinorbitals within the given subgroup

76 The term with i gives a real number

i · 〈0|[Ŝ + λ̂, Ĥ ]|0〉 = i · (〈(Ŝ + λ̂)0|Ĥ0〉 − 〈Ĥ0|(Ŝ + λ̂)0〉)→ i · (z − z∗) = i(2iImz) ∈ R,

where R is a set of real numbers.
77 In the classical MC SCF method, when minimizing the energy with respect to the parameters, we use only linear

terms in the expansion of the energy with respect to these parameters. In the unitary formulation, on the other
hand, we use both linear and quadratic terms. This implies much better convergence of the unitary method.

78 B.O. Roos and P.E.M. Siegbahn, in Modern Theoretical Chemistry vol. III, ed. H.F. Schaefer, Plenum Press, New
York (1977); P.E.M. Siegbahn, J. Chem. Phys., 70, 5391 (1979); B.O. Roos, P.R. Taylor and P.E.M. Siegbahn,
Chem. Phys., 48, 157 (1980).
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Fig. 10.9. CAS SCF, a method of construction of the Slater determinants in the MC SCF expansion. The inner-shell orbitals are
usually inactive. From the active space + inactive spinorbitals, we create the complete set of possible Slater determinants to be
used in the MC SCF calculations. The spinorbitals of the energy higher than a certain selected threshold are entirely ignored in the
calculations.

of orbitals (i.e., within the inactive or active spinorbitals). This makes the result invariant with
respect to the localization of the molecular orbitals.

NON-VARIATIONAL METHOD WITH SLATER
DETERMINANTS

10.15 Coupled Cluster (CC) Method

The CC method is the most reliable one among quantum mechanical methods applied to chem-
istry today.

The problem of many-body correlation of motion of anything is extremely difficult and so far
unresolved (e.g., weather forecasting). The problem of electron correlation also seemed to be
hopelessly difficult. It still remains that way; however, it turns out that we can exploit a certain
observation made by Sinanoğlu.79 This author noticed that the major portion of the correlation
is included through the introduction of correlation within electron pairs, next through pair-pair
interactions, then pair-pair-pair interactions, etc. The canonical molecular spinorbitals, which we
can use, are in principle delocalized over the whole molecule, but practically the delocalization
is not so large. Even in the case of canonical spinorbitals, and certainly when using localized
molecular spinorbitals, we can think about an electron excitation as a transfer of an electron

79 O. Sinanoğlu and K.A. Brueckner, Three Approaches to Electron Correlation in Atoms Yale University Press,
New Haven and London (1970).
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Fig. 10.10. In order to include the electron correlation, the wave function should somehow reflect the fact that electrons avoid each
other. Electron 1 jumping from A (an orbital) to B (another orbital) should make electron 2 escape from C (close to B) to D (close
to A). This is the very essence of electron correlation. The other orbitals play a role of spectators. However, the spectators change
upon the excitations described above. These changes are performed by allowing their own excitations (symbolized by changing
from the solid line to the dashed line on the right side). This is how triple, quadruple, and higher excitations emerge and contribute
to electronic correlation.

from one place in the molecule to another. Inclusion of the correlation of electronic motion
represents, in the language of electron excitations, the following philosophy: when electron 1
jumps from an orbital localized in place A to an orbital localized in place B, it would be good
from the point of view of the variational principle if electron 2 jumped from the orbital localized
at C to the orbital localized at D (see Fig. 10.10).

The importance of a given double excitation depends on the energy connected with the
electron relocation and the arrangement of points A,B,C,D. Yet this simplistic reasoning suggests
single excitations do not carry any correlation (this is confirmed by the Brillouin theorem) and
this is why their role is very small in the ground state. Moreover, it also suggests that double
excitations should be very important.

10.15.1 Wave and Cluster Operators

We start by introducing a special Slater determinant, the reference determinant (called the
vacuum state, which can be the Hartree-Fock determinant)0, and we write that the exact wave
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function for the ground state is

ψ = exp (T̂ )0 (10.44)

where exp (T̂ ) is a wave operator, and T̂ itself is a cluster operator. In the CC method, an
intermediate normalization80 of the function ψ is assumed; i.e.,

〈ψ |0〉 = 1.

Equation (10.44) represents a very ambitious task. It assumes that we will find an operator

T̂ such that the wave operator (eT̂ ), as with the touch of a wizard’s wand, will make an ideal
solution of the Schrödinger equation from the Hartree-Fock function. The formula with exp (T̂ )
is an Ansatz. The charming sounding word Ansatz81 can be translated as an arrangement or
order, but in mathematics, the term refers to the construction assumed.

In the research literature, we use the argument that the wave operator ensures the size consis-
tency of the CC. According to this reasoning, for an infinite distance between molecules A and
B, bothψ and0 functions can be expressed in the form of the product of the wave functions for
A and B. When the cluster operator is assumed to be of the form (obvious for infinitely separated
systems) T̂ = T̂A+ T̂B , then the exponential form of the wave operator exp (T̂A+ T̂B) ensures a
desired form of the product of the wave function [exp (T̂A+ T̂B)]0 = exp T̂A exp T̂B0. If we
took a finite CI expansion: (T̂A + T̂B)0, then we would not get the product but the sum which
is incorrect. In this reasoning, there is an error, since due to the Pauli principle (antisymmetry
of the wave function with respect to the electron exchange), over long distances, neither the
function ψ nor the function 0 is the product of the functions for the subsystems.82 Although
the reasoning is not quite correct, the conclusion is correct, as will be shown at the end of the
description of the CC method shortly.

The CC method is automatically size consistent.

As a cluster operator T̂ , we assume a sum of the excitation operators (see Appendix U
available at booksite.elsevier.com/978-0-444-59436-5):

T̂ = T̂1 + T̂2 + T̂3 + · · · + T̂lmax, (10.45)

where

T̂1 =
∑
a,r

tr
a r̂†â (10.46)

80 It contributes significantly to the numerical efficiency of the method.
81 This word has survived in the literature in its original German form.
82 For instance, the RHF function for the hydrogen molecule is not a product function for long distances; see p. 610.

http://booksite.elsevier.com/978-0-444-59436-5
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is an operator for single excitations,

T̂2 = 1

4

∑
ab
rs

trs
abŝ†r̂†âb̂, (10.47)

is an operator for double excitations, etc. The subscript l = 1, 2, . . . , lmax in T̂l indicates the
rank of the excitations involved (with respect to the vacuum state). The symbols a, b, . . . refer
to the spinorbitals occupied in 0, and p, q, r , s, . . . refer to the virtual ones, and

t represents amplitudes (i.e., the numbers whose determination is the goal of the CC
method). The rest of this chapter will be devoted to the problem of how to obtain these
miraculous amplitudes.

In the CC method, we want to obtain correct results with the assumption that lmax

of Eq. (10.45) is relatively small (usually 2 ÷ 5). If lmax were equal to N (i.e., to the num-
ber of electrons), then the CC method would be identical to the full (usually unfeasible) CI
method.

10.15.2 Relationship Between CI and CC Methods

Obviously, there is a relation between the CI and CC methods. For instance, if we write

exp (T̂ )0 in such a way as to resemble the CI expansion

exp (T̂ )0 =
[

1+ (T̂1 + T̂2 + T̂3 + · · · )+ 1

2
(T̂1 + T̂2 + T̂3 + · · · )2 + · · ·

]
0

= (1+ Ĉ1 + Ĉ2 + Ĉ3 + · · · )0, (10.48)

the operators Ĉi (index i denoting the excitation rank: i = 1 for singles, i = 2 for double, etc.),
pertaining to the CI method, have the following structure:

Ĉ1 = T̂1

Ĉ2 = T̂2 + 1

2! T̂
2
1

Ĉ3 = T̂3 + 1

3! T̂
3
1 + T̂1T̂2

Ĉ4 = T̂4 + 1

4! T̂
4
1 +

1

2! T̂
2

2 + T̂3T̂1 + 1

2! T̂
2

1 T̂2 (10.49)

. . . (10.50)

We see that the multiple excitations Ĉl result from mathematically distinct terms; e.g., Ĉ3 is
composed of triple excitations T̂3, T̂ 3

1 , and T̂1T̂2.
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Fig. 10.11. Why such a name? An artistic impression on coupled clusters.

On the basis of current numerical experience,83 we believe that, within the excitation of a
given rank, the contributions coming from the correlational interactions of the electron pairs are
the most important; e.g., within C4, the 1

2! T̂
2

2 excitations containing the product of amplitudes

for two electron pairs are the most important, T̂4 (which contains the amplitudes of quadruple
excitations) is of little importance, since they correspond to the coupling of the motions of four
electrons, and the terms T̂ 4

1 , T̂3T̂1 and T̂ 2
1 T̂2 can be made small by using the MC SCF orbitals.

Contemporary quantum chemists use diagrammatic language following Richard Feynman. The
point is that the mathematical terms (the energy contributions) appearing in CC theory can be
translated one by one into the figures according to certain rules. It turns out that it is much easier
to think in terms of diagrams than to speak about the mathematical formulae or to write them
out. The coupled cluster method, terminated at T̂2 in the cluster operator automatically includes
T̂ 2

2 , etc. We may see in it some resemblance to a group of something (excitations), or in other
words to a cluster (see Fig.10.11).

10.15.3 Solution of the CC Equations

The strategy of the CC method is the following: first, we make a decision with respect to lmax

in the cluster expansion 10.45 (lmax should be small84).
The exact wave function exp (T̂ )0 satisfies the Schrödinger equation; i.e.,

Ĥ exp (T̂ )0 = E exp (T̂ )0, (10.51)

which, after operating from the left with exp (−T̂ ) gives

exp (−T̂ )Ĥ exp (T̂ )0 = E0 (10.52)

83 This is a contribution by Oktay Sinanoğlu; O. Sinanoğlu, and K.A. Brueckner (ed.), Three Approaches to Electron
Correlation in Atoms Yale University Press, New Haven and London (1970).

84 Only then is the method cost-effective.
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The exp (−T̂ )Ĥ exp (T̂ ) operator can be expressed in terms of the commutators [see
Eq. (10.39)]85:

e−T̂ ĤeT̂ = Ĥ + [Ĥ , T̂ ] + 1

2! [[Ĥ , T̂ ], T̂ ] + 1

3! [[[Ĥ , T̂ ], T̂ ], T̂ ] + 1

4! [[[[Ĥ , T̂ ], T̂ ], T̂ ], T̂ ].
(10.53)

The expansion of Eq. (10.53) is finite (justification can be only diagrammatic) since in the
Hamiltonian Ĥ , we have only two-particle interactions.

Multiplying Eq. (10.52) from the left by the function 〈mn...
ab... | representing the determinant

obtained from the vacuum state by the action of the excitation operator with the annihilators
â, b̂, . . . and creators n̂†, m̂†, . . . and integrating, we obtain one equation for each function
used86:

〈mn...
ab... | exp (−T̂ )Ĥ exp (T̂ )|0〉 = 0, (10.54)

where we have zero on the right side due to the orthogonality. The Slater determinants |mn
ab 〉

represent all excitations from0 resulting from the given cluster expansion T̂ = T̂1+ T̂2 · · · +
T̂lmax . This is the fundamental equation of the CC method. For such a set of excited configurations
the number of CC equations is equal to the number of the amplitudes sought.

tmn...
ab... are unknown quantities; i.e., amplitudes determining the T̂l , and, consequently, the

wave operator [Eq. (10.44)] and wave function for the ground stateψ = ψ0. The equations
that we get in the CC method are nonlinear

since the ts occur at higher powers than the first [which can be seen from Eq. (10.54) that the
highest power of t is 4], which, on one hand, requires much more demanding and capricious (than
linear ones) numerical procedures, and, on the other, contributes to the greater efficiency of the
method. The number of such equations often exceeds 100000 or a million.87 These equations
are solved iteratively assuming certain starting amplitudes t and iterating the equations until
self-consistency.

We hope that in such a procedure, an approximation to the ground-state wave function is
obtained, although sometimes an unfortunate starting point may lead to some excited state.88

85 It is straightforward to demonstrate the correctness of the first few terms by expanding the wave operator in the
Taylor series.

86 Therefore, the number of equations is equal to the number of the amplitudes t to be determined.
87 This refers to calculations with T̂ = T̂2 for ca. 10 occupied orbitals (for instance, 2 water molecules) and 150

virtual orbitals. These are not calculations for large systems.
88 The first complete analysis of all CC solutions was performed by K. Jankowski and K. Kowalski, Phys. Rev.

Letters, 81, 1195 (1998); J. Chem. Phys., 110, 37, 93 (1999); ibid. 111, 2940, 2952 (1999). Recapitulation can
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We usually use as a starting point that which is obtained from the linear version (reduced
to obtain a linearity) of the CC method. We will write down these equations as tmn

ab = . . .

various powers of all t amplitudes. First, we neglect the nonlinear terms, which represents the
initial approximation. The amplitudes are substituted into the right side and we iterate until
self-consistency. When all the amplitudes are found, then we obtain the energy E by projecting
Eq. (10.54) against 0 function instead of |mn

ab 〉:

E = 〈0|e−T̂ ĤeT̂0〉. (10.55)

The Non-variational Character of the Method

The operator (e−T )†, conjugate to e−T , is e−T †
; i.e., the energy

E = 〈e−T̂ †
0|ĤeT̂0〉 (10.56)

does not represent the mean value of the Hamiltonian. Hence, the CC method is not varia-
tional. If we multiplied Eq. (10.51) from the left by eT̂ †

, we would obtain the variational
character of E :

E = 〈0|eT̂ †
ĤeT̂0〉

〈0|eT̂ †eT̂0〉
= 〈e

T̂0|Ĥ |eT̂0〉
〈eT̂0|eT̂0〉

. (10.57)

However, it would not be possible to apply the commutator expansion and instead of the four
terms in Eq. (10.53) we would have an infinite number. Thus, the non-variational CC method
benefits from the very economical condition of the intermediate normalization. For this reason,
we prefer the non-variational approach.

10.15.4 Example: CC with Double Excitations

How does the CC machinery work? Let us show it for a relatively simple case, T̂ = T̂2. Equation
(10.54), written without the commutator expansion, takes the form

〈mn
ab |e−T̂2 ĤeT̂20〉 = 0. (10.58)

Taking advantage of the commutator expansion, we have

〈mn
ab |e−T̂2 ĤeT̂20〉 = 〈mn

ab |
(

1− T̂2 + 1

2
T̂ 2

2 + . . .
)

Ĥ

(
1+ T̂2 + 1

2
T̂ 2

2 + . . .
)
0〉

= 〈mn
ab |Ĥ0〉 + 〈mn

ab |Ĥ T̂20〉 + 1

2
〈mn
ab |Ĥ T̂ 2

2 0〉
−〈mn

ab |T̂2 Ĥ0〉 − 〈mn
ab |T̂2 Ĥ T̂20〉 + A = 0.

be found in K. Jankowski, K. Kowalski, I. Grabowski, and H.J. Monkhorst, Intern. J. Quantum Chem., 95, 483
(1999).
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However,

A = −1

2
〈mn
ab |T̂2 Ĥ T̂ 2

2 0〉 + 1

2
〈mn
ab |T̂ 2

2 Ĥ0〉 + 1

2
〈mn
ab |T̂ 2

2 Ĥ T̂20〉 + 1

4
〈mn
ab |T̂ 2

2 Ĥ T̂ 2
2 0〉 = 0.

The last equality follows from the fact that each term is equal to zero. The first vanishes since

both determinants differ by four excitations. Indeed, 〈
(

T̂ †
2

)mn

ab
| denotes a double deexcitation89

of the doubly excited function (i.e., something proportional to 〈0|). For similar reasons (too
strong deexcitations give zero), the remaining terms in A also vanish. As a result, we need to
solve the equation

〈mn
ab |Ĥ0〉 + 〈mn

ab |Ĥ T̂20〉 + 1

2
〈mn
ab |Ĥ T̂ 2

2 0〉 − 〈mn
ab |T̂2 Ĥ0〉 − 〈mn

ab |T̂2 Ĥ T̂20〉 = 0.

After several days90 of algebraic manipulations, we get the equations for the t amplitudes
(for each tmn

ab amplitude, there is one equation):

(
εm + εn − εa − εb

)
tmn
ab = 〈mn|ab〉 −

∑
p>q

〈mn|pq〉t pq
ab −

∑
c>d

〈cd|ab〉tmn
cd

+
∑
c,p

[〈cn|bp〉tmp
ac − 〈cm|bp〉tnp

ac − 〈cn|ap〉tmp
bc + 〈cm|ap〉tnp

bc

]
(10.59)

+
∑

c>d,p>q

〈cd|pq〉 [t pq
ab tmn

cd − 2
(
tmp
ab tnq

cd + tnq
ab tmp

cd

)
− 2

(
tmn
ac t pq

bd + t pq
ac tmn

bd

)+ 4
(
tmp
ac tnq

bd + tnq
ac tmp

bd

)]
. (10.60)

It can be seen that the last expression includes the term independent of t , the linear terms, and
the quadratic terms.

How can we find the ts that satisfy Eq. (10.60)? We do it with the help of the iterative
method. First, we substitute zeros for all ts on the right side of the equation. Thus, from the
left side, the first approximation to tmn

ab is91 tmn
ab
∼= 〈mn|ab〉(

εm+εn−εa−εb
) . We have now an estimate

of each amplitude, so we are making progress. The approximation to t obtained in this way
is substituted into the right side to evaluate the left side, and so forth. Finally, we achieve a
self-consistency of the iterative process and obtain the CC wave function for the ground state
of our system. With the amplitudes, we calculate the energy of the system with Eq. (10.55).

This is how the CCD (the CC with double excitations in the cluster operator) works from the
practical viewpoint. It is more efficient when the initial amplitudes are taken from a short CI

89 This is the opposite of excitation.
90 Students – more courage!
91 As we see, we would have trouble if (εm + εn − εa − εb) is close to 0 (quasidegeneracy of the vacuum state with

some other state), because then tmn
ab →∞.
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expansion,92 with subsequent linearization (as above) of terms containing the initial (known)
amplitudes.

The computational cost of the CCD and CCSD (singles and doubles) methods scales as N 6,
where N is a number of molecular orbitals (occupied and virtual93), whereas the analogous
cost of the CCSDT (singles, doubles, triples) method requires N 8 scaling. This means that,
if we increase the orbital basis twice, the increase in the computational cost of the CCSDT
method will be four times larger than that of the CCSD scheme. This is a lot, and because of
this widespread popularity, it has been gained for the CCSD(T) method, which only partly uses
the triple excitations.

10.15.5 Size Consistency of the CC Method

The size consistency of the CC method can be proved on the basis of Eqs. (10.52) and (10.54).
Let us assume that the system dissociates into two94 non-interacting subsystems A and B (i.e., at
infinite distance). Then the orbitals can be also divided into two separable (mutually orthogonal)
subsets. We will show95 that the cluster amplitudes, having mixed indices (from the first and
second groups of orbitals), are equal to 0.

Let us note first that, for infinite distance, the Hamiltonian Ĥ = ĤA+ ĤB . In such a situation,
the wave operator can be expressed as

T̂ = T̂A + T̂B + T̂AB, (10.61)

where T̂A, T̂B, T̂AB include the operators corresponding to spinorbitals from the subsystems
A, B and from the system AB, respectively. Of course, in this situation, we have the following
commutation condition:

[ĤA, T̂B] = [ĤB, T̂A] = 0. (10.62)

Then, owing to the commutator expansion in Eq. (10.53), we obtain:

e−T̂ (ĤA + ĤB)e
T̂ = e−T̂A ĤAeT̂A + e−T̂B ĤBeT̂B + O(T̂AB), (10.63)

where O(T̂AB) denotes the linear and higher terms in T̂AB . Substituting this into Eq. (10.54)
with bra 〈mixed| vector representing mixed excitation, we observe that the first two terms on

92 The configuration interaction method with inclusion of single and double excitations only:
CCD: J.A. Pople, R. Krishnan, H.B. Schlegel, and J.S. Binkley, Intern. J. Quantum Chem., S14, 545 (1978);

R.J. Bartlett and G.D. Purvis III, Intern. J. Quantum Chem. S14, 561 (1978).
CCSD: G.D. Purvis III, J. Chem. Phys., 76, 1910 (1982).

93 These estimations are valid for the same relative increase of the number of occupied and virtual orbitals, as it is,
e.g., for going from a molecule to its dimer. In the case of calculations for the same molecule, but two atomic
basis sets (that differ in size) the cost increases only as N 4.

94 This can be generalized to many non-interacting subsystems.
95 B. Jeziorski, J. Paldus, and P. Jankowski, Intern. J. Quantum Chem., 56, 129 (1995).
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the right side of the last equation give zero. It means that we get the equation〈
mixed|O(T̂AB)0

〉
= 0, (10.64)

which, due to the linear term in O(T̂AB), is fulfilled by T̂AB = 0. Conclusion: for the infinite
distance between the subsystems, we do not have mixed amplitudes and the energy of the
AB system is bound to be the sum of the energies of subsystem A and subsystem B (size
consistency).

10.16 Equation-of-Motion Coupled Cluster (EOM-CC) Method

The CC method is used to calculate the ground-state energy and wave function. What about the
excited states? This is a task for the equation-of-motion coupled cluster (EOM-CC) method, the
primary goal being not the excited states themselves, but the excitation energies with respect to
the ground state.

10.16.1 Similarity Transformation

Let us note that for the Schrödinger equation Ĥψ = Eψ , we can perform an interesting sequence

of transformations based on the wave operator eT̂ :

e−T̂ Ĥψ = Ee−T̂ψ

e−T̂ ĤeT̂ e−T̂ψ = Ee−T̂ψ.

We obtain the eigenvalue equation again, but for the similarity transformed Hamiltonian96

Ĥψ̄ = Eψ̄,

where Ĥ = e−T̂ ĤeT̂ , ψ̄ =e−T̂ψ , and the energy E does not change at all after this transfor-
mation. This result will be very useful in a moment.

10.16.2 Derivation of the EOM-CC Equations

As the reference function in the EOM-CC method, we take the CC wave function for the ground
state:

ψ0 = exp (T̂ )0, (10.65)

where0 is usually a Hartree-Fock determinant. Now, we define the operator Ûk , which (“EOM-
CC Ansatz”) performs a miracle: from the wave function of the ground state ψ0, it creates the

96 In contrast to the Hamiltonian Ĥ , the similarly transformed Hamiltonian does not represent a Hermitian operator.

Moreover, it contains not only the one- and two-electron terms, as it does in Ĥ , but also all other many-electron
operators up to the total number of electrons in the system.
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wave function ψk for the kth excited state of the system:

ψk = Ûkψ0.

The operators Ûk change the coefficients in front of the configurations (see p. 616). The
operators Ûk are [unlike the wave operator exp (T̂ )] linear with respect to the excitations; i.e.,
the excitation amplitudes occur there in first powers. For the case of the single and double
excitations (EOM-CCSD), we have T̂ in the form of the sum of single and double excitations:

T̂ = T̂1 + T̂2

and

Ûk = Ûk,0 + Ûk,1 + Ûk,2,

where the task for the Ûk,0 operator is to change the coefficient in front of the function 0

to that appropriate to the |k〉 function, the role of the operators Ûk,1, Ûk,2 is an appropriate
modification of the coefficients in front of the singly and doubly excited configurations. These
tasks are done by the excitation operators with τ amplitudes (they have to be distinguished from
the amplitudes of the CC method):

Ûk,0 = τ0(k)

Ûk,1 =
∑
a,p

τ
p

a (k) p̂
†â

Ûk,2 =
∑

a,b,p,q

τ
pq

ab (k)q̂
† p̂†âb̂,

where the amplitudes τ(k) are numbers that are the targets of the EOM-CC method. The ampli-
tudes give the wave function ψk and the energy Ek .

We write down the Schrödinger equation for the excited state:

Ĥψk = Ekψk .

Now we substitute the EOM-CC Ansatz:

ĤÛkψ0 = EkÛkψ0,

and from the definition of the CC wave operator, we get97

ĤÛk exp (T̂ )0 = EkÛk exp (T̂ )0.

97 By neglecting higher than single and double excitations, the equation represents an approximation.
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Due to the missing deexcitation part (i.e., that which lowers the excitation rank, such as from
doubles to singles) the operators Ûk and T̂ commute98; hence, the operators Ûk and exp (T̂ )
also commute:

Ûk exp (T̂ ) = exp (T̂ )Ûk .

Substituting this, we have:

Ĥ exp (T̂ )Ûk0 = Ek exp (T̂ )Ûk0

and multiplying from the left with exp (−T̂ ), we get:

[exp (−T̂ )Ĥ exp (T̂ )]Ûk0 = EkÛk0

or, introducing the similarity transformed Hamiltonian,

Ĥ = e−T̂ ĤeT̂ ,

we obtain
ĤÛk0 = EkÛk0.

From the last equation, we will subtract the CC equation for the ground state:

[exp (−T̂ )Ĥ exp (T̂ )]0 = E00.

Multiplying it from the left with Ûk (i.e., ÛkĤ0 = E0Ûk0), we get

ĤÛk0 − ÛkĤ0 = EkÛk0 − E0Ûk0.

Finally, we obtain an important result:

[Ĥ, Ûk]0 =
(
Ek − E0

)
Ûk0.

The operator Ûk contains the sought amplitudes τ(k).
We find them in a similar manner as in the CC method. For that purpose, we make a scalar

product of the left and right sides of that equation with each excitation |mn...
ab... 〉 used in Ûk . We get

the set of the EOM-CC equations whose number is equal to the number of sought amplitudes
plus one more equation due to the normalization condition of ψk . The unknown parameters are
amplitudes and the excitation energies Ek − E0:

〈
mn . . .
ab . . .

∣∣∣[Ĥ, Ûk]
∣∣∣0

〉
= (Ek − E0

) 〈mn . . .
ab . . .

∣∣∣Ûk

∣∣∣0

〉
,

98 If Ûk contains true excitations, then it does not matter whether excitations are performed by Ûk T̂ or T̂ Ûk (com-

mutation), because both Ûk and T̂ mean going up in the energy scale. If, however, Ûk contains deexcitations, then
it may happen that there is an attempt in T̂ Ûk to deexcite the ground-state wave function–that makes 0, whereas
Ûk T̂ may be still OK because the excitations in T̂ may be more important than the deexcitations in Ûk .
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Once we solve these equations, the problem is over.
It is important that the excitations |mn...

ab... 〉 used in Ûk include not only the regular singles and
doubles, and the function with no excitation99 (i.e., the function 0), but also the states with
different numbers of electrons (i.e., with the ionized states or the states with extra electrons). It
turned out that the last possibility offers an intriguing way of determining a particular electronic
state starting from several distinct points of view. Indeed, one may carry out the EOMCC
computations for a given state (with N electrons) starting first from function 0(1, 2, . . . N ),
then repeating the calculations with different functions 0(1, 2, . . . N − M), where M =
±1,±2, . . . and compare the results. As shown by Kucharski and Musiał100 such a possibility
is especially fruitful if0(1, 2, . . . N ) were a very bad approximation to the ground-state wave
function e.g., in case of dissociation of a chemical bond. This approach may offer an elegant
avenue to circumvent the serious problem of bond dissociation.

10.17 Many-body Perturbation Theory (MBPT)

The majority of routine calculations in quantum chemistry are done with variational methods
(mainly the Hartree-Fock scheme). If we consider post-Hartree-Fock calculations, then non-
variational [CCSD, CCSD(T)] and perturbational approaches (including MBPT) take the lead.
The perturbational methods are based on the simple idea that the system in slightly modified
conditions is similar to that before the perturbation is applied (cf. p. 240).

In the formalism of perturbation theory, knowing the unperturbed system and the perturbation
allows us to provide successive corrections to obtain the solution of the perturbed system. Thus,
for instance, the energy of the perturbed system is the energy of the unperturbed system plus the
first-order correction, plus the second-order correction, plus…, etc. If the perturbation is small,
then we hope101 that the series is convergent; even then, however, there is no guarantee that the
series converges fast.

10.17.1 Unperturbed Hamiltonian

In the perturbational approach (cf. 232) to the electron correlation, the Hartree-Fock func-
tion,0, is treated as the zero-order approximation to the true ground-state wave function;
i.e., 0 = ψ(0)0 . Thus, the Hartree-Fock wave function stands at the starting point, while
the goal is the exact ground-state electronic wave function.

99 More precisely, to get only the excitation energy we do not need the coefficient next to 0.
100 S. Kucharski and M. Musiał, Proc. Conference HITY, Krakow, Poland, 2011.
101 Not much is known concerning the convergence of series occurring in quantum chemistry. Commonly, only a

few perturbational corrections are computed.
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In the majority of cases, this is a reasonable approximation, since the Hartree-Fock method usu-
ally provides as much as 98 to 99% of the total energy.102 A Slater determinantI is constructed
from the spinorbitals obeying the Fock equation. How do we construct the operator for which the
Slater determinant is an eigenfunction? We will find out in a moment that this operator is the sum
of the Fock operators (cf. Appendix U available at booksite.elsevier.com/978-0-444-59436-5):

Ĥ (0) =
∑

i

F̂(i) =
∑

i

εi ı̂
†ı̂ . (10.66)

Indeed,

Ĥ (0)I =
∑

i

εi ı̂
†ı̂ ·I =

(∑
i

εi

)
·I , (10.67)

since the annihilation of one spinorbital in the determinant and the creation of the same spinor-
bital leaves the determinant unchanged. This is so on the condition that the spinorbital φi is
present in ψ(0)0 .

The eigenvalue of Ĥ0 =∑i εi ı̂†ı̂ is always the sum of the orbital energies corresponding
to all spinorbitals in the Slater determinant I .

This means that the sum of several determinants, each built from a different (in the sense of
the orbital energies) set of spinorbitals, is not an eigenfunction of Ĥ (0).

10.17.2 Perturbation Theory–Slightly Different Presentation

We have to solve the Schrödinger equation for the ground state103 Ĥψ0 = Eψ0, with Ĥ =
Ĥ (0)+ Ĥ (1), where Ĥ (0) denotes the unperturbed Hamiltonian given by Eq. (10.66), and Ĥ (1) is
a perturbation operator. The eigenfunctions and the eigenvalues of Ĥ (0) are given by Eq. (10.67),
but remembering the perturbation theory formulas, we will denote the Slater determinants as
I ≡ ψ(0)I .

For the ground state, we expand the energy E0 and the wave functionψ0 in a power series104:
we put λĤ (1) instead of Ĥ (1) in the Hamiltonian and expand the energy and the wave function
in a power series105 with respect to λ:

102 Sometimes, as we know, the method fails; and then the perturbation theory based on the Hartree-Fock starting
point is a risky business, since the perturbation is very large.

103 We use the notation from Chapter 5.
104 This is an old trick of perturbation theory equivalent to saying that the shape of a bridge loaded with a car is the

shape of the bridge without the car, plus the deformation proportional to the mass of the car, plus the deformation
proportional to the square of the mass of the car, etc. This works if the bridge is solid and the car is light (the
perturbation is small).

http://booksite.elsevier.com/978-0-444-59436-5
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projection

(a) (b)

Fig. 10.12. Pictorial presentation of the intermediate normalization (a)
〈
ψ0|ψ(0)0

〉
= 1 and (b) the projection onto the axis ψ(0)0

in the Hilbert space using the operator P̂ = |ψ(0)0 〉〈ψ(0)0 |. Here, ψ(n)0 , n = 1, 2 represents a correction of the nth order to the

ground-state wave function. The picture can only be simplistic and schematic: the orthogonality of ψ(n)0 to ψ0 is shown correctly,

but the apparent parallelism of ψ(1)0 and ψ(2)0 is false.

E0 = E (0)0 + λE (1)0 + λ2 E (2)0 + · · · , (10.68)

ψ0 = ψ(0)0 + λψ(1)0 + λ2ψ
(2)
0 + · · · (10.69)

The Schrödinger equation does not force the normalization of the function. It is convenient
to use the intermediate normalization (Fig. 10.12a); i.e., to require that 〈ψ0|ψ(0)0 〉 = 1.

This means that the (non-normalized) ψ0 must include the normalized function of zeroth
order ψ(0)0 and, possibly, something orthogonal to it.

10.17.3 MBPT Machinery–Part 1: Energy Equation

Let us write Ĥψ0 as Ĥψ0 = (Ĥ (0)+ Ĥ (1))ψ0, or, in another way, as Ĥ (1)ψ0 = (Ĥ − Ĥ (0))ψ0.

Multiplying this equation by ψ(0)0 and integrating, we get (taking advantage of the intermediate
normalization)

〈ψ(0)0 |Ĥ (1)ψ0〉 = 〈ψ(0)0 |(Ĥ− Ĥ (0))ψ0〉 = E0〈ψ(0)0 |ψ0〉−〈ψ(0)0 |Ĥ (0)ψ0〉 = E0−E (0)0 = 
E0.

(10.70)
Thus,


E0 = 〈ψ(0)0 |Ĥ (1)ψ0〉. (10.71)

105 So we assume that the respective functions are analytic in the vicinity of λ = 0.
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Reduced Resolvent or the “Almost” Inverse of (E(0)0 − Ĥ(0))

Let us define several useful quantities–we need to get familiar with them now–which will
introduce a certain elegance into our final equations.

Let the first be a projection operator on the ground-state zeroth order function:

P̂ = |ψ(0)0 〉〈ψ(0)0 |. (10.72)

This means that P̂χ is, within accuracy to a constant, equal to eitherψ(0)0 or zero for an arbitrary

function χ . Indeed, if χ is expressed as a linear combination of the eigenfunctions ψ(0)n (these
functions form an orthonormal complete set as eigenfunctions of the Hermitian operator)

χ =
∑

n

cnψ
(0)
n , (10.73)

then (Fig. 10.12b)

P̂χ =
∑

n

cn P̂ψ(0)n =
∑

n

cn|ψ(0)0 〉〈ψ(0)0 |ψ(0)n 〉 =
∑

n

cnδ0nψ
(0)
0 = c0ψ

(0)
0 . (10.74)

Let us now introduce another projection operator:

Q̂ = 1− P̂ =
∞∑

n=1

|ψ(0)n 〉〈ψ(0)n | (10.75)

on the space orthogonal to ψ(0)0 . Obviously, P̂2 = P̂ and Q̂2 = Q̂. The latter holds since
Q̂2 = (1− P̂)2 = 1− 2 P̂ + P̂2 = 1− P̂ = Q̂.

Now we define a reduced resolvent

R̂0 =
∞∑

n=1

|ψ(0)n 〉〈ψ(0)n |
E (0)0 − E (0)n

. (10.76)

The definition says that the reduced resolvent represents an operator that from an arbitrary
vector φ of the Hilbert space, takes the following actions:

• Cuts out its components along all the unit (i.e., normalized) basis vectors ψ(0)n except ψ(0)0

• Weighs the projections by the factor 1
E (0)0 −E (0)n

, so they become less and less important for

higher and higher energy states
• Adds all the weighed vectors together.
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We easily obtain106

R̂0

(
E (0)0 − Ĥ (0)

)
=
(

E (0)0 − Ĥ (0)
)

R̂0 = Q̂. (10.77)

For functions φ orthogonal to ψ(0)0 (i.e., satisfying Q̂φ = φ), the action of the operator

R̂0 is identical to that of the operator (E (0)0 − Ĥ (0))−1. R̂0 does not represent the inverse of

(E (0)0 − Ĥ (0)), however, because for φ = ψ
(0)
0 , we get R̂0(E

(0)
0 − Ĥ (0))φ = 0, and not the

unchanged φ.

10.17.4 MBPT Machinery–Part 2: Wave Function Equation

Our goal now will be to present the Schrödinger equation in a different form. Let us first write
it down as follows:

(E0 − Ĥ (0))ψ0 = Ĥ (1)ψ0. (10.78)

We aim at having (E (0)0 − Ĥ (0))ψ0 on the left side. Let us add (E (0)0 − E0)ψ0 to both sides of
that equation to obtain (

E (0)0 − Ĥ (0)
)
ψ0 =

(
E (0)0 − E0 + Ĥ (1)

)
ψ0. (10.79)

Let us now operate on both sides of this equation with the reduced resolvent R̂0:

R̂0

(
E (0)0 − Ĥ (0)

)
ψ0 = R̂0

(
E (0)0 − E0 + Ĥ (1)

)
ψ0. (10.80)

106 Let us make sure of this:

R̂0

(
E(0)0 − Ĥ (0)

)
φ =

∞∑
n=1

(
E(0)0 − E(0)n

)−1 |ψ(0)n 〉〈ψ(0)n |
(

E(0)0 − Ĥ (0)
)
|φ〉

=
∞∑

n=1

(
E(0)0 − E(0)n

)−1 (
E(0)0 − E(0)n

)
|ψ(0)n 〉〈ψ(0)n |φ〉

=
∞∑

n=1

|ψ(0)n 〉〈ψ(0)n |φ〉 = Q̂φ.

Let us now operate on the same function with the operator (E(0)0 − Ĥ (0))R̂0 (i.e., the operators are in reverse
order):

(
E(0)0 − Ĥ (0)

)
R̂0φ =

(
E(0)0 − Ĥ (0)

) ∞∑
n=1

(
E(0)0 − E(0)n

)−1 |ψ(0)n 〉〈ψ(0)n |φ〉

=
∞∑

n=1

(
E(0)0 − E(0)n

)−1 (
E(0)0 − Ĥ (0)

)
|ψ(0)n 〉〈ψ(0)n |φ〉

=
∞∑

n=1

|ψ(0)n 〉〈ψ(0)n |φ〉 = Q̂φ.
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On the left side, we have Q̂ψ0 [as follows from Eq. (10.77)], but Q̂ψ0 = (1 − P̂)ψ0 =
ψ0 − |ψ(0)0 〉〈ψ(0)0 |ψ0〉 = ψ0 − ψ(0)0 , due to the intermediate normalization. As a result, the
equation takes the form

ψ0 − ψ(0)0 = R̂0

(
E (0)0 − E0 + Ĥ (1)

)
ψ0. (10.81)

Thus, we obtain

ψ0 = ψ(0)0 + R̂0

(
E (0)0 − E0 + Ĥ (1)

)
ψ0. (10.82)

At the same time, based on the expression for
E in perturbation theory (Eq. (10.71)), we
have

E0 = E (0)0 +
〈
ψ
(0)
0 |Ĥ (1)ψ0

〉
. (10.83)

These are the equations of the many body perturbation theory, in which the exact wave
function and energy are expressed in terms of the unperturbed functions and energies plus
certain corrections. The problem is that, as can be seen, these corrections involve the unknown
function and unknown energy.

Let us not despair in this situation, but try to apply an iterative technique. First, substitute for
ψ0 on the right side of Eq. (10.82) that which most resembles ψ0; i.e., ψ(0)0 . We obtain

ψ0 ∼= ψ(0)0 + R̂0

(
E (0)0 − E0 + Ĥ (1)

)
ψ
(0)
0 , (10.84)

and then the new approximation to ψ0 should again be plugged into the right side and this
procedure is continued until convergence. It can be seen that the successive terms form a series
(let us hope that it is convergent).

ψ0 =
∞∑

n=0

[
R̂0

(
E (0)0 − E0 + Ĥ (1)

)]n
ψ
(0)
0 . (10.85)

Now only known quantities occur on the right side except for E0, the exact energy. Let us
pretend that its value is known and insert into the energy expression [Eq. (10.83)] the function
ψ0:
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E0 = E (0)0 +
〈
ψ
(0)
0 |Ĥ (1)ψ0

〉
= E (0)0 +

〈
ψ
(0)
0 |Ĥ (1)

M∑
n=0

[
R̂0

(
E (0)0 − E0 + ˆH (1)

)]n |ψ(0)0

〉
.

(10.86)

Let us go back to our problem: we want to have E0 on the left side of the last equation, while
- for the time being - E0 occurs on the right sides of both equations. To exit the situation, we
will treat E0 occurring on the right side as a parameter manipulated in such a way as to obtain
equality in both of these equations. We may do it in two ways. One leads to the Brillouin-Wigner
perturbation theory, the other to the Rayleigh-Schrödinger perturbation theory.

10.17.5 Brillouin-Wigner Perturbation Theory

Let us decide first at what n = M we terminate the series; i.e., to what order of perturbation
theory the calculations will be carried out. Say that M = 3. Let us now take any reasonable
value107 as a parameter of E0. We insert this value into the right side of Eq. (10.86) for E0

and calculate the left side (i.e., E0). Then let us again insert the new E0 into the right side and
continue in this way until self-consistency [i.e., until Eq. (10.86) is satisfied]. After E0 is known,
we go to Eq. (10.85) and compute ψ0 (through a certain order–e.g., M).

Brillouin-Wigner perturbation theory has, as seen, the somewhat unpleasant feature that
successive corrections to the wave function depend on the M assumed at the beginning.

We may suspect108 – and this is true – that the Brillouin-Wigner perturbation theory is not
size consistent.

10.17.6 Rayleigh-Schrödinger Perturbation Theory

As an alternative to Brillouin-Wigner perturbation theory, we may consider Rayleigh-Schrödinger
perturbation theory, which is size consistent. In this method, the total energy is computed in a
stepwise manner:

E0 =
∞∑

k=0

E (k)0 (10.87)

in such a way that first we calculate the first-order correction E (1)0 [i.e., of the order of Ĥ (1)],

then the second-order correction, E (2)0 [i.e., of the order of (Ĥ (1))2], etc. If we insert into the

107 A “unreasonable’’ value will lead to numerical instabilities. Then we will learn that it was unreasonable to take
it.

108 This is due to the iterative procedure.
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right side of Eqs. (10.85) and (10.86) the expansion E0 =∑∞k=0 E (k)0 and then, by applying the
usual perturbation theory argument, we equalize the terms of the same order and get

for n = 0 :

E (1)0 =
〈
ψ
(0)
0 |Ĥ (1)ψ

(0)
0

〉
, (10.88)

for n = 1 :

E (2) =
〈
ψ
(0)
0 |Ĥ (1) R̂0

(
E (0)0 − E0 + Ĥ (1)

)
ψ
(0)
0

〉
=
〈
ψ
(0)
0 |Ĥ (1) R̂0 Ĥ (1)ψ

(0)
0

〉
, (10.89)

since R̂0ψ
(0)
0 = 0;

for n = 2 :
E (3) = the third-order terms from the expression:〈

ψ
(0)
0 |Ĥ (1)

[
R̂0

(
E (0)0 − E (0)0 − E (1)0 − E (2)0 − · · · + Ĥ (1)

)]2
ψ
(0)
0

〉

=
〈
ψ
(0)
0 |Ĥ (1) R̂0

(
−E (1)0 − E (2)0 − · · · + Ĥ (1)

)
R̂0

(
−E (1)0 − E (2)0 − · · · + Ĥ (1)

)
ψ
(0)
0

〉
and the only terms of the third order are:

E (3) =
〈
ψ
(0)
0 |Ĥ (1) R̂0 Ĥ (1) R̂0 Ĥ (1)ψ

(0)
0

〉
− E (1)0

〈
ψ
(0)
0 |Ĥ (1)R2

0 Ĥ (1)ψ
(0)
0

〉
, (10.90)

etc.

Unfortunately, we cannot give a general expression for the kth correction to the energy
although we can give an algorithm for the construction of such an expression.109 Rayleigh-
Schrödinger perturbation theory (unlike the Brillouin-Wigner approach) has the nice feature
that the corrections of the particular orders are independent of the maximum order chosen.

10.18 Møller-Plesset Version of Rayleigh-Schrödinger Perturbation Theory

Let us consider the case of a closed shell.110 In the Møller-Plesset perturbation theory, we

assume as Ĥ (0) the sum of the Hartree-Fock operators [from the RHF method; see Eq. (10.66)],
and ψ(0)0 = ψRH F , i.e.:

Ĥ (0) =
N∑
i

F̂(i) =
∞∑
i

εi i
†i,

Ĥ (0)ψRH F = E (0)0 ψRH F , (10.91)

109 J. Paldus and J. Čížek, Adv. Quantum Chem., 9, 105 (1975).
110 Møller–Plesset perturbation theory also has its multireference formulation when the function 0 is a linear

combination of determinants [K. Woliński, P. Pulay, J. Chem. Phys., 90, 3647 (1989)].
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E (0)0 =
∑

i

εi (10.92)

(the last summation is over spinorbitals occupied in the RHF function); hence, the perturbation,
known in the literature as a fluctuation potential, is equal to

Ĥ (1) = Ĥ − Ĥ (0). (10.93)

For such a perturbation, we may carry out calculations through a given order n: we have a
sequence of approximations MPn. A very popular method relies on the inclusion of the pertur-
bational corrections to the energy through the second order (known as the MP2 method) and
through the fourth order (MP4).

10.18.1 Expression for MP2 Energy

What is the expression for the total energy in the MP2 method?
Let us note first that, when calculating the mean value of the Hamiltonian in the standard

Hartree-Fock method, we automatically obtain the sum of the zeroth-order energies
∑

i εi and

the first-order correction to the energy
〈
ψRH F |Ĥ (1)ψRH F

〉
. Indeed, ERH F =

〈
ψRH F |ĤψRH F

〉
=
〈
ψRH F |(Ĥ (0) + Ĥ (1))ψRH F

〉
= (∑i εi )+

〈
ψRH F |Ĥ (1)ψRH F

〉
. So what is left to be done

(in the MP2 approach) is the addition of the second-order correction to the energy (p. 245, the
prime in the summation symbol indicates that the term making the denominator equal to zero
is omitted), where, as the complete set of functions, we assume the Slater determinants ψ(0)k

corresponding to the energy E (0)k (they are generated by various spinorbital occupancies):

EM P2 = ERH F +
′∑
k

∣∣∣〈ψ(0)k |Ĥ (1)ψRH F

〉∣∣∣2
E (0)0 − E (0)k

= ERH F +
′∑
k

∣∣∣〈ψ(0)k |ĤψRH F

〉∣∣∣2
E (0)0 − E (0)k

, (10.94)

the last equality holds because ψRH F is an eigenfunction of Ĥ (0), and ψ(0)k and ψRH F are

orthogonal. It can be seen that among possible functions ψ(0)k , we may ignore all but doubly
excited ones. Why? This is for two reasons:

• The single excitations give
〈
ψ
(0)
k |ĤψRH F

〉
= 0 due to the Brillouin theorem.

• The triple and higher excitations differ by more than two excitations from the functions
ψRH F and, due to the fourth Slater-Condon rule (see Appendix M available at book-
site.elsevier.com/978-0-444-59436-5 p. e119), give a contribution equal to 0.

In such a case, we take as the functions ψ(0)k only doubly excited Slater determinants ψ pq
ab ,

which means that we replace the occupied spinorbitals: a→ p, b→ q, and, to avoid repetitions,
a < b, p < q. These functions are eigenfunctions of Ĥ (0) with the eigenvalues being the sum
of the respective orbital energies [see Eq. (10.67)]. Thus, using the third Slater-Condon rule,

http://booksite.elsevier.com/978-0-444-59436-5
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we obtain the energy correct through the second order:

EM P2 = ERH F +
∑

a<b,p<q

|〈ab|pq〉 − 〈ab|qp〉|2
εa + εb − εp − εq

; (10.95)

hence, the MP2 scheme viewed as an approximation to the correlation energy gives111

Ecorel ≈ EM P2 − ERH F =
∑

a<b,p<q

|〈ab|pq〉 − 〈ab|qp〉|2
εa + εb − εp − εq

. (10.96)

Well, how effective is the MP method in computing the electron correlation? Fig. 10.13
shows a comparison of the RHF, MP2, MP3, and CISD (in this case, equivalent to CI) methods
applied to the hydrogen molecule for several values of the internuclear distance R. The results

Fig. 10.13. The electronic energy of the hydrogen molecule as a function of the internuclear distance R. The energy is computed
by using the RHF (gray solid line), MP2 (lighter dotted line), MP3 (darker dotted line) and CI (black solid line). The energy of the
two isolated hydrogen atoms is shown as a horizontal dashed line. The computations have been carried out by using the Gaussian
program with a standard basis of atomic orbitals 6-311G(d,p). Energies and distances are given in a.u.

111 The MP2 method usually gives satisfactory results (e.g., the frequencies of the normal modes). There are indi-
cations, however, that the deformations of the molecule connected with some vibrations strongly affecting the
electron correlation (vibronic coupling) create too severe a test for the method–the error may amount to 30 to
40% for frequencies of the order of hundreds of cm−1, as has been shown by D. Michalska, W. Zierkiewicz,
D.C. Bieńko, W. Wojciechowski, and T. Zeegers-Huyskens, J. Phys. Chem., A105, 8734 (2001).
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of CI are better than those of the Restricted Hartree-Fock method (RHF)–a feature guaranteed
by the variational principle. As one can see, the RHF method indicates quite accurately the
position of the minimum, although it makes there a clearly visible error in energy. In contrast
to this, for large R, the method creates a kind of disaster. The duty of the perturbational MP2
and MP3 methods is to improve the RHF mess by adding some corrections. This difficult job
is done very well for distances R close to the minimum. The duty is, however, too demanding
for large internuclear distances, although even there the improvement is important, especially
for the MP3 method.

10.18.2 Is the MP2 Method Size Consistent?

Let us see. From Eq. (10.96), we have EM P2 = EH F +∑′a<b,p<q
|〈ab|pq〉−〈ab|qp〉|2
εa+εb−εp−εq

. On the
right side, the EH F energy is size consistent, as it was shown at the beginning of this chapter.
It is therefore sufficient to prove that the second term is also size consistent. For separated
subsystems, the excitations a → p and b → q must correspond to the spinorbitals a and p
belonging to the same molecule (and represent the Hartree-Fock orbitals for the subsystems).
The same can be said for the spinorbitals b and q. We have, therefore (lim denotes the limit
corresponding to all distances among the subsystems equal to infinity, and ERH F (A) stands for
the Hartree-Fock energy of molecule A),

lim EM P2 =
∑

A

ERH F (A)+ lim
′∑

a<b,p<q

|〈ab|pq〉 − 〈ab|qp〉|2
εa + εb − εp − εq

=
∑

A

ERH F (A)+
∑

A

′∑
a,b,p,q∈A

|〈ab|pq〉 − 〈ab|qp〉|2
εa + εb − εp − εq

+
∑
A<B

′∑
a,p∈A,b,q∈B

lim
|〈ab|pq〉 − 〈ab|qp〉|2
εa + εb − εp − εq

=
∑

A

EM P2(A)+ 0,

because in the last term, the integral 〈ab|pq〉 vanishes as 1
RAB

, while the integral 〈ab|qp〉
vanishes even faster (exponentially, because of the overlap of spinorbitals belonging to different
molecules).

The result obtained means that

the MP2 method is size consistent.
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Example

The proofs of the size consistency should be reflected by numerical results in practical applica-
tions. Let us perform some routine calculations for two helium atoms112 by using the HF, MP2,
CISD, and CCSD methods. We perform the calculations for a single helium atom, and then for
two separated helium atoms, but with the internuclear distance so large that there are serious
grounds for rejecting any suspicion about their significant mutual interaction. Then, we will see
whether the energy for the two atoms is twice the energy of a single atom (as it should be for
size consistency). Well, how to decide about such a safe distance? A helium atom is an object
of the diameter of about 2 Å (in a simple and naive view). The distance of about 30 Å should
be sufficiently large to have the interaction energy negligible. The numerical results are collected
in the following table:

2 He He2 (R = 30 Å)
HF −5.7103209 −5.7103209
MP2 −5.7327211 −5.7327211
CISD −5.7403243 −5.7401954
CCSD −5.7403243 −5.7403243

The numbers given confirm the theoretical considerations. The numbers in the second column
(twice the energy of the isolated helium atom) and the third column (the energy of the two distant
atoms) are identical to eight significant figures (shown in bold) for the HF, MP2, and CCSD
methods. In contrast to that, according to what we know about the CI method, the CISD method
is size inconsistent (the difference is on the fifth significant figure).

10.18.3 Convergence of the Møller-Plesset Perturbation Series

Does the Møller-Plesset perturbational series converge? Very often this question can be con-
sidered surrealist, since most frequently we carry out calculations through the second, third,
and–at most–fourth order of perturbation theory. Such calculations usually give a satisfactory
description of the physical quantities considered and we do not think about going to high orders
requiring major computational effort. There were, however, scientists interested to see how fast
the convergence is if very high orders are included (MPn) for n < 45. And there was a surprise
(see Fig. 10.14).

112 One may use, for example, the public domain www.webmo offering several quantum chemistry programs; we
use here the Gaussian program with the atomic orbital basis set 6− 31G(d).

http://www.webmo
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Fig. 10.14. Convergence of the Møller-Plesset perturbation theory (deviation from the exact value, given in a.u.) for the HF
molecule as a function of the basis set used (cc-pVDZ and augmented cc-pVDZ) and assumed bond length, Re denotes the HF
equilibrium distance (following T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure Theory Wiley, Chichester,
2000, p. 780, Fig. 14.6). Courtesy of the authors.

It is true that the first few orders of the MP perturbation theory give reasonably good results,
but later, the accuracy of the MP calculations gets worse. A lot depends on the atomic orbital
basis set adopted and wealthy people (using the augmented basis sets, which is much more
rare) encounter some difficulties, whereas poor ones (modest basis sets) do not. Moreover, for
long bond lengths (2.5 of the equilibrium distance Re), the MPn performance is worse. For high
orders, the procedure is heading for a catastrophe113 of the kind already described on p. 249.
The reason for this is the highly excited and diffuse states used as the expansion functions.114

10.18.4 Special Status of Double Excitations

In Møller-Plesset perturbation theory, 
E = E0 − E (0)0 = E0 − ERH F − E (0)0 + ERH F =
Ecorel +

(
ERH F − E (0)0

)
. On the other hand,115 
E = E0 − E (0)0 =

〈
ψ
(0)
0 |Ĥψ0

〉
− E (0)0 .

The function ψ0 can be expanded in Slater determinants of various excitation rank (we use
intermediate normalization):ψ0 = ψ(0)0 +exci tations. Then, by equalizing the two expressions
for 
E obtained above, we have

113 This is so except for the smaller basis set and the equilibrium bond length, but the problem has been studied up
to n = 21.

114 An analysis of this problem is given in T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure
Theory, Wiley, Chichester (2000), p. 769.

115 In this instance, we take advantage of the intermediate normalization
〈
ψ
(0)
0 |ψ0

〉
= 1 and

〈
ψ
(0)
0 |ψ(0)0

〉
= 1 and

the fact that ψ0 is an eigenfunction of Ĥ .
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Ecorel + ERH F =
〈
ψ
(0)
0 |Ĥψ0

〉
=
〈
ψ
(0)
0 |Ĥ(ψ(0)0 + exci tations)

〉
= ERH F +

〈
ψ
(0)
0 |Ĥ

(exci tations)〉; hence

Ecorel =
〈
ψ
(0)
0 |Ĥ(exci tations)

〉
. (10.97)

The Slater-Condon rules (see Appendix M available at booksite.elsevier.com/978-0-444-
59436-5, p. e109) show immediately that the only excitations that give nonzero contributions
are the single and double excitations. Moreover, taking advantage of the Brillouin theorem, we
obtain single excitation contributions exactly equal zero. So we get the result that

the exact correlation energy can be obtained using only that part of a formula for the
configuration interaction wave function ψC I that contains exclusively double excitations:

Ecorel =
〈
ψ
(0)
0 |Ĥ(double exci tations only)

〉
.

The problem, however, lies in the fact that these doubly excited determinants are equipped
with coefficients obtained in the full CI method (i.e., with all possible excitations). How is
this? We should draw attention to the fact that, in deriving the formula for 
E , intermediate
normalization is used. If someone gave us the normalized FCI wave functions as a Christmas
gift,116 then the coefficients occurring in the formula for 
E would not be the double excita-
tion coefficients in the FCI function. We would have to denormalize this function to have the
coefficient for the Hartree-Fock determinant equal to 1. We cannot do this without knowledge
of the coefficients for higher excitations.

It is as if somebody said: the treasure is hidden in our room, but to find it, you have to solve
a very difficult problem in the kingdom of Far Far Away. Imagine a compass that leads you
unerringly to that place in our room where the treasure is hidden. Perhaps a functional exists
whose minimization would provide us directly with the solution, but we do not know it yet.117

Summary

• In the Hartree-Fock method, electrons of opposite spins do not correlate their motion118 which is an absurd
situation (in contrast to when electrons of the same spins avoid each other, which is reasonable). In many cases
(like the F2 molecule, description of dissociation of chemical bonds, or interaction of atoms and non-polar
molecules), this leads to wrong results. In this chapter, we have learned about the methods that do take into
account a correlation of electronic motions.

116 Dreams...
117 It looks like the work by H. Nakatsuji, Phys. Rev. A, 14, 41 (1976), and M. Nooijen, Phys. Rev. Letters, 84, 2108

(2000) go in this direction.
118 Note, however, that they repel each other (mean field) as if they were electron clouds.

http://booksite.elsevier.com/978-0-444-59436-5
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Variational Methods Using Explicitly Correlated Wave Function

• Rely on using in the variational method a trial function that contains the explicit distance between the electrons.
This improves the results significantly, but requires evaluation of very complex integrals.

• The correlation cusp condition,
(
∂ψ
∂r

)
r=0
= μqi q jψ(r = 0) can be derived, where r is the distance of two

particles with charges qi and q j , and μ is the reduced mass of the particles. This condition helps to determine
the correct form of the wave function ψ . For instance, for the two electrons, the correct wave function has to

satisfy (in a.u.):
(
∂ψ
∂r

)
r=0
= 1

2ψ(r = 0).

• The family of variational methods with explicitly correlated functions includes the Hylleraas method, the Hyller-
aas CI method, the James-Coolidge and the Kołos-Wolniewicz approaches, as well as a method with exponen-
tially correlated Gaussians. The method of explicitly correlated functions is very successful for two-, three-,
and four-electron systems. For larger systems, due to the excessive number of complicated integrals, variational
calculations are not yet feasible.

Variational Methods with Slater Determinants
• The configuration interaction (CI) approach is a Ritz method (see Chapter 5), which uses the expansion in terms

of known Slater determinants. These determinants are constructed from the molecular spinorbitals (usually
occupied and virtual ones) produced by the Hartree-Fock method.

• Full CI expansion usually contains an enormous number of terms and is not feasible. Therefore, the CI expansion
must be truncated somewhere. Usually, we truncate it at a certain maximum rank of excitations with respect
to the Hartree-Fock determinant (i.e., the Slater determinants corresponding to single, double, or up to some
maximal excitations are included).

• Truncated (limited) CI expansion is not size consistent; i.e., the energy of the system of non-interacting objects
is not equal to the sum of the energies of the individual objects (calculated separately with the same truncation
pattern).

• The multiconfiguration self-consistent field (MC SCF) method is similar to the CI scheme, but we vary not
only the coefficients in front of the Slater determinants, but also the Slater determinants themselves (changing
the analytical form of the orbitals in them). We have learned about two versions: the classic one (where we
optimize alternatively coefficients of Slater determinants and the orbitals) and a unitary one (where we optimize
simultaneously the determinantal coefficients and orbitals).

• The complete active space self-consistent field (CAS SCF) method is a special case of the MC SCF approach and
relies on the selection of a set of spinorbitals (usually separated energetically from others) and on construction
from them of all possible Slater determinants within the MC SCF scheme. Usually, low-energy spinorbitals are
inactive during this procedure; i.e., they all occur in each Slater determinant (and are either frozen or allowed
to vary).

Non-variational Method Based on Slater Determinants
• The coupled-cluster (CC) method is an attempt to find such an expansion of the wave function in terms of the

Slater determinants, which would preserve size consistency. In this method, the wave function for the electronic
ground state is obtained as a result of the operation of the wave operator exp (T̂ ) on the Hartree-Fock function
(this ensures size consistency). The wave operator exp (T̂ ) contains the cluster operator T̂ , which is defined as
the sum of the operators for the l-tuple excitations, T̂l up to a certain maximum l = lmax. Each T̂l operator is
the sum of the operators each responsible for a particular l-tuple excitation multiplied by its amplitude t . The
aim of the CC method is to find the t values since they determine the wave function and energy. The method
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generates nonlinear equations with respect to unknown t amplitudes. The CC method usually provides very
good results.

• The equation-of-motion coupled-cluster (EOM-CC) method is based on the CC wave function obtained for the
ground state and is designed to provide the electronic excitation energies and the corresponding excited-state
wave functions.

• The many-body perturbation theory (MBPT) method is a perturbation theory in which the unperturbed system
is usually described by a single Slater determinant. We obtain two basic equations of the MBPT approach for

the ground-state wave function: ψ0 = ψ(0)0 + R̂0

(
E(0)0 − E0 + Ĥ (1)

)
ψ0 and E0 = E(0)0 +

〈
ψ
(0)
0 |Ĥ (1)ψ0

〉
,

where ψ(0)0 is usually the Hartree-Fock function, E(0)0 the sum of the orbital energies, Ĥ (1) = Ĥ − Ĥ (0) is the

fluctuation potential, and R̂0 the reduced resolvent (i.e., the “almost” inverse of the operator E(0)0 − Ĥ (0)). These
equations are solved in an iterative manner. Depending on the iterative procedure chosen, we obtain either the
Brillouin-Wigner or the Rayleigh-Schrödinger perturbation theory. The latter is applied in the Møller-Plesset
method.

• One of the basic computational methods for the correlation energy is the MP2 method, which gives the
result correct through the second order of the Rayleigh-Schrödinger perturbation theory (with respect to
energy).

Main Concepts, New Terms

active orbitals (p. 624)
anticorrelation (p. 608)
Brillouin theorem (p. 617)
Brillouin-Wigner perturbation theory (p. 647)
Brueckner function (p. 581)
CC amplitudes (p. 639)
cluster operator (p. 630)
commutator expansion (p. 626)
complete active space (CAS) (p. 628)
configuration (p. 615)
configuration interaction (p. 615)
configuration mixing (p. 615)
correlation energy (p. 578)
Coulomb hole (p. 595)
coupled cluster (CC) (p. 629)
covalent structure (p. 611)
cusp condition (p. 584)
deexcitations (p. 636)
direct method (p. 622)
EOM-CC method (p. 638)
exchange hole (p. 597)
explicit correlation (p. 584)
exponentially correlated function (p. 594)
Fermi hole (p. 597)
frozen orbitals (p. 624)

full CI method (p. 654)
geminal (p. 589)
harmonic helium atom (p. 589)
Heitler-London function (p. 611)
Hylleraas CI (p. 587)
inactive orbital (p. 624)
intermediate normalization (p. 631)
ionic structure (p. 611)
James-Coolidge function (p. 590)
Kołos-Wolniewicz function (p. 590)
many body perturbation theory (p. 641)
MBPT method (p. 641)
Møller-Plesset perturbation theory (p. 648)
multiconfigurational SCF (MC SCF) methods (p. 624)
multireference methods (p. 623)
natural orbitals (p. 621)
Rayleigh-Schrödinger perturbation theory (p. 647)
reduced resolvent (p. 644)
resonance theory (p. 610)
similarity transformation (p. 638)
size consistency (p. 582)
unitary MC SCF method (p. 626)
vacuum state (p. 630)
Valence bond (VB) method (p. 610)
wave operator (p. 631)
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From the Research Front

The computational cost in the Hartree-Fock method scales with the size N of the atomic orbital basis set as N 4 and,

while using devices similar to direct CI, even119 as N 3. However, after making the Hartree-Fock computations, we
perform more and more frequently calculations of the electronic correlation. The main approaches used to this end
are the MP2 method, the CC method with single and double excitations in T̂ and partial inclusion of triple ones [the
so-called CCSD(T) approach]. The CC method has been generalized for important cases involving chemical bond
breaking.120 The state of the art in CC theory currently includes the full CCSDTQP model, which incorporates into
the cluster expansion all the operators through pentuple excitations.121 The formulas in these formalisms become
monstrous to such an extent, that scientists desperately invented an “anti-weapon”: first, automatic (computer-based)
derivation of the formulas is used, followed by automatic coding of the derived formulas into executable programs
(usually using the Fortran). In such an approach we do not need to see our formulas...

The computational cost of the CCSD scheme scales as N6. The computational strategy often adopted relies on
obtaining the optimum geometry of the system with a less sophisticated method (e.g., Hartree-Fock) and, subse-
quently, calculating the wave function for that geometry with a more sophisticated approach (e.g., the MP2 that
scales as N 5, MP4 or CCSD(T) scaling as N 7). In the next chapter, we will learn about the density functional theory
(DFT), which represents an alternative to the above-mentioned methods.

Recoupling Quantum Chemistry with Nuclear Forces

The CC method has been designed first in the field of nuclear physics. This fact, however, had no consequences until
recent years, since the numerical procedure has been judged by the community as untractable. Only because the
quantum chemist Jiří Čížek accidentally looked up a nuclear physics journal, the idea diffused to quantum chemistry
community and after some spectacular developments turned out to become the most successful in studying atoms
and molecules. It turned out, however, that the idea went back to nuclear physics from quantum chemistry. The
quantum chemistry CC technique has been applied to compute the energy levels for nucleons in several nuclei with
much higher precision, than it was possible before.122

Nakatsuji Strategy

Hiroshi Nakatsuji looked at the Schrödinger equation from an unexpected side.123 He wrote two equations:

〈
δψ |(Ĥ − E)ψ

〉
= 0, (10.98)

〈
ψ |(Ĥ − E)2ψ

〉
= 0 (10.99)

and asked: what is their relation to the Schrödinger equation (Ĥ − E)ψ = 0.

119 This reduction is caused mainly by a preselection of the two-electron integrals. The preselection allows us to
estimate the value of the integral without its computation and to reject the large number of integrals of values
close to zero.

120 P. Piecuch, M. Włoch, 123, 224105 (2005).
121 M. Musiał S.A. Kucharski, and R.J. Bartlett, J. Chem. Phys., 116, 4382 (2002).
122 M. Włoch, D.J. Dean, J.R. Gour, M. Hjorth-Jensen, K. Kowalski, T. Papenbrock, and P. Piecuch, Phys. Rev.

Letters, 94, 212501 (2005).
123 H. Nakatsuji, J. Chem. Phys., 113, 2949 (2000).



658 Chapter 10

Hiroshi Nakatsuji, professor at Kyoto
University, Japan, then professor at
Quantum Chemistry Research Insti-
tute, Kyoto. When visiting Warsaw, he
presented me his ingenious way of
solving the Schrödinger equation. I
was deeply impressed and said: “You
are a mathematician I presume?”.
Professor Nakatsuji: “No, I am just an
organic chemist!”

Note, that Eq. (10.98) follows from minimizing

the functional
〈
ψ |Ĥψ

〉
under normalization

constraint124 ( 〈ψ |ψ〉 = 1) of the trial func-
tion ψ . This is the essence of the variational
method described in Chapter 5. Satisfaction
of Eq. (10.98) may happen either because ψ
fulfills the Schrödinger equation, or, at ψ not
satisfying the Schrödinger equation, but opti-
mal within the variational method restricted
to a class of variations125 δψ . Anyway, if ψ
satisfies Eq. (10.98), it does not necessarily rep-
resent a solution to the Schrödinger equation,
it does with no restrictions imposed on δψ .

Eq. (10.99) has a different status: it is satisfied only for the solution ψ of the Schrödinger equation.126 Unfortu-
nately, it contains the square of the Hamiltonian. This seems to hint that difficult integrals will be calculated in the
future, but for the time being, we are going forward courageously.

Imagine, that the variation of ψ in Eq. (10.98) was chosen to have a very special form:

δψ = (Ĥ − E)ψ · δC, (10.100)

where C is a variational parameter in ψ . Then, from Eq. (10.98), we have the precious Eq. (10.99):〈
(Ĥ − E)ψ |(Ĥ − E)ψ

〉
· δC∗ = 0,

and in such a case,127 (Ĥ − E)ψ = 0 (solution of the Schrödinger equation). It is seen, therefore, that the right side
of Eq. (10.100) in a sense “forces” correct structure of the wave function, and hopefully this also takes place when
we take an approximation instead of the exact (and unknown) energy E . Having this in mind, let us construct a varia-
tional function satisfying Eq. (10.100). But how do we get this? Well, let us begin an iterational game with functions

(n = 0, 1, 2, ... numbers the iterations, δψ represents an analog of ψn+1 − ψn , we define Ēn ≡
〈
ψn |Ĥψn

〉
) as

ψn+1 =
[
1+ Cn(Ĥ − Ēn)

]
ψn . (10.101)

We start from an arbitrary functionψ0, and in each iteration, we determine variationally the value of the coefficient
Cn . We hope the procedure converges; i.e., what we get as the left side is the function inserted into the right side. If
this happens, we achieve the satisfaction of

ψ =
[
1+ C(Ĥ − E)

]
ψ, (10.102)

where we have removed the lower indices because they do not matter at convergence. For C �= 0, this means the
achievement of our aim; i.e., (Ĥ − E)ψ = 0.

As it turned out, this recipe needs some corrections when applied in practical calculations. In order to be able to

calculate the integrals Ēn =
〈
ψn |Ĥψn

〉
safely,128 Nakatsuji considered what is known as the scaled Schrödinger

124 A conditional minimum can be found by using the Lagrange multipliers method, as described in Appendix N
available at booksite.elsevier.com/978-0-444-59436-5.

125 If no restriction is imposed, the function found satisfies the Schrödinger equation.
126 Indeed,

〈
ψ |(Ĥ − E)2ψ

〉
=
〈(

Ĥ − E
)
ψ |(Ĥ − E)ψ

〉
= ||(Ĥ − E)ψ ||2 = 0, where ||(Ĥ − E)ψ || is the vector

length. The latter equals 0 only if all the components of the vector equal 0. This means that in any point of space,
we have (Ĥ − E)ψ = 0.

127 This happens because of the arbitrariness of δC.
128 We have to calculate the mean values of higher and higher powers of the Hamiltonian. These integrals are

notorious for diverging.

http://booksite.elsevier.com/978-0-444-59436-5
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equation129:

g(Ĥ − E)ψ = 0, (10.103)

instead of the original one (satisfied by the sameψ), where the arbitrary function (of the electronic coordinates) g does
not commute with the Hamiltonian, must be positive everywhere, except points of singularity, but even approaching
a singularity, it has to be lim gV �= 0. Thus, the philosophy behind function g is to destroy the “singularity character
in singularities” and, at the same time not to destroy the precious information about these singular points, present in
the potential energy V . Several possibilities have been tested (e.g., g = 1

−Vne+Vee
or g = − 1

VneVee
, etc.), where Vne

and Vee are the Coulomb potential energy of the electron-nucleus and electron-electron interactions.130

The results witness about great effectiveness of this iterative method. For example,131 in a little more than 20
iterations, the Schrödinger equation was practically solved (with nearly 100% of the correlation energy within finite
basis sets) for molecules HCHO, CH3F, HCN, CO2, and C2H4. Analytical calculations132 for H2 within four to
six iterations gave the electronic energy (at the equilibrium distance) with 15 significant figures (independently of
several tested starting functions ψ0). Similar calculations for the helium atom gave an accuracy of over 40 digits.133

No doubt, Nakatsuji’s idea does represent not only a fresh look at the quantum theory, but it also has a significant
practical power. It remains to learn what the complicated final form of the wave function is telling us. This, however,
pertains also to wave functions produced by many other methods.

Ad Futurum

Experimental chemistry is focused, in most cases, on molecules of a larger size than those for which fair calculations
with correlation are possible. However, after thorough analysis of the situation, it turns out that the cost of the
calculations does not necessarily increase very fast with the size of a molecule.134 Employing localized molecular
orbitals and using the multipole expansion (see Appendix X available at booksite.elsevier.com/978-0-444-59436-5)
of the integrals involving the orbitals separated in space causes, for elongated molecules, the cost of the post-Hartree-
Fock calculations to scale linearly with the size of a molecule.135 It can be expected that if the methods described in
this chapter are to survive in practical applications, such a step has to be made.

There is one more problem, which will probably be faced by quantum chemistry when moving to larger molecules
containing heteroatoms. Nearly all the methods, including electron correlation, described so far (with the exception
of the explicitly correlated functions) are based on the silent and pretty “obvious” assumption, that the higher the
excitation we consider, the higher the configuration energy we get. This assumption seems to be satisfied so far,
but the molecules considered were always small, and the method has usually been limited to a small number of
excited electrons. This assumption can be challenged in certain cases.136 The multiple excitations in large molecules
containing easily polarizable fragments can result in electron transfers that cause energetically favorable strong
electrostatic interactions (“mnemonic effect”137) that lower the energy of the configuration. The reduction can be
large enough to make the energy of the formally multiply excited determinant close to that of the Hartree-Fock

129 H. Nakatsuji, Phys. Rev. Lett., 93, 30403 (2004). In this reference Nakatsuji’s standard method is described.
130 The integration difficulty can be circumvented also by considering satisfaction (in points of space) of the

Schrödinger equation in the form Ĥψ
ψ = const as described in H. Nakatsuji, H. Nakashima, Y. Kurokawa,

and A. Ishikawa, Phys. Rev. Lett., 99, 240402 (2007).
131 H. Nakatsuji, Bull. Chem. Soc. Japan, 78, 1705 (2005).
132 Iterations result in a (nested) analytical form of the wave function.
133 H. Nakashima, and H. Nakatsuji, J. Chem. Phys., 127, 224104 (2007).
134 H.-J. Werner, J. Chem. Phys., 104, 6286 (1996).
135 See e.g., W. Li, P. Piecuch, J.R. Gour, S. Li, J. Chem. Phys., 131, 114109 (2009).
136 There are exceptions though; see A. Jagielska, and L. Piela, J. Chem. Phys., 112, 2579 (2000).
137 L.Z. Stolarczyk and L. Piela, Chem. Phys. Letters, 85, 451 (1984).

http://booksite.elsevier.com/978-0-444-59436-5
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determinant. Therefore, it should be taken into account on the same footing as Hartree-Fock. This is rather unfeasible
for the methods discussed above.

The explicitly correlated functions have a built-in adjustable and efficient basic mechanism accounting for the
correlation within the interacting electronic pair. The mechanism is based on the obvious thing: the electrons should
avoid each other.138

Let us imagine the CH4 molecule and look at it from the viewpoint of localized orbitals. With the method of
explicitly correlated geminal functions for bonds, we would succeed in making the electrons avoid each other within
the same bond. And what should happen if the center of gravity of the electron pair of one of the bonds shifts toward
the carbon atom? The centers of gravity of the electron pairs of the remaining three bonds should move away along the
CH bonds. The wave function must be designed in such a way that it accounts for this. In current theories, this effect
is either deeply hidden or entirely neglected. A similar effect may happen in a polymer chain. One of the natural
correlations of electronic motions should be a shift of electron pairs of all bonds in the same phase. As a highly
many-electron effect the latter is neglected in current theories. However, the purely correlational Axilrod-Teller effect
in the case of linear configuration, discussed in Chapter 13 (three-body dispersion interaction in the third order of
perturbation theory), suggests clearly that the correlated motion of many electrons should occur.

Additional Literature
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, McGraw-Hill, New York (1989).

This classical book gives a detailed and crystal clear description of most important methods used in quantum
chemistry.

T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic Structure Theory, Wiley, Chichester (2000).
Practical information on the various methods accounting for electron correlation presented in a clear and competent

manner.

Questions
1. Hartree-Fock method

a. describes the electrons with their positions being completely independent
b. introduces the correlation of motion of electrons with the same spin coordinate
c. does not introduce any correlation of motion of electrons with the opposite spin coordinates
d. ignores the Coulomb hole, but takes care of the Fermi hole

2. The ground state of helium atom in the Hartree-Fock method:

a. if one electron is on the nucleus, the probability of finding the second one in a small volume dV is also the
largest on the nucleus

b. if electron 1 is on one side of the nucleus, electron 2 is easiest to find on the nucleus
c. if both electrons are at the same distance from the nucleus, it is equally easy to find them in the same point

as in two points opposite to each other with respect to the nucleus
d. if both electrons are at the same distance from the nucleus, they will tend to be on the opposite sides of the

nucleus

3. The CI method truncated at double excitations gives energy EBeBe for two beryllium atoms at large distance R.
In calculations by using this method:

a. if R −→∞, there will be EBeBe = 2EBe

138 In special conditions, one electron can follow the other, forming a Cooper pair. The Cooper pairs are responsible
for the mechanism of superconductivity. This will be a fascinating field of research for chemist-engineered
materials in the future.
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b. if R −→∞, one will obtain EBeBe − 2EBe = const �= 0
c. if R −→ ∞, one will get EBeBe = 2EBe, but under condition that the CI calculation for the individual

beryllium atom was limited to double excitations
d. the result obtained contains an error coming from the size inconsistency

4. The CC method (with the cluster operator truncated at double excitations) gives energy EBeBe for two beryllium
atoms at very large internuclear distance R, and the energy EBe for a single beryllium atom. In the calculations
using this method:

a. if R −→∞, there will be EBeBe = 2EBe
b. if R −→∞, one will obtain EBeBe − 2EBe = const �= 0
c. if R −→ ∞, one will get EBeBe = 2EBe, but under condition that the CC calculation for the individual

beryllium atom was limited to single excitations
d. the result obtained contains an error coming from the size inconsistency

5. The cusp condition for collision of two charged particles (μ means the reduced mass, all quantities in a.u.):

a. follows from the requirement that a wave function cannot acquire infinite values

b. for an electron and an atomic nucleus of charge Z reads as
(
∂ψ
∂r

)
r=0
= Zψ(r = 0)

c. for two electrons:
(
∂ψ
∂r

)
r=0
= 1

2ψ(r = 0)

d. for any two particles with charges q1 and q2 :
(
∂ψ
∂r

)
r=0
= μq1q2ψ(r = 0)

6. The wave function ψ
(
r1, r2

) = N
(

1+ 1
2 r12

)
exp

[
− 1

4

(
r2
1 + r2

2

)]
(N stands for the normalization constant,

r1 and r2 denote the radius vectors for two electrons, respectively, r12 means their distance) represents:

a. an exact wave function for harmonium (“harmonic helium atom”) with the force constant equal to 1
4

b. an orbital occupied by electrons 1 and 2
c. a product of two orbitals
d. a geminal that takes into account the Coulomb hole

7. A helium atom with an approximate wave function (see question 6): ψ
(
r1, r2

) =
N
(

1+ 1
2 r12

)
exp

[
− 1

4

(
r2
1 + r2

2

)]
. From this function it follows

a. if the nucleus-electron distance is the same for the two electrons, the electrons will have a tendency to be
more often on the opposite sides of the nucleus

b. that finding the electrons at the same point in space is more probable for smaller nucleus-electron distances
c. it takes into account the Fermi hole
d. that the electrons are always on the opposite sides of the nucleus

8. An intermediate normalization of the wave function ψ0 and the normalized function ψ(0)0 means that:

a.
〈
ψ0|ψ0 − ψ(0)0

〉
= 1

b. the Hilbert space vector ψ0 is composed of the unit vector ψ(0)0 plus some vectors that are orthogonal to

ψ
(0)
0

c. 〈ψ0|ψ0〉 �= 1

d.
〈
ψ0|ψ(0)0

〉
= 1

9. The Møller-Plesset method, known as MP2:

a. is equivalent to the Ritz variational method (CI procedure) with the double excitations only
b. is based on the perturbational approach with the Hartree-Fock wave function as the unperturbed
c. represents a perturbational approach with calculation of the electronic energy up to the second order; the

zeroth order plus the first order energies gives the Hartree-Fock energy
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d. in this method the zeroth-order electronic energy represents a sum of the orbital energies of all spinorbitals
present in the Hartree-Fock Slater determinant.

10. To calculate the electronic correlation energy

a. it is sufficient to carry out calculations within the Hartree-Fock method, and then to perform the full CI
computation

b. it is sufficient to know the Hartree-Fock energy and all ionization potentials for the system
c. one has to use an explicitly correlated variational wave function
d. it is sufficient to know a wave function expansion containing only the double excitations, but with their CI

coefficients obtained in presence of all excitations

Answers

1b,c,d, 2a,b,c, 3b,d, 4a, 5a,c,d, 6a,d, 7a,b, 8b,c,d, 9b,c,d, 10a,d



CHAPTER 11

Chasing Correlation Dragon:
Density Functional

Theory (DFT)

“As I observe, meditate and pray
Are we like clouds on a summer’s day?”

Ruth Oliver, “Clouds”

Where Are We?

We are on an upper-right-side branch of the TREE.

An Example
A metal represents a system that is very difficult to describe using the quantum chemistry methods given so far. The
Restricted Hartree-Fock (RHF) method here offers a very bad, if not pathological, approximation (cf. Chapter 9,
p. 555), because the HOMO-LUMO gap equals zero in metal. The methods based on the Slater determinants (CI, MC
SCF, CC, etc., as discussed in Chapter 10) are ruled out as involving a giant number of excited configurations to be
taken into account because of the continuum of the occupied and virtual energy levels (see Chapter 9). Meanwhile, in
the past, some properties of metals could be obtained, from simple theories that assumed that the electrons in a metal
behave similarly to a homogeneous electron gas (also known as jellium), and the nuclear charge (to make the whole
system neutral) has been treated as smeared out uniformly in the metal volume. Something physically important has
to be captured in such theories.

What Is It All About?
Electronic Density – The Superstar (�) p. 665
Electron Density Distributions – Bader Analysis (��) p. 667

• Overall Shape of ρ
• Critical Points
• Laplacian of the Electronic Density as a “Magnifying Glass”

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00011-8
© 2014 Elsevier B.V. All rights reserved. 663

http://dx.doi.org/10.1016/B978-0-444-59436-5.00011-8
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Two Important Hohenberg–Kohn Theorems (�) p. 675

• Correlation Dragon Resides in Electron Density: Equivalence of �0 and ρ0
• A Secret of the Correlation Dragon: The Existence of Energy Functional Minimized by ρ0

The Kohn-Sham Equations (��) p. 680

• A Kohn-Sham System of Non-Interacting Electrons (�)
• Chasing the Correlation Dragon into an Unknown Part of the Total Energy (�)
• Derivation of the Kohn-Sham Equations

Trying to Guess the Appearance of the Correlation Dragon (���♦) p. 687

• Local Density Approximation (LDA) (�♦)
• Non-Local Approximation (NLDA) (��♦)
• The Approximate Character of the DFT vs. the Apparent Rigor of Ab Initio Computations

On the Physical Justification for the Exchange-Correlation Energy (�) p. 690

• The Electron Pair Distribution Function
• Adiabatic Connection: From What is Known Towards the Target
• Exchange-Correlation Energy vs. �aver
• The Correlation Dragon Hides in the Exchange-Correlation Hole
• Electron Holes in Spin Resolution
• The Dragon’s Ultimate Hideout: The Correlation Hole
• Physical Grounds for the DFT Functionals

Visualization of Electron Pairs: Electron Localization Function (ELF) (�) p. 701

The DFT Excited States (�) p. 705

The Hunted Correlation Dragon before Our Eyes (�) p. 706

The preceding chapter showed how difficult it is to calculate correlation energy. Basically, there are two approaches:
either to follow configuration interaction type methods (CI, MC SCF, CC, etc.), or to go in the direction of explicitly
correlated functions. The first means a barrier of more and more numerous excited configurations to be taken into
account, while the second involves very tedious and time-consuming integrals. In both cases, we know the Hamiltonian
and fight for a satisfactory wave function (often using the variational principle, as discussed in Chapter 5). It turns
out that there is also a third direction (presented in this chapter) that does not regard configurations (except a single
special one) and does not have the bottleneck of difficult integrals. Instead, we have the kind of wave function in the
form of a single Slater determinant, but we have a serious problem of defining the proper Hamiltonian.

The ultimate goal of the density functional theory (DFT) method is the calculation of the total energy of
the system and the ground-state electron density distribution without using the wave function of the system.

Why Is This Important?

The DFT calculations (despite taking electronic correlation into account) are not expensive; their cost is comparable
to that of the Hartree-Fock method. Therefore, the same computer power allows us to explore much larger molecules
than with other post-Hartree-Fock (correlation) methods.

What Is Needed?

• The Hartree-Fock method (Chapter 8)
• The perturbational method (Chapter 5, advised)
• Lagrange multipliers (see Appendix N available at booksite.elsevier.com/978-0-444-59436-5, p. e121, advised)

http://booksite.elsevier.com/978-0-444-59436-5
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Classic Works

The idea of treating electrons in metal as an electron gas was conceived in 1900, independently, by Lord Kelvin1

and by Paul Drude.2 � The concept explained the electrical conductivity of metals, and was then used by Llewellyn
Hilleth Thomas in “The calculation of atomic fields,” published in Proceedings of the Cambridge Philosophical
Society, 23, 542 (1926), as well as by Enrico Fermi in “A statistical method for the determination of some atomic
properties and the application of this method to the theory of the periodic system of elements,” in Zeitschrift für
Physik, 48, 73 (1928). They (independently) calculated the electronic kinetic energy per unit volume of the electron
gas (this is known as the kinetic energy density) as a function of the local electron density ρ. � In 1930, Paul
Adrien Maurice Dirac presented a similar result in “Note on the exchange phenomena in the Thomas atom,” in
Proceedings of the Cambridge Philosophical Society, 26, 376 (1930), for the exchange energy as a function of ρ.
� In a classic paper “A simplification of the Hartree-Fock method,” published in Physical Review, 81, 385 (1951),
John Slater showed that the Hartree-Fock method applied to metals gives the exchange energy density proportional

to ρ
1
3 . � For classical positions, specialists often use a book by Pál Gombas Die statistische Theorie des Atoms

und ihre Anwendungen, Springer Verlag, Wien (1948). � The contemporary theory was born in 1964–1965, when
two fundamental works appeared: Pierre Hohenberg and Walter Kohn published “Inhomogeneous electron gas,” in
Physical Review, 136, B864 (1964); and Walter Kohn and Lu J.Sham published “Self-consistent equations including
exchange and correlation effects” in Physical Review, A140, 1133 (1965). � Mel Levy, in the article “Electron
densities in search of Hamiltonians,” published in Physical Review, A26, 1200 (1982), proved that the variational
principle in quantum chemistry can be equivalently presented as a minimization of the Hohenberg-Kohn functional
that depends on the electron density ρ. � Richard F.W. Bader wrote a book on mathematical analysis of the electronic
density called Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford (1994), that enabled chemists to
look at molecules in a synthetic way, independent of the level of theory that has been used to describe it. � Erich
Runge and Eberhard K.U. Gross in “Density-functional theory for time-dependent systems,” published in Phys. Rev.
Lett., 52, 997 (1984), have extended the Hohenberg-Kohn-Sham formalism to time domain.

11.1 Electronic Density–The Superstar

In the DFT method, we begin with the Born–Oppenheimer approximation, which allows us to
obtain the electronic wave function corresponding to fixed positions of the nuclei. We will be
interested in the ground-state of the system.

Let us introduce a notion of the first-order density matrix:3

ρ(r; r′) = ρα(r; r′)+ ρβ(r; r′), (11.1)

which we define as follows (α stands for the spin coordinate σ = 1
2 , and β means σ = −1

2 ):

ρσ (r; r′) = N
∫

dτ2dτ3 . . . dτN�
∗(r′, σ, r2, σ2, . . . , rN , σN )�(r, σ, r2, σ2, . . . , rN , σN ).

(11.2)

1 Lord Kelvin was born William Thomson (1824–1907), British physicist and mathematician, professor at the
University of Glasgow. His main contributions are in thermodynamics (the second law, internal energy), theory
of electric oscillations, theory of potentials, elasticity, hydrodynamics, etc. His great achievements were honored
by the title of Lord Kelvin in 1892.

2 Paul Drude (1863–1906) was a German physicist and professor at the universities in Leipzig, Giessen, and Berlin.
3 The “indices” of this “matrix element” are r and r′.
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Thus, we integrate N�∗� over all electron coordinates except electron number 1 (and, just
to preserve an additional mathematical freedom, we assign two distinct positions: r and r′ for
electron 1).

The key quantity in this chapter will be the diagonal element of ρ(r; r′) and ρσ (r; r′) i.e.,
ρ(r; r) ≡ ρ(r) and ρσ (r; r) ≡ ρσ (r), respectively, where obviously

ρ(r) = ρα(r)+ ρβ(r). (11.3)

which is an observable physical quantity.

The wave function� is antisymmetric with respect to the exchange of the coordinates of any
two electrons, and, therefore |�|2 is symmetric with respect to such an exchange. Hence, the
definition of ρ is independent of the label of the electron we do not integrate over. According
to this definition,

ρ represents nothing else but the density of the electron cloud carrying N electrons, because
(integration over the whole 3D space)∫

ρ(r)dr = N . (11.4)

Therefore, the electron density distribution ρ(r) is given for a point r in the units: the number
of electrons per volume unit. Since ρ(r) represents an integral of a non-negative integrand, ρ(r)
is always non-negative. Let us check that ρ may be also defined as the mean value of the electron
density operator ρ̂(r) = ∑N

i=1 δ(ri − r), a sum of the Dirac delta operators (cf. Appendix E
available at booksite.elsevier.com/978-0-444-59436-5 on p. e69) for individual electrons at
position r:

〈� | ρ̂�〉 = 〈� |
(

N∑
i=1

δ(ri − r)

)
�〉 =

N∑
i=1

〈� | (δ(ri − r)
)
�〉 = ρ(r). (11.5)

Indeed, each of the integrals in the summation is equal to4 ρ(r)/N , the summation over i
gives N ; therefore, we obtain ρ(r).

If the function � is taken as a normalized Slater determinant built of N spinorbitals
φi , from the I rule of Slater-Condon (see Appendix M available at http://booksite.elsevier.
com/978-0-444-59436-5, we replace there ĥ with δ) for 〈� | (∑N

i=1 δ(ri − r))�〉,

4 Please remember 〈|〉 means integration over space coordinates and summation over spin coordinates.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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we obtain5

ρ(r) = 〈φ1
(
1
) ∣∣δ(r1 − r)φ1

(
1
)〉1 + 〈φ2

(
1
)∣∣ δ(r1 − r)φ2

(
1
)〉1

+ . . . 〈φN
(
1
) ∣∣δ(r1 − r)φN

(
1
)〉1

=
N∑

i=1

∑
σ=− 1

2 ,+ 1
2

∣∣φi
(
r, σ

)∣∣2 = N∑
i=1

∑
σ

∣∣∣∣φi

(
r,

1

2

)∣∣∣∣
2

+
N∑

i=1

∑
σ

∣∣∣∣φi

(
r,−1

2

)∣∣∣∣
2

≡ ρα(r)+ ρβ(r). (11.6)

In ρα(r), we have only those spinorbitals φi , which have the spin function α, similarly in
ρβ(r) we have those with the spin function β.

If additionally we assume the double occupancy of the molecular orbitals, we have

ρ(r) =
N∑

i=1

∑
σ

∣∣φi
(
r, σ

)∣∣2 = N/2∑
i=1

∑
σ

∣∣ϕi
(
r
)
α(σ)

∣∣2 + N/2∑
i=1

∑
σ

∣∣ϕi
(
r
)
β(σ)

∣∣2

=
N/2∑
i=1

2
∣∣ϕi

(
r
)∣∣2 ,

where ϕi stand for the molecular orbitals. We see that when we admit the open shells, we have

in the one-determinantal approximation,

ρ(r) =
∑

i

ni
∣∣ϕi

(
r
)∣∣2 , (11.7)

with ni = 0, 1, 2 denoting orbital occupancy in the Slater determinant.

11.2 Electron Density Distributions- Bader Analysis

11.2.1 Overall Shape of ρ

Imagine an electron cloud with a charge distribution6 that carries the charge of N electrons.
Unlike a storm cloud, the electron cloud does not change in time (stationary state), but it has
density ρ(r) that changes in space (similar to the storm cloud). Inside the cloud, the nuclei are
located. The function ρ(r) exhibits non-analytical behavior (discontinuity of its gradient) at
the positions of the nuclei, which results from the poles (−∞) of the potential energy at these

5 After renaming the electron coordinates in the integrals, the integration is over the spatial and spin coordinates
of electron 1. This expression is invariant with respect to any unitary transformation of the molecular orbitals; cf.
Chapter 8.

6 This is similar to a storm cloud in the sky.
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positions. Recall the shape of the 1s wave function for the hydrogen-like atom (see Fig. 4.20),
it has a spike at r = 0. In Chapter 10, it was shown that the correct electronic wave function
has to satisfy the cusp condition in the neighborhood of each of the nuclei, where ρ changes
as exp (−2Zr) (p. 205). This condition results in spikes of ρ(r) exactly at the positions of the
nuclei (see Fig. 11.1a). How sharp the spike is depends on the charge of the nucleus Z : an

Fig. 11.1. Electron density ρ for the planar ethylene molecule shown in three cross sections.
∫
ρ(r)dr = 16 , the number of

electrons in the molecule. Panel (a) shows the cross section within the molecular plane. The positions of the nuclei can be easily
recognized by the “spikes” of ρ (obviously much more pronounced for the carbon atoms than for the hydrogens atoms), their
charges can be computed from the slope of ρ. Panel (b) shows the cross section along the CC bond perpendicular to the molecular
plane; therefore, only the maxima at the positions of the carbon nuclei are visible. Panel (c) is the cross section perpendicular to the
molecular plane and intersecting the CC bond (through its center). It is seen that ρ decays monotonically with the distance from
the bond center. Most interesting, however, is that the cross section resembles an ellipse rather than a circle. Note that we do not
see any separate σ or π densities. This is what the concept of π bond is all about, just to reflect the bond cross section ellipticity.
R.F.W. Bader, T.T. Nguyen-Dang, and Y.Tal, Rep. Progr. Phys., 44, 893 (1981); courtesy of Richard Bader.
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infinitesimal deviation from the position of the nucleus (p. 586)7 has to be accompanied by such
a decreasing of the density8 that ∂ρ

∂r /ρ = −2Z .
Thus, because of the Coulombic interactions, the electrons will concentrate close to the

nuclei, and therefore, we will have maxima of ρ right on them. At great distances from the
nuclei, the density ρ will decay to practically zero with the asymptotics exp[−2

√
2I r ], where

I being the first ionization potential. Further details will be of great interest–for example, are
there any concentrations of ρ besides the nuclei, such as in the regions between nuclei? If yes,
will it happen for every pair of nuclei, or for some pairs only? This is of obvious importance
for chemistry, which deals with the idea of chemical bonds between atoms and a model of the
molecule as the nuclei kept together by a chemical bond pattern.

11.2.2 Critical Points

For analysis of any smooth function, including the electronic density as a function of the position
in space, the critical (or stationary) points are defined as those for which we see the vanishing
of the gradient

∇ρ = 0.

These are maxima, minima, and saddle points. If we start from an arbitrary point and follow
the direction of ∇ρ, we end up at a maximum of ρ. Its position may correspond to any of
the nuclei or to a non-nuclear concentration distribution (Fig. 11.2). Formally, positions of the
nuclei are not the stationary points because ∇ρ has a discontinuity here connected to the cusp
condition (see Chapter 10, p. 585), but the largest maxima correspond to the positions of the
nuclei. Maxima may appear not only at the positions of the nuclei, but also elsewhere9 (non-
nuclear attractors, (Fig. 11.2a). The compact set of starting points which converge in this way

7 If nonzero size nuclei were considered, the cusps would be rounded (within the size of the nuclei), the discontinuity
of the gradient would be removed, and regular maxima would be observed.

8 It has been shown [P.D. Walker and P.G. Mezey, J.Am. Chem. Soc., 116, 12022 (1994)] that despite the non-
analytical character of ρ (because of the spikes), the function ρ has the following remarkable property: if we know
ρ even in the smallest volume, this determines ρ in the whole space. A by-product of this theorem is of interest to
chemists. Namely, this means that a functional group in two different molecules or in two conformations of the
same molecule cannot have an identical ρ characteristic for it. If it had, from ρ in its neighborhood we would be
able to reproduce the whole density distribution ρ(r), but for which of the molecules or conformers? Therefore,
by reductio ad absurdum, we have the result: it is impossible to define (with all details) the notion of a functional
group in chemistry. This is analogous to the conclusion drawn in Chapter 8 about the impossibility of a rigorous
definition of a chemical bond (p. 468). This also shows that chemistry and physics (relying on mathematical
approaches) profit very much, and further, are heavily based on some ideas that mathematics destroys in a second.
Nevertheless, without these ideas, natural sciences would lose their generality, efficiency, and beauty.

9 For example, imagine a few dipoles with their positive poles oriented toward a point in space. If the dipole moments
exceed some value, it may turn out that around this point, there will be a concentration of electron density with
a maximum there. This is what happens in certain dipoles, in which an electron is far away from the nuclear
framework (sometimes as far as 50 Å) and keeps following the positive pole of the dipole (“a dipole-bound
electron”) when the dipole rotates in space; see, e.g., J. Smets, D.M.A. Smith, Y. Elkadi, and L. Adamowicz, Pol.
J. Chem., 72, 1615 (1998).
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Fig. 11.2. How does the electronic density change in space? Panel (a) illustrates the non-nuclear attractor (maximum of ρ). Note
that we can tell the signs of some second derivatives (curvatures) computed at the intersection of black lines (slope), the radial

curvature ∂2ρ
∂(z′)2 is positive, while the two lateral ones (only one of them: ∂2ρ

∂(x ′)2 is shown) are negative. If for the function shown,

the curvatures were computed at the maximum, all three curvatures would be negative. Panel (b) shows the idea of the border
surface separating two basins of ρ corresponding to two nuclei: A and B. Right at the border between the two basins, the force lines
of ∇ρ diverge: if you take a step left from the border, you end up in nucleus A, and if you take a step right, you get into the basin
of B. Just at the border, you have to have ∇ρ · n = 0 because the two vectors: ∇ρ and n are perpendicular. (c) The same as panel
(b) showing additionally the density function for chemical bond AB. The border is shown as a black line. Two of three curvatures
are negative (one of them shown), the third one is positive. Panel (d) illustrates the electronic density distribution in benzene. In
the middle of the ring, two curvatures are positive (shown), and the third curvature is negative (not shown). If the curvatures were
computed in the center of the fullerene (not shown), all three curvatures would be positive (because the electron density increases
when going out of the center).

(i.e., following ∇ρ) to the same maximum is called the basin of attraction of this maximum,
and the position of the maximum is known as an attractor. We have therefore the nuclear and
non-nuclear attractors and basins. A basin has its neighbor-basins, and the border between the
basins represents a surface satisfying ∇ρ · n = 0, where n is a unit vector perpendicular to the
surface (Fig. 11.2b).

In order to tell whether a particular critical point represents a maximum (non-nuclear attrac-
tor), a minimum or a saddle point we have to calculate at this point the Hessian; i.e., the matrix

of the second derivatives:
{

∂2ρ
∂ξi∂ξ j

}
, where ξ1 = x , ξ2 = y, ξ3 = z. Now, the stationary point is
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used as the origin of a local Cartesian coordinate system, which will be rotated in such a way as
to obtain the Hessian matrix (computed in the rotated coordinate system) diagonal. This means
that the rotation has been performed in such a way that the axes of the new local coordinate
system are collinear with the principal axes of a quadratic function that approximates ρ in
the neighborhood of the stationary point (this rotation is achieved simply by diagonaliza-

tion of the Hessian
{

∂2ρ
∂ξi∂ξ j

}
; see Appendix K available at booksite.elsevier.com/978-0-444-

59436-5). The diagonalization gives three eigenvalues. We have the following possibilities (the
case when the Hessian matrix is singular will be considered later on):

• All three eigenvalues are negative–we have a maximum of ρ (non-nuclear attractor;
Fig. 11.2a).

• All three eigenvalues are positive–we have a minimum of ρ. The minimum appears when
we have a cavity; e.g., in the center of fullerene. When we leave this point, independent of
the direction of this motion, the electron density increases.

• Two eigenvalues are positive, one is negative–we have a first-order saddle point of ρ. The
center of the benzene ring may serve as an example (Fig. 11.2d). If we leave this point in the
molecular plane in any of the two independent directions, ρ increases (thus, a minimum of
ρ within the plane, the two eigenvalues positive), but when leaving perpendicularly to the
plane, the electronic density decreases (thus a maximum of ρ along the axis, the negative
eigenvalue).

• One eigenvalue is positive, while two are negative–we have a second-order saddle point of
ρ. It is a very important case, because this is what happens at any covalent chemical bond
(Figs. 11.1 and 11.2c). In the region between some10 nuclei of a polyatomic molecule, we
may have such a critical point. When we go perpendicularly to the bond in any of the two
possible directions, ρ decreases (a maximum within the plane, two eigenvalues negative),
while going toward any of the two nuclei, ρ increases (to achieve maxima at the nuclei;
a minimum along one direction; i.e., one eigenvalue positive). The critical point needs
not be located along the straight
line going through the nuclei
(“banana” bonds are possible),
and its location may be closer to
one of the nuclei (polarization).
Thus, the nuclei are connected
by a kind of electronic density
“rope” (most dense at its core
and decaying outside) extending
from one nucleus to the other
along (in general) a curved

René Thom (1923–2002), French
mathematician, professor at the Uni-
versité de Strasbourg, and founder
of catastrophe theory (1966). The
theory analyzes abrupt changes of
functions (change of the number
and character of stationary points)
upon changing some parameters.
In 1958, René Thom received the
Fields Medal, the highest distinction
for a mathematician.

10 Only some pairs of atoms correspond to chemical bonds.

http://booksite.elsevier.com/978-0-444-59436-5
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Richard Bader (1931–2012),
Canadian chemist and
professor at McMaster Uni-
versity in Canada. After
earning his Ph.D. at the
Massachussets Institute of
Technology, he won an inter-
national fellowship to study
at Cambridge University in
England under Christopher
Longuet-Higgins. At their first
meeting, Bader was given the
titles of two books with the
instruction, “When you have
read these books, maybe we
can talk again”. From these
books, Bader learned about
theories of electron density.

From that time on, he became
convinced that electron den-
sity was the quantity of prime
importance for the theory.
Photo reproduced courtesy of
Richard Bader.

line, having a single critical point on
it. Its cross section for some bonds is
circular, while for others it is elliptic-
like.11

• Some of the eigenvalues may equal
zero. The set of parameters (like
the internuclear distance) at which

det
{

∂2ρ
∂ξi∂ξ j

}
= 0 (corresponding to

an eigenvalue equal to 0) is called
the catastrophe set. Calculations
have shown that when the two
nuclei separate, the rope elongates
and suddenly, at a certain internu-
clear distance, it breaks down (this

corresponds to zeroing out one of the eigenvalues). Thus, the catastrophe theory of René
Thom turns out to be instrumental in chemistry.

11.2.3 Laplacian of the Electronic Density as a “Magnifying Glass”

Fig. 11.3 shows the functions f (x), f ′ = d f
dx and f

′′ = d2 f
dx2 , where f (x) is a function with a

visible maximum at x = 0 and a hump close to x = 0.9. The hump is hardly visible–it is so
small that there is no local maximum of f (x) over there. Such a function resembles somewhat
the electron density decay for an atom, when we go off the nucleus (position of the maximum12).

We may say that−d2 f
dx2 can detect some subtle features of the f (x) plot and gives maxima

where the original function f (x) has only almost invisible humps.

There is a similar situation with the function −�ρ(x, y, z) = −
(
∂2ρ

∂x2 + ∂2ρ

∂ y2 + ∂2ρ

∂z2

)
, except

that here, we have three Cartesian coordinates. The way that we choose the directions of the
Cartesian axes is irrelevant because at any point in space, −�ρ(x, y, z) does not depend on
such a choice. Indeed, the coordinate systems, which we may choose, differ by an orthogonal
transformation, which is peculiar because it does leave the trace of the Hessian invariant.

Imagine now ρ of an atom decaying with the distance to the nucleus as f (x), similar to
the decay of a smoke cloud (Fig. 11.4a), dense in the center and vanishing outward. Let us

11 All the details may be computed nowadays by using quantum mechanical methods, often the most demanding ones
(with the electronic correlation included). Contemporary crystallography is able to measure the same quantities in
some excellent X-ray experiments. Therefore, the physicochemical methods are able to indicate precisely which
atoms are involved in a chemical bond, is it strong or not, is it straight or curved (“rope-like”), what is the thickness
of the “rope”, has it a cylindrical or oval cross section (connected to its σ or π character), etc. A good review is
available in T.S. Koritsanszky, P. Coppens, Chem. Rev., 101, 1583 (2001).

12 Well, there is no cusp, so we have a nonzero size of the nucleus and/or Gaussian type orbitals used.
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(a)

(b)

(c)

. . . . . .

. . . . . .

. . . . . .

Fig. 11.3. The Laplacian −�ρ represents a kind of “magnifying glass.” Here, we illustrate this in a 1-D case: instead of

−�ρ(x, y, z), we have− f
′′
(x) ≡ − d2 f

dx2 . (a) A function f (x)with a single maximum. One can see a small asymmetry of the func-

tion resulting from a hardly visible hump on the right side. (b) The first derivative f ′(x). (c) the plot of− f
′′
(x) shows two maxima.

One of them (at x = 0) indicates the maximum of f , and the second one (close to x = 1) makes the small hump of f (x) clearly visible.

calculate the Hessian at every point along the radius. It is easy to calculate �ρ(x, y, z) simply
by summing up the diagonal terms of the Hessian. If we diagonalized the Hessian (i.e., rotated
the axes in a particular way), its eigenvalues would correspond to the curvatures of the sections
of ρ along the new coordinate axes (x ′, y′, z′):
• The section along the radius (say z′). This curvature (see also Fig. 11.2a) is expected to be

large and positive since this is the direction ρ exponentially decays.
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Fig. 11.4. A cross section of ρ (a) as well as a cross section of −�ρ (b) for the argon atom. The three humps (b) correspond to
the K,L and M electron shells (p. 447). R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford (1994),
courtesy of Richard Bader.

• Two other sections: along x ′ and along y′ (only the first of them is shown in Fig. 11.2a).
These sections at a given radius mean cutting perpendicularly to the radius, and whether
looking along x ′ or along y′, we see the same: a larger value at the radius and a decay
outside; i.e., both eigenvalues are negative.

Fig. 11.4 displays ρ and−�ρ for the argon atom. Despite an apparent lack of any internal
structure of the function ρ (left), the function−�ρ detected three concentrations of charge
similar to the hump of the function f (x). We may say that −�ρ(x, y, z) plays the role of
a “magnifying glass”: these are the K,L,M shells of the argon atom, seen very clearly.

Fig. 11.5 shows−�ρ for the systems N2, Ar2, and F2. The figure highlights the shell character
of the electronic structure of each of the atoms.13 Fig. 11.2c shows that the electronic density
is the greatest along the bond and drops outside in each of the two orthogonal directions. If,
however, we went along the bond approaching any of the nuclei, the density would increase.
This means that there is a saddle point of the second order because one eigenvalue of the Hessian
is positive and two negative.

If there were no covalent bond at all (non-bonded atoms or ionic bond: no electron density
“rope” connecting the nuclei), the last two values would be zero, and this means that
−�ρ < 0. Thus, if it happens that for a bond −�ρ > 0, this means a large perpendicular
contribution; i.e., a strong, “rope-like” covalent bond.

For the N2 molecule, we have a large value of−�ρ > 0 between the nuclei, which means an
electronic charge concentrated in a strong bond. Therefore, the nuclei have a dilemma: whether

13 Note that the nitrogen and the fluorine have two shells (K and L), while the argon atom has three shells (K,L,M);
cf. Chapter 8.
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Fig. 11.5. A cross section of the quantity−�ρ for N2, Ar2 and F2. We will focus now on the−�ρ value, computed in the middle
of the internuclear distance. (a) We can see that for N2, the value of −�ρ > 0 (chemical bond), (b) for Ar-Ar, −�ρ < 0 (no
chemical bond), and (c) a very small positive −�ρ for F2 (weak chemical bond). R.F.W. Bader, Atoms in Molecules. A Quantum
Theory, Clarendon Press, Oxford (1994), courtesy of Richard Bader.

to run off, because they repel each other, or to run only a little, because there is such a beautiful
negative charge in the middle of the bond (here, the nuclei choose the second possibility). This
dilemma is absent in the Ar2 system (Fig. 11.5b): the electronic charge runs off the middle of
the bond, and the nuclei get uncovered and run off. The molecule F2 sticks together but not very
strongly–just look at the internuclear region: −�ρ is quite low there.14

11.3 Two important Hohenberg-Kohn theorems

11.3.1 Correlation Dragon Resides in Electron Density: Equivalence of �0 and ρ0

Hohenberg and Kohn proved in 1964 an interesting theorem.15

The ground-state electronic density ρ0(r) and the ground-state wave function �0 can be
used alternatively as full descriptions of the ground state of the system.

14 We see now why the F2 molecule does not represent an easy task for the Hartree-Fock method (see Chapter 8; the
method indicated that the molecule does not exist).

15 P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964).
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Walter Kohn (b. 1923), Amer-
ican physicist of Austrian ori-
gin and professor at the Uni-
versity of California – Santa
Barbara. His conviction about
the primary role the electro-
nic density plays, led him to
fundamental theoretical dis-
coveries. Kohn shared the
Nobel Prize with John A.
Pople in 1998, receiving it
“for his development of the
density-functional theory.”

This theorem is sometimes proved
in a special way. Imagine that some-
body gave us ρ0(r) without a single
word of explanation. We have no
idea which system it corresponds
to. First, we calculate

∫
ρ0(r)dr,

where the integration goes over the
whole space. This gives a natural
number N , which is the number of
electrons in the system. We did not
know it, but now we do. Next, we

investigate the function ρ0(r), looking point by point at its values. We are searching for the
“spikes” (cusps), because every cusp tells us where a nucleus is.16 After this is done, we know
all the positions of the nuclei. Now, we concentrate on each of the nuclei and look how fast the
density drops when leaving the nucleus. The calculated slope has to be equal to a negative even
number: −2Z (see p. 447), and Z gives us the charge of the nucleus. Thus, we have deduced
the composition of our system. Now we are in a position to write down the Hamiltonian for the
system and solve the Schrödinger equation. After that, we know the ground-state wave function.

We started, therefore, fromρ0(r), and we got the ground-state wave function�0. According
to Eqs. (11.1) and (11.2), from the wave function by integration, we obtain the density dis-
tribution ρ0(r). Hence, ρ0(r) contains the same precise information about the system as�0.

Thus, if we know ρ0, we also know17 �0, and, if we know �0, we also know ρ0.18

The proof we carried out pertains only to the case when the external potential (every-
thing except the interelectronic interaction) acting on the electrons stems from the nuclei.

16 ρ(r) represents a cloud similar to those that float in the sky. This “spike”, therefore, means simply a high density
in the cloud.

17 And all the excited states wave functions as well! This is an intriguing conclusion, supported by experts; see
W. Koch and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2d ed., Wiley, Weinheim, 2001.
On p. 59, it says “the DFT is usually termed a ground state theory. The reason for this is not that the ground state
density does not contain the information on the excited states–it actually does!–but because no practical way to
extract this information is known so far.”

18 The theorem just proved shines in its simplicity. People thought that the wave function, usually a very complicated
mathematical object (that depends on 3N space and N spin coordinates) is indispensable for computing the
properties of the system. Moreover, the larger the system, the worse the difficulties in calculating it (recall Chapter
10 with billions of excitations, nonlinear parameters, etc.). Besides, how can we interpret such a complex object?
This is a horribly complex problem. And it turns out that everything about the system just sits in ρ(r), a function
of position in our well-known 3-D space. It turns out that information about nuclei is hidden in such a simple
object. This seems trivial (cusps), but it also includes much more subtle information about how electrons avoid
each other due to Coulombic repulsion and the Pauli exclusion principle.
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The Hohenberg-Kohn theorem can be proved for an arbitrary external potential–this property
of the density is called the v-representability. The arbitrariness mentioned above is necessary in
order to define in future the functionals for more general densities (than for isolated molecules).
We will need that generality when introducing the functional derivatives (p. 584) in which
ρ(r) has to result from any external potential (or to be a v-representable density). Also, we
will be interested in a non-Coulombic potential corresponding to the harmonic helium atom
(cf. harmonium, p. 589) to see how exact the DFT method is. We may imagine ρ, which is
not v-representable; e.g., discontinuous (in one, two, or even in every point like the Dirichlet
function). The density distributions that are not v-representable are out of our field of interest.

11.3.2 A Secret of the Correlation Dragon: The Existence of Energy Functional
Minimized by ρ0

Hohenberg and Kohn also proved an analog of the variational principle (p. 232):

Hohenberg-Kohn Theorem:
For a given number of electrons (the integral over ρ equals N ) and external potential v,
there exists a functional of ρ, denoted by EHK

v [ρ], for which the following variational
principle is satisfied:

EHK
v [ρ] ≥ EHK

v [ρ0] = E0,

where ρ0 stands for the (ideal) ground-state electronic density distribution corresponding
to the ground state energy E0.

We will prove this theorem using the variational principle in a way shown first by Levy.19

The variational principle states that

E0 = min〈� | Ĥ | �〉,
where we search among the wave functions � normalized to 1 and describing N electrons.

This minimization may be carried out in two steps, Fig. 11.6:

E0 = minρ,
∫
ρdV=N min�→ρ〈� | T̂ +U + V | �〉, (11.8)

where T̂ ,U , V represent the kinetic energy, the electron repulsion, and the electron-nuclei
attraction operators, respectively, for all the N electrons of our system (the hat in operators will
be omitted if the operator has a multiplicative character).

The two minimization steps have the following meanings:

• The internal minimization is performed at the condition labeled as “� → ρ”, which means
minimization of the integral among the N -electron functions that are normalized to 1, and

19 M. Levy, Phys. Rev. A, 26, 1200 (1982).
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Fig. 11.6. The Levy variational principle (scheme). The task of the internal minimization is that at a given fixed density distribution
ρ carrying N electrons, you must choose among those normalized functions �, that all produce ρ (we will denote this by the
symbol “� → ρ”); such a function that minimizes 〈� | T̂ + U | �〉 of Eq. (11.12). In the upper part of the figure, three sets
of such functions � are shown: one set gives ρ1, the second ρ0, and the third ρ2. The external minimization symbolized by
“ρ,

∫
ρdV = N” chooses among all possible electron distributions ρ (that correspond to N electrons, shown in the center part of

the figure) such a distribution ρ = ρ0, that gives the lowest value (the ground state energy E0, see the bottom part of the figure) of
the Hohenberg-Kohn functional EHK

v ; i.e., E0 = minρ,
∫
ρdV=N EHK

v . Note that among the functions � that give ρ0, there is the
exact ground-state wave function �0.

any of them giving a fixed density distribution ρ “carrying” N electrons (the minimum
attained at � = �min). As a result of this minimization, we obtain a functional of ρ given
as min�→ρ〈� | T̂ + U + V | �〉 = 〈�min(ρ) | T̂ + U + V | �min(ρ)〉, because
〈�min | T̂ +U + V | �min〉 depends what we have taken as ρ.

• In the external minimization symbolized by ρ,
∫
ρdV = N , we go over all the density

distributions ρ that integrate to N (i.e., describe N electrons), and we choose that ρ = ρ0

which minimizes the functional 〈�min(ρ) | T̂ + U + V | �min(ρ)〉. According to the
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variational principle (p. 233), this minimum is bound to be the exact ground-state energy
E0, while ρ0 is the exact ground-state density distribution.

Therefore, both minimizations do the same as the variational principle.

The External Potential

It is easy to show that 〈� | V�〉may be expressed as an integral involving the density distribution
ρ instead of �. Indeed, since

V =
N∑

i=1

v(ri ), where v(ri ) =
∑

A

− Z A

|ri − rA| , (11.9)

then in each of the resulting integrals 〈� | v(ri )�〉, we may carry out the integration over all
the electrons except the i-th one, and for this single one, we sum over its spin coordinate. It
is easy to see that every such term (their number is N ) gives the same result 〈� | v(ri )�〉 =
1
N

∫
v(r)ρ(r)dr, because the electrons are indistinguishable (this is why we omit the index i).

Because of this, we will get

〈� | V�〉 =
∫
v(r)ρ(r)dr. (11.10)

Therefore, the Levy minimization may be written as

E0 = minρ,
∫
ρdV=N

{∫
v(r)ρ(r)dr+min�→ρ〈� | (T̂ +U )�〉

}
. (11.11)

The Universal Potential

At this point, we define the auxiliary functional20 FHK:

FHK[ρ] = min�→ρ〈� | (T̂ +U )�〉 ≡ 〈�min(ρ) | (T̂ +U )�min(ρ)〉, (11.12)

where �min stands for a normalized function which has been chosen among those that produce
a given ρ, and makes the smallest value of 〈� | T̂ + U | �〉. This functional is often called
universal, because it does not depend on any external potential–rather, it pertains solely to
interacting electrons only.

20 A functional is always defined in a domain (in this case a domain of the allowed ρs). How do allowed ρs look? Here

are the conditions to fulfill: (a) ρ ≥ 0 (b)
∫
ρdV = N (c) ∇ρ1/2 square-integrable. Among these conditions, we

do not find any that would require the existence of such an antisymmetric� of N electrons that would correspond
[in the sense of Eq. (11.2)] to the density ρ under consideration (this is known as N -representability). It turns out
that such a requirement is not needed, since it was proved by Thomas Gilbert (the proof may be found in the book
by R.G. Parr and W. Yang Density Functional Theory of Atoms and Molecules, Oxford University Press, New
York (1989), that every ρ, that satisfies the above conditions is N -representable because it corresponds to at least
one antisymmetric N -electron �.
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The Hohenberg-Kohn Potential

In the DFT, we define the crucial

Hohenberg-Kohn functional EHK
v [ρ] as

EHK
v [ρ] =

∫
v(r)ρ(r)dr+ FHK[ρ], (11.13)

and the minimum of this functional is the ground-state energy

E0 = minρ,
∫
ρdV=N EHK

v [ρ], (11.14)

while ρ that minimizes EHK
v [ρ] represents the exact ground-state density distribution ρ0 (see

Fig. 11.6). Each ρ corresponds to at least one antisymmetric electronic wave function (the N–
representability mentioned above), and there is no better wave function than the ground state,
which, of course, corresponds to the density distribution ρ0. This is why we have:

Hohenberg-Kohn Functional:
The Hohenberg-Kohn functional EHK

v [ρ] attains minimum E0 = EHK
v [ρ0] for the ideal

density distribution. Now our job will be to find out what mathematical form the functional
could have. And here we meet the basic problem of the DFT method: nobody has so
far been able to give such a formula. The best that has been achieved to date are some
approximations. These approximations, however, are so good that they begin to supply
results that satisfy chemists.

Therefore, when the question is posed: “Is it possible to construct a quantum theory, in which
the basic concept would be electronic density?”, we have to answer: “Yes, it is.” This answer,
however, has only an existential value (“Yes, there exists”). We have no information about how
such a theory could be constructed.

An indication may come from the concept of the wave function. In order to proceed toward
the abovementioned unknown functional, we will focus on the ingenious idea of a fictitious
Kohn-Sham system of non-interacting electrons.

11.4 The Kohn-Sham Equations

11.4.1 A Kohn-Sham System of Non-interacting Electrons

Let us consider an electron subject to some “external” potential v(r); for example coming from
the Coulombic interaction with the nuclei (with charges Z A in a.u. and positions rA):
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v(r) =
∑

A

− Z A

|r− rA| . (11.15)

In this system, we have N electrons, which also interact by Coulombic forces among themselves.
All these interactions produce the ground-state electronic density distribution ρ0 (ideal; i.e., that
we obtain from the exact, 100% correlated wave function). Now let us consider

Fictitious Kohn-Sham System:
the fictitious Kohn-Sham system of N model electrons (fermions), that do not interact at
all (as if their charge equaled zero), but instead of the interaction with the nuclei, they are
subject to an external potential v0(r) so ingeniously tailored that ρ does not change; i.e.,
we still have the ideal ground-state electronic density ρ = ρ0.

Let us assume for a while that we have found such a wonder potential v0(r). We will worry
later about how to find it in reality. Now we assume that the problem has been solved. Can we
find ρ0? Of course, we can. Since the Kohn-Sham electrons do not interact between themselves,
we have only to solve the one-electron equation (with the wonder v0)(

−1

2
�+ v0

)
φi = εiφi , (11.16)

where φi are the solutions - some spinorbitals, of course, called the Kohn-Sham spinorbitals.21

The total wave function is a Slater determinant, which in our situation should be called
the Kohn-Sham determinant instead. The electronic density distribution of such a system
is given by Eq. (11.7) and the density distribution ρ0 means exact; i.e., correlated 100%
(thanks to the “wonder” and unknown operator v0).

11.4.2 Chasing the Correlation Dragon into an Unknown Part of the Total Energy

Let us try to write down a general expression for the electronic ground-state energy of the
system under consideration. Obviously, we have to have in it the kinetic energy of the electrons,
their interaction with the nuclei, and their repulsion among themselves. However, in the DFT

21 If the electrons do not interact, the corresponding wave function can be taken as a product of the spinorbitals for
individual electrons. Such a function for electrons is not antisymmetric, and, therefore, is “illegal”. Taking the
Kohn-Sham determinant (instead of the product) helps because it is antisymmetric and represents an eigenfunction
of the total Hamiltonian of the fictitious system [i.e., the sum of the one-electron operators given in Eq. (11.16)].
This is easy to show because a determinant represents a sum of products of the spinorbitals, the products differing
only by permutation of electrons. If the total Hamiltonian of the fictitious system acts on such a sum, each term
(product) is its eigenfunction, and each eigenvalue amounts to

∑N
i=1 εi ; i.e., it is the same for each product. Hence,

the Kohn-Sham determinant represents an eigenfunction of the fictitious system. Scientists compared the Kohn-
Sham orbitals with the canonical Hartree-Fock orbitals with great interest. It turns out that the differences are small.
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approach, we write the following:

E = T0 +
∫
v(r)ρ(r)dr+ J [ρ] + Exc[ρ], (11.17)

where:

• Instead of the electronic kinetic energy of the system, we write down the electronic kinetic
energy of the fictitious Kohn-Sham system of (non-interacting) electrons T0 (recall the
Slater-Condon rules, discussed on p. e119):

T0 = −1

2

N∑
i=1

〈φi | �φi 〉. (11.18)

• Next, there is the correct electron-nuclei interaction (or other external potential) term:∫
v(r)ρ(r)dr.

• Then, there is an interaction of the electron cloud with itself22:

J [ρ] = 1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2| dr1dr2. (11.19)

No doubt such an idea looks reasonable, for the energy expression should contain an inter-
action of the electron cloud with itself (because the electrons repel each other). However, there
is a trap in this concept–a malady hidden in J [ρ]. The illness is seen best if one considers the
simplest system: the hydrogen atom ground state. In Eq. (11.19), we have an interelectronic
self-repulsion, which actually does not exist because we have only one electron. So, whatever
reasonable remedy is to be designed in the future, it should reduce this unwanted self-interaction
in the hydrogen atom to zero. The problem is not limited, of course, to the hydrogen atom. When
taking J [ρ], an electron is interacting with itself, and this self-interaction has to be somehow
excluded from J [ρ] by introducing a correction. Two electrons repel each other electrostatically,
and therefore, around each of them there has to exist a kind of no-parking zone for the other
one (a “Coulomb hole”; cf. p. 595). Also, a no-parking zone results because electrons of the

22 How can we compute the Coulombic interaction within a storm cloud exhibiting certain charge distribution ρ?
At first sight, it looks like a difficult problem, but remember that we know how to calculate the Coulombic
interaction of two point charges. Let us divide the whole cloud into tiny cubes, each with volume dV . The cube
that is pointed by the vector r1 contains a tiny charge ρ(r1)dV ≡ ρ(r1)dr1. We know that when calculating
the Coulombic interaction of two such cubes, we have to write ρ(r1)ρ(r2)|r1−r2| dr1dr2. This has to be summed over

all possible positions of the first and the second cube:
∫∫ ρ(r1)ρ(r2)|r1−r2| dr1dr2, but in this way each interaction is

computed twice, whereas they represent parts of the same cloud. Hence, the final self-interaction of the storm
cloud is 1

2

∫∫ ρ(r1)ρ(r2)|r1−r2| dr1dr2. The expression for the self-interaction of the electron cloud is the same.
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same spin coordinate hate one another23 (“exchange”, or “Fermi hole”; cf. p. 597). The integral
J does not take such a correlation of motions into account.

Thus, we have written a few terms and we do not know what to write next. Well,

in the DFT, in the expression for E , we write in Eq.(11.17) the lacking remainder as
Exc, and we call it exchange-correlation energy (label x stands for “exchange”, c is for
“correlation”) and declare, courageously, that we will manage somehow to get it.

The above formula represents a definition of the exchange-correlation energy, although it is
rather a strange definition–it requires us to know E . We should not forget that in Exc, a correction
to the kinetic energy also must be included (besides the exchange and correlation effects) that
takes into account that kinetic energy has to be calculated for the true (i.e., interacting) electrons,
not for the non-interacting Kohn-Sham ones. The next question is connected to what kind of
mathematical form Exc might have. Let us assume for the time being that we have no problem
with this mathematical form. For now, we will establish a relation between our wonder external
potential v0 and our mysterious Exc, both quantities performing miracles, but not known.

11.4.3 Derivation of the Kohn-Sham Equations

Now we will make a variation of E ; i.e., we will find the linear effect of changing E due to a
variation of the spinorbitals (and therefore also of the density). We make a spinorbital variation
denoted by δφi (as discussed in p. 402, it is justified to vary either φi or φ∗i , the result is the
same: we choose, therefore, δφ∗i ) and see what effect it will have on E , keeping only the linear
term. We have [see Eq. (11.6)]

φ∗i→φ∗i + δφ∗i (11.20)

ρ→ρ + δρ (11.21)

δρ
(
r
) =∑

σ

N∑
i=1

δφ∗i
(
r, σ

)
φi
(
r, σ

)
. (11.22)

We insert the right sides of the above expressions into E , and identify the variation; i.e., the
linear part of the change of E . The variations of the individual terms of E look like (note that
the symbol 〈|〉 stands for an integral over space coordinates and a summation over the spin
coordinates, as discussed on p. 399):

δT0 = −1

2

N∑
i=1

〈δφi | �φi 〉 (11.23)

23 A correlated density and a non-correlated density differ in that in the correlated one, we have smaller values in
the high-density regions, because the holes make the overcrowding of space by electrons less probable.
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δ

∫
vρdr =

∫
vδρdr =

N∑
i=1

〈δφi | vφi 〉 (11.24)

δ J = 1

2

[∫
ρ(r1)δρ(r2)

|r1 − r2| dr1dr2 +
∫
δρ(r1)ρ(r2)

|r1 − r2| dr1dr2

]

=
∫
ρ(r2)δρ(r1)

|r1 − r2| dr1dr2

=
N∑

i=1

∫ ∑
σ1

δφ∗i
(
r1, σ1

)
φi
(
r1, σ1

) ρ(r2)

|r1 − r2|dr1dr2

=
N∑

i=1

∑
σ1

∫
1

dr1δφ
∗
i

(
r1, σ1

)
φi
(
r1, σ1

) ∫
2

ρ(r2)

|r1 − r2|dr2

=
N∑

i=1

∑
σ1

∫
1

dr1δφ
∗
i

(
r1, σ1

)
φi
(
r1, σ1

) ∫
2

∑
j
∑
σ2
φ∗j

(
r2, σ2

)
φ j

(
r2, σ2

)
|r1 − r2| dr2

=
N∑

i, j=1

〈δφi (r1, σ1)| Ĵ j (r1)φi (r1, σ1)〉1, (11.25)

where 〈. . . | . . .〉1 means integration over spatial coordinates and the summation over the spin
coordinate of electron 1 (

∫
1 means the integration only), with the Coulomb operator Ĵ j associated

with the spinorbital φ j

Ĵ j (r1) =
∑
σ2

∫
φ j (r2, σ2)

∗φ j (r2, σ2)

|r1 − r2| dr2. (11.26)

Finally, we come to the variation of Exc; i.e., δExc. We are in a quite difficult situation because
we do not know the mathematical dependence of the functional Exc on ρ, and therefore also on
δφ∗i . Nevertheless, we somehow have to get the linear part of Exc (i.e., the variation).

A change of functional F (due to f → f + δ f ) contains a part linear in δ f denoted by δF ,
plus some higher powers24 of δ f denoted by O((δ f )2):

F[ f + δ f ] − F[ f ] = δF + O((δ f )2). (11.27)

The δF is defined through the functional derivative25 (Fig. 11.7) of F with respect to the
function f (denoted by δF[ f ]

δ f (x) ), for a single variable x :

δF =
∫ b

a
dx
δF[ f ]
δ f (x)

δ f (x). (11.28)

24 If δ f is very small, the higher terms are negligible.
25 The functional derivative itself is a functional of f and a function of x (just for the sake of simplicity). An

example of a functional derivative may be found in Eq. (11.25), when looking at δ J = ∫ ρ(r2)δρ(r1)|r1−r2| dr1dr2 =∫
dr1{

∫
dr2

ρ(r2)|r1−r2| }δρ(r1). Indeed, as we can see from Eq. (11.28)
∫

dr2
ρ(r2)|r1−r2| ≡

δ J [ρ]
δρ(r1)

, which is a 3-D equiv-

alent of δF[ f ]
δ f (x) . Note that

∫
dr2

ρ(r2)|r1−r2| is a functional of ρ and a function of r1.
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Fig. 11.7. A scheme showing what a functional derivative is about. The ordinate represents the values of a functional F[ f ], while
each point of the horizontal axis represents a function f (x). The functional F[ f ] depends, of course, on details of the function
f (x). If we consider a small local change of f (x), this change may result in a large change of F , and then the derivative δF

δ f is

large, or in a small change of F , and then the derivative δF
δ f is small (this depends on the particular functional).

Indeed, in this case, we obtain as δExc:

δExc =
∫

dr
δExc

δρ(r)
δρ(r) =

N∑
i=1

〈δφi |δExc

δρ
φi 〉. (11.29)

Therefore, a unknown quantity Exc is replaced by another unknown quantity δExc
δρ

, but there
is profit from this: the functional derivative enables us to write an equation for spinorbitals.
The variations of the spinorbitals are not arbitrary in this formula – they have to satisfy the
orthonormality conditions [because our formulas such as Eq. (11.6), are valid only for such
spinorbitals] for i, j = 1, . . . N , which gives

〈δφi | φ j 〉 = 0 for i, j = 1, 2, . . . N . (11.30)

Let us multiply each of the results of Eq. (11.30) by a Lagrange multiplier εi j , add them together,
then subtract from the variation δE and write the result as equal to zero26 (in the minimum, we
have δE = 0). We obtain

δE −
N∑

i, j

εi j 〈δφi | φ j 〉 = 0 (11.31)

or (note that 〈δφi | φ j 〉1; i.e., integration over electron 1 is equal to 〈δφi | φ j 〉)
N∑

i=1

〈
δφi |

⎧⎨
⎩
⎡
⎣−1

2
�+ v +

N∑
j=1

Ĵ j + δExc

δρ

⎤
⎦φi −

N∑
j=1

εi jφ j

⎫⎬
⎭
〉

1

= 0. (11.32)

26 See Appendix N available at booksite.elsevier.com/978-0-444-59436-5, p. e121 explains why such a procedure
corresponds to minimization with constraints.

http://booksite.elsevier.com/978-0-444-59436-5
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After inserting the Lagrange multipliers, the variations of φ∗i are already independent, and the
only possibility to have zero on the right side is that every individual ket | 〉 is zero (Euler
equation; cf. p. e122): {

−1

2
�+ v + vcoul + vxc

}
φi =

N∑
j=1

εi jφ j , (11.33)

vcoul(r) ≡
N∑

j=1

Ĵ j (r), (11.34)

vxc(r) ≡ δExc

δρ(r)
. (11.35)

It would be good now to get rid of the non-diagonal Lagrange multipliers in order to obtain
a beautiful one-electron equation analogous to the Fock equation. To this end, we need the
operator in the curly brackets in Eq. (11.33) to be invariant with respect to an arbitrary unitary
transformation of the spinorbitals. The sum of the Coulomb operators (vcoul) is invariant, as has
been demonstrated on p. 406. As to the unknown functional derivative δExc/δρ (i.e., potential
vxc), its invariance follows from the fact that it is a functional of ρ [and ρ of Eq. (11.6) is
invariant]. Finally, after applying such a unitary transformation that diagonalizes the matrix of
εi j , we obtain the Kohn-Sham equation (εi i ≡ εi ):

Kohn-Sham Equation {
−1

2
�+ v + vcoul + vxc

}
φi = εiφi . (11.36)

The equation is analogous to the Fock equation (p. 407)27. We solve the Kohn-Sham equation
by an iterative method. We start from any zero-iteration orbitals. This enables us to calculate
a zero approximation to ρ, and then the zero approximations to the operators vcoul and vxc

[in a moment, we will see how to compute Exc, and then, using Eq. (11.35), we obtain vxc].
The solution to the Kohn-Sham equation gives new orbitals and new ρ. The procedure is then
repeated until consistency is achieved.

Hence, finally, we “know” what the wonder operator v0 looks like:

v0 = v + vcoul + vxc. (11.37)

27 There is a difference in notation: the one-electron operator ĥ and the Coulomb operator Ĵ from the Fock equation

are now replaced by− 1
2�+v ≡ ĥ and Ĵ ≡ vcoul . There is, however, a serious difference: instead of the exchange

operator −K̂ in the Fock equation, we have here the exchange-correlation potential vxc.
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As in the Hartree-Fock method, there is no problem with vcoul, but a serious difficulty arises
with the exchange-correlation operator vxc, or (equivalent) with the energy Exc. The second
Hohenberg–Kohn theorem says that the functional E H K

v [ρ] exists, but it does not guarantee
that it is simple. For now, we will worry about this potential, but we will go ahead anyway.

Kohn-Sham Equations with Spin Polarization

Before searching for vxc, let us generalize the Kohn-Sham formalism and use Eq. (11.3) for
splitting ρ into the α and β spin functions. If these contributions are not equal (even for some
r), we will have a spin polarization. In order to reformulate the equations, we consider two non-
interacting fictitious electron systems: one described by the spin functions α, and the other by
functionsβ, with the corresponding density distributions ρα(r) and ρβ(r) exactly equal to ρα and
ρβ , respectively, in the (original) interacting system. Then, we obtain two coupled28 Kohn-Sham
equations, for σ = α and σ = β, with potential v0 that depends on the spin coordinate σ :

vσ0 = v + vcoul + vσxc. (11.38)

The situation is analogous to the unrestricted Hartree-Fock (UHF) method, cf. p. 408.
This extension of the DFT is known as spin density functional theory (SDFT).

11.5 Trying to Guess the Appearance of the Correlation Dragon

We now approach the point where we promised to write down the mysterious exchange-
correlation energy. Well, truthfully and straightforwardly: we do not know the analytical form
of this quantity. Nobody knows what the exchange-correlation is–there are only guesses. The
number of formulas will be almost unlimited, as is usual with guesses.29 Let us take the simplest
ones to show the essence of the procedure.

11.5.1 Local Density Approximation (LDA)

The electrons in a molecule are in a very complex situation because they not only interact
among themselves, but also with the nuclei. However, a simpler system has been elaborated
theoretically for years: a homogeneous gas model in a box30, or an electrically neutral system
(the nuclear charge is smeared out uniformly). It does not represent the simplest system to study,
but it turns out that theory is able to determine (exactly) some of its properties. For example, it
has been deduced how Exc depends on ρ, and even how it depends on ρα and ρβ . Since the gas

28 Through the common operator vcoul, a functional of ρα + ρβ , and through vxc because the latter is in general a
functional of both, ρα and ρβ .

29 Some detailed formulas are reported in the book by J.B. Foresman and A. Frisch, Exploring Chemistry with
Electronic Structure Methods, Gaussian, Pittsburgh, 1996, str.272.

30 This gas model has periodic boundary conditions. This is a common trick to avoid the surface problem. We
consider a box having a property such that if something goes out through one wall, it enters through the opposite
wall (cf. p. 524).
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is homogeneous and the volume of the box is known, then we could easily work out how the
Exc per unit volume depends on these quantities.

Then, the reasoning described next.31

The electronic density distribution in a molecule is certainly inhomogeneous, but locally
(within a small volume) we may assume its homogeneity. Then, if someone asks about
the exchange-correlation energy contribution from this small volume, we would say that
in principle, we do not know, but to a good approximation the contribution could be
calculated as a product of the small volume and the exchange-correlation energy density
from the homogeneous gas theory (with the electronic gas density as calculated inside the
small volume).

Thus, everything is decided locally: we have a sum of contributions from each infinitesimally
small element of the electron cloud with the corresponding density. This is why it is called the
local density approximation (LDA, when the ρ dependence is used) or the local spin density
approximation (LSDA, when the ρα and ρβ dependencies are exploited).

11.5.2 Non-local Approximation (NLDA)

Gradient Expansion Approximation (GEA)

There are approximations that go beyond the LDA. They consider that the dependence Exc[ρ]
may be non-local; i.e., Exc may depend on ρ at a given point (locality), but also on ρ nearby
(non-locality). When we are at a point, what happens further off depends not only on ρ at that
point, but also the gradient of ρ at the point, etc.32 This is how the idea of the gradient expansion
approximation (GEA) appeared

EGEA
xc = ELSDA

xc +
∫

Bxc(ρα, ρβ,∇ρα,∇ρβ)dr, (11.39)

where the exchange-correlation function Bxc is carefully selected as a function of ρα, ρβ , and
their gradients, in order to maximize the successes of the theory/experiment comparison. How-
ever, this recipe was not so simple, and some strange unexplained discrepancies were still taking
place.

Perdew-Wang Functional (PW91)

A breakthrough in the quality of results is represented by the following proposition of Perdew
and Wang:

EPW91
xc =

∫
f (ρα, ρβ,∇ρα,∇ρβ)dr, (11.40)

31 W. Kohn and L.J. Sham, Phys. Rev., 140, A1133 (1965).
32 As in a Taylor series, then we may need not only the gradient, but also the Laplacian, etc.
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where the function f of ρα, ρβ and their gradients has been tailored in an ingenious way. It
sounds unclear, but it will be shown below that their approximation used some fundamental
properties and this enabled them without introducing any parameters to achieve a much better
agreement between the theory and experiment.

The Famous B3LYP Hybrid Functional

The B3LYP approach belongs to the hybrid (i.e., mixed) approximations for the exchange-
correlation functional. The approximation is famous because it gives very good results and,
therefore, is extremely popular. So far so good, but there is a danger of Babylon-type science.33 It
seems like a witch’s brew for the B3LYP exchange-correlation potential Exc: take the exchange-
correlation energy from the LSDA method (a unit), add a pinch (0.20 unit) of the difference
between the Hartree-Fock exchange energy34 EKS

x and the LSDA ELSDA
x . Then, mix well 0.72 unit

of Becke exchange potentialE B88
x which includes the 1988 correction, then add 0.81 unit of the

Lee-Young-Parr correlation potential ELYP
c . You will like this homeopathic magic potion most

(a “hybrid”) if you conclude by putting in 0.19 unit of the Vosko-Wilk-Nusair potential35 EVWN
c :

Exc = ELSDA
xc + 0.20

(
EHF

x − ELSDA
x

)+ 0.72E B88
x + 0.81ELYP

c + 0.19EVWN
c . (11.41)

If you do it this way, satisfaction is (almost) guaranteed, and your results will agree very well
with the experiment.

11.5.3 The Approximate Character of the DFT vs. the Apparent Rigor of Ab Initio
Computations

There are lots of exchange-correlation potentials in the literature. There is an impression that
their authors worried most about theory/experiment agreement. We can hardly admire this kind
of science, but the alternative (i.e., the practice of ab initio methods with the intact and “holy”
Hamiltonian operator) has its own disadvantages. This is because finally we have to choose
a given atomic basis set, and this influences the results. It is true that we have the variational
principle at our disposal, and it is possible to tell which result is more accurate. But more
and more often in quantum chemistry, we use some non-variational methods (cf. Chapter 10).
Besides, the Hamiltonian holiness disappears when the theory becomes relativistic (cf. Chapter
3).

Everybody would like to have agreement with experiments, and it is no wonder people tinker
with the exchange-correlation enigma. This tinkering, however, is by no means arbitrary. There
are some serious physical restraints with it, which will be shown shortly.

33 The Chaldean priests working on “Babylonian science” paid attention to making their small formulas efficient.
The ancient Greeks (to whom contemporary science owes so much) favored crystal clear reasoning.

34 In fact, this is Kohn-Sham exchange energy [see Eq. (11.72)], because the Slater determinant wave function used
to calculate it is the Kohn-Sham determinant, not the Hartree-Fock one.

35 S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58,1200 (1980).
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11.6 On the Physical Justification for the Exchange-Correlation Energy

Now we are going to introduce several useful concepts, such as the electron pair distribution
function and the electron hole (in a more formal way than we did in Chapter 10, p. 597), etc.

11.6.1 The Electron Pair Distribution Function

From the N -electron wave function, we may compute what is called the electron pair correlation
function �(r1, r2)–in short, a pair function defined as36

�(r1, r2) = N (N − 1)
∑
σ1,σ2

∫
|�|2dτ3dτ4 . . . dτN (11.42)

where the summation over spin coordinates pertains to all electrons (for the electrons 3, 4, . . . N ,
the summation is hidden in the integrals over dτ ), while the integration is over the space
coordinates of the electrons 3, 4, . . . N .

The function �(r1, r2) measures the probability density of finding one electron at the
point indicated by r1 and another at r2, and tells us how the motions of two electrons are
correlated. If � were a product of two functions ρ1(r1) > 0 and ρ2(r2) > 0, then this
motion is not correlated (because the probability of two events represents a product of the
probabilities for each of the events only for independent; i.e., uncorrelated events).

Note that [see Eqs. (11.1) and (11.2) on p. 665]∫
�(r1, r2)dV2 = N (N − 1)

∑
σ1

∫
dτ2

∫
|�|2dτ3dτ4 . . . dτN = (N − 1)ρ(r1) (11.43)

and ∫∫
�(r1, r2)dV1dV2 = (N − 1)

∫
ρ(r1)dV1 = N (N − 1). (11.44)

Function� appears in a natural way, when we compute the mean value of the total electronic
repulsion 〈� | U | �〉 with the Coulomb operator U =∑N

i< j
1

ri j
and a normalized N -electron

wave function �. Indeed, we have (“prime” in the summation corresponds to omitting the
diagonal term)

〈� | U�〉 = 1

2

N∑
i, j=1

′〈� | 1

ri j
�〉

36 The function represents the diagonal element of the two-particle electron density matrix: �(r1, r2; r′1, r′2) =
N (N −1)

∑
all σ

∫
�∗

(
r′1σ1, r′2, σ2, r3, σ3, . . . , rN , σN

)
�
(
r1, σ1, r2, σ2, r3, σ3, . . . , rN , σN

)
dr3dr4 · · · drN ,

�(r1, r2) ≡ �(r1, r2; r1, r2).
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= 1

2

N∑
i, j=1

′
⎧⎨
⎩
∑
σi ,σ j

∫
dri dr j

1

ri j

∫
|�|2 dτ1dτ2 . . . dτN

dτi dτ j

⎫⎬
⎭

= 1

2

N∑
i, j=1

′
∫

dri dr j
1

ri j

1

N (N − 1)
�(ri , r j )

= 1

2

1

N (N − 1)

N∑
i, j=1

′
∫

dr1dr2
1

r12
�(r1, r2)

= 1

2

1

N (N − 1)

∫
dr1dr2

�(r1, r2)

r12

N∑
i, j=1

′1

= 1

2

∫
dr1dr2

�(r1, r2)

r12
. (11.45)

We will need this result in a moment. We see that to determine the contribution of the electron
repulsions to the total energy, we need the two-electron function�. The first Hohenberg-Kohn
theorem tells us that it is sufficient to know something simpler (namely, the electronic density
ρ). How can we reconcile these two demands?

The further DFT story will pertain to the question: how can we change the potential in
order to replace � by ρ?

11.6.2 Adiabatic Connection: From What Is Known Towards the Target

To begin, let us write two Hamiltonians that are certainly very important for our goal: the
first is the total Hamiltonian of our system (of course, with the Coulombic electron-electron
interactions U ). Let us denote the operator as H(λ = 1), we use the abbreviation v(ri ) ≡ v(i):

Ĥ(λ = 1) =
N∑

i=1

[
−1

2
�i + v(i)

]
+U . (11.46)

The second Hamiltonian H(λ = 0) pertains to the Kohn-Sham fictitious system of the non-
interacting electrons (it contains our wonder v0, which we solemnly promise to search for, and
the kinetic energy operator and nothing else):

Ĥ(λ = 0) =
N∑

i=1

[
−1

2
�i + v0(i)

]
. (11.47)
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We will try to connect these two important systems by generating some intermediate Hamilto-
nians Ĥ(λ) for λ intermediate between 0 and 1:

Ĥ(λ) =
N∑

i=1

[
−1

2
�i + vλ(i)

]
+U (λ), (11.48)

where

U (λ) = λ
N∑

i< j

1

ri j
.

Our electrons are not real electrons for intermediate values of λ; rather, each electron carries
the electric charge

√
λ.

The intermediate Hamiltonian Ĥ(λ) contains a mysterious vλ, which generates the exact
density distribution ρ that corresponds to the Hamiltonian Ĥ(λ = 1) i.e., with all interac-
tions in place. The same exact ρ corresponds to Ĥ(λ = 0).

We have, therefore, the ambition to go from the λ = 0 situation to the λ = 1 situation, all the
time guaranteeing that the antisymmetric ground-state eigenfunction of Ĥ(λ) for any λ gives
the same electron density distribution ρ, the ideal (exact). The way chosen represents a kind of
“path of life” for us, because by sticking to it, we do not lose the most precious of our treasures:
the ideal density distribution ρ. We will call this path the adiabatic connection because all the
time, we will adjust the correction computed to our actual position on the path.

Our goal will be the total energy E(λ = 1). The adiabatic transition will be carried out in
tiny steps. We will start with E(λ = 0), and end up with E(λ = 1):

E(λ = 1) = E(λ = 0)+
∫ 1

0
E ′(λ)dλ, (11.49)

where the increments dE(λ) = E ′(λ)dλwill be calculated as the first-order perturbation energy
correction, Eq. (5.20). The first-order correction is sufficient, because we are going to apply only
infinitesimally small λ increments.37 Each time, when λ changes from λ to λ+dλ, the situation
at λ [i.e., the Hamiltonian Ĥ(λ) and the wave function �(λ)] will be treated as unperturbed.
What, therefore, does the perturbation operator look like? Well, when we go from λ to λ+dλ, the
Hamiltonian changes by Ĥ (1)(λ) = dĤ(λ). Then, the first-order perturbation correction to the
energy given by (5.20), represents the mean value of dĤ(λ)with the unperturbed function�(λ):

dE(λ) = 〈�(λ)|dĤ(λ)�(λ)〉, (11.50)

37 λ plays a different role here than the perturbational parameter λ on p. 241.
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where in dĤ we only have a change of vλ and of U (λ) due to the change of λ:

dĤ(λ) =
N∑

i=1

dvλ(i)+ dλ
N∑

i< j

1

ri j
. (11.51)

Note that we have succeeded in writing such a simple formula, because the kinetic energy
operator stays unchanged all the time (it does not depend on λ). Let us insert this into the
first-order correction to the energy in order to get dE(λ) and use Eqs. (11.10) and (11.45):

dE(λ) = 〈�(λ)|dĤ(λ)�(λ)〉 =∫
ρ(r)dvλ(r)dr+ 1

2
dλ

∫∫
dr1dr2

�λ(r1, r2)

r12
. (11.52)

In the last formula, we introduced a function �λ that is an analog of the pair function � but
pertains to the electrons carrying the charge −√λ [we have used Eq. (11.45), noting that we
have a λ-dependent wave function �(λ)].

In order to go from E(λ = 0) to E(λ = 1), it is sufficient just to integrate this expression
from 0 to 1 over λ (this corresponds to the infinitesimally small increments of λ as mentioned
before). Note that (by definition) ρ does not depend on λ, which is of fundamental importance
in the success of the integration

∫
ρ(r)dvλ(r)dr and gives the result

E(λ = 1)− E(λ = 0) =
∫
ρ(r){v − v0}(r)dr+ 1

2

∫ 1

0
dλ

∫∫
dr1dr2

�λ(r1, r2)

r12
. (11.53)

The energy for λ = 0; i.e., for the non-interacting electrons in an unknown external potential
v0 will be written as [cf. Eqs. (11.16) and (11.18)]:

E(λ = 0) =
∑

i

εi = T0 +
∫
ρ(r)v0(r)dr. (11.54)

Inserting this into Eq. (11.53) we obtain E(λ = 1); i.e., the energy of our original system:

E(λ = 1) = T0 +
∫
ρ(r)v(r)dr+ 1

2

∫ 1

0
dλ

∫∫
dr1dr2

�λ(r1, r2)

r12
. (11.55)

Note, that according to Eq. (11.43), we get
∫
�λ(r1, r2)dr2 = (N − 1)ρ(r1), because ρ(r1)

does not depend on λ due to the nature of our adiabatic transformation.
The expression for E(λ = 1)may be simplified by introducing the pair distribution function

�aver which is the �λ(r1, r2) averaged over λ = [0, 1]:

�aver(r1, r2) ≡
∫ 1

0
�λ(r1, r2)dλ. (11.56)
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Here also (we will use this result in a moment),

∫
�aver(r1, r2)dr2 =

∫ 1

0

∫
�λ(r1, r2)dλdr2 = (N − 1)ρ(r1)

∫ 1

0
dλ = (N − 1)ρ(r1).

(11.57)
Finally, we obtain the following expression for

the total energy E :

E(λ = 1) = T0 +
∫
ρ(r)v(r)dr+ 1

2

∫∫
dr1dr2

�aver(r1, r2)

r12
. (11.58)

Note that this equation is similar to the total energy expression appearing in traditional
quantum chemistrya (without repulsion of the nuclei),

E = T +
∫
ρ(r)v(r)dr+ 1

2

∫∫
dr1dr2

�(r1, r2)

r12
. (11.59)

a It is evident from the mean value of the total Hamiltonian [taking into account the mean value of the
electron-electron repulsion, Eqs. (11.10) and (11.45)].

As we can see, the DFT total energy expression, instead of the mean kinetic energy of the
fully interacting electrons T , contains T0; i.e., the mean kinetic energy of the non-interacting
(Kohn-Sham) electrons.38 We pay a price, however, which is that we need to compute the
function �aver somehow. But note that the correlation energy dragon has been driven into the
problem of finding a two-electron function �aver.

11.6.3 Exchange-Correlation Energy vs.�aver

What is the relation between�aver and the exchange-correlation energy Exc introduced earlier?
We find that immediately, comparing the total energy given in Eqs. (11.17) and (11.19), and
now in Eq. (11.58). It is seen that the exchange-correlation energy is as follows:

Exc = 1

2

∫∫
dr1dr2

1

r12
{�aver(r1, r2)− ρ(r1)ρ(r2)}. (11.60)

38 As a matter of fact, the whole Kohn-Sham formalism with the fictitious system of non-interacting electrons has
been designed precisely for this reason.
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The energy looks as if it were a potential energy, but it implicitly incorporates (in �aver)
the kinetic energy correction for changing the electron non-interacting system to the electron–
interacting system.

Now let us try to get some information about the integrand (i.e., �aver), by introducing the
notion of the electron hole.

11.6.4 The Correlation Dragon Hides in the Exchange-Correlation Hole

Electrons do not like each other, which manifests itself in Coulombic repulsion. On top of that,
two electrons having the same spin coordinates hate each other (Pauli exclusion principle) and
also try to get out of each other’s way. This has been analyzed in Chapter 10, p. 597. We should
highlight these features because both concepts are basic and simple.

Let us introduce the definition of the exchange-correlation hole hxc as satisfying the equation

�aver(r1, r2) = ρ(r1)ρ(r2)+ ρ(r1)hxc(r1; r2). (11.61)

Thus, in view of Eqs. (11.59) and (11.45), we have the electron repulsion energy

1

2

∫∫
dr1dr2

�aver(r1, r2)

r12
= 1

2

∫∫
dr1dr2

ρ(r1)ρ(r2)

r12
+ 1

2

∫∫
dr1dr2

ρ(r1)hxc(r1; r2)

r12
.

(11.62)
as the self-interaction of the electron cloud of the density distribution ρ(r) Eq. (11.19), plus a
correction 1

2

∫∫
dr1dr2

ρ(r1)hxc(r1;r2)
r12

, which takes into account all necessary interactions; i.e., our
complete correlation dragon is certainly hidden in the unknown hole function hxc(r1; r2). Note
that the hole charge distribution integrates over r2 to the charge−1 irrespectively of the position
r1 of the electron 1. Indeed, integrating Eq. (11.61) over r2 and using Eq. (11.43), we get39

∫
dr2hxc(r1; r2) = −1. (11.63)

11.6.5 Electron Holes in Spin Resolution

First, we will decompose the function�aver into the components related to the spin functions40

of electrons 1 and 2; αα, αβ, βα, andββ:

�aver = �ααaver +�αβaver +�βαaver +�ββaver, (11.64)

39 ∫ dr2hxc(r1; r2) =
∫

dr2hxc(r1; r2) =
∫

dr2
�aver(r1,r2)−ρ(r1)ρ(r2)

ρ(r1)
= 1

ρ(r1)

∫
dr2

(
�aver(r1, r2)− ρ(r1)ρ(r2)

)
= 1

ρ(r1)
[(N − 1

)
ρ(r1)− Nρ(r1)] = −1.

40 Such a decomposition follows from Eq. (11.42). We average all the contributions�σσ
′

separately and obtain the
formula.
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where �αβaverdV1dV2 represents a measure of the probability density41 that two electrons are in
their small boxes, indicated by the vectors r1 and r2; the boxes have the volumes dV1 and dV2;
and the electrons are described by the spin functions α and β (the other components of�aver are
defined in a similar way). Sinceρ = ρα+ρβ , the exchange-correlation energy can be written as42

Exc = 1

2

∑
σσ ′

∫∫
dr1dr2

�σσ
′

aver(r1, r2)− ρσ (r1)ρσ ′(r2)

r12
, (11.65)

where the summation goes over the spin coordinates. It is seen that

a nonzero value of Exc tells us whether the behavior of electrons deviates from their inde-
pendence (the latter is described by the product of the probability densities; i.e., the second
term in the numerator). This means that Exc has to contain the electron-electron correla-
tion resulting from Coulombic interaction and their avoidance from the Pauli exclusion
principle.

By using the abbreviation for the exchange-correlation hole

hσσ
′

xc (r1, r2) ≡ �σσ
′

aver(r1, r2)− ρσ (r1)ρσ ′(r2)

ρσ (r1)
,

we obtain

Exc = 1

2

∑
σσ ′

∫
dr1

∫
dr2

ρσ (r1)

r12
hσσ

′
xc (r1, r2). (11.66)

The final expression for the exchange-correlation hole is

Exchange-Correlation Hole

hσσ
′

xc (r1, r2) = �σσ
′

aver(r1, r2)

ρσ (r1)
− ρσ ′(r2). (11.67)

The hole pertains to that part of the pair distribution function that is inexplicable by a
product-like dependence. Since a product function describes independent electrons, the
hole function grasps the “intentional” avoidance of the two electrons.

We have, therefore, four exchange-correlation holes: hααxc , hαβxc , hβαxc , hββxc .

41 Here, the probability density is λ-averaged.

42 Indeed, Exc = 1
2

∫∫
dr1dr2

�aver(r1,r2)−ρ(r1)ρ(r2)
r12

= 1
2

∫∫
dr1dr2

∑
σσ ′ �σσ

′
aver(r1,r2)−

(∑
σ ρσ (r1)

)(∑
σ ′ ρσ ′ (r2)

)
r12

=
1
2
∑
σσ ′

∫∫
dr1dr2

�σσ
′

aver(r1,r2)−ρσ (r1)ρσ ′ (r2)
r12

.
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11.6.6 The Dragon’s Ultimate Hideout: The Correlation Hole

Dividing the Exchange-Correlation Hole into the Exchange Hole and the Correlation Hole

The restrictions introduced come from the Pauli exclusion principle (cf. Slater determinant), and
hence have been related to the exchange energy. So far, no restriction has appeared that would
stem from the Coulombic interactions of electrons.43 This made people think of differentiating
the holes into two contributions: exchange hole hx and correlation hole hc (called the Coulombic
hole). Let us begin with a formal division of the exchange-correlation energy into the exchange
and the correlation parts:

Exchange-Correlation Energy

Exc = Ex + Ec, (11.68)

and we will say that we know, what the exchange part is.

The DFT exchange energy (Ex ) is calculated in the same way as in the Hartree-Fock
method, but with the Kohn-Sham determinant. The correlation energy Ec represents just a
rest.

This is the same strategy of chasing the electronic correlation dragon into a hole–this time
into the correlation hole. When we do not know a quantity, we write down what we know plus
a remainder. And the dragon with 100 heads sits in it. Because of this division, the Kohn–Sham
equation will contain the sum of the exchange and correlation potentials instead of vxc:

vxc = vx + vc, (11.69)

with

vx ≡ δEx

δρ
, (11.70)

vc ≡ δEc

δρ
. (11.71)

Let us recall what the Hartree-Fock exchange energy44 looks like [(Chapter 8, Eq. (8.38)].
The Kohn-Sham exchange energy looks the same, of course, except that the spinorbitals are
now Kohn-Sham, not Hartree-Fock. Therefore, we have the exchange energy Ex as (the sum is

43 This is the role of the Hamiltonian.
44 This is the one that appeared from the exchange operator (i.e., containing the exchange integrals).
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over the molecular spinorbitals45)

Ex = −1

2

SMO∑
i, j=1

Ki j = −1

2

SMO∑
i, j=1

〈i j | j i〉

= −1

2

∑
σ

∫ {∑N
i=1 φ

∗
i (1)φi (2)

} {∑N
j=1 φ

∗
j (2)φ j (1)

}
r12

dr1dr2

= −1

2

∑
σ

∫ |ρσ (r1; r2)|2
r12

dr1dr2, (11.72)

where

ρσ (r1; r2) ≡
N∑

i=1

φi (r1, σ )φ
∗
i (r2, σ ) (11.73)

represents the one-particle density matrix for the σ subsystem [Eq. (11.2)], and ρσ is obtained
from the Kohn-Sham determinant. Note that density ρσ (r) is its diagonal; i.e., ρσ (r) ≡ ρσ (r; r).

The above may be incorporated into the exchange energy Ex, equal to

Ex = 1

2

∑
σσ ′

∫∫
dr1dr2

ρσ (r1)

r12
hσσ

′
x (r1, r2), (11.74)

if the exchange hole (also known as the Fermi hole) h is proposed as

hσσ
′

x (r1, r2) = δσσ ′
{
−|ρσ (r1; r2)|2

ρσ (r1)

}
. (11.75)

It is seen that the exchange hole is negative everywhere46 and diagonal in the spin index. Let
us integrate the exchange hole over r2 for an arbitrary position of electron 1. First, we have

|ρσ (r1; r2)|2 =
∑

i

φ∗i (r2, σ )φi (r1, σ )
∑

j

φ∗j (r1, σ )φ j (r2, σ )

=
∑

i j

φ∗i (r2, σ )φi (r1, σ )φ
∗
j (r1, σ )φ j (r2, σ ).

45 Note that spinorbital i has to have the same spin function as spinorbital j (otherwise, Ki j = 0).
46 This has its origin in the minus sign before the exchange integrals in the total energy expression.
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Then, the integration gives47

∫
hσσ

′
x (r1, r2)dr2 = −δσσ ′ . (11.76)

Therefore,

the exchange hole hσσx (r1, r2) is negative everywhere and when integrated over r2 at any
position r1 of electron 1 gives−1; i.e., exactly the charge of one electron is expelled from
the space around electron 1.

What, therefore, the correlation hole look like? According to the philosophy of dragon chasing
it is the rest

hσσ
′

xc = hσσ
′

x + hσσ
′

c . (11.77)

The correlation energy from Eq. (11.68) therefore has the form:

Ec = 1

2

∑
σσ ′

∫∫
dr1dr2

ρσ (r1)

r12
hσσ

′
c (r1, r2). (11.78)

Since the exchange hole has already fulfilled the boundary conditions of Eqs. (11.63) through
(11.76) forced by the Pauli exclusion principle, the correlation hole satisfies a simple boundary
condition ∫

hσσ
′

c (r1, r2)dr2 = 0. (11.79)

Thus, the correlation hole means that electron 1 is pushing electron 2 (i.e., other electrons)
off, but this means only that the pushed electrons are moved further out.

The dragon of electronic correlation has been chased into the correlation hole. Numerical
experience turns out to conclude (below an example will be given) that

the exchange energy Ex is much more important than the correlation energy Ec and,
therefore, scientists managed to replace the terrible exchange correlation dragon to a tiny
beast hiding in the correlation hole (to be found).

47 Indeed,
∫

hσσ
′

x (r1, r2)dr2 = −δσσ ′ 1
ρσ (r1)

∫ |ρσ (r1; r2)|2 dr2 = −δσσ ′ 1
ρσ (r1)

∑
i j φi (r1, σ )φ

∗
j (r1, σ )∫

φ∗i (r2, σ )φ j (r2, σ )dr2 = −δσσ ′ 1
ρσ (r1)

∑
i j φi (r1, σ )φ

∗
j (r1, σ )δi j = −δσσ ′ 1

ρσ (r1)

∑
i φi (r1, σ )φ

∗
i (r1, σ ) =

−δσσ ′ 1
ρσ (r1)

ρσ (r1) = −δσσ ′ .
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11.6.7 Physical Grounds for the DFT Functionals

LDA

The LDA is not as primitive as it looks. The electron density distribution for the homogeneous
gas model satisfies the Pauli exclusion principle and, therefore, this approximation gives the
Fermi holes that fulfill the boundary conditions with Eqs. (11.63), (11.76) and (11.79). The
LDA is often used because it is rather inexpensive, while still giving a reasonable geometry of
molecules and vibrational frequencies.48 The quantities that the LDA fails to reproduce are the
binding energies49, ionization potentials, and the intermolecular dispersion interaction.

The Perdew-Wang Functional (PW91)

Perdew noted a really dangerous feature in an innocent and reasonable-looking GEA potential.
It turned out that in contrast to the LDA, the boundary conditions for the electron holes were not
satisfied. For example, the exchange hole was not negative everywhere, as Eq. (11.75) requires.
Perdew and Wang corrected this deficiency in a way similar to that of Alexander the Great,
when he cut the Gordian knot. They tailored the formula for Exc in such a way as to change the
positive values of the function to zero, while the peripheral parts of the exchange holes were
cut to force the boundary conditions to be satisfied anyway. The authors noted an important
improvement in the results.

The Functional B3LYP

It was noted that the LDA and even GEA models systematically give too large chemical bond
energies. On the other hand, it was known that the Hartree-Fock method is notorious for making
the bonds too weak. What are we to do? Well, just mix the two types of potential and hope to
have an improvement with respect to any of the models. Recall Eq. (11.56) for �aver , where
the averaging extended from λ = 0 to λ = 1. The contribution to the integral for λ close to
0 comes from the situations similar to the fictitious model of non-interacting particles, where
the wave function has the form of the Kohn-Sham determinant. Therefore, those contributions
contain the exchange energy Ex corresponding to such a determinant. We may conclude that
a contribution from the Kohn-Sham exchange energy EHF

x might look quite natural.50 This is
what the B3LYP method does, Eq. (11.41). Of course, it is not possible to justify the particular
proportions of the B3LYP ingredients. Such things are justified only by their success.51

48 Some colleagues of mine sometimes add a malicious remark that the frequencies are so good that they even take
into account the anharmonicity of the potential.

49 The average error in a series of molecules may even be of the order of 40 kcal/mol; this is a lot, since the chemical
bond energy is of the order of about 100 kcal/mol.

50 The symbol HF pertains to Kohn-Sham rather than to Hartree-Fock.
51 The same sentiment applies in herbal therapy.
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11.7 Visualization of Electron Pairs: Electron Localization Function (ELF)

One of the central ideas of general chemistry is the notion of an electron pair (i.e., two electrons of
opposite spins that occupy a certain region of space). Understanding chemistry means knowing
the role of these electron pairs in individual molecules (which is directly related to their structure)
and what may happen to them when two molecules are in contact (chemical reactions). Where
in a molecule do electron pairs prefer to be? This is the role of the ELF, which may be seen as
an idea of visualization that helps chemists to elaborate what is known as chemical intuition
(“understanding”), an important qualitative generalization that supports any practical chemist’s
action such as planning chemical synthesis.

In Chapter 10 (p. 597) and in this chapter, we were dealing with the Fermi hole that char-
acterized quantitatively the strength of the Pauli exclusion principle: two electrons with the
same spin coordinate avoid each other. We have given several examples showing that a (probe)
electron with the same spin as a reference electron tries to be as far as possible from the latter
one–a very strong effect. And what about electrons of opposite spins? Well, they are not subject
to this restriction and can approach each other, but not too close, because of the Coulomb inter-
action. As a result, in molecules (and an atom as well) we have to do with a shell-like electronic
structure: an electron pair (while keeping a reasonable electron-electron distance in it) may
profit from occupying a domain very close to the nuclei. There is no future there for any other
electron or electron pair, because of the Pauli exclusion principle. Other electron pairs have to
occupy separately other domains in space.

The strength of the Pauli exclusion principle will certainly depend on the position in space
with respect to the nuclear framework. Testing this strength is our goal now.

Let us take a reference electron at position r in a global coordinate system (Fig. 11.8a) and try
to approach it with a “probe electron” of the same spin coordinate, shown by the radius vector
r + rp (i.e., the probe electron would have the radius vector rp, when seen from the reference
electron shown by r). We will consider only such rp that ensure that the probe electron be
enclosed around the reference one in a sphere of radius Rp, i.e., rp ≤ Rp. The key function
is the Fermi hole function, hσσx (r, r + rp) of Eq. (11.75) on p. 698. We are interested in what
fraction of the probe electron is outside the abovementioned sphere. For small rp, one can
certainly write the following Taylor expansion about point r:

hσσx (r, r + rp) = −ρσ (r)+ (∇hσσx )rp=0 · rp + C(r) r2
p + . . . (11.80)

Since function hσσx (r, r + rp) has a minimum for rp= 0 (the most improbable scenario52:
two electrons of the same spin coordinate would sit one on top of the other), we see a vanishing
of the gradient: (∇hσσx )rp=0 = 0. As to the last term shown, instead of the usual second
derivatives calculated at the minimum, we simplified things by putting a rotation-averaged

52 This is true, but only for those positions r of the reference electron for which the density ρ(r) is not too small. For
r belonging to peripheries of the molecule, a substantial exchange hole cannot be dug out at r because the ground
there is shallow. In such a case, the exchange hole “stays behind” r, in the region of appreciable values of ρ.



702 Chapter 11

Fig. 11.8. A gear to test the power of the Pauli exclusion principle (Fermi hole). (a) The reference electron with the radius vector
r and probe electron with the radius vector r+ rp (both with the same spin coordinate). From the sphere shown, an electron of the
same spin as that of the reference one is expelled. Therefore, the same sphere is a residence for two electrons with opposite spins
(electron pair); (b) Two parabolic Fermi holes–a result of the Pauli exclusion principle. In each hole, the reference electron is shown
(represented by a small ball). A narrow well means a large value of C(r) and therefore a small value of ELF, which means a small
propensity to host an electron pair. In contrast to that, a wide well corresponds to a large propensity to home there an electron pair.

constant C(r) > 0. Truncating in Eq. (11.80) all terms beyond quadratic ones, we get

hσσx (r, r + rp) = −ρσ (r)+ C(r) r2
p. (11.81)

Thus, hσσx (r, r + rp) is nothing but a paraboloidal well with the minimum equal to −ρσ (r)
at position r of the reference electron. The well is controlled by the value of C(r): for small
C(r) the well is wide, for large C(r) the well is narrow (Fig.11.8b).

What fraction of the probe electron charge is expelled from the sphere of radius Rp? This
can be calculated from the hole function by integrating it over all possible θp, φp and rp < Rp):∫

drphσσx (r, r + rp) = −ρσ (r)
∫

drp + C(r)
∫

r2
pdrp =

−ρσ (r)4
3
πR3

p + C(r)
∫

drpdθpdφpr2
pr2

p sin θp = −ρσ (r)4
3
πR3

p + C(r)
4πR5

p

5
.

Now we have to decide what to choose as Rp, if the reference electron has position r. It is
reasonable to make Rp dependent on position in space because the Fermi hole should be created
easier (i.e., it would be larger) for small values of the electron density ρσ (r), and harder for
larger values. Quite arbitrarily, we choose such a function Rp(r) that the first term on the right
side satisfies:

− ρσ (r)4
3
πR3

p = −1, (11.82)
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which means that close to the point shown by vector r, the volume of the sphere of radius Rp is
equal to the mean volume per single electron of the spin coordinate σ in the uniform electron
gas of density ρσ (r). If we have the closed-shell case (ρα(r) = ρβ(r)), the same volume also
contains an electron of the opposite spin. This means that such a volume contains on average a
complete electron pair. As a consequence, using Eq. (11.82), one may write

C(r)
4πR5

p

5
∼ C(r)

(
ρσ (r)

)− 5
3 .

Becke and Edgecombe used this expression to construct a function ELF(r) that reflects a
tendency for an electron pair53 to reside at point r (a large value of the ELF for a strong
tendency, a small one for a weak tendency):

ELF(r) = 1

1+ κC(r)
(
ρσ (r)

)− 5
3

,

where κ > 0 represents an arbitrary scaling constant. Since∞ > C(r) > 0, at any κ , we have
0 ≤ ELF(r) ≤ 1.

A large ELF(r) value) at position r means that a large Fermi hole is there, or a lot of space
for an electron pair.

ELF(r) represents a function in a 3-D space. How can we visualize such a function inside a
molecule? Well, one way is to look at an “iso-ELF” surface. But which one–because we have to
decide among the ELF values ranging from 0 to 1? There is a general problem with isosurfaces
because one has to choose an ELF value that returns an interesting information. A unfortunate
value may give a useless result.54

Let us take a series of diatomic molecules: F2, Cl2, Br2, whose electronic structure is believed
to be well known in chemistry. Saying “well known” in reality means that whoever we have met
in the past, when asked about it, said that there is a single covalent bond in all of these molecules.
This book has already discussed about the VSEPR algorithm (see Chapter 8), which also predicts
on each atom a tetrahedral configuration of the three lone pairs and a single chemical bond with
the partner. If one were interested in the electron density coming from these three lone pairs, one
would discover that instead of a “tripod-like” density, we would get an object with cylindrical
symmetry. This would reflect the fact that the tripod’s legs can be positioned anywhere on the
ring with the center on the atom-atom axis, and perpendicular to the axis.

Let us begin with Br2. The above conviction seems to be confirmed by the obtained ELF(r)
function (see Fig. 11.9a). Indeed, as one can see, the ELF isosurface shows two tori, each behind

53 A.D. Becke and K.E. Edgecombe, J. Chem. Phys., 92, 5397 (1990).
54 For example, a section of Himalaya mountains at 10 000 m altitude brings a function that is zero everywhere.
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(a)

(b)

(c)

Fig. 11.9. A scheme composed of some selected isosurfaces of ELF (r) for (a) Br2; (b) Cl2; (c) F2. In all cases, we see the
peripheral tori, conserving the cylindrical symmetry of the system and corresponding to the electronic lone pairs (three for each
atom, together with the bond they form a nearly tetrahedral configuration). The iso-ELF islands shown by the arrows correspond
to the regions with higher probability density for finding that electron pair which is responsible for the chemical bond. The cases
of F2 and Cl2 surprisingly show two such islands, while in case of Br2, we have a single island of the largest tendency to find an
electron pair.
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the corresponding bromine atom, as could be expected for the electron density coming from
the three corresponding atomic lone pairs, and each conserving the cylindrical symmetry. What
about the bond electron pair? Well we see (Fig. 11.9a) that right in the middle of the Br − Br
distance, there is a preferred place for an electron pair, also conserving the cylindrical symmetry
of the total system.

This gives the impression that ELF(r) tells us55 what every freshman knows either from
teachers, or from Professor Gilbert Lewis, or from the VSEPR algorithm. What could this
student and ourselves expect from Cl2 and F2? Obviously, the same! And yet the ELF(r) has
a surprise for us! It turns out (Fig. 11.9b, c) that the ELF procedure shows two regions for the
bond electron pair. Why? Well, there is an indication. Let us recall (say, from the valence bond
method, discussed in Chapter 10), that among important VB structures is the covalent one and
two ionic structures. In the case of Cl2, they would be the Heitler-London function describing
the covalent bond Cl-Cl and the two ionic structures corresponding to Cl+Cl− and Cl−Cl+,
respectively. Such ionic structures are necessary for a reliable description of the molecule at
finite internuclear distances.56 In a particular ionic structure, one electron is shifted toward one
of the atoms; i.e., such a structure breaks the symmetry. However, the presence of the two such
structures (of equal weight, for a homopolar molecule) restores this symmetry. One may say
that for Cl2 and F2, there is a large fluctuation of the bond electron-pair position that strengthens
the bond–a charge-shift bonding, CS). Therefore,

besides the covalent bonds (like in Br-Br), the ionic bonds (as in NaCl; see Chapter 6), the
polar bonds (like in C-H), there are the CS bonds, the bonds with fluctuating position of
the bonding electron pair.

The concept of the CS bonds as some distinct kind of chemical bonds comes from independent
theoretical considerations57, but also seems to find its confirmation in a specialized visualization
tool, which is in fact what the ELF idea really provides.

11.8 The DFT Excited States

Ground States for a Given Symmetry

The DFT is usually considered as a ground-state theory. One should, however, remember that
the exact ground-state electron density ρ0 contains information about all the excited states
(remember the discussion on p. 235). Well, the problem is that we do not know yet how to extract
this information from ρ0. Some of the excited states are the lowest-energy states belonging to a

55 Using strange shapes, colors, shading, and even reflexes of light on them, which shamelessly play the role of
making us naively believe that all these things are real.

56 For infinite distance, they do not count.
57 S. Shaik, D. Danovich, B. Silvi, D. L. Lauvergnat, and P.C. Hiberty, Chem. Eur. J., 11, 6358 (2005).
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given irreducible representation of the symmetry group of the Hamiltonian. In such cases, forcing
the proper symmetry of the Kohn-Sham orbitals leads to the solution for the corresponding
excited state. Thus, these states are excited ones, but formally they can be treated as the ground
states (in the corresponding irreducible representation).

Time-Dependent DFT

Is it possible to detect excited states by exciting the ground state? Well, there is a promising path
showing how to do it.58 From Chapter 2, we know that this requires the time-dependent periodic
perturbation −μ̂ · E exp (± iωt) of frequency ω, where μ̂ denotes the dipole moment operator
of the system, and E is the electric field amplitude. Such a theory is valid under the assumption
that the perturbation is relatively small and the electronic states of the isolated molecule are still
relevant. In view of that, we consider only a linear response of the system to the perturbation.
Let us focus on the dipole moment of the system as a function of ω. It turns out that at certain

values, ω = ω0k = E (0)k −E (0)0
�

; for E (0)k denoting the energy of the k−th excited state (E (0)0 is
the ground state energy), one has an abrupt change of the mean value of the dipole moment. In
fact, this means that for ω = ω0k , the ω-dependent polarizability (the dipole moment change is
proportional to the polarizability) goes to infinity (i.e., has a pole). By detecting these poles59

we are able to calculate the excited states in the DFT within the accuracy of a few tenths of eV.

11.9 The Hunted Correlation Dragon Before Our Eyes

The DFT method has a long history behind it, which began with Thomas, Dirac, Fermi, etc.
At the beginning, the successes were quite modest (the electron gas theory, known as the Xα
method ). Real success came after a publication by Jan Andzelm and Erich Wimmer.60 The DFT
method, offering results at a correlated level for a wide spectrum of physical quantities, turned
out to be roughly as inexpensive as the Hartree-Fock procedure–this is the most sensational
feature of the method.

58 E. Runge and E.K.U. Gross, Phys. Rev. Lett., 52, 997 (1984); M.E. Casida, “Time-dependent density functional
response theory for molecules,” in Recent Advances in Density Functional Methods, Part 1, D.P. Chong, ed.,
World Scientific, Singapore, 1995.

59 As a first guess, it may serve the orbital energy differences from the ground-state theory.
60 J. Andzelm and E. Wimmer, J. Chem. Phys., 96, 1280 (1992). (Jan was my Ph.D. student.) In the paper by

A. Scheiner, J. Baker, J. Andzelm, J. Comp. Chem., 18, 775 (1997) the reader will find an interesting comparison
of the methods used. One of the advantages (or deficiencies) of the DFT methods is that they offer a wide variety
of basis functions (in contrast to the ab initio methods, where Gaussian basis sets rule), recommended for some
particular problems to be solved. For example, in electronics (Si,Ge) the plane wave exp (ikr) expansion is a
preferred choice. On the other hand, these functions are not advised for catalysis phenomena with rare earth
atoms. The Gaussian basis sets in the DFT had a temporary advantage (in the 1990s) over others, because the
standard Gaussian programs offered analytically computed gradients (for optimization of the geometry). Now this
is also offered by many DFT methodologies.
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We Have a Beacon–Exact Electron Density Distribution of Harmonium

Hohenberg and Kohn proved their famous theorem on the existence of the energy functional,
but nobody was able to give the functional for any system. All the DFT efforts are directed
toward elaborating such a potential, and the only criterion of whether a model is any good is
comparison with experimental results. However, it turned out that there is a system for which
every detail of the DFT can be verified. Uniquely, the dragon may be driven out of the hole,
and we may fearlessly and with impunity analyze all the details of its anatomy. The system is
a bit artificial–it is the harmonic helium atom (harmonium) discussed on p. 212, in which the
two electrons attract the nucleus by a harmonic force, while repelling each other by Coulombic
interaction. For some selected force constants k (e.g., for k = 1

4), the Schrödinger equation can
be solved analytically. The wave function is extremely simple; see p. 589. The electron density
(normalized to 2) is computed as

ρ0(r) = 2N 2
0 e−

1
2 r2

{(π
2

) 1
2
[

7

4
+ 1

4
r2 +

(
r + 1

r

)
erf

(
r√
2

)]
+ e−

1
2 r2

}
, (11.83)

where erf is the error function, erf
(
z
) = 2√

π

∫ z
0 exp

(−u2
)

du, and

N 2
0 =

π
3
2

(8+ 5
√
π)
. (11.84)

We should look at the ρ0(r) with great interest – it is a unique occasion, it is probable you will
never see again an exact result. The formula is not only exact, but on top of that, it is simple.
Kais et al. compare the exact results with two DFT methods: the BLYP (a version of B3LYP)
and the Becke-Perdew (BP) method.61

Because of the factor exp (−0.5r2), the density distributionρ is concentrated on the nucleus.62

The authors compare this density distribution with the corresponding Hartree-Fock density
(appropriate for the potential used), and even with the density distribution related to the hydrogen-
like atom (after neglecting 1/r12 in the Hamiltonian, the wave function becomes an antisym-
metrized product of the two hydrogen-like orbitals). In the latter case, the electrons do not see
each other63, and the corresponding density distribution is too concentrated on the nucleus. As
soon as the term 1/r12 is restored, the electrons immediately move apart, and ρ on the nucleus
decreases by about 30%. The second result is also interesting: the Hartree-Fock density is very
close to ideal–it is almost the same curve.64

61 The detailed references to these methods are given in S. Kais, D.R. Herschbach, N.C. Handy, C.W. Murray, and
G.J. Laming, J. Chem. Phys., 99, 417 (1993).

62 This is as it should be.
63 This is so even in the sense of the mean field (as it is in the Hartree-Fock method).
64 This is why the HF method is able to give 99.6% of the total energy. Nevertheless, in some cases, this may not be

a sufficient accuracy.
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Table 11.1. Harmonium (harmonic helium atom). Comparison of the components (a.u.) of the total energy E[ρ0]
calculated by the HF, BLYP, and BP methods with the exact values (row KS; exact Kohn-Sham solution).a

E[ρ0] T0[ρ0]
∫
vρ0dr J [ρ0] Ex[ρ0] Ec[ρ0]

KS 2.0000 0.6352 0.8881 1.032 −0.5160 −0.0393
HF 2.0392 0.6318 0.8925 1.030 −0.5150 0
BLYP 2.0172 0.6313 0.8933 1.029 −0.5016 −0.0351
BP 1.9985 0.6327 0.8926 1.028 −0.5012 −0.0538

a The row KS with the bold digits corresponds to the exact result.

Total Energy Components

It turns out that in the case analyzed (and so far only in this case), we can calculate the exact
total energy E [Eq. (11.17)], “wonder” potential v0 that in the Kohn-Sham model gives the
exact density distribution ρ [Eq. (11.83)], exchange potential vx and correlation potential vc

[Eqs. (11.70) and (11.71)].65 Let us begin from the total energy.
In the second row of Table 11.1 labeled KS (for Kohn-Sham), the exact total energy is

reported (E[ρ0] = 2.0000 a.u.) and its components (bold figures) calculated according to Eqs.
(11.10), (11.17)–(11.19), (11.68), and (11.72). The exact correlation energy Ec is calculated as
the difference between the exact total energy and the listed components. Thus, T0[ρ0] stands
for the kinetic energy of the non-interacting electrons,

∫
vρ0dr means the electron-nucleus

attraction (which is positive because the harmonic potential is positive), and J [ρ0] represents
the self-interaction energy of ρ0. According to Eq. (11.19), and taking into account ρ0 (i.e.,
twice a square of the orbital), we obtain J [ρ0] = 2J11 with the Coulombic integral J11. On
the other hand, the exchange energy is given by Eq. (11.72): Ex = −1

2

∑SMO
i, j=1 Ki j , and after

summing over the spin coordinates, we obtain the exchange energy Ex = −K11 = −J11.
We see such a relation between J and Ex in the second row (KS66). The other rows report
already various approximations computed by HF, BLYP, and BP, each of which gives its own
Kohn-Sham spinorbitals and its own approximation of the density distribution ρ0. This density
distribution was used for the calculation of the components of the total energy within each
approximate method. Of course, the Hartree-Fock method (third row) gave 0 for the correlation
energy, because there is no correlation in it except that which follows from the Pauli exclusion
principle taken into account in the exchange energy (cf. Chapter 10).

It is remarkable that all the methods are doing quite well. The BLYP gives the total energy
with an error of 0.87%–twice as small as the Hartree-Fock method, while the BP functional
missed by as little as 0.08%. The total energy components are a bit worse, which proves that a

65 These potentials as functions of ρ or r .
66 Only for spin-compensated two-electron systems, we have Ex [ρ] = − 1

2 J [ρ0] and therefore, vx = δEx
δρ can be

calculated analytically. In all other cases, although Ex can be easily evaluated (knowing orbitals), the calculation
of vx is very difficult and costly (it can only be done numerically). In the present two-electron case, vH F

x is a
multiplicative operator rather than an integral operator.
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certain cancellation of errors occurs among the energy components, which improves the value
of the total energy. The KS kinetic energy T0 amounts to 0.6352, while that calculated as the
mean value of the kinetic energy operator (of two electrons) is a bit larger, 0.6644–the rest is in
the exchange-correlation energy.67

Exact “Wonder” v0 Potential–The Correlation Dragon Is Finally Caught

Fig. 11.10 shows a unique thing, our long-awaited “wonder,” as well as exact potential v0 as

a function of r , and alternatively as a function of ρ
1
3 . We look at it with great curiosity. The

exact v0(r) represents a monotonic function increasing with r and represents a modification
(influence of the second electron) of the external potential v , we see that v0 is shifted upward
with respect to v, because the electron repulsion is effectively included. As we can see, the best
approximate potential is the Hartree-Fock one.

exact

exact

(a)

(b)

Fig. 11.10. Efficiency analysis of various DFT methods and comparison with the exact theory for the harmonium (with force
constant k = 1

4 ) according to Kais et al. Panel (a) shows one-electron effective potential v0 = v + vcoul + vxc, with external

potential v = 1
2 kr2. Panel (b) presents the same quantities as functions of ρ

1
3 . The solid line corresponds to the exact results. The

symbol HF pertains to the Fock potential (for the harmonic helium atom, · − ·−), and the symbols BLYP (−−−) and BP (===)
stand for two popular DFT methods.

67 We have described this before.
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Exchange Potential

As to exchange potential vx (Fig. 11.11), it has to be negative–and indeed it is. How are the BLYP
and BP exchange potentials doing? Their plots are very close to each other and go almost parallel
to the exact exchange potential for most values of r ; i.e., they are very good (any additive constant
in any potential energy does not count). For small r , both DFT potentials undergo some strange
vibration. This region (high density) is surely the most difficult to describe, and no wonder that
simple formulas cannot accurately describe the exact electronic density distribution (Fig.11.11).

Measuring the Correlation Dragon: It Is a Small Beast

The correlation potential vc turns out (Fig. 11.12) to correspond to forces 10 − 20 times
smaller than those typical for exchange potential vx ( just look at the corresponding slopes).
This is an important message because, as the reader may remember, at the very end, we
tried to push the dragon into the correlation hole vc and, as we see now, we have succeeded.
The dragon of the correlation energy turned out to be a small beast.

exact

exact

(a)

(b)

Fig. 11.11. Exchange potential. Efficiency analysis of various DFT methods and comparison with the exact theory for the
harmonium (with the force constant k = 1

4 ) according to Kais et al. Panel (a) shows exchange potential vx as a function of the
radius r , and Panel (b) uses a function of the density distribution ρ. The notation of Fig. 11.10 is used. It is seen that both DFT
potentials produce plots that differ by nearly a constant from the exact potential (it is, therefore, an almost exact potential). The
two DFT methods exhibit some non-physical oscillations for small r .



Chasing Correlation Dragon: Density Functional Theory (DFT) 711

exact

exact

(a)

(b)

Fig. 11.12. The long-chased electron correlation dragon is finally found in its correlation hole, and we have an exceptional
opportunity to see what it looks like. Correlation potential–efficiency analysis of various DFT methods and comparison with the
exact theory for the harmonic helium atom (with the force constant k = 1

4 ) according to Kais et al. Panel (a) shows correlation
potential vc (which is less important than the exchange potential) as a function of the radius r (a) and of density ρ (b). The same
notation is used as in Fig. 11.10. The DFT potentials produce plots that differ widely from the exact correlation potential.

The exact potential represents a smooth hooklike curve. The BLYP and BP correlation plots
twine loosely like eels round about the exact curve68, and, for small r , exhibit some vibration
similar to that for vx. It is most impressive that the BLYP and BP curves twine as if they were
in counterphase, which suggests that, if added, they might produce good69 results.

Conclusion

The harmonic helium atom represents an instructive example that pertains to medium electronic
densities. It seems that the dragon of the correlation energy does not have hundreds of heads
and is of quite good character, although it remains a bit unpredictable.

The results of various DFT versions are generally quite effective, although this comes from a
cancellation of errors. Nevertheless, great progress has been made. At present, many chemists

68 The deviations are very large.
69 Such temptations give birth to Babylon-type science.
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prefer the DFT method (economy and accuracy) than to getting stuck at the barrier of the
configuration interaction excitations. And yet the method can hardly be called ab initio, since
the exchange-correlation potential is tailored in a somewhat too practical manner.

Summary

• The main theoretical concept of the DFT method is the electronic density distribution ρ(r) =
N
∑− 1

2

σ1= 1
2

∫
dτ2dτ3 . . . dτN | �(r, σ1, r2, σ2, . . . , rn, σN )|2, where r indicates a point in 3-D space, and the

sum is over all the spin coordinates of N electrons, while the integration is over the space coordinates of N − 1

electrons. For example, within the molecular orbital (RHF) approximation ρ =∑
i 2

∣∣ϕi
(
r
)∣∣2 is the sum of the

squares of all the molecular orbitals multiplied by their occupation number. The electronic density distribution
ρ is a function of the position in 3-D space.

• ρ carries a lot of information. The density ρ exhibits maxima at nuclei (with a discontinuity of the gradient
because of the cusp condition, as discussed on p. 585). The Bader analysis is based on identification of the
critical (stationary) points of ρ (i.e., those for which ∇ρ = 0); for each of them, the Hessian is computed (the
second derivatives matrix). Diagonalization of the Hessian tells us whether the critical point corresponds to
a maximum of ρ (non-nuclear attractor70), a minimum (e.g., cavities), a first-order saddle point (e.g., a ring
center), or a second-order saddle point (chemical bond).

• The DFT relies on the two Hohenberg-Kohn theorems:

• The ground-state electronic density distribution (ρ0 ) contains the same information as the ground-state
wave function(�0). Therefore, instead of a complex mathematical object (the ground-state wave function
�0) depending on 4N -variables, we have a much simpler object (ρ0) that depends on three variables
(Cartesian coordinates) only.

• A total energy functional of ρ exists that attains its minimum at ρ = ρ0. This mysterious functional is not
yet known.

• Kohn and Sham presented the concept of a system with non-interacting electrons, subject to some “wonder”
external field v0(r) (instead of that of the nuclei), such that the resulting density ρ remains identical to the exact
ground-state density distribution ρ0. This fictitious system of electrons plays a very important role in the DFT.

• Since the Kohn-Sham electrons do not interact, their wave function represents a single Slater determinant (called
the Kohn-Sham determinant).

• We write the total energy expression E = T0 +
∫
v(r)ρ(r)dr+ J [ρ] + Exc[ρ], which contains:

• The kinetic energy of the non-interacting electrons (T0)

• The potential energy of the electron-nuclei interaction (
∫
v(r)ρ(r)dr)

• The Coulombic electron-electron self-interaction energy (J [ρ])
• The remainder Exc i.e., the unknown exchange-correlation energy

• Using the single-determinant Kohn-Sham wave function (which gives the exact ρ0), we vary the Kohn-Sham
spinorbitals in order to find the minimum of the energy E .

• We are immediately confronted with the problem of how to find the unknown exchange-correlation energy
Exc, which is replaced by an unknown exchange-correlation potential in the form of a functional derivative
vxc ≡ δExc

δρ . We obtain the Kohn-Sham equation (resembling the Fock equation) {− 1
2�+ v0}φi = εiφi , where

“wonder-potential” v0 = v + vcoul + vxc, vcoul stands for the sum of the usual Coulombic operators (as in
the Hartree-Fock method71, but built from the Kohn-Sham spinorbitals), and vxc is an exchange-correlation
potential to be found.

70 The maxima on the nuclei are excluded from the analysis because of the discontinuity of ∇ρ mentioned above.
71 It is, in fact, δ J [ρ]

δρ .



Chasing Correlation Dragon: Density Functional Theory (DFT) 713

• The main problem now resides in the nature of Exc (and vxc). A variety of practical guesses that we are forced
to make begin here.

• The simplest guess is the local density approximation (LDA). We assume that Exc can be summed up from the
contributions of all the points in space, and that the individual contribution depends only on ρ computed at this
point. Now, the key question is: What does this dependence Exc[ρ] look like? The LDA answers this question by
using the following approximation: each point r in the 3D space contributes to Exc depending on the computed
value of ρ(r) as if it were a homogeneous gas of uniform density ρ, where the dependence Exc[ρ] is exactly
known.

• There are also more complex Exc[ρ] functionals that go beyond the local approximation. They not only use the
local value of ρ, but sometimes also ∇ρ (gradient approximation).

• In each of these choices, there is a lot of ambiguity. This, however, is restricted by some physical requirements.
• The requirements are related to the electron pair distribution function �(r1, r2) = N (N −

1)
∑

all σi

∫ |�|2dr3dr4 . . . drN , which takes into account that the two electrons, shown by r1 and r2, avoid
each other.

• First-order perturbation theory leads to the exact expression for the total energy E as E = T0 +
∫
ρ(r)v(r)dr+

1
2

∫∫
dr1dr2

�aver(r1,r2)
r12

, where �aver(r1, r2) =
∫ 1

0 �λ(r1, r2)dλ, with the parameter 0 ≤ λ ≤ 1 being instru-
mental when transforming the system of non-interacting electrons (λ = 0, Kohn-Sham model) into the system
of fully interacting ones (λ = 1), and all the while preserving the exact density distribution ρ. Unfortunately,
the function �λ(r1, r2) remains unknown.

• The function�λ(r1, r2) serves to define the electron hole functions, which will tell us where electron 2 prefers

to be, if electron 1 occupies the position r1. The exchange-correlation energy is related to the �σσ
′

aver function

by Exc = 1
2
∑
σσ ′

∫∫
dr1dr2

�σσ
′

aver(r1,r2)−ρσ (r1)ρσ ′ (r2)
r12

, where the sum is over the spin coordinate σ of electron

1 and spin coordinate σ ′ of electron 2, with the decomposition �aver = �ααaver +�αβaver +�βαaver +�ββaver. For

example, the number�αβaverdV1dV2 is proportional to the probability of finding simultaneously an electron with
the spin function α in the volume dV1 located at r1, another electron with the spin function β in the volume dV2
located at r2, etc.

• The definition of the exchange-correlation hole function hσσ
′

xc (r1, r2) is as follows: Exc =
1
2
∑
σσ ′

∫
dr1

∫
dr2

ρσ (r1)
r12

hσσ
′

xc (r1, r2), which is equivalent to setting hσσ
′

xc (r1, r2) = �σσ
′

aver(r1,r2)

ρσ (r1)
− ρσ ′ (r2).

This means that the hole function is related to that part of the pair distribution function that indicates the
avoidance of the two electrons [i.e., beyond their independent motion described by the product of the densities
ρσ (r1)ρσ ′(r2)].

• Due to the antisymmetry requirement for the wave function (see Chapter 1), the holes have to satisfy some
general (integral) conditions. The electrons with parallel spins have to avoid each other:

∫
hααxc (r1, r2)dr2 =∫

hββxc (r1, r2)dr2 = −1 (one electron disappears from the neighborhood of the other), while the electrons with

opposite spins are not influenced by the Pauli exclusion principle:
∫

hαβxc (r1, r2)dr2 =
∫

hβαxc (r1, r2)dr2 = 0.

• The exchange correlation hole is a sum of the exchange hole and the correlation hole: hσσ
′

xc = hσσ
′

x + hσσ
′

c ,
where the exchange hole follows in a simple way from the Kohn-Sham determinant (and is therefore supposed to
be known). Then, we have to guess the correlation holes. All the correlation holes have to satisfy the condition∫

hσσ
′

c (r1, r2)dr2 = 0, which means only that the average has to be zero, but that says nothing about the

particular form of hσσ
′

c (r1, r2). The only thing sure is that close to the origin, the function hσσ
′

c has to be
negative, and, therefore, for longer distances, it has to be positive.

• The popular approximations (e.g., LDA, PW91) in general satisfy the integral conditions for the holes.
• The hybrid approximations (e.g., B3LYP)–i.e., such a linear combination of the potentials that will assure good

agreement with experimental results–become more and more popular.
• The DFT models can be tested when applied to exactly solvable problems with electronic correlation (like the

harmonium, as discussed in Chapter 4). It turns out that despite the exchange and correlation DFT potentials
deviating from the exact ones, the total energy is quite accurate.
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• There is a possibility in DFT to calculate the excitation energies. This is possible within the time-dependent
DFT. In this formulation, one is looking at the frequency-dependent polarizabilities in the system subject to the
electric field perturbation of frequency ω. The polarizabilities have poles at �ω equal to an excitation energy.

Main Concepts, New Terms

adiabatic connection (p. 691)
attractor (p. 570)
Bader analysis (p. 712)
basin (p. 670)
B3LYP functional (p. 700)
catastrophe set (p. 672)
correlation hole (p. 697)
critical (stationary) points (p. 669)
CS, charge shift bond (p. 705)
density matrix (p. 665)
electron gas (p. 706)
electronic density (p. 665)
electron pair distribution (p. 690)
ELF, Electron Localization Function (p. 701)
exchange-correlation energy (p. 683)
exchange-correlation hole (p. 696)
exchange hole (p. 697)
exchange-correlation potential (p. 689)

Fermi hole (p. 698)
gradient approximation, NLDA (GEA) (p. 688)
Hohenberg-Kohn functional (p. 680)
Hohenberg-Kohn theorem (p. 675)
holes (p. 695)
hybrid approximations, NLDA (p. 689)
Kohn-Sham equation (p. 680)
Kohn-Sham system (p. 680)
Levy minimization (p. 679)
local density approximation, LDA (p. 687)
non-nuclear attractor (p. 670)
one-particle density matrix (p. 698)
Perdew-Wang functional (p. 688)
self-interaction energy (p. 708)
spin polarization (p. 687)
Time-Dependent DFT (p. 706)
v-representability (p. 677)

From the Research Front

Computer technology has been revolutionary–and not only because computers are fast. Much more important is that
each programmer uses the full experience of his predecessors and easily “stands on the shoulders of giants.” The
computer era has made an unprecedented transfer of the most advanced theoretical tools from the finest scientists to
practically everybody. Experimentalists often investigate large molecules. If there is a method like DFT, which gives
answers to their vital questions in a shorter time than the ab initio methods, they will not hesitate and choose the
DFT, even if the method is of semi-empirical type. Something like this happens now. Nowadays, the DFT procedure
is applicable to systems with hundreds of atoms.

The DFT method also is developing fast in the conceptual sense72; e.g., the theory of reactivity (“charge sensitivity
analysis”73) has been derived, which established a link between the intermolecular electron transfer and the charge
density changes in atomic resolution. For systems in magnetic fields, current DFT was developed.74 Relativistic
effects75 and time-dependent phenomena76 are included in some versions of the theory.

72 See, e.g., P. Geerlings, F. De Proft, and W. Langenaeker, Chem. Rev., 103, 1793 (2003).
73 R.F. Nalewajski and J. Korchowiec, Charge Sensitivity Approach to Electronic Structure and Chemical Reactivity

World Scientific, Singapore, 1997; R.F. Nalewajski, J. Korchowiec, and A. Michalak, “Reactivity criteria in
charge sensitivity analysis,” Topics in Current Chemistry, 183, 25 (1996); R.F. Nalewajski, “Charge sensitivities of
molecules and their fragments,” Rev. Mod. Quant. Chem., K. D. Sen, ed., World Scientific, Singapore (2002)1071;
R.F. Nalewajski and R.G. Parr, Proc. Natl. Acad. Sci. USA, 97, 8879 (2000).

74 G. Vignale and M. Rasolt, Phys. Rev. Letters, 59, 2360 (1987); Phys.Rev.B, 37, 10685 (1988).
75 A.K. Rajagopal and J. Callaway, Phys. Rev. B, 7, 1912 (1973); A.H. MacDonald, S.H. Vosko, J. Phys. C, 12, 2977

(1979).
76 E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984); R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999).
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Ad Futurum

The DFT will be, of course, further elaborated in the future. There are already investigations under way that will

allow us to calculate the dispersion energy.77 The impetus will probably be directed toward such methods as the
density matrix functional theory (DMFT) proposed by Levy78, and currently being developed by Jerzy Ciosłowski79

The idea is to abandon ρ(r) as the central quantity, and instead use the one-particle density matrixρ(r′; r) of Eqs.
(11.1) and (11.2).

The method has the advantage that we are not forced to introduce the non-interacting Kohn-Sham electrons,
because the mean value of the electron kinetic energy may be expressed directly by the new quantity (this follows
from the definition):

T = −1

2

∫
dr [�rρ(r; r′)]|r′=r,

where the symbol |r′=r means replacing r′ by r after the result �rρ(r; r′) is ready. Thus, in the DMFT exchange-
correlation, we have no kinetic energy left.

The success of the DFT approach will probably make the traditional ab initio procedures faster, up to the devel-
opment of methods with linear scaling (with the number of electrons for long molecules). The massively parallel
“computer farms,” with 2000 processors currently to millions expected to come soon, will saturate most demands
of experimental chemistry. The results will be calculated fast; it will be much more difficult to define an interesting
target to compute.

We will have an efficient hybrid potential, say, of the B3LYP5PW2013/2014-type. There remains, how-
ever, a problem that already appears in laboratories. A colleague delivers a lecture and proposes a hybrid
B3LYP6PW2013update80, which is more effective for aromatic molecules. What will these two scientists talk
about? It is very good that the computer understands all this, but what about the scientists? In my opinion, sci-
ence will move into such areas as planning new materials and new molecular phenomena (cf. Chapter 15) with the
programs mentioned above as tools.

Additional Literature
W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, New York, Wiley-VCH (2000).

A very good and clear book. It contains the theory and, in the second half, a description of the DFT reliability
when calculating various physical and chemical properties.
R.H. Dreizler and E.K.U. Gross, Density Functional Theory, Springer, Berlin (1990).

A rigorous book on DFT for specialists in the field.

R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford
(1989).

The classic textbook on DFT for chemists.

77 W. Kohn, Y. Meir, and D. Makarov, Phys. Rev. Lett., 80, 4153 (1998); E. Hult, H. Rydberg, B.I. Lundqvist, and
D.C. Langreth, Phys. Rev. B, 59, 4708 (1999); J. Ciosłowski and K. Pernal, J. Chem. Phys., 116, 4802 (2002).

78 M. Levy, Proc. Nat. Acad. Sci.(USA), 76, 6062 (1979).
79 J. Ciosłowski and K. Pernal, J. Chem. Phys., 111, 3396 (1999); J. Ciosłowski and K. Pernal, Phys. Rev. A, 61,

34503 (2000); J. Ciosłowski, P. Ziesche, and K. Pernal, Phys. Rev. B, 63, 205105 (2001); J. Ciosłowski and
K. Pernal, J. Chem. Phys., 115, 5784 (2001); J. Ciosłowski, P. Ziesche, and K. Pernal, J. Chem. Phys., 115, 8725
(2001).

80 The same pertains to the traditional methods. Somebody operating billions of the expansion functions meets a
colleague using even more functions. It would be a real pity if we changed into experts (“This is what we are
paid for…”) knowing which particular BLYP is good for calculating interatomic distances, which for charge
distribution, etc.
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A.D. Becke, in Modern Electronic Structure Theory. Part II, D.R. Yarkony, ed., World Scientific, p. 1022.
An excellent and comprehensible introduction into DFT written by a renowned expert in the field.

J. Andzelm and E. Wimmer, J. Chem. Phys., 96, 1280 (1992).
A competent presentation of DFT technique introduced by the authors.

R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford (1994).
An excellent and comprehensive book written by the founder of the atoms-in-molecule approach.

Questions

1. In Bader analysis, in the critical point of the charge density for a covalent bond,

a. the value of the density is positive
b. the electronic density Hessian has precisely two negative eigenvalues
c. all three components of the electron density gradient are equal zero
d. we are always in the middle of the distance between the two nuclei

2. In Bader analysis, the electronic density Hessian calculated at the center of the benzene ring (of D6h symmetry):

a. has exactly one positive eigenvalue
b. has exactly two positive eigenvalues
c. all three components of the electron density gradient are equal zero
d. the trace of the Hessian depends on the Cartesian coordinate system chosen.

3. Hohenberg and Kohn (ρ stands for the electron density, ρ = ρ0 corresponds to the ideal ground-state electronic
density, E0 is the ground state energy)

a. gave the functional E H K [
ρ
]

exhibiting a minimum that corresponds to the density ρ0
b. have proved that having ρ0 one can obtain the ground state wave function
c. have proved that from E0 one can obtain ρ0

d. have proved that there exists an energy functional E H K [
ρ
] ≥ E H K [

ρ0
] = E0

4. The Kohn-Sham system of electrons (ρ stands for the electron density, ρ = ρ0 corresponds to the ideal ground-
state electronic density, E0 is the ground state energy)

a. represents N electrons leading to the Hartree-Fock electronic density
b. represents a system of N non-interacting electrons that give the same electronic density ρ = ρ0 as the

electronic density of the fully interacting system
c. is described by N spinorbitals, each being a solution of a one-electron equation
d. leads to the Slater determinant corresponding to the electronic density ρ0

5. In the LDA approximation (Exc stands for the exchange–correlation energy),

a. the uniform electron gas represents a system of N electrons in a box of volume V with the periodic boundary
conditions

b. the uniform electron gas represents a system of N electrons in a box of volume V with the boundary condition
of the wave function vanishing at the border of the box

c. the uniform electron gas represents a system of N electrons in a box of volume V with the periodic boundary
conditions and the uniform distribution of the nuclear matter (to get the electrically neutral system)

d. Exc[ρ] for molecules is such a functional of ρ that for a fixed ρ the value of Exc is equal to the known value

E
gas
xc for the uniform electron gas corresponding to the same density

6. The DFT hybrid approximation (Exc stands for the exchange–correlation energy):

a. means using a linear combination of atomic hybrid orbitals in the expansion of the Kohn-Sham molecular
orbitals

b. the B3LYP method belongs to the hybrid approximations
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c. the hybrid approximations represent in fact some semi-empirical methods
d. one uses as Exc a linear combination of Exc expressions stemming from several DFT functionals and from

the Hartree-Fock method

7. The exchange-correlation energy Exc in the Kohn-Sham method

a. contains a part of the electron kinetic energy
b. effectively takes into account the Coulomb hole and the Fermi hole
c. depends on a particular DFT functional
d. is equal zero.

8. The exchange-correlation hole functions satisfy

a.
∫

hαβxc (r1, r2)dr2 = 0 and
∫

hββxc (r1, r2)dr2 = −1

b.
∫

hαβxc (r1, r2)dr2 = −1 and
∫

hββxc (r1, r2)dr2 = −1

c.
∫

hαβxc (r1, r2)dr2 = 0 and hββxc (r, r) = −ρβ(r)
d hαβxc (r1, r2) = 0 and hααxc (r1, r2) = −1

9. The DFT exchange energy Ex

a. is more important than the correlation energy
b. Ex < 0
c. is calculated using the exchange Hartree-Fock expression, but with the Kohn-Sham orbitals
d. must be a repulsion for He…He and attraction for H…H

10. The Kohn-Sham DFT method

a. is able to describe the interaction of the two argon atoms
b. is as time-consuming as the Hartree-Fock method
c. does not take into account the electron correlation, because it uses a one-determinantal wave function
d. which would contain a correct exchange-correlation potential, would describe the dispersion interaction

Answers

1a,b,c, 2b,c, 3b,d, 4b,c,d, 5c,d, 6b,c,d, 7a,b,c, 8a,c, 9a,b,c, 10b,d





CHAPTER 12

The Molecule Subject to the
Electric or Magnetic Field

“For the time being I was not aware of, but soon I have experienced by myself, how
dangerous for our ship approaching the Magnetic Mountain was. (…) Not only the anchor,
the iron trunks, the knives, spoons and other objects, but also the nails, that have been used
to join the boards of the ship, jumped off just by themselves. . .”

Bolesław Leśmian “Adventures of the Sailor Sindbad”

Where Are We?

We are in the crown of the TREE (left side)

An Example
How does a molecule react to an applied electric field? How do we calculate the changes that undergoes? In some
materials, there is a strange phenomenon: a monochromatic red laser light beam enters a transparent substance and
leaves the specimen as a blue beam. Why?

Let’s look at another example, this time involving a magnetic field. We apply some long wavelength electro-
magnetic field to a specimen. We do not see any absorption whatsoever. However, if, in addition, we apply a static
magnetic field that gradually increases in intensity, we observe absorption at some intensities. If we analyze the
magnetic field values corresponding to the absorption, then they cluster into some mysterious groups that depend on
the chemical composition of the specimen. Why is this?

What Is It All About?

The properties of a substance with and without an external electric field differ. The problem is how to compute the
molecular properties in the electric field from the properties of the isolated molecule and the characteristics of the
applied field. Molecules also react upon application of a magnetic field, which changes the internal electric currents
and modifies the local magnetic field. A nucleus may be treated as a small magnet that reacts to the local magnetic
field that it encounters. This local field depends not only on the external magnetic field, but also on those from
other nuclei and on the electronic structure in the vicinity. This produces some energy levels in the spin system,
with transitions leading to the nuclear magnetic resonance (NMR) phenomenon, which has wide applications in
chemistry, physics, and medicine.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00012-X
© 2014 Elsevier B.V. All rights reserved. 719
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The following topics will be described in this chapter.

Hellmann-Feynman Theorem (�) p. 722
ELECTRIC PHENOMENA

The Molecule Immobilized in an Electric Field (��) p. 724
• The Electric Field as a Perturbation
• The Homogeneous Electric Field
• The Non-Homogeneous Electric Field: Multipole Polarizabilities and Hyperpolarizabilities
How to Calculate the Dipole Moment? (��) p. 740
• Coordinate System Dependence
• Hartree-Fock Approximation
• Atomic and Bond Dipoles
• Within the ZDO Approximation
How to Calculate the Dipole Polarizability? (��) p. 743
• Sum Over States Method (SOS)
• Finite Field Method
• What Is Going on at Higher Electric Fields?
A Molecule in an Oscillating Electric Field (��) p. 752

MAGNETIC PHENOMENA

Magnetic Dipole Moments of Elementary Particles (��) p. 755
• Electron
• Nucleus
• Dipole Moment in the Field
NMR Spectra–Transitions Between the Nuclear Quantum States (��) p. 761
Hamiltonian of the System in the Electromagnetic Field (��) p. 762
• Choice of the Vector and Scalar Potentials
• Refinement of the Hamiltonian
Effective NMR Hamiltonian (�) p. 767
• Signal Averaging
• Empirical Hamiltonian
• Nuclear Spin Energy Levels
The Ramsey Theory of the NMR Chemical Shift (��) p. 778
• Shielding Constants
• Diamagnetic and Paramagnetic Contributions
The Ramsey Theory of NMR Spin-Spin Coupling Constants (��) p. 781
• Diamagnetic Contributions
• Paramagnetic Contributions
• Coupling Constants
• The Fermi Contact Coupling Mechanism

Gauge-Invariant Atomic Orbitals (GIAOs) (��) p. 785

• London Orbitals
• Integrals Are Invariant

Why Is This Important?

There is no such thing as an isolated molecule, since any molecule interacts with its neighborhood. In most cases,
this is the electric field of another molecule, which represents the only information about the external world for
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the molecule. The source of the electric field (another molecule or a technical equipment) is of no importance. Any
molecule will respond to the electric field, but some will respond dramatically, while others may respond quite weakly.
The way they respond is of prime importance in technical and scientific applications.

The molecular electronic structure does not respond to a change in orientation of the nuclear magnetic moments
because the corresponding perturbation is too small. On the other hand, the molecular electronic structure influences
the subtle energetics of interaction of the nuclear spin magnetic moments, and these effects may be recorded in the
NMR spectrum. This is of great practical importance because it means that we have in the molecule under study a
system of sounds (nuclear spins) that characterizes the electronic structure almost without perturbing it.

What Is Needed?

• Perturbation theory (Chapter 5)
• Variational method (Chapter 5, advised)
• Harmonic oscillator and rigid rotator (Chapter 4, advised)
• Breit Hamiltonian (Chapter 3, advised)
• Appendix S available at booksite.elsevier.com/978-0-444-59436-5, p. e143 (advised)
• Appendix G available at booksite.elsevier.com/978-0-444-59436-5, p. e81 (necessary for magnetic properties)
• Appendix M available at booksite.elsevier.com/978-0-444-59436-5, p. e109 (advised)
• Appendix W available at booksite.elsevier.com/978-0-444-59436-5, p. e163 (advised)

Classical Works

Peter Debye, as early as 1921, predicted in “Molekularkräfte und ihre Elektrische Deutung,” Physikalische
Zeitschrift, 22, 302 (1921), that a non-polar gas or liquid of molecules with a nonzero quadrupole moment, when
subject to a non-homogeneous electric field, will exhibit the birefringence phenomenon due to the orientation of
the quadrupoles in the electric field gradient. �
A book by John Hasbrouck Van Vleck called
Electric and Magnetic Susceptibilities Oxford
University Press (1932) represented enormous
progress. � The theorem that forces acting on
nuclei result from classical interactions with elec-
tron density (computed by a quantum mechanical
method) was first proved by Hans Gustav Adolf
Hellmann in the world’s first textbook of quan-
tum chemistry, Einführung in die Quantenchemie
Deuticke, Leipzig und Wien1 (1937), p. 285; and

John Hasbrouck Van Vleck
(1899–1980), American physi-
cist and professor at the Uni-
versity of Minnesota, received
the Nobel Prize in 1977 for
“fundamental theoretical inves-
tigations of the electronic struc-
ture of magnetic and disordered
systems.”

then, independently, by Richard Feynman in “Forces in molecules,” published in Physical Review, 56, 340 (1939). �
The first idea of nuclear magnetic resonance (NMR) came from a Dutch scholar named Cornelis Jacobus Gorter in
“Negative result in an attempt to detect nuclear spins,” in Physica, 3, 995 (1936). � The first electron paramagnetic
resonance (EPR) measurement was carried out by Evgeniy Zavoiski from Kazan University (USSR) , and he reported
his results in “Spin-magnetic resonance in paramagnetics,” published in Journal of Physics (USSR), 9, 245, 447
(1945). � The first NMR absorption experiment was performed by Edward M. Purcell, Henry C. Torrey, and
Robert V. Pound and published in “Resonance absorption by nuclear magnetic moments in a solid,” which appeared
in Physical Review, 69, 37 (1946), while the first correct explanation of nuclear spin-spin coupling (through the
chemical bond) was given by Norman F. Ramsey and Edward M. Purcell in “Interactions between nuclear spins

1 A Russian edition of Hellmann’s book had appeared a few months earlier, but that version does not contain the
theorem.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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in molecules,” published in Physical Review, 85, 143 (1952). � The first successful experiment in nonlinear optics
with frequency doubling was reported by Peter A. Franken, Alan E. Hill, Wilbur C. Peters, and Gabriel Weinreich
in “Generation of optical harmonics,” published in Physical Review Letters, 7, 118 (1961). � Hendrik F. Hameka’s
book Advanced Quantum Chemistry. Theory of Interactions between Molecules and Electromagnetic Fields” (1965),
Reading, MA is also considered a classic work.

12.1 Hellmann-Feynman Theorem

Let us assume that a system with Hamiltonian Ĥ is in a stationary state described by the (normal-
ized) function ψ . Now let us begin to do a little tinkering with the Hamiltonian by introducing
a parameter P . So we have Ĥ(P), and assume that we may change the parameter smoothly.
For example, as the parameter P , we may take the electric field intensity, or, if we assume the
Born-Oppenheimer approximation, then as P , we may take a nuclear coordinate.2 If we change
P in the Hamiltonian Ĥ(P), then its eigenfunctions and eigenvalues become functions of P .

The Hellmann-Feynman theorem pertains to the rate of the change3 of E(P):

Hans Gustav Adolf Hellmann (1903–1938), German
physicist and one of the pioneers of quantum chemistry.
He contributed to the theory of dielectric susceptibility,
theory of spin, chemical bond theory (semiempirical cal-
culations, also the virial theorem and the role of kinetic
energy), intermolecular interactions theory, electronic
affinity. Hellmann wrote the world’s first textbook of
quantum chemistry Vviedieniye v kvantovuyu khimiyu,
a few months later published in Leipzig as Einführung
in die Quantenchemie. In 1933, Hellmann presented
his habilitation thesis at the Veterinary College of
Hannover. As part of the paperwork he filled out a form
in which, according to the recent Nazi requirement, he
wrote that his wife was of Jewish origin. The German
ministry rejected the habilitation. The situation grew
more and more dangerous (many students of the
school were active Nazis), and the Hellmanns decided
to emigrate. Since his wife was born in the Ukraine,
they chose the Eastern route. Hellmann obtained a
position at the Karpov Institute of Physical Chemistry
in Moscow as a theoretical group leader. A leader of
another group, the Communist Party First Secretary
of the Institute (Hellmann’s colleague and a co-author
of one of his papers) A.A. Zukhovitskiy as well as
the former First Secretary, leader of the Heterogenic
Catalysis Group Mikhail Tiomkin, denounced Hellmann
to the institution, later called the KGB, which soon
arrested him. Years later, an investigation protocol was

found in the KGB archives, with material about Hell-
mann’s spying written by somebody else, but with
Hellmann’s signature. This was a common result of
such “investigations.” On May 16, 1938, Albert Einstein,
and on May 18, three other Nobel Prize recipients, Irene
Joliot-Curie, Frederick Joliot-Curie, and Jean-Baptiste
Perrin, asked Stalin for mercy for Hellmann. Stalin
ignored the eminent scholars’ supplication, and on
May 29, 1938 Hans Hellmann was executed by firing
squad. After W.H.E. Schwarz et al., Bunsen-Magazin,
(1999) 10, 60. Portrait reproduced from a painting
by Tatiana Livschitz, courtesy of Professor Eugen
Schwarz.

2 Recall that in the adiabatic approximation, the electronic Hamiltonian depends parametrically on the nuclear

coordinates (discussed in Chapter 6). Then E(P) corresponds to E0
k

(
R
)

from Eq. (6.8).

3 We may define
(
∂ Ĥ
∂P

)
P=P0

as an operator, being a limit when P → P0 of the operator sequence
Ĥ

(
P

)−Ĥ
(
P0

)
P−P0

.
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Richard Philips Feynman (1919–1988), American physi-
cist and for many years professor at the California Insti-
tute of Technology. His father was his first informal
teacher of physics, who taught him the extremely impor-
tant skill of independent thinking. Feynman studied at the
Massachusetts Institute of Technology, then at Princeton
University, where he earned his Ph.D. under the super-
vision of John Archibald Wheeler.

In 1945–1950, Feynman served as a professor at
Cornell University. A paper plate thrown in the air by
a student in the Cornell cafe was the first impulse for
Feynman to think about creating a new version of quan-
tum electrodynamics. For this achievement, Feynman
received the Nobel Prize in 1965; cf. p. 14.

Feynman was a genius who contributed to sev-
eral branches of physics (superfluidity, weak interac-
tions, quantum computers, and nanotechnology). His
textbook The Feynman Lectures on Physics is consid-
ered an unchallenged achievement in academic litera-
ture. Several of his books became best-sellers. Feynman
was famous for his unconventional, straightforward, and
crystal-clear thinking, and for his courage and humor.
Curiosity and courage made possible his investigations
of the ancient Maya calendar, ant habits, and his activity
in painting and music.

From John Slater’s autobiography “Solid State and
Molecular Theory ”, London, Wiley, (1975):

“The theorem known as the Hellmann-Feynman
theorem, stating that the force on a nucleus can be
rigorously calculated by electrostatics (…), remained,
as far as I was concerned, only a surmise for several
years. Somehow, I missed the fact that Hellmann, in
Germany, proved it rigorously in 1936, and when a very
bright undergraduate turned up in 1938–1939 wanting a
topic for a bachelor’s thesis, I suggested to him that he
see if it could be proved. He come back very promptly
with a proof. Since he was Richard Feynman (…), it
is not surprising that he produced his proof without
trouble.”

Hellmann-Feynman Theorem:
∂E

∂P
= 〈ψ |∂ Ĥ

∂P
|ψ〉. (12.1)

The proof is simple. The differentiation with respect to P of the integrand in E = 〈ψ |H |ψ〉
gives

∂E

∂P
= 〈∂ψ

∂P
|Ĥψ〉 + 〈ψ |∂ Ĥ

∂P
ψ〉 + 〈ψ |Ĥ ∂ψ

∂P
〉

= E

(
〈∂ψ
∂P
|ψ〉 + 〈ψ |∂ψ

∂P
〉
)
+ 〈ψ |∂ Ĥ

∂P
ψ〉 = 〈ψ |∂ Ĥ

∂P
ψ〉, (12.2)

because the expression in parentheses is equal to zero (we have profited from the fact that Ĥ is a
Hermitian and thatψ represents its eigenfunction4). Indeed, differentiating 〈ψ |ψ〉 = 1, we have

0 = 〈∂ψ
∂P
|ψ〉 + 〈ψ |∂ψ

∂P
〉, (12.3)

which completes the proof.

4 If, instead of the exact eigenfunction, we use an approximate function ψ , then the theorem would have to be

modified. In such a case, we have to take into account the terms 〈 ∂ψ
∂P |Ĥ |ψ〉 + 〈ψ |Ĥ | ∂ψ∂P 〉.
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Soon we will use the Hellmann-Feynman theorem to compute the molecular response to an
electric field5.

ELECTRIC PHENOMENA

12.2 The Molecule Immobilized in an Electric Field

The Homogeneous Electric Field

The electric field intensity E at a point represents the force acting on a unit positive point charge
(probe charge): E = −∇V , where V stands for the electric field potential energy at this point.6

When the potential decreases linearly in space (Fig. 12.1a), the electric field intensity is constant
(Fig.12.1b,c). If at such a potential, we shift the probe charge from a to a + x (x > 0), then
the potential energy will decrease by V (a + x) − V (a) = −Ex < 0. Similarly, the potential
energy of a stone will decrease after sliding the stone downhill.

If, instead of a unit charge, we shift the charge Q, then the energy will be lower by −E Qx .
It is seen that if we change the direction of the shift or the sign of the probe charge, then the

5 In case P is a nuclear coordinate (say, x coordinate of the nucleus C , denoted by XC ), and E stands for the

potential energy for the motion of the nuclei [cf. Chapter 6, the quantity corresponds to E0
0 of Eq. (6.8)], the

quantity − ∂E
∂P = FXC represents the x component of the force acting on the nucleus. The Helmann-Feynman

theorem says that this component can be computed as the mean value of the derivative of the Hamiltonian with
respect to the parameter P . Since the electronic Hamiltonian reads

Ĥ0 = −1

2

∑
i

�i + V

V = −
∑

A

∑
i

Z A

rAi
+

∑
i< j

1

ri j
+

∑
A<B

Z A Z B

RAB
,

then, after differentiating, we have

∂ Ĥ0

∂XC
= ∂V

∂XC
=

∑
i

ZC(
rCi

)3

(
XC − xi

)− ∑
B(�=C)

ZC Z B(
RBC

)3

(
XC − X B

)
.

Therefore,

FXC = −〈ψ |
∂ Ĥ

∂P
|ψ〉 = ZC

⎡
⎣∫

dr1ρ(1)
x1 − XC(

rC1
)3 −

∑
B(�=C)

Z B(
RBC

)3

(
X B − XC

)⎤⎦ ,
where ρ(1) stands for the electronic density defined in Chapter 11, Eqs. (11.1) and (11.2).
The last term can be easily calculated from the positions of the nuclei, the first term requires calculation of the
one-electron integrals. Note that the resulting formula says that the forces acting on the nuclei follow from the
classical Coulomb interaction involving the electronic density ρ, even if the electronic density has been (and
must be) computed from quantum mechanics.

6 We see that two potential functions that differ by a constant will give the same forces; i.e., will describe identical
physical phenomena (this is why this constant is arbitrary).
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potential

field intensity

x

(a) (b)

(c)

(e)

(d)

Fig. 12.1. Recalling the electric field properties. (a) 1-D: the potential V decreases with x . This means that the electric field
intensity E is constant; i.e., the field is uniform (b). 3-D: (c) Uniform electric field E = (E, 0, 0). (d) Inhomogeneous electric field
E = (E (

x
)
, 0, 0). (e) Inhomogeneous electric field E = (Ex

(
x, y

)
,Ey

(
x, y

)
, 0).
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energy will go up (in case of the stone, we may change only the direction). Therefore,

the change of the potential energy in a homogeneous electric field E when shifting charge
Q by vector r is equal to �E = −QE · r.

12.2.1 The Electric Field as a Perturbation

The Non-Homogeneous Field at a Slightly Shifted Point

Imagine a Cartesian coordinate system in 3-D space and a non-homogeneous electric field
(Fig. 12.1d,e) in it E = [Ex

(
x, y, z

)
, Ey

(
x, y, z

)
, Ez

(
x, y, z

)].
Assume that the electric field vector E (

r0
)

is measured at a point indicated by the vector r0.
What will we measure at a point shifted by a small vector r = (x, y, z) with respect to r0? The
components of the electric field intensity represent smooth functions in space and this is why we
may compute the electric field from the Taylor expansion; for each of the components Ex , Ey, Ez

separately, all the derivatives are computed at point r0 (see Fig. 12.2), indices q, q ′, q ′′ = x, y, z:

Ex = +
(
∂Ex

∂x

)
0

x +
(
∂Ex

∂ y

)
0

y +
(
∂Ex

∂z

)
0

z

+ 1

2

(
∂2Ex

∂x2

)
0

x2 + 1

2

(
∂2Ex

∂x∂ y

)
0

xy + 1

2

(
∂2Ex

∂x∂z

)
0

xz

+ 1

2

(
∂2Ex

∂ y∂x

)
0

yx + 1

2

(
∂2Ex

∂ y2

)
0

y2 + 1

2

(
∂2Ex

∂ y∂z

)
0

yz

+ 1

2

(
∂2Ex

∂z∂x

)
0

zx + 1

2

(
∂2Ex

∂z∂ y

)
0

zy + 1

2

(
∂2Ex

∂z2

)
0

z2 + · · ·

= Ex,0 +
∑

q

(
∂Ex

∂q

)
0

q + 1

2

∑
q,q ′

(
∂2Ex

∂q∂q ′

)
0

qq ′ + · · ·

and similarly:

Ey = Ey,0 +
∑

q

(
∂Ey

∂q

)
0

q + 1

2

∑
q,q ′

(
∂2Ey

∂q∂q ′

)
0

qq ′ + · · ·

Ez = Ez,0 +
∑

q

(
∂Ez

∂q

)
0

q + 1

2

∑
q,q ′

(
∂2Ez

∂q∂q ′

)
0

qq ′ + · · ·

Energy Gain due to a Shift of the Electric Charge Q

These two electric field intensities (at points r0 and r0 + r) have been calculated in order to
consider the energy gain associated with the shift r of the electric point charge Q. Similar to the
1-D case just considered, we have the energy gain�E = −QE · r. There is only one problem:
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(a)

(b)

Fig. 12.2. The electric field computed at point x 	 1 from its value (and the values of its derivatives) at point 0. (a) 1-D case; (b)
2-D case.

which of the two electric field intensities is to be inserted into the formula? Since the vector
r = ix+jy+kz is small (i, j, k stand for unit vectors corresponding to axes x, y, z, respectively),
we may insert, e.g., the mean value of E (

r0
)

and E (
r0 + r

)
. We quickly get the following:

�E = −QE · r = −Q
1

2

[E (
r0

)+ E (
r0 + r

)]
r

= −1

2
Q

[
i
(Ex,0 + Ex

)+ j
(Ey,0 + Ey

)+ k
(Ez,0 + Ez

)] (
ix + jy + kz

)
= −Ex,0 Qx − Ey,0 Qy − Ez,0 Qz

− Q
1

2

∑
q

(
∂Ex

∂q

)
0

qx − Q
1

4

∑
q,q ′

(
∂2Ex

∂q∂q ′

)
0

qq ′x

− Q
1

2

∑
q

(
∂Ey

∂q

)
0

qy − Q
1

4

∑
q,q ′

(
∂2Ey

∂q∂q ′

)
0

qq ′y
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−Q
1

2

∑
q

(
∂Ez

∂q

)
0

qz − Q
1

4

∑
q,q ′

(
∂2Ez

∂q∂q ′

)
0

qq ′z + · · · ,

= −
∑

q

Eq,0μ̃q − 1

2

∑
q,q ′

(
∂Eq

∂q ′

)
0
�̃qq ′ − 1

4

∑
q,q ′,q ′′

(
∂2Eq

∂q ′∂q ′′

)
0
�̃qq ′q ′′ + · · · , (12.4)

where “+· · ·” denotes higher-order terms, while μ̃q=Qq, �̃qq ′=Qqq ′, �̃qq ′q ′′ = Qqq ′q ′′, . . .
represent the components of the successive electric moments of a particle with electric charge
Q pointed by the vector r0 + r and calculated within the coordinate system located at r0. For
example, μ̃x = Qx, �̃xy = Qxy, �̃xzz = Qxz2, etc.

Traceless Multipole Moments

The components of such moments in general are not independent. The three components of the
dipole moment are indeed independent, but among the quadrupole components, we have the
obvious relations �̃qq ′ = �̃q ′q from their definition, which reduces the number of independent
components from 9 to 6. This, however, is not all. From the Maxwell equations (see Appendix G
available at booksite.elsevier.com/978-0-444-59436-5, p. e81), we obtain the Laplace equation
�V = 0 (� means the Laplacian), which is valid for points without electric charges. Since
E = −∇V , and therefore −∇E = �V , we obtain

∇E =
∑

q

∂Eq

∂q
= 0. (12.5)

Thus, in the energy expression−1
2

∑
q,q ′

(
∂Eq
∂q ′

)
0
�̃qq ′ of Eq. (12.4), the quantities �̃qq ′ are not

independent, since we have to satisfy the condition in Eq. (12.5).
We have, therefore, only 5 independent moments that are quadratic in coordinates. For

the same reasons, we have only 7 (among 27) independent moments with the third power of
coordinates. Indeed, 10 original components �q,q ′,q ′′ , with (q, q ′, q ′′) = xxx, yxx, yyx, yyy,
zxx, zxy, zzx, zyy, zzy, zzz, correspond to all permutational non-equivalent moments. We
have, however, three relations that these components have to satisfy. They correspond to the
three equations, each obtained from the differentiation of Eq. (12.5) over x, y, z, respectively.
This results in only seven independent components7 �q,q ′,q ′′ .

These relations between moments can be taken into account (adding to the energy expression
the zeros resulting from the Laplace equation (12.5)) and we may introduce what are known

7 In Appendix X available at booksite.elsevier.com/978-0-444-59436-5 on p. e169, the definition of the polar
coordinate-based multipole moments is reported. The number of independent components of such moments is
equal to the number of independent Cartesian components and equals (2l + 1) for l = 0, 1, 2, . . . with the
consecutive l pertaining, respectively, to the monopole (or charge) (2l + 1 = 1), dipole (3), quadrupole (5),
octupole (7), etc. (in agreement with what we have found a while before for the particular moments).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5


The Molecule Subject to the Electric or Magnetic Field 729

as the traceless Cartesian multipole moments8 (the symbol without tilde), which may be chosen
in the following way:

μq ≡ μ̃q , (12.6)

�qq ′ ≡ 1

2

[
3�̃qq ′ − δqq ′

∑
q

�̃qq

]
, (12.7)

The adjective traceless results from relations of the type Tr� =∑
q �qq = 0, etc.

Then the expression for the energy contribution changes to (check that both expressions are
identical after using the Laplace formula)

�E = −
∑

q

Eq,0μq − 1

3

∑
q,q ′

(
∂Eq

∂q ′

)
0
�qq ′ − · · · (12.8)

Most often, we first compute the moments and then use them to calculate the traceless
multipole moments (cf. Table on p. 562).

System of Charges in a Non-Homogeneous Electric Field

Since we are interested in constructing the perturbation operator that is to be added to the Hamil-
tonian, from now on, according to the postulates of quantum mechanics (Chapter 1), we will treat
the coordinates x, y, z in Eq. (12.8) as operators of multiplication by just x, y, z. In addition, we
would like to treat many charged particles, not just one, because we want to consider molecules.
To this end, we will sum up all the above expressions, computed for each charged particle, sepa-
rately. As a result, the Hamiltonian for the total system (nuclei and electrons) in the electric field
E represents the Hamiltonian of the system without field (Ĥ (0)) and the perturbation (Ĥ (1)):

Ĥ = Ĥ (0) + Ĥ (1), (12.9)

where

Ĥ (1) = −
∑

q

μ̂qEq − 1

3

∑
qq ′

�̂qq ′Eqq ′ . . . (12.10)

with the convention

Eqq ′ ≡ ∂Eq

∂q ′
,

8 The reader will find the corresponding formulas in the article by A.D. Buckingham, Advan. Chem. Phys., 12,
107 (1967); or by A.J. Sadlej, “Introduction to the theory of intermolecular interactions,” Lund’s Theoretical
Chemistry Lecture Notes, Lund (1990).
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(a) (b)

(c) (d)

Fig. 12.3. Explanation of why a dipole moment interacts with the electric field intensity, a quadrupole moment with its gradient,
while the octupole moment does not interact either with the first or with the second. The external electric field is produced by
two distant electric charges Q > 0 and −Q (for long distances between them, the field in the central region between the charges
resembles a homogeneous field) and interacts with an object (a dipole, a quadrupole, etc.) located in the central region. A favorable
orientation of the object corresponds to the lowest interaction energy with Q and−Q. Panel (a) Shows such a low-energy situation
for a dipole: the charge “+” protrudes toward−Q, while the charge “−” protrudes toward Q. Panel (b) Corresponds to the opposite
situation, energetically unfavourable. As we can see, the interaction energy of the dipole with the electric field differentiates these
two situations. Now, let us locate a quadrupole in the middle (c). Let us imagine that a neutral point object has just split into four
point charges (of the same absolute value). The system lowers its energy by the “−” charges going off the axis because they have
increased their distance from the charge −Q, but at the same time, the system energy has increased by the same amount since the
charges went off the symmetrically located charge +Q. What about the “+” charges? The splitting of the “++” charges leads
to an energy gain for the right-side “+” charge, because it approached −Q, and went off the charge +Q, but the left-side “+”
charge gives the opposite energy effect. All together, the net result is zero. Conclusion: the quadrupole does not interact with the
homogeneous electric field. Now, let us imagine an inhomogeneous field having a nonzero gradient along the axis (e.g., both Q
charges differ by their absolute values). There will be no energy difference for the “−” charges, but one of the “+” charges will
be attracted more strongly than the other. Therefore, the quadrupole interacts with the field gradient. We may foresee that the
quadrupole will align with its longer axis along the field. Panel (d) Shows an octupole (all charges have the same absolute value).
Indeed, the total charge, all the components of the dipole as well as of quadrupole moment, are equal to zero, but the octupole
(eight charges in the vertices of a cube) is nonzero. Such an octupole does not interact with a homogeneous electric field (because
the right and left sides of the cube do not gain anything when interacting), it also does not interact with the field gradient (because
each of the abovementioned sides of the cube is composed of two plus and two minus charges—what the first ones gain the second
ones lose).

where the field component and its derivatives are computed at a given point (r0) (e.g., in the
center of mass of the molecule), while μ̂q , �̂qq ′, . . . denote the operators of the components of
the traceless Cartesian multipole moments of the total system; i.e., of the molecule.9 How can
we imagine multipole moments? We may associate a given multipole moment with a simple
object that exhibits a nonzero value for this particular moment, but all lower multipole moments
equal zero.10 Some of these objects are shown in Fig. 12.3, located between two charges Q and
−Q producing an external field. Note that the multipole moment names (dipole, quadrupole,
octupole) indicate the number of the point charges from which the objects are built.

Equation (12.10) means that if the system exhibits nonzero multipole moments (before any
interaction or due to the interaction), they will interact with the external electric field: the dipole
with the electric field intensity, the quadrupole with its gradient, etc. Fig. 12.3 shows why this
happens.

9 This is also calculated with respect to this point. This means that if the molecule is large, then r may become
dangerously large. In such a case, as a consequence, the series [Eq. (12.8)] may converge slowly.

10 Higher moments in general will be nonzero.
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12.2.2 The Homogeneous Electric Field

In case of a homogeneous external electric field, the contribution to Ĥ (1) comes from the
first term in Eq. (12.10):

Ĥ = Ĥ (0) + Ĥ (1) = Ĥ (0) − μ̂xEx − μ̂yEy − μ̂zEz = Ĥ (0) − μ̂ · E, (12.11)

where the dipole moment operator μ̂ has the form:

μ̂ =
∑

i

ri Qi , (12.12)

with the vector ri indicating the particle i of charge Qi .

Hence,

∂ Ĥ

∂Eq
= −μ̂q . (12.13)

From this, it follows that

〈ψ | ∂ Ĥ

∂Eq
ψ〉 = −〈ψ |μ̂qψ〉 = −μq , (12.14)

where μq is the expectation value of the qth component of the dipole moment.
From the Hellmann-Feynman theorem, we have

〈ψ | ∂ Ĥ

∂Eq
ψ〉 = ∂E

∂Eq
; (12.15)

therefore

∂E

∂Eq
= −μq . (12.16)

On the other hand, in the case of a weak electric field E , we certainly may write the Taylor
expansion as

E(E) = E (0) +
∑

q

(
∂E

∂Eq

)
E=0

Eq + 1

2!
∑
q,q ′

(
∂2 E

∂Eq∂Eq ′

)
E=0

EqEq ′

+ 1

3!
∑

q,q ′,q ′′

(
∂3 E

∂Eq∂Eq ′∂Eq ′′

)
E=0

EqEq ′Eq ′′ + · · · , (12.17)

where E (0) stands for the energy of the unperturbed molecule.
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Linear and Nonlinear Responses to a Homogeneous Electric Field

Comparing Eqs.(12.16) and (12.17) we get

∂E

∂Eq
= −μq =

(
∂E

∂Eq

)
E=0
+

∑
q ′

(
∂2 E

∂Eq∂Eq ′

)
E=0

Eq ′

+ 1

2

∑
q ′

(
∂3 E

∂Eq∂Eq ′∂Eq ′′

)
E=0

Eq ′Eq ′′ . . . (12.18)

or replacing the derivatives by their equivalents (permanent dipole moment, molecular polariz-
ability, and hyperpolarizabilities)

μq = μ0q +
∑

q ′
αqq ′Eq ′ + 1

2

∑
q ′q ′′

βqq ′q ′′Eq ′Eq ′′ + · · · (12.19)

The meaning of the formula forμq is clear: in addition to the permanent dipole momentμ0 of
the isolated molecule, we have its modification [i.e., an induced dipole moment, which consists
of the linear part in the field (

∑
q ′ αqq ′Eq ′) and of the nonlinear part (1

2

∑
q ′q ′′ βqq ′q ′′Eq ′Eq ′′ +

· · · )]. The quantities that characterize the molecule: vector μ0 and tensors α,β, . . . are of key
importance. By comparing Eq. (12.18) with Eq. (12.19), we have the following relations:

the permanent (field-independent) dipole moment of the molecule (component q):

μ0q = −
(
∂E

∂Eq

)
E=0

, (12.20)

the total dipole moment (field-dependent):

μq = −
(
∂E

∂Eq

)
, (12.21)

the component qq ′ of the dipole polarizability tensor:

αqq ′ = −
(

∂2 E

∂Eq∂Eq ′

)
E=0
=

(
∂μq

∂Eq ′

)
E=0

, (12.22)

the component qq ′q ′′ of the dipole hyperpolarizability tensor:

βqq ′q ′′ = −
(

∂3 E

∂Eq∂Eq ′∂Eq ′′

)
E=0

. (12.23)
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Next, we would obtain higher-order dipole hyperpolarizabilities (γ, . . . ), which will con-
tribute to the characteristics of the way the molecule is polarized when subject to a weak
electric field.

The Homogeneous Field: Dipole Polarizability and Dipole Hyperpolarizabilities

When using the definition of μ,α,β, γ from Eq. (12.17), we have the following expression for
the energy of the molecule in the electric field:

E(E) = E (0) −
∑

q

μ0qEq − 1

2

∑
qq ′

αqq ′EqEq ′ − 1

3!
∑

qq ′q ′′
βqq ′q ′′EqEq ′Eq ′′

− 1

4!
∑

qq ′q ′′q ′′′
γqq ′q ′′q ′′′EqEq ′Eq ′′Eq ′′′ . . . (12.24)

Due to the homogeneous character of the electric field, this formula pertains exclusively to
the interaction of the molecular dipole (the permanent dipole plus the induced linear and
nonlinear response) with the electric field.

As seen from Eq. (12.19), the induced dipole moment with the componentsμq−μ0q may have
a different direction from the applied electric field (due to the tensor character of the polarizability
and hyperpolarizabilities). This is quite understandable because the electrons will move in a
direction that will represent a compromise between the direction the electric field forces them
to move in and the direction where the polarization of the molecule is easiest (Fig. 12.4).

It is seen from Eqs. (12.19) and (12.22) that

• As a second derivative of a continuous function E , the polarizability represents a symmetric
tensor (αqq ′ = αq ′q).

• The polarizability characterizes this part of the induced dipole moment, which is propor-
tional to the field.

• If non-diagonal components of the polarizability tensor are nonzero, then the charge flow
direction within the molecule will differ from the direction of the field. This would happen
when the electric field forced the electrons to flow into empty space, while they had a
“highway” to travel along some chemical bonds (cf. Fig. 12.4).

• If a molecule is symmetric with respect to the plane q = 0 (say, z = 0), then all the
(hyper)polarizabilities with odd numbers of the indices q, are equal to zero (cf. Fig. 12.4).
It has to be like this because otherwise, a change of the electric field component from Ez

to −Ez would cause a change in energy [see Eq. (12.24 )], which is impossible because the
molecule is symmetric with respect to the plane z = 0.
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Fig. 12.4. The direction of the induced dipole moment may differ from the direction of the electric field applied (due to the
tensor character of the polarizability and hyperpolarizabilities). Example: the vinyl molecule in a planar conformation. Assume
the following Cartesian coordinate system: x (horizontal in the Figure plane), y (vertical in the Figure plane) and z (perpendicular
to the Figure plane), and the external electric field: E = (

0,Ey , 0
)
. The component x of the induced dipole moment is equal to

[within the accuracy of linear terms, Eq. (12.19)] μind,x = μx − μ0x ≈ αxyEy , μind,y ≈ αyyEy , μind,z ≈ αzyEy . Due to the
symmetry plane z = 0 of the molecule (cf. p. 704) αzy = αzx = 0, and similarly for the hyperpolarizabilities, we have μind,z = 0.
As we can see, despite the field having its x component equal to zero, the induced dipole moment x component does not equal to
zero (μind,x �= 0).

• The dipole hyperpolarizabilities (β and higher-order) are very important because if we
limited ourselves to the first two terms of Eq. (12.19) containing only μ0q and αqq ′ (i.e.,
neglecting β and higher hyperpolarizabilities), the molecule would be equally easy to polar-
ize in two opposite directions.11 This is why, for a molecule with a center of inversion, all
odd dipole hyperpolarizabilities (i.e., with an odd number of indices q) have to equal zero
because the invariance of the energy with respect to the inversion will be preserved that
way. If the molecule does not exhibit an inversion center, the nonzero odd dipole hyperpo-
larizabilities ensure that polarization of the molecule depends, in general, on whether we
change the direction of the electric field vector to the opposite. This is how it should be.
Why do the electrons move to the same extent toward an electron donor (on one end of the
molecule) and to an electron acceptor (on the other end)?

11 According to Eq. (12.19), the absolute value of the q component of the induced dipole moment μind = μ− μ0
would be identical for Eq , as well as for −Eq .
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Does the Dipole Moment Really Exist?

Now, let us complicate things. What is μ0? We used to say that it is the dipole moment of
the molecule: μ0 =

〈
ψ |μ̂0ψ

〉
. Unfortunately, no molecule has a nonzero dipole moment in

any of its stationary states. This follows from the invariance of the Hamiltonian with respect
to the inversion operation and was described on p. 72. The mean value of the dipole moment
operator is bound to be zero since |ψ |2 is symmetric, while the dipole moment operator itself is
antisymmetric with respect to the inversion. Thus, for any molecule12, μ0q = 0 for q = x, y, z.

Is this strange? No, not at all. The reason is the rotational part of the wave function (cf.
p. 272). This is quite natural. Have you ever tried to figure out why the hydrogen atom does
not exhibit a dipole moment despite having two opposite poles: that of the proton and of the
electron? The reason is the same. The electron in its ground state is described by the 1s orbital,
which does not prefer any direction and the dipole moment integral for the hydrogen atom gives
zero.13 Evidently, we have got into trouble.

But this trouble disappears after the Born-Oppenheimer approximation (the clamped nuclei
approximation, cf. p. 268) is used; i.e., if we hold the molecule fixed in space. In such a case, the
molecule has the dipole moment, and this dipole moment is to be inserted into formulas as μ0,
and then we may calculate the polarizability, hyperpolarizabilities, etc. (see p. 72). But what do
we do when we do not apply the Born-Oppenheimer approximation? Yet, in experiments, we do
not use the Born-Oppenheimer approximation (or any other one). We have to allow the molecule
to rotate and then the dipole momentμ0 disappears. Well, that is not quite true since the space is
no longer isotropic. There is a chance to measure a dipole moment. What do we measure, then?

It is always good to see things working in a simple model, and simple models resulting
in exact solutions of the Schrödinger equation were described in Chapter 4. A good model
for our rotating molecule may be the rigid rotator with a dipole moment (a charge Q on one
mass and −Q on the other).14 The Hamiltonian remains, in principle, the same as for the rigid

rotator because we have to add a constant −Q2

R to the potential energy, which does not change
anything. Thus, the ground state wave function is Y 0

0 = const as before, which tells us that
every orientation of the rigid dipolar rotor in space is equally probable.

In a homogeneous electric field, such a wave function will not be a constant but will have a
single maximum for the electric field direction (and the minimum for the opposite direction).
For any field intensity, this will correspond to the state of the lowest energy. This is natural
because a dipole should have a tendency to align along the orientation of the electric field.

What will happen if the rotator were in one of its excited states? Well, we can guess. A
strong electric field will stop the rotation in order to align the rotator along the field and make

12 It is common sense that the HF molecule has a nonzero dipole moment. Common knowledge says that when an
electric field is applied, the HF dipole gets aligned along the electric field vector. Does this happen at any field,
no matter how small? This would be an incredible scenario. No, the picture has to be more complex.

13 The same is in any excited stationary state because
∫

drx |ψnlm |2 = 0.
14 This moment, therefore, has a constant length.
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from the rotator a kind of oscillator that allows only its vibrations about the field direction. In
the first approximation, this can be viewed as a harmonic oscillator, and hence the equidistant
distribution of the energy levels.15

The above reasoning suggests that the larger the field intensity, the lower the energy of dipolar
molecules. If this happened, the molecules would seek regions with the highest electric field.
We will see in a while that this is the case, but not always.16

A Surprise at Excited States

It has been shown in experiments that dipole molecules (even the same as high field-seeking ones)
may sometimes seek low-field ones; i.e., they may be expelled from the electric field.17How is
it possible?

Let us study these things in more detail. Imagine a free rigid rotator–a model of a dipolar
molecule, where for the sake of simplicity, we assume now it is rotating within a plane. After
separation of the center of mass (cf. Appendix I available at booksite.elsevier.com/978-0-444-
59436-5, p. e93), one has to solve a problem for a single particle (with the reduced mass μ). It
is like if one of the particles, having the negative charge −Q, resided in the origin, while the
second particle, with the charge Q, moved around in a circle of radius R , where R stands for
the length of the rigid rotator. The only variable is angle φ. This problem has been solved18 in
Chapter 4, p. 167. The expression for the energy (after inserting L = 2πR), reads as19

E J = −Q2

R
+ J 2 �

2

2μR2 = const + J 2 �
2

2μR2 , (12.25)

15 The perturbation for small angle θ can be written as

Ĥ (1) = −μ̂ · E = −RQE cosφ � −E RQ

(
1− 1

2
φ2

)
= const + 1

2
E RQφ2 = const + 1

2
kφ2,

which corresponds to a harmonic dependence on φ with the force constant k = E RQ.
16 Such molecules are known as the “high-field seekers.” Basing on molecular dynamics, it is possible to predict

[H.J. Loesch and B. Scheel, Phys. Rev. Letters, 85, 2709 (2000)] what happens in the following situation. Suppose
that we have a steel cylinder with a metal wire along its axis. There is a voltage difference applied to the cylinder
and the wire resulting in an inhomogeneous electric field, the highest field being at the wire. A molecular beam
of polar molecules (like NaCl, NaBr, NaI) when injected on one side of the cylinder begins to orbit in a helix-like
motion about the wire. It is also possible to join the ends of the cylinder (making torus) and forming a closed
trajectory of the beam. Such devices might serve in the future as reservoirs of molecules in a given quantum state.

17 These are known as “low-field seekers.”
18 The moving particle was an electron, but it does not matter. For the dipole, there will be the electrostatic interaction

of the two charges, but this interaction is constant (since R is a constant) and therefore irrelevant.
19 In a more formal derivation, we write down first the Hamiltonian for a dipole rotator (two point masses with

charges Q and −Q and distance R): H (0) = − �
2

2m1
�1 − �

2

2m2
�2 + const, const = − Q2

R . Next, we sep-
arate the center of mass motion (see Appendix I available at booksite.elsevier.com/978-0-444-59436-5, p.

e93) and get the Schrödinger equation with the Hamiltonian Ĥ (0) = − �
2

2μ� − Q2

R , that describes the relative
motion of the two particles. After expressing � in spherical coordinates (see Appendix R available at booksite.
elsevier.com/978-0-444-59436-5, p. e137) and putting R = const, and θ = π/2 (rotations about the z-axis only),

we get Ĥ (0) = − �
2

2μR2
∂2

∂φ2 + const. The corresponding eigenfunctions are �J (φ) = 1√
2π

exp (i Jφ), J =
0,±1,±2, . . ., with the eigenvalues given by Eq. (12.25).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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for J = 0,±1,±2, . . . We have, therefore, the ground state corresponding to J = 0 and the
doubly degenerate excited states with J = ±1,±2, . . ., corresponding to the wave functions
�J (φ) = 1√

2π
exp (i Jφ). One of the excited state wave functions, �J (φ), J > 0, corresponds

to the rotation that increases φ, the second one, �−J (φ), describes the rotation in the opposite
direction. Note that in each of these states, the probability density of finding the rotating particle
is uniform |�J (φ)|2 = |�−J (φ)|2 = 1

2π �= f (φ); i.e., the rotational motion is uniform (the
wave functions are perfectly delocalized).

In the external electric field E the Hamiltonian reads as [see Eq. (12.11)]

Ĥ = Ĥ (0) − μ̂ · E. (12.26)

Note that a uniform electric field along the φ = 0 direction has to cause the degeneracy to be
lifted. Indeed, for a very strong field, the wave functions and the energies have to be similar
to those of the harmonic oscillator (the dipole will oscillate about the φ = 0 direction), which
means non-degeneracy. How does such a transition from the rotator (the degenerate levels) to
the oscillator (the non-degenerate levels) may look like?

There are two opposite effects manifesting themselves in every excited state: a free rotation
of the particle (E J = J 2 �

2

2μR2 ) is modified by the interaction of the dipole with the field that
tends to stop the rotation and to orient the dipole along the field with the maximum energy gain
(for a perfect alignment)−μE = −E Q R. The ratio of these two tendencies can be characterized
by parameter γ = E

J 2 .

Let us increaseγ to some medium values (a stronger field, in our calculations �
2

2μR2 = 0.00005
a.u. and E Q R = 0.001 a.u.) and consider the low energy levels. We obtain a symmetric (with
respect to φ→−φ) nodeless ground state wave functionψ0, but unlike that for the free rotator,
showing a maximum amplitude for the orientation of the field (φ = 0). Thus, in this state the
dipole has a propensity for orientation along the electric field. Next energy levels correspond to
two wave functions (stemming from the non-perturbed functions with J = ±1), with a single
nodal plane each. The lower level corresponds to the antisymmetric wave function ψ1, with
the nodal plane going through points φ = 0 and φ = 180◦ and resembling very much the first
excited state of the harmonic oscillator. Thus, in this state the dipolar rotator is oscillating about
the direction of the field. The second one-node state, ψ2, is symmetric and has maximum |ψ2|
on the side opposite to the field! The reason is that all these functions have to be orthogonal.20

The nodal plane of ψ2 when orthogonal to that of ψ1 keeps 〈ψ1|ψ2〉 = 0. However, to make

The same result can be obtained equivalently by postulating that an integer number ( |J | ) of the de Broglie
wavelengths (λ) should match the 2πR distance: 2πR = |J | λ, where the quantum number J = 0,±1,±2, . . .
From the de Broglie relation λ = h

p (p stands for the momentum of the moving particle of mass μ), one gets

p = |J | �

R . Hence, the total energy (being the kinetic energy only) is E = μv2

2 = p2

2μ = J 2 �
2

2μR2 , as in Eq. (12.25).
20 The wave functions represent the eigenfunctions of a Hermitian operator and correspond to different ener-

gies in a non-zero field. Such functions must be orthogonal (Appendix B available at booksite.elsevier.com/
978-0-444-59436-5, p.e7).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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〈ψ0|ψ2〉 = 0, one has to have |ψ2| small on the side of the field and large on the side opposite
to the field!

We will come to similar conclusions for excited states.
For very large γ (very strong electric fields), the electric field will overcome the rotational

kinetic energy for the states up to some large J : the ground state, as well as the excited states
of both kinds described above will lower their energies due to the overwhelming influence of
the electric field. These states will be localized close to the direction (φ = 0), all resembling
the harmonic oscillator wave functions.

When in a non-homogeneous field, the molecules in such states will seek the stronger field
domains to lower their energies. The higher excited states still will be localized about the
direction opposite to the field. The molecules in such states will be the low-field seekers;
they will be expelled outside the field.

The orientation of an electric dipole opposite to the electric field seems counterintuitive, but it
is not. We will use an analogy to explain this. Children like to use a swing, which is nothing but a
rotator in the gravitational field. If there were no such field (say, on a solid spaceship), the swing
would move around at a certain speed in one of two possible directions. The gravitational field
(similarly as the electric field acting on the moving positive charge) forces the swing position to
prefer the down direction. This means children like the high-field-seeking states of the swing.
However, besides the children, there are acrobats who manage not only to make almost free
rotation (a delocalized state), but also to get a state of much higher energy, as shown in Fig. 12.5.

The acrobat, after exceeding some kinetic energy is able to spend more time being oriented
opposite to the field, than along the field! In theoretician’s reasoning there is a possibility to
lower the energy of such a state by going off the gravitational field. This is therefore an analog
of the low-field seeker dipole molecule.

12.2.3 The Non-Homogeneous Electric Field: Multipole Polarizabilities and
Hyperpolarizabilities

Let us come back to the non-rotating (immobilized) molecules.
The formula μq = μ0q +∑

q ′ αqq ′Eq ′ + 1
2

∑
q ′q ′′ βqq ′q ′′Eq ′Eq ′′ + · · · pertains to the polar-

izabilities and hyperpolarizabilities in a homogeneous electric field. The polarizability αqq ′
characterizes a linear response of the molecular dipole moment to the electric field, the hyper-
polarizability βqq ′q ′′ and the higher ones characterize the corresponding nonlinear response of
the molecular dipole moment. However, a change of the molecular charge distribution contains
more information than just that offered by the induced dipole moment. For a non-homogeneous
electric field, the energy expression changes because besides the dipole moment, higher multi-
pole moments (permanent as well as induced) come into play (see Fig. 12.3). Using the Hamil-
tonian equation (12.9) with the perturbation equation (12.10), which corresponds to a molecule
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Fig. 12.5. Analogies of the high-field and low-field seeking states of dipolar molecules. Two stable states of a swing: (a) downward
(a large stability); (b) upward (marginal stability); (c,d) two electronic states of the molecular ion H+2 ; (c) the ground state
corresponding to the stable molecule (the bonding orbital); (d) an excited state that corresponds to a dissociating molecule (the
antibonding orbital); (e,f) the probability density of a given orientation φ of a dipole in the electric field (corresponding to φ = 0)
in two particular states. The quantity p 1

2
, stands for the calculated probability that the dipole-field angle φ ∈ (−90◦, 90◦), φav

means the mean value of |φ|; (e) in the ground rotational state ( J = 0) φav = 23◦ i.e., the dipole prefers to be oriented along the
field, in the excited rotational state ( J = 3), the expected orientation is φav = 105◦; i.e., mostly opposite to the field. These data

correspond to �
2

2μR2 = 0.00005 a.u. and E Q R = 0.001 a.u.

immersed in a non-homogeneous electric field, we obtain the following energy expression from
the Hellmann-Feynman theorem [Eqs. (12.15) and (12.17)]:

E
(E) = E (0) + Eμ + E� + Eμ−� + · · · , (12.27)

where besides the unperturbed energy E (0) of the molecule, we have the following:

• The dipole-field interaction energy Eμ (including the permanent and induced dipole, these
terms appeared earlier for the homogeneous field):

Eμ = −
⎡
⎣∑

q

μ0qEq + 1

2

∑
qq ′

αqq ′EqEq ′ + 1

6

∑
q,q ′,q ′′

βq,q ′,q ′′EqEq ′Eq ′′ . . .

⎤
⎦ . (12.28)



740 Chapter 12

• Next, the terms that pertain to the non-homogeneity of the electric field: the energy E�
of the interaction of the field gradient with the quadrupole moment (the permanent one
�, the first term, and of the induced one; C stands for the quadrupole polarizability, and
then, in the terms denoted by “+ · · ·,” there are the nonlinear responses with quadrupole
hyperpolarizabilities):

E� = −
⎡
⎣1

3

∑
qq ′

�qq ′Eqq ′ + 1

6

∑
qq ′q ′′q ′′′

Cqq ′q ′′q ′′′Eqq ′Eq ′′q ′′′ + · · ·
⎤
⎦ . (12.29)

• The dipole-quadrupole cross term Eμ−�:

Eμ−� = −
⎡
⎣1

3

∑
q,q ′,q ′′

Aq,q ′q ′′EqEq ′q ′′ + 1

6

∑
q,q ′,q ′′,q ′′′

Bqq ′,q ′′q ′′′EqEq ′Eq ′′q ′′′

⎤
⎦ , (12.30)

and
• The interaction of higher multipoles (permanent as well as induced: first, the octupole�with

the corresponding octupole polarizabilities and hyperpolarizabilities, etc.) with the higher
derivatives of electric field together with the corresponding cross terms denoted as: + · · ·

12.3 How to Calculate the Dipole Moment

The dipole moment in normalized state |n〉 is to be calculated (according to the postulates
of quantum mechanics, as discussed in Chapter 1; the Born-Oppenheimer approximation is
assumed) as the mean value μ = 〈n|μ̂|n〉 of the dipole moment operator21

μ̂ = −
∑

i

ri +
∑

A

Z ARA, (12.31)

where ri are the vectors indicating the electrons and RA shows nucleus A with the charge Z A

(in a.u.).

12.3.1 Coordinate System Dependence

The dipole moment operator and the dipole moment itself do not depend on the choice of the
origin of the coordinate system only for a neutral molecule. When two coordinate systems differ
by translation R, then, in general, we may obtain two different results:

μ̂ =
∑

i

Qi ri

μ̂
′ =

∑
i

Qi r′i =
∑

i

Qi (ri + R) = μ̂+
∑

i

Qi R = μ̂+ R
∑

i

Qi . (12.32)

21 As is seen, this is an operator having x, y, and z components in a chosen coordinate system, and each of its
components means a multiplication by the corresponding coordinates and electric charges.
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It is seen that μ̂′ = μ̂, only if
∑

i Qi = 0 (i.e., for a neutral system).22

This represents a special case of the theorem, saying that the lowest non-vanishing multipole
moment does not depend on the choice of coordinate system; all others may depend on that
choice.

12.3.2 Hartree-Fock Approximation

In order to show how we calculate the dipole moment in practice, let us use the Hartree-Fock
approximation. Using the normalized Slater determinant |�0〉, we have as the Hartree-Fock
approximation to the dipole moment:

μ = 〈�0|−
∑

i

ri+
∑

A

Z ARA|�0〉 = 〈�0|−
∑

i

ri |�0〉+〈�0|
∑

A

Z ARA|�0〉 = μel+μnucl ,

(12.33)
where the integration goes over the electronic coordinates. The dipole moment of the nuclei
μnucl =

∑
A Z ARA is very easy to compute because, in the Born-Oppenheimer approximation,

the nuclei occupy some fixed positions in space. The electronic component of the dipole moment
μel = 〈�0|−∑

i ri |�0〉, according to the Slater-Condon rules (rule I, see Appendix M available
at booksite.elsevier.com/978-0-444-59436-5 on p. e109), amounts to μel = −

∑
i ni (ϕi |riϕi ),

where ni stands for the occupation number of the orbital ϕi (let us assume double occupa-
tion; i.e., ni = 2). After the LCAO expansion is applied (ϕi = ∑

j c jiχ j ) and combining the
coefficients c ji into the bond order matrix (see p. 433) P, we have

μel = −
∑

kl

Plk(χk |r|χl). (12.34)

This is all we can say in principle about calculation of the dipole moment in the Hartree-Fock
approximation. The rest belongs to the technical side. We choose a coordinate system and calcu-
late all the integrals of type (χk |rχl); i.e., (χk |xχl), (χk |yχl), (χk |zχl). The bond order matrix
P is just a by-product of the Hartree-Fock procedure.

12.3.3 Atomic and Bond Dipoles

It is interesting that within the Hartree-Fock model, the total dipole moment can be decomposed
into atomic and pairwise contributions:

μel = −
∑

A

∑
k∈A

∑
l∈A

Plk(χk |r|χl)−
∑

A

∑
k∈A

∑
B �=A

∑
l∈B

Plk(χk |r|χl), (12.35)

22 If you ever have to debug a computer program that calculates the dipole moment, then remember that there is a
simple and elegant test at your disposal that is based on the above theorem. You just make two runs of the program
for a neutral system each time using a different coordinate system (the two systems differing by a translation).
The two results have to be identical.

http://booksite.elsevier.com/978-0-444-59436-5
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where we assume that the atomic orbital centers (A, B) correspond to the nuclei.23 To this end,
we construct the vectors, which indicate from the origin the nuclei and the centers of any pair
of them. If the two atomic orbitals k and l belong to the same atom, then we insert r = RA+ rA,
where RA shows the atom (nucleus) A from the origin, and rA indicates the electron from the
local origin centered on A. If k and l belong to different atoms, then r = RAB + rAB , where
RAB indicates the center of the AB section and rAB represents the position of the electron with
respect to this center. Then,

μel = −
∑

A

RA

∑
k∈A

∑
l∈A

Skl Plk −
∑

A

∑
k∈A

∑
l∈A

Plk(χk |rA|χl)

−
∑

A

∑
B �=A

RAB

∑
k∈A

∑
l∈B

Skl Plk −
∑

A

∑
k∈A

∑
B �=A

∑
l∈B

Plk(χk |rAB |χl). (12.36)

After adding the dipole moment of the nuclei, we obtain

μ =
∑

A

μA +
∑

A

∑
B �=A

μAB, (12.37)

where

μA = RA(Z A −
∑
k∈A

∑
l∈A

Skl Plk)−
∑
k∈A

∑
l∈A

Plk(χk |rA|χl)

μAB = −RAB

∑
k∈A

∑
l∈B

Skl Plk −
∑
k∈A

∑
l∈B

Plk(χk |rAB |χl).

We therefore have a quite interesting result24:

The molecular dipole moment can be represented as the sum of the individual atomic dipole
moments and the pairwise atomic dipole contributions.

The Plk is large, when k and l belong to the atoms forming a chemical bond (if com-
pared to two non-bonded atoms; see Appendix S available at booksite.elsevier.com/978-0-
444-59436-5, p. e143); therefore, the dipole moments related to pairs of atoms come prac-
tically uniquely from chemical bonds. The contribution of the lone pairs of the atom A is
hidden in the second term of μA and may be quite large (cf. Appendix T available at booksite.
elsevier.com/978-0-444-59436-5 on p. e149).

23 We use the LCAO notation in the form: ϕi =
∑

A
∑

k∈A ckiχk .
24 This does not represent a unique partitioning, only the total dipole moment should remain the same. For example,

the individual atomic contributions include the lone pairs, which otherwise could be counted as a separate lone
pair contribution.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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12.3.4 Within the ZDO Approximation

In several semi-empirical methods of quantum chemistry (e.g., in the Hückel method), we
assume the Zero Differential Overlap (ZDO) approximation; i.e., that χkχl ≈ (χk)

2δkl and
hence the second terms in μA, as well as in μAB , are equal to zero25, and therefore

μ =
∑

A

RA

(
Z A −

∑
k∈A

Pkk

)
=

∑
A

RA Q A, (12.38)

where Q A = (Z A −∑
k∈A Pkk) represents the net electric charge of the atom26 A. This result

is extremely simple: the dipole moment comes only from the atomic charges.

12.4 How to Calculate the Dipole Polarizability

We have a formal expression [Eq. (12.24)] involving the dipole polarizability, but we need to
calculate this expansion to be able to write the formula for αqq ′ .

12.4.1 Sum Over States Method (SOS)

Perturbation theory gives the energy of the ground state |0〉 in a weak electric field as (the sum
of the zeroth, first and second-order energies27; see Chapter 5):

E
(E) = E (0) + 〈0|Ĥ (1)|0〉 +

∑
n

′ |〈0|Ĥ (1)|n〉|2
E (0)0 − E (0)n

+ · · · (12.39)

If we assume a homogeneous electric field [see Eq. (12.11)], the perturbation is equal to Ĥ (1) =
−μ̂ · E , and we obtain

E = E (0) − 〈0|μ̂|0〉 · E +
∑

n

′ [〈0|μ̂|n〉 · E][〈n|μ̂|0〉 · E]
E (0) − E (0)n

+ · · · (12.40)

The first term represents the energy of the unperturbed molecule, and the second term is a
correction for the interaction of the permanent dipole moment with the field. The next term
already takes into account that not only the permanent dipole moment but also an induced
moment interact with the electric field; Eq. (12.19):

∑
n

′ [〈0|μ̂|n〉 · E][〈n|μ̂|0〉 · E]
E (0) − E (0)n

= −1

2

∑
qq ′

αqq ′EqEq ′, (12.41)

25 The second term in μA equals zero because the integrands χ2
k x, χ2

k y, χ2
k z are all antisymmetric with respect to

transformation of the coordinate system x →−x, y →−y, z→−z.
26 The molecule stays neutral. Indeed,

∑
A

∑
k∈A Pkk =

∑
A

∑
k∈A

∑
i ni c∗ki cki =

∑
A

∑
k∈A

∑
i ni |cki |2 ≈∑

i ni = N , where we consequently used the ZDO approximation.
27 Prime in the summation means that the 0th state is excluded.
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where the component qq ′ of the polarizability is equal to

αqq ′ = 2
∑

n

′ 〈0|μ̂q |n〉〈n|μ̂q ′ |0〉
�n

, (12.42)

where �n = E (0)n − E (0). The polarizability has the dimension of a volume.28

Similarly, we may obtain the perturbational expressions for the dipole, quadrupole, octupole
hyperpolarizabilities, etc. For example, the ground-state dipole hyperpolarizability β0 has the
form (the qq ′q ′′ component, with the prime meaning that the ground state is omitted, and we
skip the derivation):

βqq ′q ′′ =
∑
n,m

′ 〈0|μ̂q |n〉〈n|μ̂q, |m〉〈m|μq,, |0〉
�n�m

− 〈0|μq |0〉
∑

n

′ 〈0|μ̂q, |n〉〈n|μ̂q,, |0〉(
�n

)2 . (12.43)

A problem with the SOS method is its slow convergence and the fact that whenever the
expansion functions do not cover the energy continuum, the result is incomplete.

Example 1. The Hydrogen Atom in an Electric Field–Perturbational Approach
An atom or molecule, when located in electric field, undergoes a deformation. We will show

this in detail, taking the example of the hydrogen atom.

First, let us introduce a Cartesian coordinate system, within which the whole event will be
described. Let the electric field be directed toward your right; i.e., it has the form E = (E, 0, 0),
with a constant E > 0. The positive value of E means, according to the definition of electric
field intensity, that a positive unit charge would move along E (i.e., from left to right). Thus,
the anode is on your left and the cathode on your right.

We will consider a weak electric field; therefore, perturbation theory is applicable, which
means just small corrections to the unperturbed situation. In our case, the first-order correction
to the wave function [Eq. (5.24)], will be expanded in the series of hydrogen atomic orbitals
(they form the complete set29, cf. Chapter 5):

ψ

(
1
)

0 =
∑

k(�=0)

〈
ψ

(
0
)

k |Ĥ
(
1
)
|1s

〉

E
(
0
)

0 − E
(
0
)

k

ψ

(
0
)

k , (12.44)

where ψ
(
0
)

k ≡ |nlm〉 and E
(
0
)

k = − 1
2n2 denote the orbitals and energies (in a.u.) of the isolated

hydrogen atom, respectively (the unperturbed state |nlm〉 = |100〉 = 1s); and Ĥ (1) is the
perturbation, which for a homogeneous electric field has the form Ĥ (1) = −μ̂ · E = −μ̂xE ,

28 Because μ2 has the dimension of charge2 × length2, and �n has the dimension of energy; for example, in

Coulombic energy: charge2/length.
29 Still, they do not span the continuum.
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with μ̂x standing for the dipole moment operator (its x-component). The operator, according
to Eq. (12.31), represents the sum of products: charge (in our case of the electron or proton)
times the x-coordinate of the corresponding particle (let us denote them x and X , respectively):
μ̂x = −x + X , where the atomic units have been assumed. To keep the expression as simple as
possible, let us locate the proton at the origin of the coordinate system30; i.e., X = 0. Finally,
Ĥ (1) = xE . Thus the perturbation Ĥ (1) is simply proportional to the x-coordinate of the electron.

In order not to work in vain, let us first check which unperturbed states k will contribute to
the summation on the right side of Eq. (12.44). The ground state (k = 0; i.e., the 1s orbital) is
excluded by the perturbation theory. Next, k = 1, 2, 3, 4 denote the orbitals 2s, 2px , 2py, 2pz .
The contribution of the 2s is equal to zero because 〈2s|Ĥ (1)|1s〉 = 0, due to the antisymmetry
of the integrand with respect to reflection x → −x (Ĥ (1) changes its sign, while the orbitals
1s and 2s do not). A similar argument excludes the 2py and 2pz orbitals. Hence, for the time
being, we have only a single candidate31 2px . This time, the integral is not zero, and we will
calculate it shortly. If the candidates from the next shell (n = 3) are considered, similarly, the
only nonzero contribution comes from 3px . We will, however, stop the calculation at n = 2
because our goal is only to show how the whole machinery works. Thus, we need to calculate
〈2px |Ĥ (1)|1s〉

E (0)0 −E (0)1

= 〈2px |x |1s〉
E (0)0 −E (0)1

E . The denominator is equal to −1/2 + 1/8 = −3/8 a.u. Calculation

of the integral (a fast exercise for students32) gives 0.7449 a.u. At E = 0.001 a.u., we obtain
the coefficient−0.001986 at the normalized orbital 2px in the first-order correction to the wave
function. The negative value of the coefficient means that the orbital −0.001986(2px ) has its
positive lobe oriented leftward.33 The small absolute value of the coefficient results in such a
tiny modification of the 1s orbital after the electric field is applied, that it will be practically
invisible. In order to make the deformation visible, let us use E = 0.1 a.u. Then, the admixture
of 2px is equal to −0.1986(2px ); i.e., an approximate wave function of the hydrogen atom
has the form 1s − 0.19862px . Fig. 12.6 shows the unperturbed and perturbed 1s orbital. As
seen, the deformation makes an egg shape of the wave function (from a spherical one), and the

30 The proton might be located anywhere. The result does not depend on this choice because the perturbation

operators will differ by a constant. This, however, means that the nominator 〈ψ
(
0
)

k |Ĥ (1)|1s〉 in the formula will

remain unchanged because 〈ψ
(
0
)

k |1s〉 = 0.
31 Note how fast our computation of the integrals proceeds. The main job (zero or not zero—that is the question) is

done by the group theory.
32 From p. 206, we have 〈2px | x |1s〉 = 1

4π
√

2

∫∞
0 drr4 exp

(
− 3

2 r
) ∫ π

0 dθ sin3 θ
∫ 2π

0 dφ cos2 φ =
1

4π
√

2
4!

(
3
2

)−5 4
3π = 0.7449, where we have used the formula

∫∞
0 xn exp

(−αx
)

dx = n!α−
(
n+1

)
to calculate

the integral over r .
33 2px ≡ x× the positive spherically symmetric factor means that the positive lobe of the 2px orbital is on your

right (i.e., on the positive part of the x-axis).
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(a) (b)

Fig. 12.6. Polarization of the hydrogen atom in an electric field. The wave functions for (a) the unperturbed atom (b) the atom
in the electric field (a.u.) E = (0.1, 0, 0) are shown. As we can see, there are differences in the corresponding electronic density
distributions: in the second case, the wave function is deformed toward the anode (i.e., leftward). Note that the wave function is
less deformed in the region close to the nucleus than in its left or right neighborhood. This is a consequence of the fact that the
deformation is made by the −0.1986(2px ) function. Its main role is to subtract on the right and add on the left, and the smallest
changes are at the nucleus because 2px has its node there.

electron is pulled toward the anode.34 This is what we expected. Higher expansion functions
(3px , 4px , . . . ) would change the shape of the wave function only a little.

Just in passing, we may calculate a crude approximation to the dipole polarizability αxx .
From Eq. (12.42), we have

αxx
∼= 16

3
〈2px |x(1s)〉2 = 16

3
(0.7449)2 = 2.96 a.u.

The exact (non-relativistic) result is αxx = 4.5 a.u. This shows that the number that we have
received is somewhat off, but after recalling that only a single expansion function has been used
(instead of infinity of them), we should be quite happy with our result.35

12.4.2 Finite Field Method

One may solve the Schrödinger equation, including the term −μ̂ · E , in the Hamiltonian. The
solution is valid, then, for this particular E . This procedure is known as the finite field method.

34 This “pulling” results from adding together 1s and (with a negative coefficient) 2px ; i.e., we decrease the probability
amplitude on the right side of the nucleus, and increase it on the left side.

35 Such a situation is quite typical in the practice of quantum chemistry: the first terms of expansions give a lot, while
the next ones give less and less, the total result approaching its limit with more and more pain. Note that in the
present case, all terms are of the same sign, and we obtain better and better approximations when the expansion
becomes longer and longer.
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Example 2. Hydrogen Atom in Electric Field – The Variational Approach
The polarizability of the hydrogen atom also may be computed by using the variational

method (Chapter 5), in which the variational wave function ψ = χ1 + cχ2 is the χ1 ≡ 1s
plus an admixture (this is controlled by a variational parameter) of the p type orbital χ2 with
a certain exponential coefficient ζ (Ritz method of Chapter 5), see Appendix V available at
booksite.elsevier.com/978-0-444-59436-5, Eq. (V.1). As it is seen from Eq. (V.4), if χ2 is taken
as the 2px orbital (i.e., ζ = 1

2 ), we obtain αxx = 2.96 a.u., the same number that we have
already obtained by the perturbational method. However, if we take ζ = 1 (i.e., the same as in
hydrogenic orbital 1s), we will obtain αxx = 4 a.u. This is a substantial improvement.

Is it possible to obtain an even better result with the variational function ψ? Yes, it is. If we
use the finite field method (with the electric field equalling E = 0.01 a.u.), we will obtain36 the
minimum of E of Eq. (V.3) as corresponding to ζopt = 0.797224. If we insert ζ = ζopt into
Eq. (V.4), we will obtain 4.475 a.u., which is only 0.5% off the exact result. This nearly perfect
result is computed with a single correction function37.

Sadlej Relation–Electric Field Variant Orbitals

In order to compute accurate values of E(E) extended LCAO expansions have to be used.
Andrzej Sadlej38 noticed that this huge numerical task in fact only takes into account a very
simple effect: just a kind of shift39 of the electronic charge distribution toward the anode. Since
the atomic orbitals are usually centered on the nuclei and the electronic charge distribution shifts,
to compensate for this using the on-nuclei atomic orbitals requires monstrous and expensive
LCAO expansions.

In LCAO calculations nowadays, we most often use Gaussian-type orbitals (GTOs; see Chap-
ter 8). They are rarely thought of as representing wave functions of the harmonic oscillator (cf.
Chapter 4), which they really do.40 Sadlej became interested in what would happen if an electron
described by a GTO were subject to the electric field E .

Sadlej noticed that the GTO will change in a similar way as the wave functions of a charged
harmonic oscillator in an electric field do, the later however simply shift, Fig. 12.7a.

36 You may use Mathematica and the command FindMinimum[E, {ζ, 1}] to do this.
37 This success means that sometimes long expansions in the Ritz method may result from unfortunate choice of the

expansion functions.
38 A.J. Sadlej, Chem.Phys.Letters, 47, 50 (1977); A.J. Sadlej, Acta Phys. Polon. A, 53, 297 (1978).
39 This shift occurs with a deformation.
40 At least, they do if they represent the 1s GTOs.

http://booksite.elsevier.com/978-0-444-59436-5
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(a)

(b)

Fig. 12.7. Sadlej relation. The electric field mainly causes a shift of the electronic charge distribution toward the anode (a). A
GTO represents the eigenfunction of a harmonic oscillator. Suppose that an electron oscillates in a parabolic potential energy well
(with the force constant k). In this situation, a homogeneous electric field E corresponds to the perturbation Ex , that conserves the
harmonicity with unchanged force constant k (b).

Indeed, this can be shown as follows. The Schrödinger equation for the harmonic oscillator
(here, for an electron with m = 1 in a.u., its position is x) without any electric field is given
on p. 186. According to the example of the hydrogen atom in an electric field, the Schrödinger
equation for an electron oscillating in homogeneous electric field E > 0 takes the form:(

−1

2

d2

dx2 +
1

2
kx2 + Ex

)
ψ(x, E) = E(E)ψ(x, E). (12.45)

Now, let us find constants a and b, such that

1

2
kx2 + Ex = 1

2
k(x − a)2 + b. (12.46)

We immediately get a = −E/k, b = −1
2 ka2. The constant b is completely irrelevant, since it

only shifts the zero on the energy scale. Thus,

the solution to a charged harmonic oscillator (oscillating electron) in a homogeneous elec-
tric field represents the same function as without the field, but shifted by −E

k .



The Molecule Subject to the Electric or Magnetic Field 749

Andrzej Jerzy Sadlej (1941–2010), Polish quantum chemist, and the
only person I know who wrote a scientific book while still a undergradu-
ate (Elementary Methods of Quantum Chemistry, PWN, Warsaw, 1966),
the first book on quantum chemistry written in the Polish language. After
half a century, the book still holds up due to its competence. The book
that you are reading now owes very much to friendship of the author
with Andrzej. He did not expect any acknowledgment–his only concern
was science. Andrzej Sadlej made several important contributions to
quantum chemistry. Among others he proposed the first rigorous two-
component Dirac theory of the relativistic electron.

Indeed, inserting x ′ = x + E
k leads to d/dx = d/dx ′ and d2/dx2 = d2/dx

′2 which gives
a similar Schrödinger equation except that the harmonic potential is shifted. Therefore, the
solution to the equation can be written as simply a zero-field solutionψ(x ′) = ψ(x+ E

k ) shifted
by −E

k . This is quite understandable because the operation only means adding to the parabolic
potential energy kx2/2 a term proportional to x ; i.e., a parabola potential again (though it is a
displaced one; see Fig. 12.7b).

To see how this displacement depends on the GTO exponent, let us recall its relation to
the harmonic oscillator force constant k (cf. p. 186). The harmonic oscillator eigenfunction
corresponds to a GTO with an exponent equal to α/2, where α2 = k (in a.u.). Therefore, if
we have a GTO with exponent equal to A, this means the corresponding harmonic oscillator
has the force constant k = 4A2. Now, if the homogeneous electric field E is switched on, the
center of this atomic orbital has to move by �(A) = −E/k = −1

4E/A2. This means that all
the atomic orbitals have to move opposite to the applied electric field (as expected), and the
displacement of the orbital is small, if its exponent is large, and vice versa. Also, if the atomic
electron charge distribution results from several GTOs (as in the LCAO expansion), it deforms
in the electric field in such a way that the diffuse orbitals shift more, while the compact ones
(with large exponents) shift only a little. All together, this does not mean just a simple shift of
the electronic charge density, but instead its shift accompanied by a deformation. On the other
hand, we may simply optimize the GTO positions within the finite field Hartree-Fock method
and check whether the corresponding shifts �opt (A) indeed follow the Sadlej relation.41

41 We have tacitly assumed that in the unperturbed molecule, the atomic orbitals occupy optimal positions. This
assumption may sometimes cause trouble. If the centers of the atomic orbitals in an isolated molecule are
non-optimized, we may end up with a kind of antipolarizability: we apply the electric field and, when the atomic
orbital centers are optimized, the electron cloud moves opposite to the way we expect. This is possible only
because in such a case, the orbital centers mainly follow the strong intramolecular electric field, rather than the
much weaker external field E (J.M. André, J. Delhalle, J.G. Fripiat, G. Hennico, and L. Piela, Intern. J. Quantum
Chem., 22S, 665 (1988)).
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It turns out that the relation �opt (A) ∼ −E/A2 is satisfied to a good level of accuracy42,
despite the fact that the potential energy in an atom does not represent that of a harmonic
oscillator.

The Electrostatic Catastrophe of the Theory

There is a serious problem in finite field theory. If even the weakest homogeneous electric field
is applied and a very good basis set is used, we are bound to have some kind of catastrophe. It’s
a nasty word, but unfortunately it accurately reflects a mathematical horror that we are going to
be exposed to after adding to the Hamiltonian operator Ĥ

(
1
)
= xE with an electric field (here, x

symbolizes the component of the dipole moment).43 The problem is that this operator is unbound;
i.e., for a normalized trial function φ, the integral 〈φ|Ĥ

(
1
)
φ〉 may attain∞ or −∞. Indeed, by

gradually shifting the function toward the negative values of the x-axis, we obtain more and
more negative values of the integral, and for x = −∞, we get 〈φ|Ĥ

(
1
)
φ〉 = −∞. In other words,

when using atomic orbitals centered far from the nuclei in the region of the negative x
(or allowing optimization of the orbital centers with the field switched on), we will lower
the energy to −∞ (i.e., catastrophe). This is quite understandable because such a system
(electrons separated from the nuclei and shifted far away along the x-axis) has a huge
dipole moment and therefore very low energy.

Suppose that calculations for a molecule in an electric field E are carried out. According to
the Sadlej relation, we shift the corresponding atomic orbitals proportionally to ηE/A2, with
η < 0, and the energy goes down. Around η = −1

4 , which according to Sadlej corresponds to
optimal shifts44, we may expect the lowest energy, then, for larger |η|, the energy has to go up.
What if we continue to increase (Fig. 12.8) the shift parameter |η|?

The energy increase will continue only up to some critical value of η. Then, according to
the discussion above, the energy will fall to−∞ (i.e., to a catastrophe). Thus, the energy curve
exhibits a barrier (Fig. 12.8), that is related to the basis set quality (its “saturation”): a poor
basis means a high barrier, while the ideal basis (i.e., the complete basis set) gives no barrier
at all. It just falls into the abyss with the polarizability going to infinity, etc. Therefore, rather
paradoxically, reliable values of polarizability are to be obtained using a medium-quality basis
set. An improvement of the basis will lead to worse results.45

This pertains to variational calculations. What about the perturbational method? In the first-
and second-order corrections to the energy, the formulas contain the zero-order approximation

42 This is how the electric-field–variant orbitals (EFVOs) were born.
43 The most dramatic form of the problem would appear if the finite field method were combined with the numerical

solution of the Schrödinger or Fock equation.
44 They are optimal for a parabolic potential.
45 Once more, we make this point; wealth does not necessarily improve life.
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molecule

(a) (b)

Fig. 12.8. A molecule in a homogeneous electric field (a). In (b), η is a parameter describing the shift of the Gaussian atomic
orbitals along the electric field, with η = 0 showing the centering on the nuclei. The total energy E(E, x) is a function of the
electric field intensity E and the basis set shift parameter η. Optimization of η gives a result close to the Sadlej value η = 1

4 . Larger
absolute η values first lead to an increase of E , but then end up in a decrease toward a catastrophe: limx→−∞E(E, x) = −∞.

to the wave functionψ(0)0 ; e.g., E (2) = 〈ψ(0)0 |Ĥ
(
1
)
ψ
(1)
0 〉. If the origin of the coordinate system is

located on the molecule, then the exponential decay ofψ(0)0 forces the first-order correction to the

wave functionψ(1)0 to be localized close to the origin; otherwise, it would tend to zero through the
shifting toward the negative values of x (this prevents the integral diverging to−∞). However,
the third-order correction to the energy contains the term 〈ψ(1)0 |Ĥ

(
1
)
ψ
(1)
0 〉, which may already

go to−∞. Hence, the perturbation theory also carries the seed of future electrostatic catastrophe.

12.4.3 What Is Going on at Higher Electric Fields?

Polarization

The theory described so far is applicable only when the electric field intensity is small. Such a
field can mainly polarize (a small deformation) the electronic charge distribution. More fasci-
nating phenomena begin when the electric field gets stronger.

Deformation

Of course, the equilibrium configurations of the molecule with and without an electric field
differ. In a simple case, say the HCl molecule, the HCl distance increases. It has to increase
since the cathode pulls the hydrogen atom and repels the chlorine atom, while the anode does the
opposite. In more complex cases, like a flexible molecule, the field may change its conformation.
This means that the polarizability results both from the electron cloud deformation and the
displacement of the nuclei. It turns out that the latter effect (called vibrational polarization) is
of great importance.46

46 J.-M. André and B. Champagne, in “Conjugated Oligomers, Polymers, and Dendrimers: From Polyacetylene to
DNA”, J.L. Brédas (Ed.), Bibliothéque Scientifique Francqui, De Boeck Université, 1999, p. 349.
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Dissociation

When the electric field gets stronger, the molecule may dissociate into ions. To this end, the
external electric field intensity has to become comparable to the electric field produced by the
molecule itself in its neighborhood. The intramolecular electric fields are huge, and the inter-
molecular ones are weaker but also very large–of the order of 108 V/m, much larger than those
offered by current technical installations. No wonder, then, that the molecules may interact to
such an extent that they may even undergo chemical reactions. When the interaction is weaker,
the electric fields produced by molecules may lead to intermolecular complexes. Many beautiful
examples of this may be found in biochemistry (see Chapters 13 and 15). A strong external elec-
tric field applied to a crystal may cause a cascade of processes; e.g., the so-called displacive phase
transitions, when sudden displacements of atoms occur, and a new crystal structure appears.

Destruction

A sufficiently strong electric field will destroy the molecules through their ionization. The
resulting ions accelerate in the field, collide with the molecules, and ionize them even more
(these phenomena are accompanied by light emission, as in vacuum tubes). Such processes
may lead to the final decomposition of the system (plasma) with the electrons and the nuclei
finally reaching the anode and cathode. We will have a vacuum.

Creation

Let us keep increasing the electric field applied to the vacuum. Will anything interesting happen?
From Chapter 3, we know that when huge electric field intensities are applied (of the order of
the electric field intensity in the vicinity of a proton, which is infeasible for the time being),
then the particles and antiparticles will leap off the vacuum. The vacuum is not just nothing.

12.5 A Molecule in an Oscillating Electric Field

Constant and Oscillating Components

A nonzero hyperpolarizability indicates a nonlinear response (the dipole moment proportional
to the second and higher powers of the field intensity). This may mean an “inflated” reaction to
the applied field, a highly desired feature for contemporary optoelectronic materials. One such
reaction is the second- and third-harmonic generation (SHG and THG, respectively), where the
light of frequency ω generates in a material light with frequencies 2ω and 3ω, respectively. A
simple statement about why this may happen is shown below.47

47 The problem of how the polarizability changes as a function of inducing wave frequency is described in detail in
J. Olsen and P. Jørgensen, J. Chem. Phys., 82, 3235 (1985).
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Let us imagine a molecule immobilized in a laboratory coordinate system (as in an oriented
crystal). Let us switch on a homogeneous electric field E , which has two components, a static
component E0 and an oscillating one Eω with frequency ω:

E = E0 + Eω cos
(
ωt

)
. (12.47)

We may imagine various experiments here: the steady field along x, y, or z and a light beam
polarized along x, y, or z, we may also vary ω for each beam, etc. Such choices lead to a rich
set of nonlinear optical phenomena.48 What will the reaction of the molecule be in such an
experiment? Let us see.49

Induced Dipole Moment

The total dipole moment of the molecule (i.e., the permanent moment μ0 plus the induced
moment μind ) will depend on time because μind does:

μq(t) = μ0,q + μind,q , (12.48)

μind,q(t) =
∑

q ′
αqq ′Eq ′ + 1

2

∑
q ′q ′′

βqq ′q ′′Eq ′Eq ′′

+ 1

6

∑
q ′,q ′′,q ′′′

γqq ′q ′′q ′′′Eq ′Eq ′′Eq ′′′ + · · · (12.49)

Therefore, if we insert Eq = E0
q +Eωq cos

(
ωt

)
as the electric field component for q = x, y, z,

we obtain

μq
(
t
) = μ0,q +

∑
q ′
αqq ′

[
E0

q ′ + Eωq ′ cos
(
ωt

)]

+1

2

∑
q ′q ′′

βqq ′q ′′
[
E0

q ′ + Eωq ′ cos
(
ωt

)]× [
E0

q ′′ + Eωq ′′ cos
(
ωt

)]

+1

6

∑
q ′,q ′′,q ′′′

γqq ′q ′′q ′′′
[
E0

q ′ + Eωq ′ cos
(
ωt

)] [
E0

q ′′ + Eωq ′′ cos
(
ωt

)]

×
[
E0

q ′′′ + Eωq ′′′ cos
(
ωt

)]+ · · · (12.50)

48 S. Kielich, Molecular nonlinear optics Warszawa-Poznań, PWN (1977).
49 For the sake of simplicity, we have used the same frequency and the same phases for the light polarized along

x, y, and z.
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SHG and THG Harmonic Generation

After multiplication and simple trigonometry, we have

μq(t) = μω=0,q + μω,q cosωt + μ2ω,q cos
(
2ωt

)+ μ3ω,q cos
(
3ωt

)
, (12.51)

where the amplitudesμ corresponding to the coordinate q ∈ x, y, z and to the particular resulting
frequencies 0, ω, 2ω, 3ω have the form given below. The polarizabilities and hyperpolarizabil-
ities depend on the frequency ω and the direction of the incident light waves. According to the
convention, a given (hyper) polarizability, such as γqq ′q ′′q ′′′(−3ω;ω,ω, ω), is characterized by
the frequencies ω corresponding to the three directions x, y, and z of the incident light polar-
ization (preceded by the negative Fourier frequency of the term, −3ω, which symbolizes the
photon energy conservation law). Some of the symbols [e.g., γqq ′q ′′q ′′′(−ω;ω,−ω,ω)] after
a semicolon have negative values, which means a partial (as in γqq ′q ′′q ′′′(−ω;ω,−ω,ω)) or
complete (as in βq,q ′,q ′′(0;−ω,ω)) cancellation of the intensity of the oscillating electric field.
The formulas for the amplitudes are:

μω=0,q = μ0,q +
∑

q ′
αqq ′

(
0; 0) E0

q ′ +
1

2

∑
q ′,q ′′

βqq ′q ′′(0; 0, 0)E0
q ′E0

q ′′

+ 1

6

∑
q ′,q ′′,q ′′′

γqq ′q ′′q ′′′(0; 0, 0, 0)E0
q ′E0

q ′′E0
q ′′′

+ 1

4

∑
q ′q ′′

βq,q ′,q ′′(0;−ω,ω)Eωq ′Eωq ′′ +
1

4

∑
q,q ′,q ′′,q ′′′

γqq ′q ′′q ′′′(0; 0,−ω,ω)E0
q ′Eωq ′′Eωq ′′′,

μω,q =
∑

q ′
αqq ′

(−ω;ω) Eωq ′ +
∑
q ′,q ′′

βqq ′q ′′(−ω;ω, 0)Eωq ′E0
q ′′

+ 1

2

∑
q,q ′,q ′′,q ′′′

γqq ′q ′′q ′′′(−ω;ω, 0, 0)Eωq ′E0
q ′′E0

q ′′′

+ 1

8

∑ ∑
q,q ′,q ′′,q ′′′

γqq ′q ′′q ′′′(−ω;ω,−ω,ω)Eωq ′Eωq ′′Eωq ′′′,

μ2ω,q = 1

4

∑
q ′q ′′

βq,q ′,q ′′(−2ω;ω,ω)Eωq ′Eωq ′′

+1

4

∑ ∑
q,q ′,q ′′,q ′′′

γqq ′q ′′q ′′′(−2ω;ω,ω, 0)Eωq ′Eωq ′′E0
q ′′′, (12.52)

μ3ω,q = 1

24

∑
q,q ′,q ′′,q ′′′

γqq ′q ′′q ′′′(−3ω;ω,ω, ω)Eωq ′Eωq ′′Eωq ′′′ . (12.53)
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We see the following:

• An oscillating electric field may result in a non-oscillating dipole moment related to the
hyperpolarizabilities βq,q ′,q ′′(0;−ω,ω) and γqq ′q ′′q ′′′(0; 0,−ω,ω), which manifests as an
electric potential difference on two opposite crystal faces.

• The dipole moment oscillates with the basic frequency ω of the incident light and in addi-
tion, with two other frequencies: the second (2ω) and third (3ω) harmonics (SHG and
THG, respectively). This is supported by experiments (mentioned in the example at the
beginning of the chapter); applying incident light of frequency ω, we obtain emitted light
with frequencies50 2ω and 3ω.

Note that to generate a large SHG, the material has to have large values of the hyperpolar-
izabilities β and γ . The THG needs a large γ . In both cases, a strong laser electric field is a
must. The SHG and THG therefore require support from the theoretical side: we are looking for
high hyperpolarizability materials and quantum mechanical calculations before an expensive
organic synthesis is done.51

MAGNETIC PHENOMENA

The electric and magnetic fields (both of them related by the Maxwell equations, see Appendix G
available at booksite.elsevier.com/978-0-444-59436-5) interact differently with matter, which
is highlighted in Fig. 12.9, where the electron trajectories in both fields are shown. They are
totally different, the trajectory in the magnetic field has a circle-like character, while in the
electric field, it is a parabola. This is why the description of magnetic properties differs so much
from that of electric properties.

12.6 Magnetic Dipole Moments of Elementary Particles

12.6.1 Electron

An elementary particle, besides its orbital angular momentum, may also have internal angu-
lar momentum, or spin; cf. p. 29. In Chapter 3, the Dirac theory led to a relation between the
spin angular momentum s of the electron and its dipole magnetic moment Mspin,el

[Eq. (3.63), p. 134]:

Mspin,el = γels,

50 This experiment was first carried out by P.A. Franken, A.E. Hill, C.W. Peters, and G. Weinreich, Phys. Rev. Letters,
7, 118 (1961).

51 In molecular crystals, it is not sufficient that particular molecules have high values of hyperpolarizability. What
counts is the hyperpolarizability of the crystal unit cell.

http://booksite.elsevier.com/978-0-444-59436-5


756 Chapter 12

Fig. 12.9. Dramatic differences between electron trajectories in the electric and magnetic fields. (a) The uniform electric field
E and the parabolic electron trajectory; (b) first, the magnetic field is switched off, then it is set on (Hup), being perpendicular
to the picture and oriented toward the reader. After the electron made a single loop, the orientation of the magnetic field has been
inverted (Hdown ) and its intensity kept increasing. The latter caused the electron to make loops with smaller and smaller radius.

with the gyromagnetic coefficient52

γel = −2
μB

�
,

52 The word gyromagnetic is derived from Greek word gyros, or circle; it is believed that a circular motion of a
charged particle is related to the resulting magnetic moment.
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where the Bohr magneton (m0 is the electronic rest mass)

μB = e�

2m0c
.

The gyromagnetic factor is twice as large as that appearing in the relation between the electron
orbital angular momentum L and the associated magnetic dipole moment:

Morb,el = −μB

�
L. (12.54)

Quantum electrodynamics explains this effect much more precisely, predicting the factor very
close to the experimental value53 2.0023193043737, known with the breathtaking accuracy level
of ±0.0000000000082.

12.6.2 Nucleus

Let us stay within the Dirac theory, as pertaining to a single elementary particle. If, instead of
an electron, we take a nucleus of charge +Ze and atomic mass54 M , then we would presume
(after insertion into the above formulas) the gyromagnetic factor should be γ = −2μnucl

�
=

−2
(−Ze)

2Mm H c �

�
= 2 Z

M
e�

2m H c = 2 Z
M
μN
�

, whereμN = e�

2m H c (m H denoting the proton mass) is known

as the nuclear magneton.55 For a proton (Z = 1,M = 1), we would have γp = 2μN/�,
whereas the experimental value56 is γp = 5.59μN/�. What is going on? In both cases, we have
a single elementary particle (electron or proton), both with a spin quantum number equal to 1

2 .
We might expect that nothing special will happen for the proton, and only the mass ratio and
charge will make a difference. Instead, we see that Dirac theory does pertain to the electron,
but not to the nuclei. Visibly, the proton is more complex than the electron. We see that even
the simplest nucleus has internal machinery, which results in the observed strange deviation.
There are lots of quarks in the proton (three valence quarks and a sea of virtual quarks together
with the gluons, etc.). The proton and electron polarize the vacuum differently and this results
in different gyromagnetic factors. Other nuclei exhibit even stranger properties. Sometimes we
even have negative gyromagnetic coefficients. In such a case, their magnetic moment is the
opposite of the spin angular momentum. The complex nature of the internal machinery of the
nuclei and vacuum polarization lead to the observed gyromagnetic coefficients.57 Science has

53 R.S. Van Dyck Jr., P.B. Schwinberg, and H.G. Dehmelt, Phys. Rev. Letters, 59, 26 (1990).
54 This is a unitless quantity.
55 This is ca. 1840 times smaller than the Bohr magneton (for the electron).
56 Also, the gyromagnetic factor for an electron is expected to be ca. 1840 times larger than that for a proton. This

means that a proton is expected to create a magnetic field that is ca. 1840 times weaker than the field created by
an electron.

57 The relation between spin and magnetic moment is as mysterious as that between the magnetic moment and charge
of a particle (the spin is associated with a rotation, while the magnetic moment is associated with a rotation of a
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had some success here (e.g., for leptons58), but for nuclei, the situation is worse. This is why we
are simply forced to take this into account in this book59 and treat the spin magnetic moments
of the nuclei as the experimental data:

M A = γAI A, (12.55)

where I A represents the spin angular momentum of the nucleus A.

12.6.3 Dipole Moment in the Field

12.6.3.1 Electric Field

The problem of an electric dipoleμ rotating in an electric field was described on p. 735. When the
field is switched off (cf. p. 198), the ground state is non-degenerate ( J = M = 0) and represents
a constant, while the excited states are all degenerate. After an electric field (E) is switched on, the
ground-state wave function deforms in such a way as to prefer the alignment of the rotating dipole
moment along the field, and, for the excited states, the degeneracy is lifted. Since we may always
use a complete set of rigid rotator wave functions (at zero field), this means the deformed wave
functions have to be linear combinations of the wave functions corresponding to different J .

12.6.3.2 Magnetic Field

Imagine a spinning top like the ones children like to play with. If you make it spin (with angular
momentum I) and leave it in space without any interaction, then due to the fact that space is
isotropic, its angular momentum will stay constant (i.e., the top will rotate about its axis with a
constant speed and the axis will not move with respect to distant stars, as shown in Fig. 12.10a).

The situation changes if a homogeneous vector field (e.g., a magnetic field) is switched on.
Now, the space is no longer isotropic and the vector of the angular momentum is no longer
conserved. However, the conservation law for the projection of the angular momentum on the
direction of the field is still valid. This means that the top makes a precession about the field
axis because this is what keeps the projection constant (see Fig. 12.10b). The magnetic dipole
moment M = γ I in the magnetic field H = (0, 0, H), H > 0 has as many stationary states
as is the number of possible projections of the spin angular momentum on the field direction.
From Chapter 1, we know that this number is 2I + 1, where I is the spin quantum number of

charged object) or its mass. A neutron has spin equal to 1
2 and magnetic moment similar to that of a proton despite

there being zero electric charge. The neutrino has no charge, nearly zero mass and magnetic moment, and still
spin equal to 1

2 .
58 And what about the “heavier brothers” of the electron, the muon and taon (cf. p. 327)? For the muon, the coefficient

in the gyromagnetic factor (2.0023318920) is similar to that of the electron (2.0023193043737), just a bit larger
and agrees equally well with experimental results. For the taon, we have only a theoretical result, a little larger
than the two other “brothers.” Thus, the whole lepton family hopefully behaves in a similar way.

59 This is done with a suitable respect for nature’s complexity.
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Fig. 12.10. Classical and quantum tops in space. (a) The space is isotropic and therefore the classical top preserves its angular
momentum; i.e., its axis does not move with respect to distant stars and the top rotates about its axis with a constant speed. This
behavior is used in the gyroscopes that help to orient a spaceship with respect to distant stars. (b) The same top in a homogeneous
vector field. The space is no longer isotropic, and therefore the total angular momentum is no longer preserved. The projection of
the total momentum on the field direction is still preserved. This is achieved by the precession of the top axis about the direction
of the field. (c) A quantum top; i.e., an elementary particle with spin quantum number I = 1

2 in the magnetic field. The projection

Iz of its spin I is quantized: Iz = m I � with m I = − 1
2 ,+ 1

2 and, therefore, we have two energy eigenstates that correspond to two
precession cones, directed up and down.

the particle (e.g., for a proton: I = 1
2 ). The projections (Fig. 12.10c) are equal to m I � with

m I = −I ,−I + 1, . . . 0, . . .+ I . Therefore,

the energy levels in the magnetic field are equal to

Em I = −γm I �H . (12.56)

Note that the energy level splitting is proportional to the magnetic field intensity; see
Fig. 12.11.

If a nucleus has I = 1
2 , then the energy difference �E between the two states in a magnetic

field H (one with m I = −1
2 and the other one with m I = 1

2 ), equals �E = 2 × 1
2γ�H =
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Fig. 12.11. Energy levels in magnetic field H = (0, 0, H) for a nucleus with spin angular momentum I corresponding to spin
quantum number I = 1

2 . The magnetic dipole moment equals M = γ I. (a) At the zero field, the level is doubly degenerate. (b)
For γ > 0 (e.g., a proton), I and M have the same direction. In a nonzero magnetic field, the energy equals E = −M · H =
−Mz H = −γm I �H , where m I = ± 1

2 . Thus, the degeneracy is lifted: the state with m I = 1
2 ; i.e., with the positive projection of

I on direction of the magnetic field has lower energy. (c) For γ < 0, I and M have the opposite direction. The state with m I = 1
2 ;

i.e., has higher energy.

γ�H , and
�E = hνL , (12.57)

where the Larmor60 frequency is defined as

νL = γ H

2π
. (12.58)

We see (Fig. 12.11) that for nuclei with γ > 0, lower energy corresponds to m I = 1
2 ; i.e., to

the spin moment along the field (forming an angle θ = 54◦44′ with the magnetic field vector;
see p. 28).

Note that

there is a difference between the energy levels of the electric dipole moment in an electric
field and the levels of the magnetic dipole in a magnetic field. The difference is that for
the magnetic dipole of an elementary particle, the states do not have admixtures from the
other I values (which is given by nature), while for the electric dipole, there are admixtures
from states with other values of J .

This suggests that we may also expect such admixtures in the magnetic field. Anyway, it is
at least true if the particle is complex. For example, the singlet state (S = 0) of the hydrogen

60 Named after Joseph Larmor (1857–1942), Irish physicist and professor at Cambridge University who highlighted
the concept of precession in atomic physics.
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molecule gets an admixture of the triplet state (S = 1) in the magnetic field, because the spin
magnetic moments of both electrons tend to align parallel to the field.

12.7 NMR Spectra–Transitions Between the Nuclear Quantum States

Is there any possibility of making the nuclear spin flip from one quantum state to another? Yes.
Evidently, we have to create distinct energy levels corresponding to different spin projections;
i.e., to switch the magnetic field on (Figs. 12.11 and 12.12a). After the electromagnetic field is
applied and its frequency matches the energy level difference, the system absorbs the energy. It
looks as if a nucleus absorbs the energy and changes its quantum state. In a genuine NMR exper-
iment, the electromagnetic frequency is fixed (radio wavelengths) and the specimen is scanned

Fig. 12.12. Proton’s shielding by the electronic structure. (a) The energy levels of an isolated proton in magnetic field; (b) the
energy levels of the proton of the benzene ring (no nuclear spin interaction is assumed). The most mobile π electrons of benzene
(which may be treated as a conducting circular wire) move around the benzene ring in response to the external magnetic field
(perpendicular to the plane), thus producing an induced magnetic field. The latter one (when considered along the ring’s six-fold
axis) opposes to the external magnetic field, but at the position of the proton actually leads to an additional increase in the magnetic
field felt by the proton. This is why the figure (b, upper part) shows the increasing of the energy level difference due to the electron
shielding effect. (c) The energy levels of another proton (located along the ring’s axis) in a similar molecule. This proton feels a
local magnetic field that is decreased with respect to the external one (due to the induction effect).
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by a variable magnetic field. At some particular field values, the energy difference matches the
electromagnetic frequency and the transition (nuclear magnetic resonance) is observed.

The magnetic field a particular nucleus feels differs from the external magnetic field applied
because the electronic structure in which the nucleus is immersed in makes its own contribution
(see Fig. 12.12b and c). Also, the nuclear spins interact by creating their own magnetic fields.

We have not yet considered these effects in the non-relativistic Hamiltonian (2.1) on p. 67
(e.g., no spin-spin or spin-field interactions). The effects that we are now dealing with are so
small–on the order of 10−11 kcal/mole–that they are of no importance for most applications,
including UV-VIS, IR, Raman spectra, electronic structure, chemical reactions, intermolecular
interactions, etc. This time, however, the situation is different: we are going to study very subtle
interactions using the NMR technique, which aims precisely at the energy levels that result from
spin-spin and spin- magnetic field interactions. Even if these effects are very small, they can be
observed. Therefore,

we have to consider more exact Hamiltonians. First, we have to introduce the following:

• The interaction of our system with the electromagnetic field.
• Next, we will consider the influence of the electronic structure on the magnetic field

acting on the nuclei.
• Finally, the nuclear magnetic moment interaction (“coupling”) will be considered.

12.8 Hamiltonian of the System in the Electromagnetic Field

The non-relativistic Hamiltonian61 Ĥ of the system of N particles (the j th particle having mass
m j and charge q j ) moving in an external electromagnetic field with vector potential A and scalar
potential φ may be written as62

Ĥ =
∑
j=1

[
1

2m j

(
p̂ j −

q j

c
A j

)2 + q jφ j

]
+ V̂ , (12.59)

61 To describe the interactions of the spin magnetic moments, this Hamiltonian will soon be supplemented by the
relativistic terms from the Breit Hamiltonian (p. 147).

62 To obtain this equation, we may use Eq. (3.34) as the starting point, which together with E = mc2, gives with the

accuracy of the first two terms the expression E = m0c2+ p2

2m0
. In the electromagnetic field, after introducing the

vector and scalar potentials for particle of charge q , we have to replace E by E − qφ, and p by
(
p− q

c A
)
. Then,

after shifting the zero of the energy by m0c2, the energy operator for a single particle reads as 1
2m

(
p̂− q

c A
)2+qφ,

where A and φ are the values of the corresponding potentials at the position of the particle. For many particles, we
sum these contributions up and add the interparticle interaction potential (V ). This is what we wanted to obtain
[H. Hameka, Advanced Quantum Chemistry Addison-Wesley, Reading, MA (1965), p. 40].
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where V̂ stands for the “internal” potential coming from the mutual interactions of the particles,
and A j andφ j denote the external vector63 and scalar potentials A andφ, respectively, calculated
at the position of particle j .

12.8.1 Choice of the Vector and Scalar Potentials

In Appendix G available at booksite.elsevier.com/978-0-444-59436-5 on p. e81, it was shown
that there is a certain arbitrariness in the choice of both potentials, which leaves the physics of
the system unchanged. If, for a homogeneous magnetic field H, we choose the vector potential
at the point indicated by r = (

x, y, z
)

as (Eq. (G.14)) A
(
r
) = 1

2

[
H × r

]
, then, as shown in

Appendix G available at booksite.elsevier.com/978-0-444-59436-5, we will satisfy the Maxwell
equations, and in addition obtain the commonly used relation (Eq. (G.13)) divA ≡ ∇A = 0,
known as the Coulombic gauge. In this way, the origin of the coordinate system (r = 0) was
chosen as the origin of the vector potential (which need not be a rule).

Because E = 0 and A is time-independent φ = const (p. e81), which of course means
also that φ j = const , as an additive constant, may simply be eliminated from the Hamiltonian
equation (12.59).

12.8.2 Refinement of the Hamiltonian

Let us assume the Born-Oppenheimer approximation (p. 269). Thus, the nuclei occupy some
fixed positions in space, and in the electronic Hamiltonian equation (12.59), we have the elec-
tronic charges q j = −e and masses m j = m0 = m (we skip the subscript 0 for the rest mass
of the electron). Now, let us refine the Hamiltonian by adding the interaction of the particle
magnetic moments (of the electrons and nuclei; the moments result from the orbital motion of
the electrons, as well as from the spin of each particle) with themselves and with the external
magnetic field. We have, therefore, a refined Hamiltonian of the system, the particular terms of
the Hamiltonian correspond64 to the relevant terms of the Breit Hamiltonian65 (p. 147)

Ĥ = Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4, (12.60)

63 Note that the presence of the magnetic field (and therefore of A) makes it as if the charged particle moves faster
on one side of the vector potential origin and slower on the opposite side.

64 All the terms used in the theory of magnetic susceptibilities and the Fermi contact term can be derived from
classical electrodynamics.

65 However, it does not correspond to all of them. As we will see later, the NMR experimental spectra are described
by using for each nucleus what is known as the shielding constant (related to the shielding of the nucleus by the
electron cloud) and the internuclear coupling constants. The shielding and coupling constants enter in a specific
way into the energy expression. Only those terms are included in the Hamiltonian that give nonzero contributions
to these quantities.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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where (δ stands for the Dirac delta function, see Appendix E available at booksite.elsevier.com/
978-0-444-59436-5, and the spins have been replaced by the corresponding operators)

Ĥ1 =
N∑

j=1

1

2m

(
p̂ j +

e

c
A j

)2 + V + ĤSH + ĤI H + ĤL S + ĤSS + ĤL L , (12.61)

Ĥ2 = γel

N∑
j=1

∑
A

γA

⎡
⎣ ŝ j · Î A

r3
Aj

− 3

(
ŝ j · rAj

) (
Î A · rAj

)
r5

Aj

⎤
⎦ , (12.62)

Ĥ3 = −γel
8π

3

N∑
j=1

∑
A

γAδ
(
rAj

)
ŝ j · Î A, (12.63)

Ĥ4 =
∑
A<B

γAγB

⎡
⎣ Î A · ÎB

R3
AB

− 3

(
Î A · RAB

) (
ÎB · RAB

)
R5

AB

⎤
⎦ , (12.64)

where, in the global coordinate system, the internuclear distance means the length of the vector
RAB = RB − RA, while the electron-nucleus distance (of the electron j with nucleus A) will
be the length of rAj = r j − RA. These terms have the following meaning:

• In the term Ĥ1, besides the kinetic energy operator in the external magnetic field [with
vector potential A, with the convention A j ≡ A

(
r j

)
] given by

∑N
j=1

1
2m

(
p̂ j + e

c A j
)2,

Pieter Zeeman (1865–1943),
Dutch physicist and pro-
fessor at the University of
Amsterdam. He became
interested in the influence of
a magnetic field on molecular
spectra and discovered a
field-induced splitting of the
absorption lines in 1896. He
shared the Nobel Prize with
Hendrik Lorentz “for their
researches into the influence
of magnetism upon radiation
phenomena” in 1902. The
Zeeman splitting of star spec-
tra allows us to determine the

value of the magnetic field of
the star at the moment the
light was emitted.

we have the Coulomb potential
V of the interaction of all the
charged particles. Next, we have the
following:

• The interaction of the spin mag-
netic moments of the electrons
(ĤSH ) and of the nuclei (ĤI H )
with the field H. These terms
come from the first part of the
term Ĥ6 of the Breit Hamilto-
nian, and represent the simple
Zeeman terms:

−μ̂ ·H, where μ̂ is the magnetic moment operator of the corresponding particle. Why, together
with ĤSH + ĤI H , do we not have in Ĥ1 the term ĤL H ; i.e., the interaction of the electron
orbital magnetic moment with the field? It would be so nice to have the full set of terms: the
spin and the orbital magnetic moments interacting with the field. Everything is fine though,
such a term is hidden in the mixed term resulting from 1

2m

(
p̂ j + e

c A j
)2. Indeed, we get the

corresponding Zeeman term from the transformation e
mc p̂ j · A j = e

mc A j · p̂ j = e
2mc (H × r j ) ·

http://booksite.elsevier.com/978-0-444-59436-5
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p̂ j = e
2mc H · (r j × p̂ j ) = e

2mc H · L̂ j = −H · (− e
2mc L̂ j ) = −H ·Morb,el( j), where Morb,el( j)

is, according to the definition of Eq. (12.54), the orbital magnetic moment of the electron j .

• The electronic spin-orbit terms (ĤL S); i.e., the corresponding magnetic dipole moment
interactions; related to the term Ĥ3 in the Breit Hamiltonian

• The electronic spin-spin terms (ĤSS); i.e., the corresponding spin magnetic moment
interactions, related to the term Ĥ5 in the Breit Hamiltonian

• The electronic orbit-orbit terms (ĤL L ); i.e., the electronic orbital magnetic dipole inter-
actions (corresponding to the term Ĥ2 in the Breit Hamiltonian)

• The terms Ĥ2, Ĥ3, Ĥ4 (crucial for the NMR experiment) correspond to the magnetic
“dipole-dipole” interaction involving nuclear spins (the term Ĥ5 of the Breit Hamilto-
nian): the classical electronic spin – nuclear spin interaction (Ĥ2) plus the corresponding
Fermi contact term66 (Ĥ3) and the classical interaction of the nuclear spin magnetic dipoles
(Ĥ4), this time without the contact term, because the nuclei are kept at long distances by
the chemical bond framework.67

The magnetic dipole moment (of a nucleus or electron) “feels” the magnetic field acting on it
through the vector potential A j at the particle’s position r j . This A j is composed of the external
field vector potential 1

2

[
H × (

r j − R
)]

(i.e., associated with the external magnetic field68 H),

the individual vector potentials coming from the magnetic dipoles of the nuclei69 ∑
A γA

I A×rAj

r3
Aj

(and having their origins on the individual nuclei) and the vector potential Ael(r j ) coming from
the orbital and spin magnetic moments of all the electrons:

A j ≡ A
(
r j

) = 1

2

[
H × r0 j

]+∑
A

γA
I A × rAj

r3
Aj

+ Ael
(
r j

)
, (12.65)

where
r0 j = r j − R. (12.66)

For closed-shell systems (the majority of molecules) the vector potential Ael may be neglected
[i.e., Ael

(
r j

) ∼= 0], because the magnetic fields of the electrons cancel out for a closed-shell
molecule (singlet state).

66 Let us take the example of the hydrogen atom in its ground state. Just note that the highest probability of finding
the electron described by the orbital 1s is on the proton. The electron and the proton have spin magnetic moments
that necessarily interact after they coincide. This effect is certainly something other than just the dipole-dipole
interaction, which as usual describes the magnetic interaction for long distances. We have to have a correction for
very short distances–this is the Fermi contact term.

67 And atomic electronic shell structure.
68 The vector R indicates the origin of the external magnetic field H vector potential from the global coordinate

system (cf. Appendix G available at booksite.elsevier.com/978-0-444-59436-5 and the commentary there related
to the choice of origin).

69 Recalling the force lines of a magnet, we see that the magnetic field vector H produced by the nuclear magnetic
moment γ AI A should reside within the plane of rAj and γAI A. This means that A has to be orthogonal to the
plane. This is ensured by A j being proportional to γAI A × rAj .

http://booksite.elsevier.com/978-0-444-59436-5
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Rearranging Terms

When such a vector potential A is inserted into Ĥ1 (just patiently make the square of the content
of the parentheses) we immediately get

Ĥ = Ĥ0 + Ĥ
(
1
)
, (12.67)

where Ĥ0 is the usual non-relativistic Hamiltonian for the isolated system:

Ĥ0 = −
∑

j

�
2

2m
� j + V̂ , (12.68)

Ĥ
(
1
)
=

11∑
k

B̂k, (12.69)

while a few minutes of a careful calligraphy leads to the result70

B̂1 = e2

2mc2

∑
A,B

∑
j

γAγB
Î A × rAj

r3
Aj

ÎB × rB j

r3
B j

, (12.70)

B̂2 = e2

8mc2

∑
j

(
H × r0 j

) · (H × r0 j
)
, (12.71)

B̂3 = − i�e

mc

∑
A

∑
j

γA∇ j · Î A × rAj

r3
Aj

, (12.72)

B̂4 = − i�e

2mc

∑
j

∇ j ·
(
H × r0 j

)
, (12.73)

B̂5 = e2

2mc2

∑
A

∑
j

γA
(
H × r0 j

) · Î A × rAj

r3
Aj

, (12.74)

B̂6 = Ĥ2 = γel

N∑
j=1

∑
A

γA

⎡
⎣ ŝ j · Î A

r3
Aj

− 3

(
ŝ j · rAj

) (
Î A · rAj

)
r5

Aj

⎤
⎦ , (12.75)

B̂7 = Ĥ3 = −γel
8π

3

∑
j=1

∑
A

γAδ
(
rAj

)
ŝ j · Î A, (12.76)

B̂8 = ĤSH = −γel

∑
j

ŝ j ·H, (12.77)

70 The operators B̂3 and B̂4 contain the nabla (differentiation) operators. It is worth noting that this differentiation
pertains to everything on the right side of the nabla, including any function on which B̂3 and B̂4 operators will act.
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B̂9 = Ĥ4 =
∑
A<B

γAγB

⎡
⎣ Î A · ÎB

R3
AB

− 3

(
Î A · RAB

) (
ÎB · RAB

)
R5

AB

⎤
⎦ , (12.78)

B̂10 = ĤI H = −
∑

A

γA Î A ·H, (12.79)

B̂11 = ĤL S + ĤSS + ĤL L . (12.80)

We are just approaching the coupling of our theory with the NMR experiment. To this end,
let us first define an empirical Hamiltonian, which serves in the NMR experiment to find what
are known as the nuclear shielding constants and the spin-spin coupling constants. Then we
will come back to the perturbation Ĥ

(
1
)
.

12.9 Effective NMR Hamiltonian

NMR spectroscopy71 means recording the electromagnetic wave absorption by a system of
interacting nuclear magnetic dipole moments.72 It is important to note that the energy differences
detectable by contemporary NMR equipment are of the order of 10−13 a.u., while the breaking
of a chemical bond corresponds to about 10−1 a.u. This is why

all possible changes of the spin state of a system of nuclei do not change the chemical
properties of the molecule. This is really what we could only dream of: we have something
like observatory stations (the nuclear spins) that are able to detect tiny chemical bond details.

As will be seen in a moment, to reproduce NMR spectra, we need an effective and rotation-
averaged Hamiltonian that describes the interaction of the nuclear magnetic moments with the
magnetic field and with themselves.

12.9.1 Signal Averaging

NMR experiments usually pertain to the recording of the radio-wave radiation coming from a
liquid specimen (which can take many hours). Therefore, we obtain a static (time-averaged)
record, which involves various kinds of averaging:

• Over the rotations of any single molecule that contributes to the signal (we assume that each
dipole keeps the same orientation in space when the molecule is rotating). These rotations
can be free or restrained.

• Over all the molecules present in the specimen.
• Over the vibrations of the molecule (including internal rotations).

71 The first successful experiment of this kind was described by E.M. Purcell, H.C. Torrey, and R.V. Pound, Phys.
Rev., 69, 37 (1946).

72 The wavelengths used in the NMR technique are of the order of meters (radio frequencies).
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12.9.2 Empirical Hamiltonian

The empirical NMR Hamiltonian contains some parameters that take into account the electronic
cloud structure in which the nuclei are immersed. These NMR parameters will represent our
target.

Now, let us proceed in this direction.
To interpret the NMR data, it is sufficient to consider an effective Hamiltonian (containing

explicitly only the nuclear magnetic moments, the electron coordinates are absent and the
electronic structure enters only implicitly through some interaction parameters). In the matrix
notation, we have

Ĥ = −
∑

A

γAHT (
1− σ A

)
I A +

∑
A<B

γAγB{IT
A

(
DAB + K AB

)
IB}, (12.81)

where IC ≡
(
IC,x , IC,y, IC,z

)T stands for the spin angular momentum of the nucleus C , while
σ A,DAB,K AB denote the symmetric square matrices (three-dimensional tensors):

• σ A is a shielding constant tensor of the nucleus A. Due to this shielding, nucleus A feels
a local field Hloc =

(
1− σ A

)
H = H − σ AH instead of the external field H applied

(due to the tensor character of σ A, the vectors Hloc and H may differ by their length and
direction). The formula assumes that the shielding is proportional to the external magnetic
field intensity that causes the shielding. Thus, the first term in the Hamiltonian Ĥ may also
be written as −∑

A γAHT
locI A.

• DAB is the 3 × 3 matrix describing the (direct) dipole-dipole interaction through space
defined above.

• K AB is also a 3 × 3 matrix that takes into account that two magnetic dipoles also interact
through the framework of the chemical bonds or hydrogen bonds that separate them. This
is known as the reduced spin-spin intermediate coupling tensor.

Without Electrons…

Let us imagine, just for fun, removing all the electrons from the molecule (and keep them safely
in a drawer), while the nuclei still reside in their fixed positions in space. The Hamiltonian
would consist of two types of term:

• The Zeeman term: interaction of the nuclear magnetic moments with the external magnetic

field (the nuclear analog of the first term in Ĥ6 of the Breit Hamiltonian; p. 147)−∑
A H ·

M̂ A = −∑
A γAH · Î A

• The “through space” dipole-dipole nuclear magnetic moment interaction (the nuclear analog

of the Ĥ5 term in the Breit Hamiltonian)
∑

A<B γAγB[Î A · (DAB ÎB)]:
DAB = i·j

R3
AB
− 3

(
i·RAB

)(
j·RAB

)
R5

AB
,
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where i, j denote the unit vectors along the x-, y-, and z-axes; e.g., (DAB)xx = 1
R3

AB
−

3
(
RAB,x

)2

R5
AB

, (DAB)xy = −3
RAB,x RAB,y

R5
AB

, etc. with RAB denoting the vector pointing nucleus B

from nucleus A (of length RAB).

Rotations Average out the Dipole-Dipole Interaction

What would happen if we rotated the molecule? In the theory of NMR, there are a lot of
notions stemming from classical electrodynamics. In the isolated molecule, the total angular
momentum has to be conserved (this follows from the isotropic properties of space). The total
angular momentum comes, not only from the particles’ orbital motion, but also from their
spin contributions. The empirical (non-fundamental) conservation law pertains to the total spin
angular momentum alone (cf. p. 76), as well as the individual spins separately. The spin magnetic
moments are oriented in space, and this orientation results from the history of the molecule and
may be different in each molecule of the substance. These spin states are non-stationary. The
stationary states correspond to some definite values of the square of the total spin of the nuclei
and of the spin projection on a chosen axis. According to quantum mechanics (Chapter 1), only
these values are to be measured. For example, in the hydrogen molecule, there are two stationary
nuclear spin states: one with parallel spins (ortho-hydrogen) and the other with antiparallel (para-
hydrogen). Then we may assume that the hydrogen molecule has two “nuclear gyroscopes” that
keep pointing them in the same direction in space when the molecule rotates (Fig. 12.13).

Let us see what will happen if we average the interaction of two magnetic dipole moments
(the formula for the interaction of two dipoles will be derived in Chapter 13, p. 815): Edip−dip =
M A·M B

R3
AB
− 3 (M A·RAB)(M B ·RAB)

R5
AB

. Assume (without losing the generality of the problem) that M A

resides at the origin of a polar coordinate system and has a constant direction along the z-axis,
while the dipole M B just moves on the sphere of the radius RAB around M A (all orientations are
equally probable), the M B vector preserving the same direction in space (θ, φ) = (

u, 0
)

all the
time. Now, let us calculate the average value of Edip−dip with respect to all possible positions
of M B on the sphere:

Ēdip−dip = 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφEdip−dip

= 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ

[
1

R3
AB

M A ·M B − 3

R5
AB

(M A · RAB)(M B · RAB)

]

= MA MB

4πR3
AB

∫ π

0
dθ sin θ

∫ 2π

0
dφ

[
cos u − 3 cos θ cos (θ − u)

]
= MA MB

2R3
AB

∫ π

0
dθ sin θ

[
cos u − 3 cos θ cos (θ − u)

]
= MA MB

R3
AB

{
cos u − 3

2

∫ π

0
dθ sin θ cos θ

[
cos θ cos u + sin θ sin u

]}
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(a)

(c) (d)

(b)

Fig. 12.13. Rotation of a molecule and the nuclear magnetic moments. Panel (a) shows the orientation of the nuclear magnetic
moments in the orthohydrogen at the perpendicular configuration of the nuclei. Panel (b) shows the same, but the molecule is
oriented horizontally. In the theory of NMR, we assume (in a classical way), that the motion of the molecule does not influence
the orientation of both nuclear magnetic moments (c) averaging the dipole-dipole interaction over all possible orientations. Let
us immobilize the magnetic moment M A along the z-axis, the magnetic moment M B will move on the sphere of radius 1 both
moments still keeping the same direction in space (θ, φ) = (

u, 0
)
. Panel (d) shows one of these configurations. Averaging over all

possible orientations gives zero.

= MA MB

R3
AB

{
cos u − 3

2

[
cos u · 2

3
+ sin u · 0

]}
= 0. (12.82)

Thus, the averaging gave 0 regardless of the radiusRAB and of the angle u between the two
dipoles. This result was obtained when assuming the orientations of both dipoles do not change
(the abovementioned “gyroscopes”), and that all angles θ and φ are equally probable.

Averaging over Molecular Rotations

An NMR experiment requires long recording times. This means that each molecule, when
rotating freely (gas or liquid73) with respect to the NMR apparatus, acquires all possible ori-
entations with equal probability. The equipment will detect an average signal. This is why the
proposed effective Hamiltonian has to be averaged over the rotations. As we have shown, such an

73 This is not the case in the solid state.
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averaging causes the mean dipole-dipole interaction (containing DAB) to be equal to zero. If
we assume that the external magnetic field is along the z-axis, then the averaged Hamiltonian
reads as

Ĥav = −
∑

A

γA
(
1− σA

)
Hz ÎA,z +

∑
A<B

γAγB K AB(Î A · ÎB), (12.83)

where σA = 1

3

(
σA,xx + σA,yy + σA,zz

) = 1

3
T rσ A, K AB = 1

3
T rK AB .

This Hamiltonian is at the basis of NMR spectra interpretation. An experimentalist adjusts
σA for all the magnetic nuclei and K AB for all their interactions, in order to reproduce
the observed spectrum. Any theory of NMR spectra should explain the values of these
parameters.

Adding the Electrons–Why the Nuclear Spin Interaction Does not Average Out to Zero

We know already why DAB averages out to zero, but why isn’t this true for K AB?

Ramsey and Purcell 74 explained
this by what is known as the spin
induction mechanism, described in
Fig. 12.14. Spin induction results
that, in the averaging of K AB , the
spin-spin configurations have dif-
ferent weights than in the aver-
aging of DAB . This effect is due
to the chemical bonds because it
makes a difference if the correlat-
ing electrons have their spins ori-
ented parallel or perpendicular to
the bond line.

Norman F. Ramsey (b. 1915),
American physicist and profes-
sor at the University of Illinois
and Columbia University, and
then from 1947 on, at Harvard
University. He is, first of all, an
outstanding experimentalist in
the domain of NMR measure-
ments in molecular jets, but his
“hobby ” is theoretical physics.
Ramsey carried out the first
accurate measurement of the
neutron magnetic moment and
gave a lower-bound theoretical
estimation to its dipole moment.
In 1989 he received the Nobel

Prize “for the invention of the
separated oscillatory fields met-
hod and its use in the hydrogen
maser and other atomic clocks.”

Where does such an effect
appear in quantum chemistry?
One of the main candidates may
be the term Ĥ3 (the Fermi con-
tact term in the Breit Hamil-
tonian; p. 147) which couples
the orbital motion of the elec-
trons with their spin magnetic
moments. This is a relativistic
effect (hence it is very small)

Edwards Mills Purcell (1912–1997),
American physicist and professor at
the Massachusetts Institute of Technol-
ogy and Harvard University. His main
domains were relaxation phenomena
and magnetic properties in low temper-
atures. He received in 1952 the Nobel
Prize, together with Felix Bloch, “for their
development of new methods for nuclear
magnetic precision measurements and
discoveries in connection therewith.”

and therefore, the rotational averaging leaves only a small value of K AB .

74 N.F. Ramsey and E.M. Purcell, Phys. Rev., 85, 143 (1952).



772 Chapter 12

(a) (b)

Fig. 12.14. The nuclear spin-spin coupling (Fermi contact) mechanism through chemical bond AB. The electrons repel each
other and therefore correlate their motion (cf. p. 589). This is why, when one of them is close to nucleus A, the second prefers
to run off to nucleus B. An electron close to A, will exhibit a tendency (i.e., the corresponding energy will be lower than in the
opposite case) to have a spin antiparallel to the spin of A. The second electron, close to B, must have opposite spin to its partner,
and therefore will exhibit a tendency to have its spin the same as that of nucleus A. We may say that the second electron exposes the
spin of nucleus A right at the position of the nucleus B. Such a mechanism gives a much stronger magnetic dipole interaction than
that through empty space. Panel (a) shows a favorable configuration of nuclear and electron spins, all perpendicular to the bond.
Panel (b) shows the same situation after the molecule is rotated by 90◦. The electronic correlation energy will obviously differ in
these two orientations of the molecule, and this results in different averaging than in the case of the interaction through space.

12.9.3 Nuclear Spin Energy Levels

Calculating the mean value of the Hamiltonian from equation (12.83), we obtain the energy of
the nuclear spins in the magnetic field:

E = −
∑

A

(
1− σA

)
γA Hm I ,A�+

∑
A<B

γAγB K AB

〈
Î A · ÎB

〉
,

where
〈
Î A · ÎB

〉
is the mean value of the scalar product of the two spins calculated by using their

spin functions. This expression can be simplified by the following transformation:

E = −
∑

A

(
1− σA

)
γA Hm I ,A�+

∑
A<B

γAγB K AB

〈
ÎA,x ÎB,x + ÎA,y ÎB,y + ÎA,z ÎB,z

〉

= −
∑

A

(
1− σA

)
γA Hm I ,A�+

∑
A<B

γAγB K AB
(
0 · 0+ 0 · 0+ �

2m I ,Am I ,B
)
,

because the mean values of ÎC,x and ÎC,y calculated for the spin functions of nucleus C both
equal 0 (for the α or β functions describing a nucleus with IC = 1

2 ; see Chapter 1). Therefore,

the energy becomes a function of the magnetic spin quantum numbers m I ,C for all the
nuclei with a nonzero spin IC :

E
(
m I ,A,m I ,B, . . .

) = −�H
∑

A

(
1− σA

)
γAm I ,A +

∑
A<B

h JABm I ,Am I ,B, (12.84)

where the commonly used nuclear spin-spin coupling constant is defined as

JAB ≡ �

2π
γAγB K AB . (12.85)
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Note that since h JAB has the dimension of the energy, then JAB itself is a frequency and may
be expressed in hertz.

Due to the presence of the rest of the molecule (electron shielding), the Larmor frequency
νA = HγA

2π

(
1− σA

)
is changed by −σA

HγA
2π with respect to the Larmor frequency HγA

2π for
the isolated proton. Such changes are usually expressed (as parts per million (ppm)75) by the
chemical shift δA:

δA = νA − νre f

νre f
· 106 = σre f − σA

σre f
· 106, (12.86)

where νre f is the Larmor frequency for a reference nucleus [for protons, this means by convention
the proton Larmor frequency in tetramethylsilane, Si

(
CH3

)
4]. The chemical shifts (unlike the

Larmor frequencies) are independent of the magnetic field applied.

Example. The carbon nucleus in an external magnetic field. We consider a single carbon
13C nucleus (spin quantum number IC = 1

2 ) in a molecule with non-magnetic other nuclei.
As seen from Eq. (12.84), such a nucleus in magnetic field H has two energy levels (for

m I ,C = ±1
2 ; see Fig. 12.15a):

E
(
m I ,C

) = −�H
(
1− σC

)
γC m I ,C ,

where the shielding constant σC characterizes the vicinity of the nucleus. For the isolated
nucleus, σC = 0.

Example. The methane molecule 13CH4 in magnetic field H. This time, there is an additional
magnetic field coming from four equivalent protons, each having IH = 1

2 . The energy levels
of the carbon magnetic spin result from the magnetic field and from the m I ,H ’s of the protons
according to Eq. (12.84); see Fig. 12.15. The resonance of the 13C nucleus means transition
between energy levels that correspond to m I ,C = ±1

2 and all the m I ,Hi being constant.76 Thus,
the lower level corresponds to

E+
(
m I ,H1,m I ,H2,m I ,H3,m I ,H4

) = −�

2
H

(
1− σC

)
γC

+ h

2

1

JC H
(
m I ,H1 + m I ,H2 + m I ,H3 + m I ,H4

)
.

At the higher level, we have the energy

E−
(
m I ,H1,m I ,H2,m I ,H3,m I ,H4

) = �

2
H

(
1− σC

)
γC

− h

2

1

JC H
(
m I ,H1 + m I ,H2 + m I ,H3 + m I ,H4

)
.

Since m I ,Hi = ±1
2 , then each of the levels E± will be split into five levels (see Fig. 12.15):

75 This means that the chemical shift (unitless quantity) has to be multiplied by 10−6 to obtain
νA−νre f
νre f

.
76 The NMR selection rule for a given nucleus says that the single nucleus undergoes a flip.
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Fig. 12.15. The energy levels of the 13C magnetic moment in an external magnetic field and in the methane molecule. (a) The
spin energy levels of the 13C atom in an external magnetic field; (b) additional interaction of the 13C spin with the four equivalent
proton magnetic moments switched on. As we can see, the energy levels in each branch follow the Pascal triangle rule. The splits
within the branch come from the coupling of the nuclei and are field-independent. The E+ and E− energies are field-dependent:
increasing field means a tuning of the separation between the energy levels. The resonance takes place when the field-dependent
energy difference matches the energy of the electromagnetic field quanta. The NMR selection rule means that only the indicated
transitions take place. Since the energy split due to the coupling of the nuclei is very small, the levels E+ are equally occupied,
and therefore, the NMR intensities satisfy the ratio: 1 : 4 : 6 : 4 : 1.

• A non-degenerate level arising from all m I ,Hi = 1
2

• A quadruply degenerate level that comes from all m I ,Hi = 1
2 , except one equal to−1

2 (there
are four positions of this one)

• A sextuply degenerate level that results from two m I ,Hi = 1
2 and two m I ,Hi = −1

2 (six
ways of achieving this)
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• A quadruply degenerate level that comes from all m I ,Hi = −1
2 , except one that equals 1

2
(there are four positions of this one)

• A non-degenerate level arising from all m I ,Hi = −1
2

Example. Nuclear resonances in C2H5OH
Our result may be generalized for n equivalent protons, which interact with a nuclear spin

in an external magnetic field. The proton magnetic moment may be aligned either along or
opposite to the external magnetic field. The number of ways for k moments aligned along and
n − k moments aligned opposite is

(n
k

)
. For the previous case (methane) with n = 4 and for

k = 0, 1, 2, 3, 4, the numbers of equivalent positions are 1,4,6,4,1, which leads to the degeneracy
of the nuclear energy levels of the carbon nuclear momentum, as shown in Fig. 12.15.

What would happen if in a single molecule, one had several groups of equivalent nuclei?
By the way, what does equivalent mean in this context? For example, how many equivalent
protons do we have in a molecule like C2H5OH? The chemists’ way of writing this formula
suggests that we know something special about one of these protons. It turns out that this
peculiarity comes from binding to the oxygen atom, while other hydrogen atoms are bound
to carbon atoms. These other protons form two groups, which is reflected in a more detailed
formula: CH3–CH2–OH. Up to now, we have discussed the non-equivalence, but what about
equivalence? Are the three protons in the methyl group CH3− equivalent for a chemist? If we take
into account the conformational states, we see several conformers possible, but in none of these
conformations are the three protons equivalent, although the roles played by the three protons
in the whole set of the conformations are identical! The situation gets better if one recalls that
NMR experiments take a long time and pertain to many molecules in solution. Therefore, every
molecule is able to visit all the conformations (for sufficiently high temperatures), including
those resulting from rotations of the CH3− group about the C-C bond. There is no good reason
to think that the three protons of the methyl group are non-equivalent in the NMR experiment,
and the same applies to the two protons of the −CH2− group.77

The group of n1-equivalent protons modifies the magnetic field felt by a nucleus (not
belonging to the group), which will undergo a resonance transition. Due to the same
coupling constants of this particular nucleus with all the nuclei of the group, a splitting of
the NMR signal to n1 + 1 signals occurs. For instance, in the case of the 13C resonance in
methane, we got n1 + 1 = 4+ 1 = 5 signals.

77 In the case of rigid molecules, such an averaging does not take place. In such a case, there appears to be a subtle
difference between the concepts of the chemical and magnetic equivalence of two nuclei: a and a′. One has the
chemical equivalence of a and a′, if the two nuclei have the same neighborhood. If a and a′ are chemically non-
equivalent, they are also non-equivalent magnetically. However, two chemically equivalent nuclei may turn out to
be magnetically non-equivalent. It will happen, when one finds at least one nucleus (excluding a and a′), that its
nuclear coupling constant with a differs from that for a′. As an example may serve two protons in H2C = CF2.
Indeed, let us take one of the fluorine nuclei. One of the protons corresponds to the cis, and the other to the trans
coupling with this particular nucleus.
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Possibly, another group of n2-equivalent protons interacts with the nucleus differently (another
value of the coupling constant) and causes its own splitting of each of the previously described
signals into n2 + 1 signals.

There is one more problem. What will be if the nucleus, the resonance of which we are
considering, is equivalent with some other nuclei? This may happen in two cases. In the first
case, the equivalent protons belong to the same molecule, and in the second one, they belong
to different molecules. This second case happens always in macroscopic sample used in the
NMR and the result is that the NMR signal is stronger if the concentration is larger.78 The NMR
installation does not know anything about our concept of a molecule. Therefore,

in the case of the equivalent nuclei from the same molecule, one may treat all these nuclei
as a “collective” single nucleus undergoing the resonance with the intensity multiplied by
the number of the equivalent nuclei.

Such an effect looks natural if one recalls that the NMR electromagnetic waves correspond to
radio frequencies. This means a long wave, which is unable to distinguish the equivalent nuclei
distributed in a tiny section of space.

The NMR spectra may be quite complicated, especially when the chemical shifts turn out to
be less important than the spin-spin coupling. In this example, the opposite is true (such spectra
are known as the first-order NMR spectra), and the situation is easier. What, therefore, one should
expect as the NMR spectrum of the CH3–CH2–OH molecule? Well, roughly speaking, we expect
three signals shifted with respect to what one gets for the commonly used tetramethylsilane
reference (internal standard) signal: one for the protons of the CH3 group, one for those of the
CH2 group, and one for the proton of the OH group. Also, we expect that the shift of the methyl
group signal should be the smallest one (because of the similarity to the reference), the shift for
the methylene group should be larger (less similar to the reference), and finally, the OH signal
should differ very much from the reference (resulting in the largest shift). The experiment
confirms this rough estimation (see Fig. 12.16a). In addition, it is reasonable to expect the
corresponding intensities to satisfy the proportion 3 : 2 : 1 (proportionality to the number of
the protons). Again, the experiment seems to show something like that (when considering the
area under the peaks), besides the fact that we see some very complex splitting of each of the
three signals (see Fig. 12.16a).

We are not satisfied by the above rule of thumb, and we want to discover why each signal has
such a complex structure. We suspect that this has to do with the interaction with the neighbors
of the resonating nucleus. Let us start from the collective nucleus H3 from the methyl group. It
interacts with a group of two equivalent protons (methylene group) separated from it by three
bonds and with a single proton of the OH group separated by the four bonds. Therefore, first of
all, one may expect the resonance of the collective nucleus H3 from the CH3 group split into

78 It is also broader, because every molecule, even if chemically identical, has a somewhat different geometry.
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(b1) (b2) (b3)

Fig. 12.16. Analysis of the proton magnetic resonance spectrum for the liquid ethanol. (a) The NMR experimental spectrum.
From the right side: the tetramethylsilane (TMS) signal–the reference chemical shift taken as δ = 0 , at δ ≈ 1 ppm the triplet
signal from the protons of the CH3 group, at about 3.5 ppm a multiplet from the CH2 group, at δ ≈ 5.3 ppm there is a triplet
coming from the resonance of the proton from the hydroxyl group. (b) Rationalization of the experimental spectrum. (b1) The
hydroxyl group proton interacts magnetically with the protons of the CH2 group. This splits the hydroxyl proton signal into three
signals with the intensity ratio 1 : 2 : 1 (there is no splitting visible from the CH3 group because these protons are too far away).
(b2) The explanation of the CH2 multiplet signal goes in two steps. First, the splitting from the interaction with the CH3 group is
taken into account (the coupling constant JC H2−C H3 ), resulting in a quartet with the intensities 1 : 3 : 3 : 1. Next, each of the
resulting signals is split into two lines due to the interaction with the hydroxyl proton (with a smaller spin-spin coupling constant
JC H2−O H than before, the intensity ratio is 1 : 1). (b3) The signal from the collective nucleus of the CH3 group is split by the
interaction with the methylene group protons into three signals with the spin-spin coupling constant JC H2−C H3 (the interaction
with the hydroxyl group proton is too weak to be visible). The nomenclature used: AnXmYp denotes the signal of the collective
nucleus A (n equivalent nuclei) split by m equivalent protons X and p equivalent protons Y (non-equivalent to X).
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nC H2 + 1 = 3 peaks, and their intensity ratio (caused by the degeneracy of the energy levels)
1 : 2 : 1. Additionally, each of the resulting signals should be split into two lines due to two
possible spin orientations of the proton nucleus from the hydroxyl group. In the experiment,
we see the first splitting (Fig. 12.16b3), but not the second one. This is because of too-weak
sensitivity of the NMR equipment used, simply the hydroxyl proton is too far away and the
splitting is small.

Now, what about −CH2−? The signal from this “collective proton” is split by the methyl
group protons into nC H3 + 1 = 4 lines with the intensity ratio 1 : 3 : 3 : 1 (the separation
between them should be identical to that found for CH3, because the two kinds of protons
interact with the same coupling constant J1= 7.2 H z). In addition, each of these signals will be
split into two lines due to the interaction with the hydroxyl proton (the corresponding coupling
constant is J2 = 5.1 H z). As a result, one gets a quite complex multiplet of signals, its structure
fully rationalized by the above coupling constants (see Fig. 12.16b2).

Finally, we will consider the proton from the hydroxyl group. Its signal will be split into
nC H2 + 1 = 3 lines with the intensities 1 : 2 : 1 (Fig. 12.16b1) because of two protons from
the methylene group. The influence of the distant methyl group is not visible in the spectrum of
this accuracy. The chemical shift dominates and is the largest for the protons of this molecule.
It turns out that the chemical shift of this proton is sensitive to the details of the intermolecular
interactions for this particular proton participates in the hydrogen bonds and other interactions,
including possible chemical reactions.79

We have, therefore, some important information: the NMR spectrum may serve for iden-
tification of chemical interactions within the molecules, as well as of intermolecular
interactions.

12.10 The Ramsey Theory of the NMR Chemical Shift

An external magnetic field H or/and the magnetic field produced by the nuclear magnetic dipole
moments M1,M2,M3 . . . certainly represent an extremely weak perturbation to the molecule,
and therefore, the perturbational methods described in Chapter 5 seem to be a perfect choice.

79 My NMR colleagues told me that the chemical shift of this proton may change very much, even changing the
order of the multiplets observed. The chemical shift depends on such things as whether the ethanol is freshly made
or not, how long it has been kept in the bottle, whether there are some traces of water in it or not, etc. This proton
looks so crazy, that one may think it is responsible for the widely known extraordinary properties of the ethanol
molecule. Is the rest of the molecule innocent? Certainly not. We have protons in organic and inorganic acids and
nothing comes out of it. Maybe we have to have a OH functional group? No, because water itself would act much
stronger than the ethanol. Maybe the proton is innocent, and the C2H5− group should be blamed? No, because
the C2H5-H does not act like that. It seems one should have a hydroxyl group very close to a bulky hydrophobic
group. Indeed, the CH3− group makes an effect similar to that of C2H5−, except that in addition, it hurts the eyes
and even may kill the drinker.
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We decide to apply the theory through the second order. Such an effect is composed of two
parts:

• The first-order correction (the diamagnetic contribution)
• The second-order correction (the paramagnetic contribution)

The corresponding energy change due to the perturbation Ĥ
(
1
)

from Eq. (12.69) (prime means
that k = 0; i.e., the ground state is excluded from the summation):

�E = E
(
1
)

0 + E
(
2
)

0 =
〈
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(0)
0 |Ĥ

(
1
)
ψ
(0)
0

〉
+
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′
〈
ψ
(0)
0 |Ĥ

(
1
)
ψ
(0)
k

〉 〈
ψ
(0)
k |Ĥ

(
1
)
ψ
(0)
0

〉
E

(
0
)

0 − E
(
0
)

k

. (12.87)

12.10.1 Shielding Constants

In the equation (12.83) for Hamiltonian, the shielding constants occur in the term I A · H. The

perturbation operator Ĥ
(
1
)

contains a lot of terms, but most of them, when inserted into the
above formula, are unable to produce terms that behave like I A ·H. Only some very particular
terms could produce such a dot product dependence. A minute of reflection leads directly to
B̂3, B̂4, B̂5 and B̂10 as the only terms of the Hamiltonian that have any chance of producing the
dot product form.80 Therefore, using the definition of the reduced resolvent R̂0 of Eq. (10.76),
we have81
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1
)
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(
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〈
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〉
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)
ψ
(0)
0

〉
. (12.88)

After averaging the formula over rotations and extracting the proper term proportional to I A

and H (details given in Appendix W available at booksite.elsevier.com/978-0-444-59436-5,

80 There is an elegant way to single out the only necessary Bi that give a contribution to the energy proportional to the
product xi x j (no higher terms included), where xi and x j stand for some components of the magnetic field intensity
H and/or of the nuclear spin I A (that cause perturbation of the molecule). As to the first-order correction (“dia-

magnetic”), we calculate the second derivative

(
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1
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)
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of the Hamiltonian Ĥ
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81 Note that whenever the reduced resolvent appears in a formula, infinite summation over unperturbed states is
involved.

http://booksite.elsevier.com/978-0-444-59436-5
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p. e163) we obtain the following as the shielding constant of the nucleus A:
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where
L̂Aj = −i�

(
rAj ×∇ j

)
(12.90)

and
L̂0 j = −i�

(
r0 j ×∇ j

)
(12.91)

stand for the angular momenta operators for the electron j calculated with respect to the position
of nucleus A and with respect to the origin of vector potential A, respectively.

12.10.2 Diamagnetic and Paramagnetic Contributions

The result [Eq. (12.89)] has been obtained in two parts:

σA = σ dia
A + σ para

A , (12.92)

called the diamagnetic contribution,
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and the paramagnetic contribution,
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Each of these contributions looks suspicious. Indeed, the diamagnetic contribution explic-
itly depends on the choice of origin R of vector potential A through r0 j = r j − R; see Eq.
(12.66). Similarly, the paramagnetic contribution also depends on this choice through L̂0 j and
Eq. (12.66). We have already stressed the practical importance of the choice of R in Appendix
G available at booksite.elsevier.com/978-0-444-59436-5. Since both contributions depend on
the choice, they cannot have any physical significance separately.

http://booksite.elsevier.com/978-0-444-59436-5
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Is it possible that the sum of the two contributions is invariant with respect to choice of R?
Yes, it is! The invariance has, fortunately, been proved.82 This is good because any measurable
quantity cannot depend on arbitrary choice of the origin of the coordinate system.

12.11 The Ramsey Theory of the NMR Spin-Spin Coupling Constants

We will apply the same philosophy to calculate the nuclear coupling constant. Taking into

account the Hamiltonian Ĥ
(
1
)

from Eq. (12.69), p. 766, we note that the only terms in Ĥ
(
1
)

that
have the chance to contribute to the NMR coupling constants [see Eq. (12.84)] are
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= Edia + Epara, (12.93)

because we are looking for terms that could result in the scalar product of the nuclear magnetic
moments. The first term is the diamagnetic contribution (Edia), and the second one is the
paramagnetic contribution (Epara).

12.11.1 Diamagnetic Contributions

There are two diamagnetic contributions in the total diamagnetic effect
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〉
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Eq. (12.81); i.e., the direct (“through space”) nuclear spin-spin interaction. This calcu-
lation does not require anything except summation over spin-spin terms. However, as has
been shown, averaging over free rotations of the molecule in the specimen renders this term
equal to zero.

• The
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82 A.Abragam, The Principles of Nuclear Magnetism Clarendon Press, Oxford (1961).
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Now, note that
(
A× B

) ·C = A · (B× C
)
. Taking A = I A,B = rAj ,C = IB × rB j we first

have the following:
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Recalling that A× (
B× C

) = B
(
A · C)−C
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this term (called the diamagnetic spin-
orbit contribution, DSO83) reads as
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We see that we need to calculate some integrals with mono-electronic operators, which is an
easy task.

12.11.2 Paramagnetic Contributions

The paramagnetic contribution Epara to the energy can be split into several terms:

Epara =
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= EPSO + ESD + EFC +mixed terms,

where we have

• The paramagnetic spin-orbit contribution:

EPSO =
〈
ψ
(0)
0 |B̂3 R̂0 B̂3ψ

(0)
0

〉
,

with B̂3 meaning the interaction between the nuclear spin magnetic moment and the magnetic
moment resulting from the electronic angular momenta of the individual electrons in an atom.

• The spin-dipole contribution

ESD =
〈
ψ
(0)
0 |B̂6 R̂0 B̂6ψ

(0)
0

〉
,

which describes the interaction energy of the magnetic spin dipoles: the nuclear with the elec-
tronic dipole,

• The Fermi contact interaction

EFC =
〈
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0 |B̂7 R̂0 B̂7ψ
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〉
,

which is related to the electronic spin–nuclear spin interaction with zero distance between them.

83 The name comes, of course, from the nuclear spin-electronic orbit interaction.
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• The mixed terms contain
〈
ψ
(0)
0 |B̂i R̂0 B̂ jψ

(0)
0

〉
for i, j = 3, 6, 7 and i �= j . These terms are

either exactly zero or (in most cases, not always) small.84

12.11.3 Coupling Constants

The energy contributions have to be averaged over rotations of the molecule and the coupling
constants are to be extracted from the resulting formulas. How this is performed is shown in
Appendix W available at booksite.elsevier.com/978-0-444-59436-5 on p. e163.

Using this result, the nuclear spin-spin coupling constant is calculated as the sum of the
diamagnetic and paramagnetic contributions:

JAB = J dia
AB + J para

AB , (12.94)

J dia
AB ≡ J DSO

AB , (12.95)

J para
AB = J PSO

AB + J SD
AB + J FC

AB + J mixed
AB , (12.96)

where the particular contributions to the coupling constant are85

J DSO
AB =

e2
�

3πmc2 γAγB

∑
j

〈
ψ
(0)
0 |

rAj · rB j

r3
Ajr

3
B j

ψ
(0)
0

〉
,

J PSO
AB =

1

3π
�

( e

mc

)2
γAγB

∑
j,l

〈
ψ
(0)
0 |L̂Aj R̂0L̂Blψ

(0)
0

〉
,

84 Let us consider all cross terms. First, let us check that
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terms describing the magnetic interaction of nuclei with exactly the same role played by electrons with α
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The mixed term
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vanishes for the isotropic electron cloud around the nucleus, because in
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a 1s orbital, this is isotropic situation), the electron-nucleus dipole-dipole magnetic interaction averages to zero
when different positions of the electron are considered. For non-isotropic cases, this mixed contribution can be of
importance.

85 The empirical Hamiltonian equation (12.84) contains only the A > B contributions, so the factor 2 appears in J .

http://booksite.elsevier.com/978-0-444-59436-5
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ŝl

r3
Bl

− 3

(
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〈
ψ
(0)
0 |δ

(
rAj

)
ŝ j R̂0δ

(
rBl

)
ŝlψ

(0)
0

〉
.

Thus,

the nuclear spin magnetic moments are coupled via their magnetic interaction with the
electronic magnetic moments as follows:

• J DSO
AB + J PSO

AB results from the electronic orbital magnetic dipole moments.
• J SD

AB + J FC
AB corresponds to such interactions with the electronic spin magnetic dipole

moments.

As to the integrals involved, the Fermi contact contribution J FC
AB (just the value of the wave

function at the nucleus position) is the easiest to compute. Assuming that ψ(0)k states are Slater
determinants, the diamagnetic spin-orbit contribution J DSO

AB requires some (easy) one-electron

integrals of the type

〈
ψ1| xAj

r3
Aj
ψ2

〉
; the paramagnetic spin-orbit contribution J PSO

AB needs some

one-electron integrals involving L̂Aj operators, which require differentiation of the orbitals;
the spin-dipole contribution J SD

AB leads to some simple one-electron integrals, but handling
the spin operators is needed (see p. 28), as is the case for J FC

AB . All the formulas require an
infinite summation over states (due to the presence of R̂0), which is very tedious. This is
why, in contemporary computational technique, some other approaches, mainly what is called
propagator theory, are used.86

12.11.4 The Fermi Contact Coupling Mechanism

There are no simple rules, but usually the most important contribution to JAB comes from the
Fermi contact term ( J FC

AB), the next most important is paramagnetic spin-orbit term J PSO
AB , other

terms, including the mixed contributions J mixed
AB , are of little importance. Let us consider the

Fermi contact coupling mechanism between two protons through a single bond (the coupling
constant JAB denoted as 1 JH H ). The proton and the electron close to it prefer to have opposite
spins, Fig. 12.17. Then the other electron of the bond (being closer to the other nucleus) shows
the other nucleus the spin of first nucleus, so the second nucleus prefers to have the opposite

86 J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry 2d ed., John Wiley & Sons, Ltd. (2004).
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Fig. 12.17. Is the proton-proton coupling constant through two bonds (H–C–H), i.e., 2 JH H , positive or negative? Recall that
1 JH H > 0 (shown in Fig. 12.14a), where the induction mechanism is described. The interaction through two bonds depends on
what happens at the central carbon atom: are the spins of the two electrons there (one from each bond C–H) parallel or antiparallel?
Hund’s rule suggests they prefer to be parallel. This means that the situation with the two proton spins parallel is more energetically
favorable, and this means 2 JH H < 0. This rule of thumb may fail when the carbon atom participates in multiple bonds, as in
ethylene. For more information, see the section “From the Research Front,” later in this chapter.

spin with respect to the first nucleus. According to Eq. (12.84), since m I ,Am I ,B < 0, this means
JAB ≡1 JH H > 0. What about 2 JH H ? This time, to have a through-bond interaction we have
to have a central atom, like carbon 12C (i.e., with zero magnetic moment), Fig. 12.17. The key
point now is what happens at the central atom: whether it is preferable to have on it two parallel
or two antiparallel electron spins? We do not know, but we have a suggestion. Hund’s rule says
that, in case of orbital degeneracy (in our case, this corresponds to two equivalent C-H bonds),
the electrons prefer to have parallel spins. This suggests that the two distant proton spins have
a negative coupling constant (i.e., 2 JH H < 0), which is indeed the case. The same argument
suggests that 3 JH H > 0, etc.87

12.12 Gauge-Invariant Atomic Orbitals (GIAOs)

The coupling constants in practical applications may depend on the choice of vector and scalar
potentials. The arbitrariness in the choice of the potentials A and φ (“gauge choice”) does not
represent any problem for an atom because it is natural to locate the origin (related to the formula
G.12 on p. e83) on the nucleus. The same reasoning, however, determines that there is a serious
problem for a molecule, because even though any choice is equally justified, this justification
is only theoretical, not practical. Should the origin be chosen at the center of mass, at the center
of the electron cloud, halfway between them, or at another point? An unfortunate (although
mathematically fully justified) choice of the vector potential origin would lead to correct results,

87 Thus, although calculation of the coupling constants is certainly complex, we have in mind a simple model of
the nuclear spin-spin interaction that seems to work. We love such models because they enable us to predict
numbers knowing other numbers, or to predict new phenomena. This gives the impression that we understand
what happens. This is by no means true. What the electrons are doing and how the spin magnetic moments interact
is too complicated, but nevertheless, we may suspect the main principles of the game. Such models help us to
discuss things with others, to communicate some conjectures, to verify them, and to get more and more confidence
in ourselves. This continues until one day, something goes wrong. Then we try to understand why it happened.
This may require a revision of our model (i.e., a new model, etc).
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but only after calculating and summing up all the contributions to infinity, including application
of the complete set of atomic orbitals. These requirements are too demanding.

12.12.1 London Orbitals

Atomic orbitals are used in quantum chemistry as the building blocks of many-electron functions
(cf. p. 423). Where to center the orbitals sometimes presents a serious problem. On top of this,
in the case of a magnetic field, there is additionally the abovementioned arbitrariness of choice
of the vector potential origin. A remedy to the second problem was found by Fritz London88 in
the form of atomic orbitals that depend explicitly on the vector potential applied. Each atomic
orbital χ

(
r− RC

)
centered on nucleus C (with position shown by vector RC ) and describing

an electron pointed by vector r, is replaced by the London orbital in the following way:

London Atomic Orbitals

χL
(
r− RC ;AC

) = exp
(−iAC · r

)
χ

(
r− RC

)
, (12.97)

where AC stands for the value of vector field A at nucleus C , and A corresponds to the origin
O according to formula G. 12 on p. e83, where H denotes the intensity of a homogeneous
magnetic field (no contribution from the magnetic field created by the nuclei, etc.).

As seen, the London orbitals are not invariant with respect to the choice of vector potential
origin;

e.g., with respect to shifting the origin of the coordinate system in Eq. (G.14) by vector R:

A′
(
r
) = 1

2

[
H × (r− R)

] = A(r)− 1

2

[
H × R

]
. (12.98)

Indeed,

χL
(
r− RC ;A′C

) = exp
(−iA′C · r

)
χ

(
r− RC

)
= exp

(−iAC · r
)

exp

(
i
1

2

[
H × R

] · r)χ (
r− RC

)
= exp

(
i
1

2

[
H × R

] · r)χL
(
r− RC ;AC

) �= χL
(
r− RC ;AC

)
.

Despite this property, the London orbitals are also known as gauge-invariant atomic orbitals
(GIAOs).

88 F. London, J. Phys. Radium, 8, 397 (1937).
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12.12.2 Integrals Are Invariant

Let us calculate the overlap integral S between two London orbitals centered at points C and
D. After shifting the origin of the coordinate system in Eq. (G.14) by vector R, we get

S = 〈
χL,1

(
r− RC ;A′C

) |χL,2
(
r− RD;A′D

)〉 = 〈
exp

(−iA′C · r
)
χ1| exp

(−iA′D · r
)
χ2

〉
= 〈
χ1| exp

(−i(A′D − A′C) · r
)
χ2

〉 ;
i.e., the result is independent of R. It turns out89 that all the integrals needed: those of kinetic
energy, nuclear attraction, and electron repulsion (cf. Appendix P available at booksite.elsevier.
com/978-0-444-59436-5 on p. e131) are invariant with respect to an arbitrary shift of the origin
of vector potential A.

This means that when we use the London orbitals, the results do not depend on the choice
of vector potential origin.

Summary

• The Hellmann-Feynman theorem tells us about the rate at which the energy changes when we change parameter

P in the Hamiltonian (e.g., the electric field). This rate is ∂E
∂P = 〈ψ

(
P

) | ∂ Ĥ
∂P |ψ

(
P

)〉, where ψ(P) means the
exact normalized solution to the Schrödinger equation [with energy E(P)] at value P of the parameter.

Electric Phenomena

• When a molecule is located in a non-homogeneous electric field, the perturbation operator has the form Ĥ (1) =
−∑

q μ̂qEq − 1
3

∑
qq ′ �̂qq ′Eqq ′ . . ., where Eq for q = x, y, z denote the electric field components along the

corresponding axes of a Cartesian coordinate system, Eqq ′ stands for the q ′ component of the gradient of Eq ,

while μ̂q , �̂qq ′ stand for the operators of the corresponding components of the dipole and quadrupole moments.

In a homogeneous electric field (Eqq ′ = 0), this reduces to Ĥ (1) = −∑
q μ̂qEq .

• After using the last expression in the Hellmann-Feynman theorem, we obtain the dependence of the dipole

moment components on the (weak) field intensity: μq = μ0q +
∑

q ′ αqq ′Eq ′ + 1
2

∑
q ′q ′′ βqq ′q ′′Eq ′Eq ′′ + · · ·,

whereμ0q stands for the component corresponding to the isolated molecule,αqq ′ denotes the q, q ′ component of
the (dipole) polarizability tensor, βqq ′q ′′ is the corresponding component of the (dipole) first hyperpolarizability
tensor, etc. The quantities μ0q , αqq ′ , βqq ′q ′′ in a given Cartesian coordinate system characterize the isolated
molecule (no electric field) and represent the target of the calculation methods.

• Reversing the electric field direction may in general give different absolute values of the induced dipole moment,
only because of nonzero hyperpolarizability βqq ′q ′′ and higher-order hyperpolarizabilities.

• In a non-homogeneous field, we have the following interactions:

• Of the permanent dipole moment of the molecule with the electric field −μ0E
• Of the induced dipole moment proportional to the field (

∑
q ′ αqq ′Eq ′ ), with the field plus higher-order

terms proportional to higher powers of the field intensity involving dipole hyperpolarizabilities

89 T. Helgaker and P. Jørgensen, J. Chem. Phys., 95, 2595 (1991).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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• Of the permanent quadrupole moment �qq ′ of the molecule with the field gradient: − 1
3

∑
qq ′ �qq ′Eqq ′

• Of the induced quadrupole moment proportional to the field gradient with the field gradient (− 1
6

∑
qq ′q ′′q ′′′

Cqq ′q ′′q ′′′Eqq ′Eq ′′q ′′′ , the quantity C is called the quadrupole polarizability) + higher-order terms containing
quadrupole hyperpolarizabilities.

• Higher multipole interactions

• In the LCAO MO approximation, the dipole moment of the molecule can be decomposed into the sum of the
atomic dipole moments and the dipole moments of the atomic pairs.

• The dipole polarizability may be computed by the following:

• The Sum over States method (SOS), which is based on second-order correction to the energy in the pertur-
bational approach

• The finite field method; e.g., a variational approach in which the interaction with a weak homogeneous
electric field is included in the Hamiltonian. The components of the polarizability are computed as the
second derivatives of the energy with respect to the corresponding field components (the derivatives are
calculated at the zero field). In practical calculations within the LCAO MO approximation, we often use
the Sadlej relation that connects the shift of a Gaussian atomic orbital with its exponent and the electric
field intensity.

• In laser fields, we may obtain a series of nonlinear effects (proportional to higher powers of field intensity),
including the doubling and tripling of the incident light frequency.

Magnetic Phenomena

• An elementary particle has a magnetic dipole moment M proportional to its spin angular momentum I; i.e.,
M = γ I, where γ stands for what is called the gyromagnetic factor (which is characteristic of the kind of particle)

• The magnetic dipole of a particle with spin I (corresponding to spin quantum number I ) in homogeneous mag-
netic field H has 2I + 1 energy states Em I = −γm I �H , where m I = −I ,−I + 1, . . . ,+I . Thus, the energy
is proportional to H .

• The Hamiltonian of a system in an electromagnetic field has the form Ĥ = ∑
j=1[ 1

2m j

(
p̂ j − qi

c A j

)2 +
q jφ j ] + V̂ , where A and φ denote the vector and scalar fields (both are functions of position in the 3-D space,
and here, they are calculated at particle j) that characterize the external electromagnetic field.

• A andφ potentials contain, in principle (see Appendix G available at booksite.elsevier.com/978-0-444-59436-5),
the same information as the magnetic and electric field H and E . There is an arbitrariness in the choice of A andφ.

• In order to calculate the energy states of a system of nuclei (detectable in NMR spectroscopy), we have to use
the Hamiltonian Ĥ given above supplemented by the interaction of all magnetic moments, related to the orbital
and spin of the electrons and the nuclei.

• The refinement is based on classical electrodynamics and the usual quantum mechanical rules for forming
operators (Chapter 1) or, alternatively, on the relativistic Breit Hamiltonian (p. 156). This is how we get the
Hamiltonian equation(12.67), which contains the usual non-relativistic Hamiltonian plus the perturbation equa-
tion [Eq. (12.69)] with a number of terms (p. 766).

• NMR experimentalists use an empirical Hamiltonian [Eq. (12.83)], in which they have the interaction of the
nuclear spin magnetic moments with the magnetic field (the Zeeman effect), the latter weakened by the shielding
of the nuclei by the electrons plus the dot products of the nuclear magnetic moments weighted by the coupling
constants. The experiment gives both the shielding (σA) and the coupling ( JAB ) constants.

• Nuclear spin coupling takes place through the induction mechanism in the chemical bond (cf. Fig. 12.14). Of
key importance for this induction is a high electron density at the position of the nuclei (the so-called Fermi
contact term; see Fig. 12.14).

• The perturbational theory of shielding and coupling constants was given by Ramsey. According to the theory,
each quantity consists of diamagnetic and paramagnetic contributions. The diamagnetic term is easy to calculate,
while the paramagnetic one is more demanding.

http://booksite.elsevier.com/978-0-444-59436-5
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• Each of the contributions individually depends on the choice of the origin of the vector potential A, while their
sum (i.e., the shielding constant), is invariant with respect to this choice.

• The London atomic orbitals χL = exp
(−iAC · r

)
χ(r−RC ) used in calculations for a molecule in a magnetic

field depend explicitly on that field, through the value AC of the vector potential A calculated at the center RC
of the usual atomic orbital χ(r− RC ).

• The most important feature of London orbitals is that all the integrals appearing in calculations are invariant
with respect to the origin of the vector potential. This is why results obtained using London orbitals are also
independent of that choice.

Main Concepts, New Terms

atomic dipoles (p. 741)
Bohr magneton (p. 757)
bond dipoles (p. 741)
Cartesian multipole moments (p. 729)
chemical shift (p. 773)
coupling constant (pp. 768, 781)
coupling mechanism (p. 784)
diamagnetic effect (p. 780)
diamagnetic spin-orbit contribution (p. 782)
dipole hyperpolarizability (p. 732)
dipole, quadrupole, octupole moments (p. 728)
dipole polarizability (p. 732)
direct spin-spin interaction (p. 781)
empirical NMR Hamiltonian (p. 768)
Fermi contact contribution (p. 782)
finite field method (p. 746)
GIAO (p. 786)
gyromagnetic factor (p. 757)
Hellmann-Feynman theorem (p. 722)
homogeneous electric field (p. 731)
intermediate spin-spin coupling (p. 768)
linear response (p. 732)
local field (p. 719)

London orbitals (p. 786)
magnetic dipole (p. 755)
Maxwell equations (p. e81)
multipole hyperpolarizability (p. 738)
multipole moments (p. 729)
multipole polarizability (p. 738)
NMR (p. 768)
NMR Hamiltonian (p. 768)
non-homogeneous electric field (p. 729)
nonlinear response (p. 733)
nuclear magneton (p. 757)
oscillating electric field (p. 752)
paramagnetic effect (p. 780)
paramagnetic spin-orbit (p. 782)
Ramsey theory (p. 778)
Sadlej relation (p. 747)
second/third harmonic generation (SHG/THG) (p. 754)
shielding constants (p. 768)
spin-dipole contribution (p. 782)
spin magnetic moment (p. 758)
Sum over States (SOS) method (p. 743)
traceless multipole moments (p. 728)
ZDO (p. 743)

From the Research Front

The electric dipole (hyper)polarizabilities are not easy to calculate, for the following reasons:

• The Sum over States method (SOS) converges slowly; i.e., a huge number of states have to be taken into account,
including those belonging to a continuum.

• The finite field method requires a large quantity of atomic orbitals with small exponents (they describe the lion’s
share of the electron cloud deformation), although, being diffuse, they do not contribute much to the minimized
energy (and lowering the energy is the only indicator that tells us whether a particular function is important or not).

More and more often in their experiments, chemists investigate large molecules. Such large objects cannot be
described by “global” polarizabilities and hyperpolarizabilities (except perhaps optical properties, where the wave
length is often much larger than size of molecule). How such large molecules function (interacting with other
molecules) depends first of all on their local properties. We have to replace such characteristics by new ones offering



790 Chapter 12

Table 12.1. Comparison of theoretical and experimental shielding constants. The shielding constant σA (unitless quantity)
is (as usual) expressed in ppm; i.e., the number given has to be multiplied by 10−6 to obtain σA of Eq. (12.84).

CH4 NH3 H2O HF

Methoda σC σH σN σH σO σH σF σH

Hartree-Fock 194.8 31.7 262.3 31.7 328.1 30.7 413.6 28.4
MP2 201.0 31.4 276.5 31.4 346.1 30.7 424.2 28.9
MP4 198.6 31.5 269.9 31.6 337.5 30.9 418.7 29.1
CCSD(T) 198.9 31.6 270.7 31.6 337.9 30.9 418.6 29.2
CASSCF 200.4 31.19 269.6 31.02 335.3 30.21 419.6 28.49
Experimentb 198.7 30.61 264.54 31.2 344.0 30.052 410 28.5

aThe Hartree-Fock, MP2, MP4 results are calculated in J. Gauss, Chem. Phys. Letters, 229, 198 (1994); the CCSD(T) in J. Gauss,
J.F. Stanton, J. Chem. Phys., 104, 2574 (1996), and the CASSCF in K. Ruud, T. Helgaker, R. Kobayashi, P. Jørgensen, K.L. Bak, and
H.J. Jensen, J. Chem. Phys., 100, 8178 (1994). For a discussion of the Hartree-Fock method, see Chapter 8; for the other methods
mentioned here, see Chapter 10.
bThe references to the corresponding experimental papers are given in T. Helgaker, M. Jaszuński, and K. Ruud, Chem. Rev., 99, 293
(1999). The experimental error is estimated for σH in ammonia as ±1.0, for σO as ±17.2, for σH in water as ±0.015, for σF as ±6,
and for σH in hydrogen fluoride as ±0.2.

Table 12.2. Comparison of theoretical and experimental spin-spin coupling constants n JAB for ethylene (n denotes
the number of separating bonds), in Hz. For a discussion of the methods used see Chapter 10.

Spin-spin coupling constants JAB for ethylene, in Hertz

Methoda 1 JCC
1 JCH

2 JCH
2 JHH

3 JHH-cis
3 JHH-trans

MC SCF 71.9 146.6 −3.0 −2.7 10.9 18.1
EOM-CCSD 70.1 153.23 −2.95 0.44 11.57 17.80
Experiment 67.457 156.302 −2.403 2.394 11.657 19.015

aAll references to experimental and theoretical results are in T. Helgaker, M. Jaszuński, and K. Ruud, Chem. Rev., 99, 293 (1999).

atomic resolution, similar to those proposed in the techniques of Stone or Sokalski (p. e143), where individual atoms
are characterized by their multipole moments, polarizabilities, etc.

Not long ago, the shielding and especially spin-spin coupling constants were very hard to calculate with reasonable
accuracy. Nowadays, these quantities are computed routinely using commercial software with atomic London orbitals
(or other than GIAO basis sets).

The current possibilities of the theory in predicting the nuclear shielding constants and the nuclear spin-spin
coupling constants are shown in the Tables 12.1 and 12.2.

Note that the accuracy of the theoretical results for shielding constants is nearly the same as that of experimental
results. As to the spin-spin coupling constants, the theoretical results are only slightly away from experimental values.

Ad Futurum

It seems that the SOS method will gradually fall out of favor. The finite field method (in the electric field responses) will
become more and more important, due to its simplicity. It remains, however, to solve the problem of how to process
the information that we get from such computations and translate it into the abovementioned local characteristics of
the molecule.

Contemporary numerical methods allow routine calculation of polarizability. It is difficult with the hyperpolariz-
abilities that are much more sensitive to the quality of the atomic basis set used. The hyperpolarizabilities relate to
nonlinear properties, which are in high demand in new materials for technological applications.
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Such problems as the dependence of the molecular spectra and of the molecular conformations and structure on the
external electric field (created by our equipment or by a neighboring molecule) will probably become more and more
important. This may pertain especially the femto-second spectroscopy, where the laser electric fields are very strong.

The theory of the molecular response to an electric field and the theory of the molecular response to a magnetic
field look, despite some similarities, as if they were “from another story”. One of the reasons is that the electric field
response can be described by solving the Schrödinger equation, while that corresponding to the magnetic field is
based inherently on relativistic effects, much less investigated beside some quite simple examples. Another reason
may be the scale difference: the electric effects are much larger than the magnetic ones.

However, the theory for the interaction of matter with the electromagnetic field has to be coherent. The finite
field method, so gloriously successful in electric field effects, is in the “stone age” stage for magnetic field effects.
The propagator methods90 look the most promising, these allow for easier calculation of NMR parameters than the
sum-over-states methods.

Additional Literature
A.D. Buckingham, Advan. Chem. Phys., 12, 107 (1967).

A classical paper on molecules in a static or periodic electric field.

H.F. Hameka, Advanced Quantum Chemistry. Theory of Interactions Between Molecules and Electromagnetic Field,
Addison-Wesley, Reading, MA (1965).

This is a first-class book, although it presents the state of the art before the ab initio methods for calculating the
magnetic properties of molecules.

T. Helgaker, M. Jaszuński, and K. Ruud, Chem. Rev., 99, 293 (1999).
A review article on the magnetic properties of molecules (NMR) with presentation of suitable contemporary

theoretical methods.

Questions

1. The Hellmann-Feynman theorem says that ∂E
∂P = 〈ψ | ∂ Ĥ

∂P |ψ〉 (where Ĥ is the Hamiltonian that depends on
parameter P). This is true, when

a. ψ stands for the ground-state wave function
b. ψ is of class Q
c. ψ is the exact Hartree-Fock function

d. ψ is an eigenfunction of Ĥ

2. In the expression for the energy of a molecule in electric field,

a. a component of the quadrupole moment is multiplied by the gradient of the field
b. a component of the dipole moment is multiplied by the intensity of the field
c. the dipole hyperpolarizability represents a coefficient at the third power of the electric field intensity
d. the dipole polarizability represents a coefficient at the square of the electric field intensity

3. A non-polar molecule (but having a nonzero quadrupole moment) in the field with a nonzero gradient

a. will interact with the field
b. will orient in such a way as to have the dipole moment along the electric field
c. will orient in such a way as to have the longer axis of the quadrupole along the field
d. will orient in such a way as to have the longer axis of the quadrupole along the gradient of the field

90 J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry 2nd ed., John Wiley & Sons, Ltd. (2004).



792 Chapter 12

4. The second harmonic generation in a uniform electric field depends on the following molecular property

a. dipole hyperpolarizability β
b. quadrupole and octupole polarizability
c. octupole hyperpolarizability
d. dipole hyperpolarizability γ

5. In some variational calculations for a molecule without electric field the positions of the atomic orbitals have
been optimized. In the finite field variational method a small shift of a certain Gaussian atomic orbital off a
nucleus

a. will always increase the energy
b. will always decrease energy, while at a larger shift the energy will increase
c. may decrease the energy, if the shift is opposite to the electric field
d. will decrease the energy, if the sufficiently small shift pertains to all atomic orbitals and is opposite to the

electric field

6. The magnetic moment M (of an elementary particle)

a. is the same as its spin angular momentum
b. has the same length for the electron and for the proton

c. interacts with uniform magnetic field H, and the interaction energy is equal 1
2 H ·M

d. interacts with uniform magnetic field H, and the interaction energy is equal −H ·M
7. The hydrogen molecule in its electronic singlet state

a. when in magnetic field acquires an admixture of the triplet electronic state
b. may be of two kinds depending on the singlet or triplet state of its nuclei
c. has the electron spins forming the angle 180◦
d. must have the opposite nuclear spins

8. The vector potential A of the electromagnetic field corresponds to the uniform magnetic field H. Then

a. A = rotH
b. A may be chosen in such a way as to satisfy the Maxwell equation H = rotA
c. A also represents a uniform vector field

d. A and A−∇ exp (−x2) give the same magnetic field H

9. The shielding constant for a nucleus consists of the diamagnetic and paramagnetic parts.

a. the diamagnetic part depends on the choice of the origin of the vector potential A
b. the paramagnetic part depends on the choice of the origin of the vector potential A
c. as physical effects no of them can depend on the choice of the origin of the vector potential A
d. the sum of these parts does not depend on the choice of the origin of the vector potential A

10. The value of the London orbital χL
(
r − R;A)

calculated at the point indicated by vector r depends on

a. the magnetic field at point R
b. the vector potential at point r
c. the vector potential at point r − R
d. the vector potential A at the point indicated by R

Answers
1a,d, 2a,b,c,d, 3a,d, 4a,d, 5c,d, 6d, 7a,b,c, 8b,d, 9a,b,d, 10d



CHAPTER 13

Intermolecular Interactions

“Remember when discoursing about water, to adduce first experience, then reason.”
from notes by Leonardo da Vinci (1452–1519)

Where Are We?
We are in the crown of the TREE.

An Example
Look at a snowflake on your hand. Why does such a fascinating, regular structure exist? Why does it change to a
few drops of water once it sits on your skin for a second? Why does do water molecules stick together? Visibly, they
attract each other for some reason. The interaction must not be very strong, however, since the snowflake transforms
so easily and then the water drops evaporate (without destroying the water molecules, though).

What Is It All About?
INTERMOLECULAR INTERACTIONS (THEORY)
Idea of the Rigid Interaction Energy (�) p. 797
Idea of the Internal Relaxation (�) p. 797
Interacting Subsystems (�) p. 798

• Natural Division
• What Is Most Natural?

Binding Energy (�) p. 800
Dissociation Energy (�) p. 801
Dissociation Barrier (�) p. 801
Supermolecular Approach (�) p. 802

• Accuracy Should be the Same
• Basis Set Superposition Error (BSSE) . . . and the Remedy

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00013-1
© 2014 Elsevier B.V. All rights reserved. 793
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• Good and Bad News About the Supermolecular Method

Perturbational Approach (�) p. 805

• Intermolecular Distance–What Does It Mean?
• Polarization Approximation (Two Molecules)
• Intermolecular Interaction: Physical Interpretation
• Electrostatic Energy in the Multipole Representation Plus the Penetration Energy
• Induction Energy in the Multipole Representation
• Dispersion Energy in the Multipole Representation
• Dispersion Energy Model–Calculation on Fingers

Symmetry Adapted Perturbation Theories (SAPT) (� � �) p. 827

• Polarization Approximation Is Illegal
• Constructing a Symmetry Adapted Function
• The Perturbation is Always Large in Polarization Approximation
• Iterative Scheme of SAPT
• Symmetry Forcing
• A Link to the Variational Method–The Heitler-London Interaction Energy
• Summary: The Main Contributions to the Interaction Energy

Convergence Problems and Padé Approximants (� � �) p. 842
Non-additivity of Intermolecular Interactions (�) p. 847

• Interaction Energy Represents the Non-additivity of the Total Energy
• Many-body Expansion of the Rigid Interaction Energy
• What Is Additive, and What Is Not?
• Additivity of the Electrostatic Interaction
• Exchange Non-additivity
• Induction Non-additivity
• Additivity of the Second-order Dispersion Energy
• Non-additivity of the Third-order Dispersion Interaction

ENGINEERING OF INTERMOLECULAR INTERACTIONS
Idea of Molecular Surface (�) p. 860

• Van der Waals Atomic Radii
• Definition of Molecular Surface
• Confining Molecular Space–The Nanovessels
• Molecular Surface Under High Pressure

Decisive Forces (�) p. 862

• Distinguished Role of the Valence Repulsion and Electrostatic Interaction
• Hydrogen Bond
• Coordination Interaction
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• Molecular Recognition–Synthons
• “Key-and-Lock,” Template-like, and “Hand-Glove” Synthon Interactions
• Convex and Concave–The Basics of Strategy in the Nanoscale

Chapter 8 dealt with the question of why atoms form molecules. Electrons and nuclei attract each other, and this
results in almost exact electrical neutralization of matter. Despite this, the molecules formed interact for the following
reasons:
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• Two atoms or molecules cannot occupy the same space.
• Electrons and nuclei in an atom or molecule may still interact with their counterparts in other atoms or molecules.

This chapter will tell us about the reason for and details of these interactions.

Why Is This Important?

What is the most important fact that humanity ever learned about matter? According to Richard Feynman, it is “The
world is built of atoms, which repel each other at short distances and attract at longer ones.” If the intermolecular
interactions were suddenly switched off, the world would disintegrate in about a femtosecond–i.e., that is in a single
period of atomic vibration (the atoms simply would not come back when shifted from their equilibrium positions).
Soon after, everything would evaporate and a sphere of gas, the remainder of the Earth would be held by gravitational
forces. Isn’t that enough?

What Is Needed?

• Perturbation theory (Chapter 5)
• Variational method (Chapter 5, recommended)
• see Appendix X available at booksite.elsevier.com/978-0-444-59436-5, p. e169
• Many-Body Perturbation Theory (MBPT) (Chapter 10, p. 644)
• Reduced resolvent (Chapter 10, p. 644)
• see Appendix Y available at booksite.elsevier.com/978-0-444-59436-5, p. e183 (recommended)
• see Appendix T available at booksite.elsevier.com/978-0-444-59436-5 (mentioned)

Classical Works

The important subject
of intermolecular inter-
actions was recognized
and studied very early.
The idea that the cohe-
sion of matter stems
from the interaction of
small indivisible parti-
cles (“atoms”) comes
from Democritus. �
An idea similar to that
cited by Feynman was
first stated clearly by the
Croat scientist Rudjer
Bosković in “Theoria
Philosophiae naturalis,”

Democritus of Abdera (ca.460
B.C.–ca.370 B.C.), Greek philoso-
pher who formulated the first
atomic theory. Its traces go further
back in time, but this is Democri-
tus who produced a much more
elaborated picture. According to
him, nature represents a constant
motion of indivisible and perma-
nent particles (atoms), whose
interactions result in various mate-
rials. It turned out after almost 25
centuries that this hypothesis was
basically correct! All the written
works of Democritus have been

lost, but his ideas continued to have an impor-
tant impact on science for centuries.

Venice, 1763. � Padé approximants were first proposed in the Ph.D. thesis of Henri Padé entitled “Sur la représen-
tation approchée d’une fonction pour des fractions rationnelles,” which was published in Annales des Sciences
d’Ecole Normale Superieure, Suppl.[3], 9, 1 (1892). � The role of intermolecular interactions was highlighted in

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Rudjer Josip Bosković (1711–
1787), Croat physicist, mathe-
matician, and astronomer and
philosopher from Dubrovnik.
Because of his expertise in
statics and mechanics he was
chosen to repair such mas-
terpieces as the dome of St
Peter’s Basilica.

the work of Johannes Diderik
van der Waals, especially in
“Die Kontinuität des gasformigen
und flüssigen Zustandes,” Barth,
Leipzig (1899, 1900). From that
time on, intermolecular interac-
tions are often called van der
Waals interactions. � Deter-
mination of parenthood of the
hydrogen bond idea is not an easy
task. By all reasonable indica-
tions, the idea comes from the

Johannes Diderik van der Waals (1837–
1923), Dutch physicist and professor at the
University of Amsterdam. His research topic
was the influence of intermolecular forces on
the properties of gases (equation of state
of the real gas, 1873) and liquids. In 1910,
van der Waals received a Nobel Prize “for
his work on the equation of state for gases
and liquids.” He is known also for introducing
what is now called the van der Waals forces,
which stem from the ubiquitous intermolec-
ular interactions.

work “Über Haupt- und Neben-
valenzen und die Constitution
der Ammoniumverbindungen,”
in Liebig’s Annalen der Chemie,
322, 261 (1902), which was writ-
ten by the Swiss organic chemist
Alfred Werner, the father of
coordination chemistry and 1913
Nobel Prize winner. � The con-
cept of ionic radii was first pro-
posed by Linus Pauling in “The
sizes of ions and the structure of
ionic crystals,” J. Amer. Chem.
Soc., 49, 765 (1927). � The
quantum mechanical explanation

of intermolecular forces, including the ubiquitous dispersion interactions, was given by Fritz London in “Zur Theorie
und Systematik der Molekularkräfte,” Zeitschrift für Physik, 63, 245 (1930); and in “Über einige Eigenschaften und
Anwendungen der Molekularkräfte” from Zeitschrift für Physikalische Chemie (B), 11, 222 (1930). � The hydropho-
bic effect was first highlighted by Walter Kauzmann in a paper called “Some factors in the interpretation of protein
denaturation,” in Adv. Protein Chem., 14, 1 (1959), The effect was further elaborated by George Nemethy, Harold
Scheraga, Frank Stillinger, and David Chandler, among others. � Resonance interactions were first described by
Robert S. Mulliken in an article called “The interaction of differently excited like atoms at large distances,” in Phys.
Rev., 120, 1674 (1960). � Bogumił Jeziorski and Włodzimierz Kołos extended the existing theory of intermolec-
ular forces to intermediate distances [“On the symmetry forcing in the perturbation theory of weak intermolecular
interactions,” Intl. J. Quantum Chem., 12 Suppl.1, 91 (1977)].

INTERMOLECULAR INTERACTIONS (THEORY)

There are two principal methods of calculating the intermolecular interactions: the super-
molecular method and the perturbational method. Both assume the Born-Oppenheimer approx-
imation.

We may all agree about what the total system under consideration should be.1 Any idea of
interaction poses one fundamental question: what kind of objects interact? The answer represents

1 Even this is a matter of compromise. We (quite arbitrarily) cut the system out of the Universe and say that it does
not interact with the rest of the Universe.
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our arbitrary decision and has profound consequences. Even if we may be able to describe
perfectly the total system for a large spectrum of our choices, the work needed may depend
critically on the choice of the interacting objects.

13.1 Idea of the Rigid Interaction Energy

The configuration of the nuclei of the total system can be defined by a set of coordi-
nates given by vector R. We divide the whole system into the interacting subsystems
(“molecules”): A, B,C, . . .with their internal geometries (configurations of the nuclei) defined
by RA,RB,RC , . . . and the fixed numbers of electrons NA, NB, , NC , . . ., respectively. The rest
of the coordinates (“external”) that determine the intermolecular distances and the orientations
of the molecules in a global coordinate system will be denoted as Rex :

all coordinates = external+ internal.

Let us define the rigid interaction energy at the configuration R of the nuclei as

Eint
(
Rex ;RA,RB,RC , . . .

) = E ABC ...(R)−[E A
(
RA

)+EB
(
RB

)+EC
(
RC

)+· · · ], (13.1)

where the notation Eint
(
Rex ;RA,RB,RC , . . .

)
means that Eint is a function of Rex and

depends parametrically on RA,RB,RC , . . ..; i.e., RA,RB,RC , . . .. are fixed. E ABC ... is the
ground-state electronic energy [corresponding to E (0)0 from Eq. (6.21)] of the total system, and
E A

(
RA

)
, EB

(
RB

)
, EC

(
RC

)
, . . . are the electronic energies of the n subsystems (molecules),

calculated at the same positions of the nuclei as those in the total system.
This definition implies that the interaction energy represents just a theoretical concept, not a

measurable quantity. Indeed, we calculate Eint (R) for any geometry R that we wish to consider,
which may have nothing to do with the optimized geometry of the total system or the geometry
of the isolated molecules. We will see in a while, that there are also other reasons, why the Eint

cannot be measured.

13.2 Idea of the Internal Relaxation

One may modify the concept of the rigid interaction energy [see Eq. (13.1)] by allowing relax-
ation of the individual molecules at a fixed Rex . This seems to be physically appealing since
chemists often think of molecules as approaching each other, and during such an approach, the
molecules reorient and change due to the interaction. This is not shown explicitly when cal-
culating the rigid interaction energy, because we see the relaxation of the electronic structures
of the interacting molecules, but we keep the nuclear frameworks of the individual molecules
unrelaxed. The geometry of the individual molecules should change when they approach.

The internally relaxed interaction energy Erelax
int

(
Rex

)
may be defined by

Erelax
int

(
Rex

) = min
RA,RB ,RC ...

E ABC ...(R)− [E A
(
R0

A

)+ EB
(
R0

B

)+ EC
(
R0

C

)+ · · · ], (13.2)
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where minRA,RB ,RC ... E ABC ...(R) means that the minimum of E ABC ... is achieved by simulta-
neous optimization of the internal coordinates (i.e., internal geometries) RA,RB,RC . . . at all
the other coordinates (Rex ) fixed. In the second term are the electronic energies of the isolated
molecules with the optimized geometries R0

A,R0
B,R0

C , . . . Thus, in general, both terms in Eq.
(13.2) differ from those of Eq. (13.1).

After minimization [minRA,RB ,RC ... E ABC ...(R)], we get the total electronic energy as a func-
tion of Rex , with the molecules A, B,C, . . . distorted by the interaction (their geometry differing
from R0

A,R0
B,R0

C , . . .).
2

The relaxed interaction energy idea may be extended still further by also allowing energy
optimization within a subset of the Rex coordinates. For example, one of the choices may allow
optimization of the rotational degrees of freedom of each molecule (while still keeping other
degrees of freedom in Rex fixed).

13.3 Interacting Subsystems

13.3.1 Natural Division

Although the notion of interaction energy is of great practical value, its theoretical meaning is
a little unclear. Right at the beginning, we have a question: interaction of what? We view the
system as being composed of particular subsystems that once isolated, have to be put together.

For instance, the supersystem

may be considered as two interacting water molecules, but even then, we still are not certain
whether the two molecules correspond to (I) or to (II):

In addition, the system might be considered to be composed of a hydrogen molecule inter-
acting with two OH radicals:

2 The minimization performed may be the subject of the multiple minima problem (see Chapter 7). In such a case,

one may get a non-unique, though still physically meaningful, Erelax
int

(
Rex

)
function, depending on which of

multiple minima has been achieved. This physical meaning is not complete since one has to take into account the
zero vibration energy (which we will do shortly).
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and the process repeats again.
The choice of subsystems is of no importance from the point of view of mathematics, but it

is of crucial importance from the point of view of calculations in theoretical chemistry.
The particular choice of subsystem should depend on the kind of experiment with which we

wish to compare our calculations. For example:

• We are interested in the interaction of water molecules when studying water evaporation or
freezing.

• We are interested in the interaction of atoms and ions that exist in the system when heating
water to 1000 ◦C.

Let us stress that in any case of choosing subsystems, we are forced to single out particular
atoms belonging to subsystems3 A and B. It is not sufficient to define the kind of molecules
participating in the interaction (see our two first examples).

If we are dividing a system into n subsystems in two ways (I and I I ), and we obtain
|Eint |I < |Eint |I I , division I will be more natural than division I I .

13.3.2 What Is Most Natural?

Which division is most natural? We do not have any experience in answering this question. But
why should we have any difficulties? Isn’t it sufficient to consider all possible divisions and to
choose the one which requires the lowest energy? Unfortunately, this is not so obvious. Let us
consider two widely separated water molecules (shown in Fig. 13.1a).

Right between the molecules (e.g., in the middle of the OO separation), we place two point
charges q > 0 and −q; i.e., we place nothing, since the charges cancel each other out (please
compare a similar trick on p. 570). So we just have two water molecules. Now we start our
game. We say that the charges are real: one belongs to one of the molecules and the other to the
second (see Fig. 13.1b). The charge q could be anything, but we want to use it for a very special
purpose: to construct the two subsystems in a more natural way than just two water molecules.
It is interesting that after the choice is made, any of the subsystems has a lower energy than that
of isolated water, since the molecules are oriented in such a way as to attract each other. This
means that the value of q can be chosen from an interval that makes the choice of subsystems
more natural. For a certain q = qopt , we would obtain as the interaction energy of the new

3 This means that the interaction energy idea is among the classical concepts. In a quantum system, particles of the
same kind are indistinguishable. A quantum system does not allow us to separate a part from the system. Despite
this, the interaction energy idea is important and useful.
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(a)

(b)

Fig. 13.1. The part-entity relationship, showing two distinct ways of dividing the (H2O)2 system into subsystems. Division (a)
is traditional. The interacting objects are two isolated water molecules and the interaction energy is equal to about −5 kcal/mol
(attraction). Division (b) is more subtle. For a certain point in space of charge zero, we wish to treat it as being composed of two
fictitious charges q > 0 and −q, and one of the charges is ascribed to the first molecule and the other to the second molecule.
In this way, two new subsystems are defined, each of them composed of the water molecule and the corresponding point charge.
The value of q may be chosen in such a way as to produce the interaction energy of the new subsystems close to 0. Therefore,
this is a more natural choice of subsystems than the traditional one. The total interaction energy of the two water molecules is now
absorbed within the interactions of the fictitious point charges with “their” water molecules. Each of the point charges takes over
the interaction of “its” water molecule with the rest of the Universe. Hence, I have permitted myself (with the necessary poetic
license) to use the yin and yang symbols–the two basic elements of ancient Chinese philosophy.

subsystems: E ′int = 0. This certainly would be the most natural choice,4 with the “dressed”
water molecules not seeing each other.5

Later in this chapter, we will not use any fictitious charges.

13.4 Binding Energy

Interaction energy can be calculated at any configuration R of the nuclei. We may ask whether any
“privileged” configuration exists with respect to the interaction energy. This was the subject of
Chapter 7, and there it turned out that the electronic energy may have many minima (equilibria) as
a function of R. For each of these configurations, we may define the binding energy with respect

4 Although this choice is not unique, since the charges could be chosen at different points in space, and we could
also use point multipoles, etc.

5 This alludes to the elementary particles being “dressed” by interactions (as discussed in the section “What Is It All
About?” in Chapter 8). It is worth noting that we have to superpose the subsystems first (then the fictitious charges
disappear), and then calculate the interaction energy of the water molecules that are deformed by the charges.
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to a particular dissociation channel as the difference of the corresponding interaction energies
(all subsystems at the optimal positions Ropt( j) of the nuclei with respect to the electronic
energy E j ):

Ebind = E ABC ...
(
Ropt(tot)

)− ∑
j=A,B,C,...

E j
(
Ropt( j)

) = min
Rex

Erelax
int

(
Rex

)
(13.3)

At a given configuration Ropt(tot), we usually have many dissociation channels differing by
the possible products and their quantum-mechanical states.

13.5 Dissociation Energy

The calculated interaction energy of Eq. (13.1), as well as the binding energies are only theo-
retical quantities and cannot be measured. The measurable quantity is the dissociation energy

Ediss = Ebind +
⎡
⎣�E0,tot −

∑
j=A,B,C,...

�E0, j

⎤
⎦ , (13.4)

where �E0,tot stands for what is known as the zero vibration energy of the total system (cf. p.
364) at the equilibrium geometry Ropt(tot), and�E0, j for j = A, B,C, . . . representing the zero
vibration energies for the subsystems. In the harmonic approximation, �E0,tot = 1

2

∑
i hνi,tot

and �E0, j = 1
2

∑
i hνi, j , . . . at their equilibrium geometries Ropt( j).

Let us stress that the formula 1
2 hν for the zero vibration energy is related to the harmonic

approximation.6 Generally,

the zero vibration energy has to be determined as the difference between the lowest vibra-
tional energy level and the energy of the bottom of the potential well.

13.6 Dissociation Barrier

If a molecule receives dissociation energy, it is most often a sufficient condition for its dissoci-
ation (see Fig. 13.2a). Sometimes, however, the energy is too low, and the reason is that there
is an energy barrier to be overcome (see Fig. 13.2b). This dissociation barrier may be high and
the system stable even if the dissociation products have (much) lower energy. The catenans and
rotaxans shown in Fig. 13.2c may serve as examples.

The energy necessary to overcome the barrier from the trap side is equal to

Ebar1 = E# −
⎛
⎝Emin + 1

2

∑
j

hν j

⎞
⎠ ,

6 Note that ν is well defined in this formula.
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(a)

(c)

(b)

Fig. 13.2. Interaction energy Eint , binding energy Ebind , dissociation energy Ediss , and barrier energy Ebar1. (a) Here’s a
common situation: the interaction energy of two atoms or molecules (circles) represents a simple function of their distance R. (b)
Here is a more complex situation: there is a barrier for dissociation of the complex (Ebar1) and a barrier (of height Ebar2 ) for
approaching the atoms. (c) Two parts of the molecule are interlocked. In such a situation, like a catenan (two interlocked rings) and
a rotaxan (a ring moving along a wire with two stable positions), the Ebar1 energy is very large.

where Emin is the energy of the bottom of the well, E# represents the barrier top energy, and
1
2

∑
j hν j is the zero vibration energy of the well.

13.7 Supermolecular Approach

In the supermolecular method, the interaction energy is calculated from its definition [Eq. (13.1)]
using any reliable method of the electronic energy calculation. For the sake of brevity, we will
consider the interaction of only two subsystems: A and B.

13.7.1 Accuracy Should Be the Same

There is a problem, though. The trouble is that we are unable to solve the Schrödinger equation
exactly, either for AB, for A, or for B. We have to use approximations. If so, we have to worry
about the same accuracy of calculation for AB, A, and B. From this fact, we may expect that

in determining E AB , as well as E A and EB , the same theoretical method is preferred
because any method introduces its own systematic error, and we may hope these errors
will cancel at least partially in the above formula.
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AO basis set AO basis set

AB  system
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molecule molecule

molecule
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“ghost”
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to complete
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to complete
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(b)(a)

Fig. 13.3. (a) The BSSE problem. Each of the molecules offers its own atomic orbitals to the total basis set � = �A ∪ �B .
Panel(b) illustrates the counter-poise method, in which the calculations for a single subsystem are performed within the full atomic
basis set �: the orbitals centered on it and what are called ghost orbitals centered on the partner.

This problem is already encountered at the stage of basis set choice. For example, suppose
that we have decided to carry out the calculations within the Hartree-Fock method in the LCAO
MO approximation. The same method has to be used for AB, A, and B. However, what does
this really mean? Suppose we use the following protocol:

1. Consider the atomic basis set�, which consists of the atomic orbitals centered on the nuclei
of A (set �A) and on the nuclei of B (set �B); i.e., � = �A ∪�B .

2. Calculate E AB using �, E A using �A, and EB using �B (see Fig. 13.3a).

Apparently everything looks logical, but we did not use the same method when calculating the
energies of AB, A, and B. The basis set used was different depending what we wanted to calcu-
late. Thus, it seems more appropriate to calculate all three quantities using the same basis set�.

13.7.2 Basis Set Superposition Error (BSSE) . . . and the Remedy

Such an approach is supported by the following reasoning. When the calculations for E AB are
performed within the basis set�, we not only calculate implicitly the interaction energy, but also
we allow the individual subsystems to lower their energy–for no physical reason whatsoever–
and this reduction corresponds to the �−�A for A or �−�B for B, Fig. 13.3a. Conclusion:
by subtracting from E AB the energies (E A calculated with �A and EB with �B), we are left
not only with the interaction energy (as should be), but also with an unwanted and non-physical
extra term (an error) connected with the artificial lowering of the subsystems’ energies, when
calculating E AB . This error is called the Basis Set Superposition Error (BSSE).

To remove the BSSE, we may consider the use of the basis set� not only for E AB , but also for
E A and EB . This procedure, called the counter-poise method, was first introduced by Boys and
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Bernardi.7 Application of the full basis set � when calculating E A results in the wave function
of A containing not only its own atomic orbitals, but also the atomic orbitals of the (“absent”)
partner B, the “ghost orbitals” (see Fig. 13.3b). As a by-product, the charge density of A would
exhibit broken symmetry with respect to the symmetry of A itself (if any); for example, the
helium atom would have a small dipole moment, etc.

13.7.3 Good and Bad News About the Supermolecular Method

Two Deficiencies

When performing the subtraction in Eqs. (13.1) or (13.2), we obtain a number representing the
interaction energy at a certain distance and orientation of the two subsystems.

The resulting Eint has two disadvantages: it is less precise than E A and EB , and it does
not tell us anything about why the particular value is obtained.

The first disadvantage could be compared (following Coulson8) to weighing a captain’s hat
by first weighing the ship with the captain wearing his hat and the ship with the captain without
his hat (Fig. 13.4).

Formally, everything is perfect, but there is a cancellation of significative digits in E AB and
(E A + EB), which may lead to a very poor interaction energy.

The second deficiency deals with the fact that the interaction energy obtained is just a number,
and we have no idea why the number is of such magnitude.9

Both deficiencies will be removed in the perturbational approach to intermolecular interac-
tion. Then, the interaction energy will be calculated directly and we will be able to tell which
physical contributions it consists of.

Fig. 13.4. In the supermolecular method, we subtract two large numbers that differ only slightly and lose accuracy in this way.
In order not to obtain a result like 240 kg or so, we have to have at our disposal a very accurate method of weighing things.

7 S.F. Boys and F. Bernardi, Mol.Phys., 19, 553 (1970).
8 C.A. Coulson, Valence Oxford University Press (1952).
9 The severity of this problem can be diminished by analyzing the supramolecular interaction energy expression

(using molecular orbitals of A and B) and identifying the physically distinguishable terms by the kind of molecular
integrals of which they are composed [K. Kitaura and K. Morokuma, Intern.J.Quantum Chem., 10, 325 (1976)].
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A big advantage of the supermolecular method is its applicability at any intermolecular
distance (i.e., regardless of how strong the interaction is).

13.8 Perturbational Approach

13.8.1 Intermolecular Distance–What Does It Mean?

What is the distance (in kilometers) between the Polish and German populations, or what does
the distance between two buses mean? Because of the nonzero dimensions of both objects, it
is difficult to tell what a reasonable distance could be, and any measure of it will be arbitrary.
It is the same story with molecules. Until now, we did not need a notion for the intermolecular
distance–the positions of the nuclei were sufficient. At the beginning, we need only an infinite
distance, and therefore, in principle, any definition will be acceptable. Later, however, we
will be forced to specify the intermolecular distance (cf., p. 812 and Appendix X available at
booksite.elsevier.com/978-0-444-59436-5 on p. e169). The final numerical values should not
depend on this choice, but intermediary results could depend on it. It will turn out that despite the
existing arbitrariness, we will prefer those definitions that are based upon the center of charge
distance or similar.

13.8.2 Polarization Approximation (Two Molecules)

According to the Rayleigh-Schrödinger perturbation theory (discussed in Chapter 5), the

unperturbed Hamiltonian Ĥ (0) is a sum of the isolated molecules’ Hamiltonians:

Ĥ (0) = ĤA + ĤB .

Following quantum theory tradition, in this chapter the symbol for the perturbation operator
will be changed (when compared to Chapter 5) as follows: Ĥ (1) ≡ V .

Despite the fact that we may also formulate the perturbation theory for excited states,
we will assume that we are dealing with the ground state (and denote it by subscript “0”).
In what is called the polarization approximation, the zeroth-order wave function will be
taken as a product:

ψ
(0)
0 = ψA,0ψB,0, (13.5)

where ψA,0 and ψB,0 are the exact ground state wave functions for the isolated molecules
A and B, respectively; i.e.,

ĤAψA,0 = E A,0ψA,0,

ĤBψB,0 = EB,0ψB,0.

http://booksite.elsevier.com/978-0-444-59436-5
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First, for the large separation of the two molecules, the electrons of molecule A are distinguish-
able from the electrons of molecule B. We have to stress the classical flavor of this approxima-
tion. Second, we assume that the exact wave functions of both isolated molecules10 ψA,0 and
ψB,0 are at our disposal.

Of course, function ψ
(0)
0 is only an approximation of the exact wave function of the

total system. Intuition tells us that this approximation is probably very good because we pre-
sume that the perturbation is small and the product function ψ(0)0 = ψA,0 ψB,0 is an exact wave
function for the non-interacting system.

The chosenψ(0)0 has a wonderful feature–namely, it represents an eigenfunction of the Ĥ (0)

operator, as is required by the Rayleigh–Schrödinger perturbation theory (see Chapter 5).

The function has also an unpleasant feature: it differs from the exact wave function by
symmetry. For example, it is easy to see that

the function ψ(0)0 is not antisymmetric with respect to the electron exchanges between
molecules, while the exact function has to be antisymmetric with respect to any exchange
of electron labels.

This deficiency exists for any intermolecular distance.11 We will soon pay a high price for
this.

10 We will eliminate an additional complication that sometimes may occur. The nth state of the two non-interacting
molecules comes, of course, from some states of the isolated molecules A and B. It may happen (most often when

the two molecules are identical), that two different sets of the states give the same energy E(0)n . Typically, this may

happen upon the exchange of excitations of both molecules. Then, ψ(0)n has to be taken as a linear combination
of these two possibilities, which leads to profound changes of the formulas with respect to the usual cases.
Such an effect is called the resonance interaction [R.S. Mulliken, Phys.Rev., 120, 1674 (1960)]. The resulting
interaction decays with the distance as R−3 (i.e., quite slowly), making possible an excitation energy transfer
over long distances between the interacting molecules. The resonance interaction turns out to be very important
(e.g., in biology). An interested reader may find more in the review article by J.O. Hirschfelder and W.J. Meath,
Advan.Chem.Phys., 12, 3 (1967).

11 We may say that the range of the Pauli principle is infinity. If somebody paints some electrons green and others red
(we do this in the perturbational method), they are in “no man’s land,” between the classical and quantum worlds.

Since the wave function ψ(0)0 does not have the proper symmetry, the corresponding operator Ĥ (0) = ĤA + ĤB
is just a mathematical object not quite appropriate to the total system under study.
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First-order Effect: Electrostatic Energy

The first-order correction (see Chapter 5, p. 244),

E (1)0 ≡ Eelst ≡ E (1)pol =
〈
ψ
(0)
0 |Vψ(0)0

〉
, (13.6)

represents what iscalled the electrostatic interaction energy (Eelst). To stress that Eelst is the first-
order correction to the energy in the polarization approximation, the quantity will be alternatively
denoted by E (1)pol . The electrostatic energy represents the Coulombic interaction of two “frozen”
charge distributions corresponding to the isolated molecules A and B, because it is the mean
value of the Coulombic interaction energy operator V calculated with the wave function ψ(0)0

being the product of the wave functions of the isolated molecules ψ(0)0 = ψA,0ψB,0.

Second-order Energy: Induction and Dispersion Energies

The second-order energy in the polarization approximation approach can be expressed in a
slightly different way.

The nth state of the total system at long intermolecular distances corresponds to some
states n A and nB of the individual molecules; i.e.,

ψ(0)n = ψA,n AψB,nB (13.7)

anda

E (0)n = E A,n A + EB,nB . (13.8)

a Also, we exclude the resonance interaction in this case.

Using this assumption, the second-order correction to the ground-state energy (we assume
that n = 0 and ψ(0)0 = ψA,0ψB,0) can be expressed as (see Chapter 5, p. 244)

E (2)0 =
∑
n A

′∑
nB

|〈ψA,n AψB,nB |VψA,0ψB,0〉|2
(E A,0 − E A,n A)+ (EB,0 − EB,nB )

, (13.9)

where “prime” in the summation means excluding (n A, nB) = (0, 0). The quantity E (2)0 can be
divided in the following way:

E (2)0 =
∑
n A

′∑
nB

· · · =
∑

(n A=0,nB 	=0)

· · · +
∑

(n A 	=0,nB=0)

· · · +
∑

(n A 	=0,nB 	=0)

· · · (13.10)
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Let us construct a matrix A (of infinite dimension) composed of the element A00 = 0 and the
other elements calculated from the formula

An A,nB =
|〈ψA,n AψB,nB |VψA,0ψB,0〉|2

(E A,0 − E A,n A)+ (EB,0 − EB,nB )
(13.11)

and divide it into the following parts:

The quantity E (2)0 is a sum of all the elements of A. This summation will be carried out
in three steps. First, the sum of all the elements of column 0 (part I, n A = 0) represents the
induction energy associated with forcing a change in the charge distribution of the molecule
B by the charge distribution of the isolated (“frozen”) molecule A. Second, the sum of all the
elements of row 0 (part II, nB = 0) has a similar meaning, but the roles of the molecules are
interchanged. Finally, the sum of all the elements of the “interior” of the matrix (part III, n A

and nB not equal to zero) represents the dispersion energy. Therefore,

E (2)0 = Eind(A→ B)+ Eind(B → A)+ Edisp,

I II III
(13.12)

where

Eind(A→ B) =
′∑

nB

|〈ψA,0ψB,nB |VψA,0ψB,0〉|2
(EB,0 − EB,nB )

,

Eind(B → A) =
′∑

n A

|〈ψA,n AψB,0|VψA,0ψB,0〉|2
(E A,0 − E A,n A)

,

Eind = Eind(A→ B)+ Eind(B → A),

Edisp =
′∑

n A

′∑
nB

|〈ψA,n AψB,nB |VψA,0ψB,0〉|2
(E A,0 − E A,n A)+ (EB,0 − EB,nB )

. (13.13)

The electrostatic and the induction interactions are visualized in Fig. 13.5.
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(a)

(b)

(c)

Fig. 13.5. The essence of the electrostatic and of the induction interactions (a schematic visualization). (a) the electrostatic energy

(Eelst ≡ E(1)0 ≡ E(1)pol) represents the classical Coulombic interaction of the “frozen” charge distributions of molecule A and of
molecule B, the same as those of the isolated molecules. (b) The induction energy consists of two contributions. The first one,
Eind(A → B), means a modification of the electrostatic energy by allowing a polarization of the molecule B by the frozen (i.e.,
unperturbed) molecule A. (c) The second contribution to the induction energy, Eind(B → A), corresponds to the exchange of the
roles of the molecules.

What Do These Formulas Tell Us?

One thing has to be made clear. In Eq. (13.13), we sometimes see arguments for the interacting
molecules undergoing excitations. We have to recall, however, that we are interested in the
ground state of the total system the whole time, and we calculate its energy and wave function.
The excited state wave functions appearing in the formulas are only a consequence of the
fact that the first-order correction to the wave function is expanded in a complete basis set
chosen deliberately as {ψ(0)n }. If we took another basis set (e.g., the wave functions of another
isoelectronic molecule), we would obtain the same numerical results [although Eq. (13.13) will
not hold], but the argument would be removed. From the mathematical point of view, the very
essence of perturbation theory is a small deformation of the starting ψ(0)0 function. This tiny

deformation is the target of the expansion in the basis set {ψ(0)n }. In other words, the perturbation
theory is just a cosmetic effect with respect to ψ(0)0 : add a small hump here (Fig. 13.6), subtract
a small function there, etc. Therefore, the presence of the excited wave functions in the formulae
is not an argument for observing some physical excitations. We may say that the mathematical
procedure took what we have prepared for it, and we have prepared excited states.

This does not mean that the energy eigenvalues of the molecule have no influence on its
induction or dispersion interactions with other molecules.12 However, this is a different story.

12 The smaller the gap between the ground and excited states of the molecule, the larger the polarizability; see
Chapter 12.
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(b)

(a)

Fig. 13.6. A perturbation of the wave function is a small correction. Panel (a) shows in a schematic way how a wave function
(solid line) can be transformed into a function that is shifted off the nucleus (dotted line). The function representing the correction
added is shown schematically in Panel (b). Please note the function has symmetry of a p orbital.

It has to do with whether the small deformation that we have been talking about depends on the
energy eigenvalue spectrum of the individual molecules.

The denominators in the expressions for the induction and dispersion energies suggest that
the lower excitation energies of the molecules, the larger their deformation, induction, and
dispersion energy.

13.8.3 Intermolecular Interaction: Physical Interpretation

Now we would like to recommend the reader to study the multipole expansion concept (see
Appendix X available at booksite.elsevier.com/978-0-444-59436-5 on p. e169, also cf. Chapter
12, p. 728).

The essence of the multipole expansion is a replacement of the trouble-making Coulombic
interaction of two pointlike particles (one from molecule A, and the other from molecule
B) by an infinite sum of easily calculable interactions of what are called multipoles. Each
interaction term has in the denominator (instead of r12) an integer power of the inter-
molecular distance (R) between the origins of the two coordinate systems localized in the
individual molecules.

In other words, multipole expansion describes the intermolecular interaction of two non-
spherically symmetric, distant objects by the “interaction” of deviations (multipoles) from
spherical symmetry.

http://booksite.elsevier.com/978-0-444-59436-5
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To prepare ourselves for the application of the multipole expansion, let us introduce two
Cartesian coordinate systems with x- and y-axes in one system parallel to the corresponding
axes in the other system, and with the z-axes collinear (see Fig. X.1 on p. e170). One of the
systems is connected to molecule A, the other one to molecule B, and the distance between the
origins is R.13

The operator V of the interaction energy of two molecules may be written as

V = −
∑

j

∑
a

Za

raj
−

∑
i

∑
b

Zb

rbi
+

∑
i j

1

ri j
+

∑
a

∑
b

Za Zb

Rab
, (13.14)

where we have used the convention that the summations over i and a correspond to all electrons
and nuclei of molecule A, respectively, and over j and b to molecule B. Since the molecules
are assumed to be distant, we have a practical guarantee that the interacting particles are distant
too. In V , many terms with inverse interparticle distance are present. For any such term, we
may write the corresponding multipole expansion (see Appendix X available at booksite.
elsevier.com/978-0-444-59436-5, p. e169, s = min (k, l)):

− Za

raj
=

∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)M̂ (k,m)
A (a)∗M̂ (l,m)

B ( j),

− Zb

rbi
=

∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)M̂ (k,m)
A (i)∗M̂ (l,m)

B (b),

1

ri j
=

∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)M̂ (k,m)
A (i)∗M̂ (l,m)

B ( j),

Za Zb

Rab
=

∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)M̂ (k,m)
A (a)∗M̂ (l,m)

B (b),

where

Akl|m| = (−1)l+m (k + l)!
(k + |m|)!(l + |m|)! , (13.15)

13 A sufficient condition for the multipole expansion convergence is a separation of the charge distributions of both
molecules such that they could be enclosed in two non-penetrating spheres located at the origins of the two
coordinate systems. This condition cannot be fulfilled with molecules because their electronic charge density
distribution extends to infinity. The consequences of this are described in Appendix X available at booksite.
elsevier.com/978-0-444-59436-5. However, the better the sphere condition is fulfilled (by a proper choice of the
origins), the more effective are the first terms of the multipole expansion in describing the interaction energy.

The fact that we use closed sets (like the spheres) in the theory witnesses that in the polarization approximation,
we are in a “no man’s land” between the quantum and classical worlds.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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and the multipole moment M (k,m)
C (n) pertains to particle n and is calculated in “its” coordinate

system C ∈ {A, B}. For example,

M̂ (k,m)
A (a) = Za Rk

a P |m|k ( cos θa) exp (imφa), (13.16)

where Ra, θa, φa are the polar coordinates of nucleus a (with charge Za) of molecule A taken
in the coordinate system of molecule A. When all such expansions are inserted into the formula
for V , we may perform the following chain of transformations:

V = −
∑

j

∑
a

Za

raj
−

∑
i

∑
b

Zb

rbi
+

∑
i j

1

ri j
+

∑
a

∑
b

Za Zb

Rab

∼=
∑

j

∑
a

∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)M̂ (k,m)
A (a)∗M̂ (l,m)

B ( j)

+
∑

i

∑
b

∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)M̂ (k,m)
A (i)∗M̂ (l,m)

B (b)

+
∑

i j

∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)M̂ (k,m)
A (i)∗M̂ (l,m)

B ( j)

+
∑

a

∑
b

∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)M̂ (k,m)
A (a)∗M̂ (l,m)

B (b)

=
∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)

⎧⎨
⎩

[∑
a

M̂ (k,m)
A (a)

]∗⎡⎣∑
j

M̂ (l,m)
B ( j)

⎤
⎦

+
[∑

i

M̂ (k,m)
A (i)

]∗ [∑
b

M̂ (l,m)
B (b)

]
+

[∑
i

M̂ (k,m)
A (i)

]∗⎡⎣∑
j

M̂ (l,m)
B ( j)

⎤
⎦

+
[∑

a

M̂ (k,m)
A (a)

]∗ [∑
b

M̂ (l,m)
B (b)

]}

=
∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)

[∑
a

M̂ (k,m)
A (a)

+
∑

i

M̂ (k,m)
A (i)

]∗⎡⎣∑
b

M̂ (l,m)
B (b)+

∑
j

M̂ (l,m)
B ( j)

⎤
⎦

=
∑
k=0

∑
l=0

m=s∑
m=−s

Akl|m|R−(k+l+1)M̂ (k,m)∗
A M̂ (l,m)

B . (13.17)
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In the final square brackets of Eq. (13.17), we can recognize the multipole moment operators
for the molecules calculated in their coordinate systems:

M̂ (k,m)
A =

∑
a

M̂ (k,m)
A (a)+

∑
i

M̂ (k,m)
A (i),

M̂ (l,m)
B =

∑
b

M̂ (l,m)
B (b)+

∑
j

M̂ (l,m)
B ( j).

This takes the form of a single multipole expansion, but this time the multipole moment
operators correspond to entire molecules.

Using the table of multipoles (p. e174), we may easily write down the multipole operators for
the individual molecules. The lowest moment is the net charge (monopole) of the molecules:

M̂ (0,0)
A = qA = Z A − NA,

M̂ (0,0)
B = qB = Z B − NB,

where Z A is the sum of all the nuclear charges of molecule A, and NA is its number of electrons
(similarly for B). The next moment is M̂ (1,0)

A , which is a component of the dipole operator
equal to

M̂ (1,0)
A = −

∑
i

zi +
∑

a

Zaza, (13.18)

where z denotes the z-coordinates of the corresponding particles measured in the coordinate
system A (Z denotes the nuclear charge). Similarly, we could very easily write other multipole
moments, and the operator V takes the form (see Appendix X available at booksite.elsevier.com/
978-0-444-59436-5)

V = qAqB

R
− R−2(qAμ̂Bz − qBμ̂Az)+ R−3(μ̂Ax μ̂Bx + μ̂Ayμ̂By − 2μ̂Azμ̂Bz)

+ R−3(qA Q̂ B,z2 + qB Q̂ A,z2)+ · · · ,

where the monopole qA is the net charge of molecule A,

μ̂Ax = −
∑

i

xi +
∑

a

Zaxa,

Q̂ A,z2 = −
∑

i

1

2

(
3z2

i − r2
i

)+∑
a

Za
1

2

(
3z2

a − R2
a

)
,

http://booksite.elsevier.com/978-0-444-59436-5
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and A means that all these moments are measured in coordinate system A. The other quantities
have similar definitions and are easy to derive.14

13.8.4 Electrostatic Energy in the Multipole Representation Plus the Penetration
Energy

Electrostatic energy (p. 807) represents the first-order correction in polarization perturbational

theory and is the mean value of V with the product wave function ψ(0)0 = ψA,0ψB,0. Since now
we have the multipole representation of V , we may insert it into Eq. (13.6).

Let us stress for the sake of clarity that V is an operator that contains the operators of
the molecular multipole moments, and that the integration is, as usual, carried out over the
x, y, z, σ coordinates of all electrons (the nuclei have positions fixed in space according to
the Born–Oppenheimer approximation); i.e., over the coordinates of electrons 1, 2, 3, etc.
Since in the polarization approximation, we know perfectly well which electrons belong to
molecule A (“they are painted green”), and which belong to B (“they are painted red”), we
perform the integration separately over the electrons of molecule A and those of molecule B. We
have a comfortable situation now because every term in V represents a product of an operator
depending on the coordinates of the electrons belonging to A and of an operator depending on
the coordinates of the electrons of molecule B. This (together with the fact that in the integral,
we have a product of

∣∣ψA,0
∣∣2 and

∣∣ψB,0
∣∣2) results in a product of two integrals: one over the

electronic coordinates of A and the other one over the electronic coordinates of B. This is the
reason why we like multipoles so much.

Therefore,

the expression for E (1)0 = Eelst formally has to be of exactly the same form as the multipole
representation of V , the only difference being that in V , we have the molecular multipole
operators, whereas in Eelst, we have the molecular multipoles themselves as the mean
values of the corresponding molecular multipole operators in the ground state (the index
“0” has been omitted on the right side).

However, the operator V from Eq. (13.14) and the operator in the multipole form [Eq. (13.17)]
are equivalent only when the multipole form converges. It does when the interacting objects
are non-overlapping, which is not the case. The electronic charge distributions penetrate and
this causes a small difference ( penetration energy E penetr ) between the Eelst values calculated
with and without the multipole expansion. The penetration energy vanishes very fast with

14 There is one thing that may bother us here–namely, that μ̂Bz and μ̂Az appear in the charge-dipole interaction
terms with opposite signs, so they are not on equal footing. The reason is that the two coordinate systems are also
not on equal footing because the z-coordinate of the coordinate system A points to B, whereas the opposite is not
true (see Appendix X available at booksite.elsevier.com/978-0-444-59436-5).

http://booksite.elsevier.com/978-0-444-59436-5
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intermolecular distance R (cf. Appendix R available at booksite.elsevier.com/978-0-444-59
436-5, p. e137):

Eelst = Emultipol + E penetr , (13.19)

where Emultipol contains all the terms of the multipole expansion

Emultipol = qAqB

R
− R−2(qAμBz − qBμAz)+ R−3(μAxμBx + μAyμBy − 2μAzμBz)

+ R−3(qA Q B,z2+ qB Q A,z2)+ · · ·
The molecular multipoles are

qA = 〈ψA,0| −
∑

i

1+
∑

a

Za|ψA,0〉 =
(
−

∑
i

1+
∑

a

Za

)
〈ψA,0|ψA,0〉 =

∑
a

Za − NA

= the same as operator qA,

μAx = 〈ψA,0|μ̂AxψA,0〉 = 〈ψA,0| −
∑

i

xi +
∑

a

Zaxa|ψA,0〉 (13.20)

and a similar thing happens with the other multipoles.

Since the multipoles in the formula for Emultipol pertain to the isolated molecules, we may
say that the electrostatic interaction represents the interaction of the permanent multipoles
of both molecules.

Dipole-Dipole

The above multipole expansion also represents a useful source for the expressions for particular
multipole-multipole interactions.

Let us take as an example the important case of the dipole-dipole interaction.

From the above formulas, the dipole-dipole interaction Edip−dip = 1
R3 (μAxμBx +

μAyμBy − 2μAzμBz) reads also as

Edip−dip = 1

R3

(
µA⊥ · µB⊥ − 2µA‖ · µB‖

)
, (13.21)

where ⊥ and ‖ mean that we are dealing with the vector components perpendicular to the
axis connecting the two point dipoles and parallel to this axis, respectively.

http://booksite.elsevier.com/978-0-444-59436-5
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This is a short, easy-to-memorize formula, and we might be completely satisfied in using it,
provided that we always remember the particular coordinate system used for its derivation.

Taking into account our coordinate system, the vector pointing the coordinate system origin
a from b is R = (0, 0, R). Then we can express Edip−dip in a very useful form independent of
any choice of coordinate system (cf., e.g., pp. 147, 764):

Dipole-dipole Interaction:

Edip−dip = µA · µB

R3 − 3

(
µA · R

) (
µB · R

)
R5

. (13.22)

This form of the dipole-dipole interaction was used in Chapters 3 and 12.
It is important to understand the energies of the ubiquitous dipole-dipole interaction. It is

sufficient to consider the two dipoles having orientation within a plane formed by µA and
the vector R, connecting both point dipoles. If the dipole moments and the vector R do not
form the common plane, we represent one of the dipole moments (say, µB) as a sum of two
components: one forming the common plane with µA and R, and the second one orthogonal
to this plane: µB = µB‖ + µB⊥. The dipole-dipole interaction is a sum of the dipole-dipole
interactions with these two components, but the interaction of µA with µB⊥ is zero. Indeed, we

have Edip−dip = µA·
(
µB‖+µB⊥

)
R3 − 3

(
µA·R

)(
µB‖+µB⊥

)·R
R5 = µA·µB⊥

R3 + µA·µB‖
R3 − 3

(
µA·R

)(
µB⊥·R

)
R5 −

3
(
µA·R

)(
µB‖·R

)
R5 = 0+ µA·µB‖

R3 + 0− 3
(
µA·R

)(
µB‖·R

)
R5 = µA·µB‖

R3 − 3
(
µA·R

)(
µB‖·R

)
R5 .

Therefore,

as to the dipole-dipole interaction, whatever is nonzero pertains to the situation where the
two dipole moments and R form the common plane.

Hence, the orientation of these dipole moments with respect to an axis (chosen as R) can be
characterized by the angles θA and θB , which the vectors form with the axis. The dipole-dipole
formula [Eq. (13.21)] gives the following in this case:

Edip−dip = μAμB

R3

(
sin θA sin θB − 2 cos θA cos θB

)
. (13.23)

Fig. 13.7 shows function Edip−dip
(
θA, θB

)
. As one can see, the strongest dipole-dipole

attraction corresponds to the two dipoles aligned like this→→ (θA = θB = 0) or←←(θA =
θB = 1800). The worst energetically are the orientations→←(θA = 0, θB = 1800) and←→
θA = 1800, θB = 0). The lateral interaction corresponding to the antiparallel configurations
↑↓(θA = −θB = 900) or ↓↑(θA = −θB = −900) also corresponds to attraction, but it does
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Fig. 13.7. The dipole-dipole electrostatic interaction energy as a function of their orientation within a plane (for convenience
in μAμB

R3 energy units, R stands for the distance between these two pointlike dipoles). The angles θA and θB measure the
angular deviation of the dipoles from the connecting axis. The upper plane shown corresponds to the interaction energy equal
to 0. The lowest energy is −2 and corresponds to two collinear parallel orientations (shown by the arrows −→ −→ and
←− ←−). When moving along the valley (the central part of the figure, solid black line), one can pass from one to the
other of these configurations (via the configuration ↑↓ of energy −1), all the time having the dipole-dipole attraction. There-
fore, if some other interactions (such as a steric hindrance) tried to destabilize the optimum dipole-dipole collinear configura-
tion, an interesting low-energy compromise would be possible (see the lower plane)–just rotate the two dipoles starting from
the configuration −→ −→ toward the antiparallel configuration ↑↓ (i.e., putting θA = −θB 	= 0 instead of θA = θB = 0
and arriving at configuration ↗ ↘). In the two points labeled by the white circle (the white line shown corresponds to
θA = θB ), both dipoles form with the axis what is known as the magic angle θmag (the corresponding configurations are ↖↖
and ↗↗), and their interaction vanishes. The energy maxima (equal to +2) correspond to the configurations labeled −→ ←−
and←− −→.

not represent any minimum; these are two saddle points. The lateral parallel configurations ↑↑
or ↓↓ mean repulsion of the absolute value opposite to the ↑↓ attraction.

There is a lot of configurations giving zero dipole-dipole interaction [shown in Fig. 13.7 as
intersection of the Edip−dip

(
θA, θB

)
function with the upper plane]. However, if one forces the

dipoles to be parallel (θA = θB = θ ), the zero energy will correspond only to the particular θ
angle known as magic angle15 θmag corresponding to the↗↗ (or↖↖) configuration.

15 This angle plays an important role in the solid-state nuclear magnetic resonance measurements. We have

Edip−dip = μAμB
R3

(
sin2 θmag − 2 cos2 θmag

)
= μAμB

R3

(
1− 3 cos2 θmag

)
= 0; from this, we get θmag =

arccos 1√
3
= 54.740.
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In the central part of Fig. 13.7 is a deep valley connecting the most important configurations
of two dipoles - two global minima with energy equal to −2 (for the configurations→→ and
←←) separated by the saddle point corresponding to ↑↓ or ↓↑.

If interactions other than dipole-dipole tried to distort the parallel collinear configuration of
the interacting dipoles, it could be done without increasing the dipole-dipole electrostatic
energy too much, provided that the distortion would correspond to the opposite angular
deviations of both dipoles with respect to the R axis (i.e., the dipoles would be tilted in
opposite directions, with the dipole orientations moved toward the saddle point configura-
tion ↑↓; see Fig. 13.7). In such a way, one gets an easy-to-achieve compromise, which is
common in experimental dipole-dipole configurations:↗ ↘.

Is the Electrostatic Interaction Important?

Electrostatic interaction can be attractive or repulsive. For example, in the electrostatic inter-
action Na+ i Cl−, the main role will be played by the charge-charge interaction, which is
negative and therefore represents attraction, while for Na+ . . .Na+, the electrostatic energy
will be positive (repulsion). For neutral molecules, the electrostatic interaction may depend on
their orientation to such an extent that the sign may change. This is an exceptional feature that
is peculiar only to electrostatic interaction.

When the distance R is small when compared to the size of the interacting subsystems, multi-
pole expansion gives bad results. To overcome this, the total charge distribution may be divided
into atomic segments (see Appendix S available at booksite.elsevier.com/978-0-444-59436-5).
Each atom would carry its charge and other multipoles, and the electrostatic energy would be
the sum of the atom-atom contributions, any of which would represent a series similar16 to E (1)0 .

Example:
Let us calculate (by using the Hartree-Fock method) the rigid interaction energy of two hydrogen
fluoride molecules at the fixed F…F distance equal to 5 Å (each molecule has the optimum length
equal to 0.911 Å). We obtain the following results17 [in the last column, the dipole-dipole
interaction energy computed from Eq. (13.23) is displayed, all energies in a.u.]:

Configuration Eint Edip−dip

→→ collinear parallel −0,00143 −0,00143
→← collinear antiparallel +0,00320 +0,00143
↑↑ parallel dipoles +0,00071 +0,00071
↑↓ antiparallel dipoles −0,00071 −0,00071

16 A.J. Stone, Chem.Phys.Lett., 83, 233 (1981); A.J. Stone and M. Alderton, Mol.Phys., 56, 1047 (1985); W.A.
Sokalski and R. Poirier, Chem.Phys.Lett. 98, 86 (1983); W.A. Sokalski and A. Sawaryn, J.Chem.Phys., 87, 526
(1987).

17 We take the standard basis set 6-31G(d), for which the H − F bond length of the individual molecule is optimal.
The results are not corrected for the BSSE.

http://booksite.elsevier.com/978-0-444-59436-5
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It is seen that, except for the collinear antiparallel case, the electrostatic dipole-dipole interac-
tion dominates the other interactions contributing to the Hartree-Fock result. A lot of molecular
integrals, so many terms to calculate, the SCF iterative method included, but the situation is
correctly described by a primitive dipole-dipole term. The collinear antiparallel configuration
turned out to be too difficult a case here, the discrepancy is large. This is because, even if the
intermolecular distance F . . . F is kept constant, in reality the molecules are too close in this par-
ticular case; e.g., the H . . . H distance is about 3 Å only. In such a situation, the game involves
not only the interaction of the point dipoles, but also other interactions like quadrupole-dipole,
quadrupole-quadrupole and other electrostatic contributions, and non-electrostatic interactions
(like e.g., the valence repulsion, induction, etc.). Therefore, one may expect this trouble.

Example: Dipole-Internal Field Interactions in Proteins
In the above example, all of the dipoles corresponded to the entire interacting molecule. One

may consider, however, the molecular dipole moment as a sum of the dipole moments distributed
on all atoms and bonds of the molecule [see Eq. (12.37) on p. 742], and then to calculate the
intermolecular interaction as a sum of the interactions of such distributed dipoles. This may
suggest that the same concept may be applied to the intramolecular electrostatic dipole-dipole
interactions.

Here, we give an example of this idea. The native conformation is important, because many
proteins assure their biological activity only in such a conformation. It is currently assumed
that the native conformation corresponds to the lowest-energy conformational state [i.e., to the
global minimum of energy (cf., p. 353)]. A hypothesis has been presented18 that at the energy
minimum, each peptide bond (-HN-CO-) of the molecule is oriented quite well along the local
electric field created by the rest of the molecule.19 The hypothesis has been tested considering a
polyalanine oligomer in the α-helical conformation. It turned out that indeed, except of the very
ends of the α-helix, the deviation from the alignment was of the order of a few degrees only.
Later on extensive investigations of the intramolecular electric field in the native conformations
of proteins have been performed.20 The conclusion was similar: the peptide unit dipoles tend
to align along the local electric field.

Reality or Fantasy?

In principle, this part of the discussion (about electrostatic interactions) may be considered
completed. I am tempted, however, to enter some “obvious” subjects, which will turn out to
lead us far from the usual track of intermolecular interactions.

18 L. Piela and H.A. Scheraga, Biopolymers, 26, S33 (1987).
19 Each atom of the molecule had an assigned electric charge according to a force field used.
20 D. Ripoll, J.A. Vila, and H.A. Scheraga, Proc.Natl Acad.Sci, USA, 102, 7559 (2005).
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Let us consider the Coulomb interaction of two point charges q1 on molecule A and q2 on
molecule B, both charges separated by distance r :

Eelst = q1q2

r
. (13.24)

This is an outstanding formula for the following reasons:

• First, we have the amazing power of r with the exact value −1.
• Second, change of a charge sign does not make any profound changes in the formula, except

the change of sign of the interaction energy.
• Third, the formula is bound to be false (it has to be only an approximation), since instanta-

neous interaction is assumed, whereas the interaction has to have time to travel between the
interacting objects and during that time, the objects change their distance (see Chapter 3,
p. 146).

From these remarks follow some apparently obvious observations, that Eelst is invariant with
respect to the following operations:

• q ′1 = −q1 q ′2 = −q2 (charge conjugation, Chapter 2, 2.1.8)

• q ′1 = q2 q ′2 = q1 (exchange of charge positions)
• q ′1 = −q2 q ′2 = −q1 (charge conjugation and exchange of charge positions)

These invariance relations, when treated literally and rigorously, are not of particular use-
fulness in theoretical chemistry. They may, however, open new possibilities when considered
as some limiting cases. Chemical reaction mechanisms very often involve the interaction of
molecular ions. Suppose that we have a particular reaction mechanism. Now, let us make the
charge conjugation of all the objects involved in the reaction (this would require the change of
matter to antimatter). This will preserve the reaction mechanism. We cannot do such changes in
chemistry. However, we may think of some other molecular systems, which have similar geom-
etry but opposite overall charge pattern (a “counter pattern”). The new reaction has a chance to
run in a similar direction as before. This concept is parallel to the idea of Umpolung (considering
inversing of polarity of the species involved in reaction) functioning in organic chemistry. It
seems that nobody has looked from that point of view at all known reaction mechanisms.21

13.8.5 Induction Energy in the Multipole Representation

The induction energy contribution consists of two parts: Eind(A→ B) and Eind(B → A)
or, respectively, the polarization energy of molecule B in the electric field of the unperturbed
molecule A and vice versa.

21 The author is aware of only a single example of such a pair of counter patterns: the Friedl-Crafts reaction and
what is called the vicarious nucleophilic substitution, discovered by Mieczysław Mąkosza [M. Mąkosza and
A. Kwast, J.Phys.Org.Chem., 11, 341(1998)].
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The goal of the present section is to take apart the induction mechanism by showing its multipole
components. If we insert the multipole representation of V into the induction energy Eind(A→
B), then

Eind(A→ B) =
′∑

nB

|〈ψA,0ψB,nB |VψA,0ψB,0〉|2
EB,0 − EB,nB

=
′∑

nB

1

EB,0 − EB,nB{|R−1qA · 0− R−2qA〈ψB,nB |μ̂BzψB,0〉 + R−2 · 0
+R−3[μAx

〈
ψB,nB |μ̂BxψB,0

〉+ μAy〈ψB,nB |μ̂ByψB,0〉
−2μAz〈ψB,nB |μ̂BzψB,0〉] + · · ·|

}2

=
′∑

nB

1

EB,0 − EB,nB

{| − R−2qA〈ψB,nB |μ̂BzψB,0〉+

R−3[μAx
〈
ψB,nB |μ̂BxψB,0

〉+ μAy〈ψB,nB |μ̂ByψB,0〉
−2μAz〈ψB,nB |μ̂BzψB,0〉] + · · ·|

}2

= −1

2

1

R4 q2
AαB,zz + · · · ,

where the following is true:

• The zeros appearing in the first part of the derivation come from the orthogonality of the
eigenstates of the isolated molecule B.

• The symbol “+ . . .” stands for higher powers of R−1.
• αB,zz represents the zz component of the dipole polarizability tensor of the molecule B,

which absorbed the summation over the excited states of B according to definition 12.42.

A Molecule in the Electric Field of Another Molecule

Note that 1
R4 q2

A represents the square of the electric field intensity Ez(A→ B) = qA
R2 measured

on molecule B and created by the net charge of molecule A. Therefore, we have Eind(A →
B) = −1

2αA,zz E2
z (A → B) + · · · according to formula 12.24 describing the molecule in an

electric field. For molecule B, its partner, molecule A (and vice versa…), represents an external
world creating the electric field, and molecule B has to behave as described in Chapter 12. The
net charge of A created the electric field Ez(A→ B) on molecule B, which, as a consequence,
induced on B a dipole moment μB,ind = αB,zz Ez(A → B) according to formula 12.19. This
is associated with the interaction energy term 1

2αB,zz E2
z (A→ B), see Eq. (12.24).

There is, however, a small problem. Why is the induced moment proportional only to the
net charge of molecule A? This would be absurd. Molecule B does not know anything about
multipoles of molecule A, it only knows about the local electric field that acts on it and has
to react to that field by a suitable polarization. Everything is all right, though. The rest of the
problem is in the formula for Eind(A → B) . So far, we have analyzed the electric field on B
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coming from the net charge of A, but the other terms of the formula will give contributions to
the electric field coming from all other multipole moments of A. Then, the response of B will
pertain to the total electric field created by “frozen” A on B, as it should be. A similar story
applies to Eint (B → A).

13.8.6 Dispersion Energy in the Multipole Representation

After inserting V in the multipole representation into the expression for the dispersion energy,
we obtain

Edisp =
′∑

n A

′∑
nB

1

(E A,0 − E A,n A )+ (EB,0 − EB,nB )
|R−1qAqB · 0 · 0− R−2qA · 0 ·

(
μBz

)
nB ,0

− R−2qB · 0 ·
(
μAz

)
n A,0
+ R−3[(μAx

)
n A,0

(
μBx

)
nB ,0
+ (
μAy

)
n A,0

(
μBy

)
nB ,0

− 2
(
μAz

)
n A,0

(
μBz

)
nB ,0
] + · · · |2

=
′∑

n A

′∑
nB

|R−3[(μAx
)
n A,0

(
μBx

)
nB ,0
+ (
μAy

)
n A,0

(
μBy

)
nB ,0
− 2

(
μAz

)
n A,0

(
μBz

)
nB ,0
] + · · · |2

(E A,0 − E A,n A )+ (EB,0 − EB,nB )
,

where (μAx )n A,0 = 〈ψA,n A |μ̂AxψA,0〉, (μBx )nB ,0 = 〈ψB,nB |μ̂BxψB,0〉 and similarly for the y
and z dipole moment components. The zeros in the first part of the equality chain come from
the orthogonality of the eigenstates of each of the molecules.

The square in the formula pertains to all terms. The other terms, not shown in the formula,
have the powers of R−1 be higher than R−3.

Hence, if we squared the total expression in the numerator, the most important term would
be the dipole-dipole contribution with the asymptotic R−6 distance dependence.

As we can see, Eq. (13.13), its calculation requires double electronic excitations (one on
the first, the other one on the second interacting molecules), and these already belong to the
correlation effect (cf. p. 649).

The dispersion interaction is a pure correlation effect, and therefore, the methods used in a
supermolecular approach, which do not take into account the electronic correlation (such
as the Hartree-Fock method), are unable to produce any nonzero dispersion contributions.

13.8.7 Dispersion Energy Model–Calculation on Fingers

Where does this physical effect come from?
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(a)
(b)

(d)(c)

a

Fig. 13.8. Dispersion energy origin shown using a primitive model of two interacting hydrogen atoms. The nuclei (black circles)
occupy some fixed positions in space (at distance R), while each of the electrons (gray) can occupy only two positions: on the left
and on the right of the corresponding nucleus (at distance a from it). A popular explanation for the dispersion interaction is that, due
to electron repulsion: situations (a) and (b) occur more often than situation (c), and this is why the dispersion interaction represents
a net attraction of dipoles. The positions of the electrons that correspond to (a) and (b) represent two favorable instantaneous dipole-
instantaneous dipole interaction, while (c) corresponds to a non-favorable instantaneous dipole-instantaneous dipole interaction. A
trouble with this explanation is that there is also the possibility of having electrons far apart, as in (d). This most favorable situation
(the longest distance between the electrons) means, however, repulsion of the resulting dipoles. It may be shown, though, that the
net result (dispersion interaction) is still an attraction, as it should be.

We will try to catch the very essence of the dispersion interaction. As always, we will try to
be as simple as possible in order to construct the model, which still contains the very reason
that dispersion interactions happen.

• Well, why to complicate things and consider molecules? Do atoms interact via dispersion
interaction? Yes. Let us take atoms, then.

• Is it essential to have more than two electrons? No.
• Let us take, therefore, two hydrogen atoms, each in its ground state (i.e., 1s state), and at a

long internuclear distance R.
• Is it of importance for seeing the phenomenon to have the “full size,” 3-D hydrogen atoms?

No, because the effect comes from the electron correlation and such correlation may hap-
pen even for the toy 1-D hydrogen atoms, with the electrons moving along the internuclear
axis only.

• Is it essential indeed to have such motion? No, we may still simplify things and give only the
possibility of correlating two positions for each of the two electrons (along the internuclear
axis, so our toy will be not only 1-D, but also “granular”): on the left side and on the right
side (see Fig. 13.8), the fixed electron-proton distance being a � R.

Now, let us calculate the interaction energy of the two “toy hydrogen atoms” at large distances
R by using the dipole-dipole interactions for all four possible situations i = 1, 2, 3, 4 from Eq.
(13.22), assuming the local coordinate systems on the protons. In the total potential energy,
there is a common contribution, identical in all the four situations: the interaction within the
individual atoms: −2/a [the remainder is the interaction energy Eint (i)]. The potential energy
resulting from the Coulomb interactions of the particles, therefore, is

V (i) = −2/a + Eint (i),
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where the first term on the right side is twice (two “hydrogen atoms”) the electron-nucleus
interaction, and the second one is given as follows:

Situation, i Fig. 13.8 Interaction Energy Eint (i)

1 a −2 μ
2

R3

2 b −2 μ
2

R3

3 c +2 μ
2

R3

4 d +2 μ
2

R3

with µ = (
0, 0,±a

)
for electrons 1 and 2 according to Eq. (13.18), and μ ≡ a in a.u. Note,

that if we assume the same probability for each situation, the interatomic interaction energy
per situation would be zero; i.e., 1

4

∑
i Eint (i) = 0. These situations, however, have different

probabilities (pi ), because the electrons repel each other, and the total energy depends where
they actually are. Note that the probabilities should be different only because of the electron
correlation. If we could guess somehow these probabilities pi , i = 1, 2, 3, 4, then we could
calculate the mean interaction energy of our model 1-D atoms as Ēint =∑

i pi Eint (i). In this
way, we could see whether it corresponds to net attraction (Ēint < 0 ) or repulsion (Ēint > 0),
which is most interesting for us. Well, but how do we calculate them22?

We may suspect that for the ground state (we are interested in the ground state of our system),
the lower the potential energy V (i), the higher the probability density pi . This is what happens
for the harmonic oscillator, for the Morse oscillator, for the hydrogen-like atom, etc. It looks as
a general rule. Is there any tip that could help us work out what such a dependence might be?
If you do not know where to begin, then think of the harmonic oscillator model as a starting
point! This is what people usually do as a first guess. As seen from Eq. (4.22), the ground-state
wave function for the harmonic oscillator may be written as ψ0 = A exp[−BV (x)], where
B > 0 and V (x) stands for the potential energy for the harmonic oscillator. Therefore, the
probability density changes as ρ = A2 exp[−2BV (x)]. Interesting…Now let us assume that a
similar thing happens23 for the probabilities pi of finding the electrons 1 and 2 and they may be
reasonably estimated as pi = N ′A2 exp[−2BV (i)], where V (i) = −2/a+ Eint (i) plays a role
of potential energy. Finally, pi = N exp[−2B Eint (i)], and N = 1/

∑
i exp[−2B Eint (i)] is

the normalization constant assuring that in our model,
∑

i pi = 1. For long distances R [small

22 In principle, we could look at what people have calculated in the most sophisticated calculations for the hydrogen
molecule at a large R, and assign the pi as the squares of the wave function value for the corresponding four
positions of both electrons. Since these wave functions are awfully complex and do not contribute anything
qualitatively different, we disregard this path with no regrets.

23 This is like having the electron attached to the nucleus by a harmonic spring (instead of having Coulombic
attraction).
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Eint (i)], we may expand this expression in a Taylor series and obtain pi =
[
1−2B Eint (i)

]∑
j exp[−2B Eint ( j)] ≈

1−2B Eint (i)∑
j

(
1−2B Eint ( j)+...) = 1−2B Eint (i)

4−2B·0+∑
j

1
2

[
2B Eint ( j)

]2+... ≈
1
4 − B

2 Eint (i), where the Taylor series has

been truncated to the accuracy of the linear terms in the interaction. Then, the mean interaction
energy is

Ēint =
∑

i

pi Eint (i) ≈
∑

i

[
1

4
− B

2
Eint (i)

]
Eint (i)

= 1

4

∑
i

Eint (i)− B

2

∑
i

[Eint (i)]2 = 0− B

2

16μ4

R6 = −8B
μ4

R6 < 0.

The approximations that we have made were extremely crude, but despite this, we were
able to grasp three important features of the correct dispersion energy: that it corresponds
to attractive interaction, that it vanishes with distance as R−6, and that it is proportional
to the fourth power of the instantaneous dipole moment. What really contributed to the
success of the above reasoning is the dipole-dipole character of the interaction,a not the
use of a harmonic model.
a In addition to the rule: the lower the potential energy V (x), the higher the value of the ground-state wave

function ψ(x) and the higher the corresponding probability density.

Examples:
The electrostatic interaction energy of two molecules can be calculated from Eq. (13.6).

However, it is very important for a chemist to be able to predict the main features of the
electrostatic interaction without any calculation at all, based on some general rules. This will
create chemical intuition or chemical common sense so important in planning, performing, and
understanding experiments.

How do we recognize that a particular multipole-multipole interaction represents attraction
or repulsion? First, we replace the molecules by their lowest nonzero multipoles represented by
point charges; e.g., ions by+ or−, dipolar molecules by+−, quadrupoles by+−−+, etc. In order
to do this, we have to know which atoms are electronegative and which electropositive.24 After
doing this, we replace the two molecules by the multipoles. If the nearest-neighbor charges in
the two multipoles have opposite signs, the multipoles attract each other; otherwise, they repel.
(Fig. 13.9).

24 This is common knowledge in chemistry and is derived from experiments as well as from quantum mechanical
calculations. The later provide the partial atomic charges from what is called population analysis (see Appendix S
available at booksite.elsevier.com/978-0-444-59436-5). Despite its non-uniqueness, it would satisfy our needs.
A unique and elegant method of calculation of atomic partial charges is related to the Bader analysis described on
p. 669.

http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 13.9. For sufficiently large intermolecular separations, the interaction of the lowest non-vanishing multipoles dominates.
Whether this is an attraction or repulsion can be recognized by representing the molecular charge distributions by non-pointlike
multipoles (clusters of point charges). If such multipoles point to each other by point charges of the opposite (same) sign, then the
electrostatic interaction of the molecules is attraction (repulsion). (a) A few examples of simple molecules and the atomic partial
charges; (b) even the interaction of the two benzene molecules obeys this rule: in the face-to-face configuration they repel, while
they attract each other in the perpendicular configuration.

The data of Table 13.1 were obtained assuming a long intermolecular distance and molecular
orientations as shown in the table.

In composing Table 13.1, some helpful information has been used:

• Induction and dispersion energies always represent attraction, except in some special cases
when they are zero. These special cases are obvious; e.g., it is impossible to induce some
changes on molecule B if molecule A does not have any nonzero permanent multipoles.
Also, the dispersion energy is zero if an interacting subsystem has no electrons.
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Table 13.1. The asymptotic interaction energy (proportional to R−n , the table gives the exponent
n) of two molecules in their electronic ground states. For each pair of molecules or atoms, a short
characteristic of their electrostatic, induction, and dispersion interactions is given. It consists of n
and the sign (in parentheses) of the corresponding interaction type: the “− ” sign means attraction,
the “+ ” sign means repulsion, and 0 corresponds to the absence of such an interaction.

System Electrostatic Induction Dispersion

He . . .He 0 0 6(−)
He · · ·H+ 0 4(−) 0
He · · ·HCl 0 6(−) 6(−)
H+ · · ·HCl 2(+) 4(−) 0
HCl · · ·ClH 3(+) 6(−) 6(−)
HCl · · ·HCl 3(−) 6(−) 6(−)
H–H · · · He 0 8(−) 6(−)
H–H · · · H–H 5(+) 8(−) 6(−)
H
H · · · H-H 5(−) 8(−) 6(−)
H
H O · · · H OH 3(−) 6(−) 6(−)
H
H O · · · H O H

H 3(+) 6(−) 6(−)

• Electrostatic energy is nonzero, if both interacting molecules have some nonzero permanent
multipoles.

• Electrostatic energy is negative (positive), if the lowest non-vanishing multipoles of the
interacting partners attract (repel) themselves.25

• The dispersion energy always decays as R−6

• The electrostatic energy vanishes as R−(k+l+1), where the 2k–pole and 2l–pole represent
the lowest non-vanishing multipoles of the interacting subsystems

• The induction energy vanishes as R−2(k+2), where the 2k–pole is the lower of the two lowest
nonzero permanent multipoles of the molecules A and B. The formula is easy to understand
if we take into account that the lowest induced multipole is always a dipole (l = 1 ), and
that the induction effect is of the second order (hence 2 in the exponent).

13.9 Symmetry Adapted Perturbation Theories (SAPT)

The SAPT approach applies to intermediate intermolecular separations, when the electron clouds
of both molecules overlap to such an extent, that the following occurs:

• The polarization approximation [i.e., ignoring the Pauli principle (p. 805)], becomes a very
poor approximation.

• The multipole expansion becomes invalid.

25 This statement is true for sufficiently long distances.
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13.9.1 Polarization Approximation Is Illegal

The polarization approximation zero-order wave function ψA,0ψB,0 will be deprived of

the privilege of being the unperturbed function ψ(0)0 in a perturbation theory. Since it will
still play an important role in the theory, let us denote it by ϕ(0) = ψA,0ψB,0.

The polarization approximation seems to have (at first glimpse) a very strong foundation
because at long intermolecular distances R, the zero-order energy is close to the exact one.
The trouble is, however, that a similar statement is not true for the zero-order wave function
ϕ(0) and for the exact wave function at any intermolecular distance (even at infinity).

Let us take an example of two ground-state hydrogen atoms. The polarization approximation
zero-order wave function

ϕ(0)(1, 2) = 1sa(1)α(1) 1sb(2)β(2), (13.25)

where the spin functions have been introduced (the Pauli principle is ignored.26)

This function is neither symmetric (since ϕ(0)(1, 2) 	= ϕ(0)(2, 1)) nor antisymmetric (since
ϕ(0)(1, 2) 	= −ϕ(0)(2, 1)), and therefore is “illegal” and in principle not acceptable.

13.9.2 Constructing a Symmetry Adapted Function

In the Born-Oppenheimer approximation, the electronic ground-state wave function of H2 has

to be the eigenfunction of the nuclear inversion symmetry operator Î interchanging nuclei a
and b (see Appendix C available at booksite.elsevier.com/978-0-444-59436-5). Since Î 2 = 1,
the eigenvalues can be either −1 (called u symmetry) or +1 (g symmetry).27 The ground state
is of g symmetry, so the projection operator 1

2 (1 + Î ) will take care of that (it says: make a
50-50 combination of a function and its counterpart coming from the exchange of nuclei a
and b).28 On top of this, the wave function has to fulfill the Pauli exclusion principle, which
we will ensure by the antisymmetrizer Â (cf., p. e109), which, when acting, gives either an
antisymmetric function or zero. Altogether, the proper symmetry will be ensured by projecting
ϕ(0) using the idempotent projection operator:

Â = 1

2
(1+ Î ) Â. (13.26)

26 This is the essence of the polarization approximation.
27 The symbols come from German: g stands for gerade (even) and u stands for ungerade (odd).
28 We ignore the proton spins here.

http://booksite.elsevier.com/978-0-444-59436-5
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We obtain as a projection Âϕ(0) of ϕ(0) (in case of no g or u symmetry we will use Â ≡ Â):

1

2
(1+ Î ) Âϕ(0) = 1

2!
1

2
(1+ Î )

∑
P

(−1)p P̂[1sa(1)α(1)1sb(2)β(2)]

= 1

4
(1+ Î )[1sa(1)α(1)1sb(2)β(2)− 1sa(2)α(2)1sb(1)β(1)]

= 1

4
[1sa(1)α(1)1sb(2)β(2)− 1sa(2)α(2)1sb(1)β(1)+ 1sb(1)α(1)1sa(2)β(2)

− 1sb(2)α(2)1sa(1)β(1)]
= 1

2
√

2
[1sa(1)1sb(2)+ 1sa(2)1sb(1)]

{
1√
2
[α(1)β(2)− α(2)β(1)]

}
.

This result is proportional to the Heitler-London wave function from p. 611, where its
important role in chemistry was highlighted:

ψH L ≡ ψ(0)0 = N [1sa(1)1sb(2)+ 1sa(2)1sb(1)]
{

1√
2
[α(1)β(2)− α(2)β(1)]

}
,

(13.27)
where N is the normalization constant.

The function has the same symmetry as the exact solution to the Schrödinger equation (anti-
symmetric with respect to the exchange of electrons and symmetric with respect to the exchange
of protons). It is easy to calculate29 that normalization of ψ(0) means N = 2[(1 + S2)]−1/2,
where S stands for the overlap integral of the atomic orbitals 1sa and 1sb.

13.9.3 The Perturbation Is Always Large in Polarization Approximation

Let us check (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5) how
distant functions ϕ(0) and ψ(0) are in the Hilbert space (they are both normalized; i.e., they are
unit vectors in the Hilbert space). We will calculate the norm of difference ϕ(0) − ψ(0)0 . If the

29 ∫ |ψH L |2dτ1dτ2 = |N |2(2+2S2)
{∑

σ1

∑
σ2

1
2

[
α(1)β(2)− α(2)β(1)]2

}
= |N |22(1+S2) 1

2 (1+1−2 ·0) = 1

Hence, N = 1√
2(1+S2)

. Shortly, we will need function ψ(0)0 with the intermediate normalization with respect

to ϕ(0); i.e., satisfying 〈ψ(0)0 |ϕ(0)〉 = 1 instead of 〈ψ(0)0 |ψ(0)0 〉 = 1. Then N will be different, and equal to

〈ϕ(0)|Âϕ(0)〉−1.

http://booksite.elsevier.com/978-0-444-59436-5
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norm were small, then the two functions would be close in the Hilbert space. Let us see:

||ϕ(0) − ψ(0)0 || ≡
[∫ (

ϕ(0) − ψ(0)0

)∗ (
ϕ(0) − ψ(0)0

)
dτ

] 1
2

=
[

1+ 1− 2
∫
ϕ(0)ψ

(0)
0 dτ

] 1
2 =

{
2− 2

∫ [
1sa(1)α(1)1sb(2)β(2)

]

N
[
1sa(1)1sb(2)+ 1sa(2)1sb(1)

] { 1√
2

[
α(1)β(2)− α(2)β(1)]} dτ

} 1
2

=
{

2− N
√

2
∫ [

1sa(1)1sb(2)
] [

1sa(1)1sb(2)+ 1sa(2)1sb(1)
]

dr1dr2

} 1
2

=
{

2− 1√
1+ S2

(1+ S2)

} 1
2 = {2−

√
1+ S2}1/2,

where we have assumed that the functions are real. When R→∞, then S→ 0 and

lim
R→∞ ||ϕ

(0) − ψ(0)0 || = 1 	= 0. (13.28)

It is, therefore, clear that the Heitler-London wave function differs considerably and that
this huge difference does not vanish when R→∞.

The two normalized functionsϕ(0) andψ(0)0 represent two unit vectors in the Hilbert space; see

Fig. 13.10. The scalar product of the two unit vectors 〈ϕ(0)|ψ(0)0 〉 is equal to cos θ . Let us calculate

this angle θlim, which corresponds to R tending to∞. The quantity limR→∞ ||ϕ(0)−ψ(0)0 ||2 =
limR→∞

∫
(ϕ(0) − ψ(0)0 )∗(ϕ(0) − ψ(0)0 )dτ = limR→∞

[
2− 2 cos θ

] = 1. Hence, cos θlim = 1
2 ,

and therefore θlim = 600. This means that the three unit vectors, ϕ(0), ψ(0)0 and ϕ(0) − ψ(0)0 for
R → ∞, form an equilateral triangle, and therefore ϕ(0) represents a highly “handicapped’’
function, which lacks about a half with respect to a function of the proper symmetry.30 This is
certainly bad news.

Therefore, the perturbation V has to be treated as always large, because it is responsible
for a huge wave function change: from the unperturbed one of bad symmetry to the exact
one of the correct symmetry.

30 In Appendix Y available at booksite.elsevier.com/978-0-444-59436-5, p. e183, we show how the charge distri-
bution changes when the Pauli exclusion principle is forced by a proper projection of the ϕ(0) wave function.

http://booksite.elsevier.com/978-0-444-59436-5
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Fig. 13.10. A view from the Hilbert space showing that the polarization approximation is very bad, even for the infinite intersystem

distance. The normalized functions ϕ(0) and ψ(0)0 for the hydrogen molecule are unit vectors belonging to the Hilbert space. The

functions differ widely at any intermolecular distance R. For S = 0 (i.e., for long internuclear distances), the differenceψ(0)0 −ϕ(0)
represents a vector of the Hilbert space having the length 1. Therefore, for R = ∞, the three vectors ϕ(0), ψ(0)0 , and ψ(0)0 − ϕ(0)
form an equilateral angle. For shorter distances, the angle between ϕ(0) and ψ(0)0 becomes smaller than 600.

In contrast to this, there would be no problem at all with the vanishing of the ||ψ(0)0 − ψ0||
as R →∞ , where ψ0 represents an exact ground-state solution of the Schrödinger equation.
Indeed,ψ(0)0 correctly describes the dissociation of the molecule into two hydrogen atoms (both
in the 1s state), as well as both functions have the same symmetry for all interatomic distances.
Therefore,

the Heitler-London wave function represents a good approximation to the exact function
for long (and we hope medium) intermolecular distances. Unfortunately, it is not the eigen-
function of the Ĥ (0), and therefore, we cannot construct the usual Rayleigh-Schrödinger
perturbation theory.

And this is the second piece of bad news here.

13.9.4 Iterative Scheme of SAPT

We now have two issues: either to construct another zero-order Hamiltonian, for which theψ(0)0
function would be an eigenfunction (then the perturbation would be small and the Rayleigh-
Schrödinger perturbation theory might be applied), or to abandon any Rayleigh-Schrödinger per-
turbation scheme and replace it by something else. The first of these possibilities was developed
intensively in many laboratories. The approach had the deficiency that the operators appearing
in the theories depended explicitly on the basis set used, and therefore, there was no guarantee
that a basis independent theory exists.
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The second possibility relies on an iterative solution of the Schrödinger equation, forcing the
proper symmetry of the intermediate functions. The method was proposed by Bogumił Jeziorski
and Włodzimierz Kołos.

Claude Bloch was probably the first to write the Schrödinger equation in the form shown in
formulas31 10.82 and 10.71. Let us recall them in a notation adapted to the present situation:

ψ0 = ϕ(0) + R̂0(E
(0)
0 − E0 + V )ψ0

E0 = E (0)0 + 〈ϕ(0)|Vψ0〉,
where we assume that ϕ(0) satisfies

Ĥ (0)ϕ(0) = E (0)0 ϕ(0),

with the eigenvalues of the unperturbed Hamiltonian Ĥ (0) = ĤA + ĤB given as the sum of the
energies of the isolated molecules A and B:

E (0)0 = E A,0 + EB,0,

and ψ0 is the exact ground-state solution to the Schrödinger equation with the total non-
relativistic Hamiltonian Ĥ of the system:

Ĥψ0 = E0ψ0.

We focus our attention on the difference E0 between E0, which is our target, and E (0)0 , which is
at our disposal as the unperturbed energy. We may write the Bloch equations in a form exposing
the interaction energy E0 = E0 − E (0)0 :

ψ0 = ϕ(0) + R̂0(−E0 + V )ψ0

E0 = 〈ϕ(0)|Vψ0〉,
the equations are valid for intermediate normalization 〈ϕ(0)|ψ0〉 = 1. This system of equations
for E0 and ψ0 might be solved by an iterative method:

Iterative Scheme:
ψ0(n) = ϕ(0) + R̂0[−E(n)+ V ]ψ0(n − 1) (13.29)

E0(n) = 〈ϕ(0)|Vψ0(n − 1)〉, n = 1, 2, 3, . . . , (13.30)

where n is the iteration number.

In practice, everything depends on the starting point chosen, how many iterations have to
be done and whether the convergence will be achieved. One of the most beautiful features of
iterative schemes is that despite the fact that the freedom is usually very large, we are able to
reach the limit; i.e., to get ||ψ0(n + 1)− ψ0(n)|| < ε and |E0(n + 1)− E0(n)| < ε for n > n0

and for an arbitrarily small ε > 0.

31 C. Bloch, Nucl.Phys., 6, 329 (1958).
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Polarization Scheme Reproduced

We may start in the zeroth iteration with ψ0(0) = ϕ(0). From the second of the iterative

equations, we get right away E0(1) = 〈ϕ(0)|Vϕ(0)〉 ≡ E (1)pol , which is the interaction energy
accurate up to the first order of the polarization perturbational scheme. After inserting this
result and ψ0(0) = ϕ(0) into the first equation, one obtains (note that R̂0ϕ

(0) = 0) ψ0(1) =
ϕ(0) + R̂0(V − 〈ϕ(0)|Vϕ(0)〉)ϕ(0) = ϕ(0) + R̂0Vϕ(0). This is a sum of the unperturbed wave
function and of the first-order correction, Eq. (5.24) on p. 245, exactly what we have obtained
in the polarization approximation. The second iteration gives

E0(2) =
〈
ϕ(0)|Vψ0(1)

〉
=

〈
ϕ(0)|V

(
ϕ(0) + R̂0Vϕ(0)

)〉
= E (1)pol +

〈
ϕ(0)|V R̂0Vϕ(0)

〉
= E (1)pol + E (2)pol

because the second term represents nothing but the second-order energy correction in the polar-
ization approximation.

When repeating the above iterative scheme and grouping the individual terms according to
the powers of V , at each turn, we obtain the exact expression appearing in the Rayleigh-
Schrödinger polarization approximation (discussed in Chapter 5), plus some higher-order
terms.

It is worth noting that E0(n) is the sum of all corrections of the Rayleigh-Schrödinger up to
the nth order with respect to V , plus some higher-order terms. For large R, the quantity E0(n)
is an arbitrarily good approximation of the exact interaction energy.

Of course, the rate at which the iterative procedure converges depends very much on the
starting point chosen. From this point of view, the start from ψ0(0) = ϕ(0) is particularly
unfortunate because the remaining (roughly) 50% of the wave function has to be restored by the
hard work of the perturbational series (high-order corrections are needed). This will be especially
pronounced for long intermolecular distances, where the exchange interaction energy will not
be reproduced in any finite order.

Murrell-Shaw and Musher-Amos (MS-MA) Perturbation Theory Reproduced

A much more promising starting point in Eq. (13.29) seems to beψ0(0) = ψ(0)0 , because the sym-
metry of the wave function is already correct and the function itself represents an exact solution

at R = ∞. For convenience, the intermediate normalization is used (see p. 241)
〈
ϕ(0)|ψ(0)0

〉
= 1;

i.e., ψ(0)0 = NÂϕ(0) with N = 〈ϕ(0)|Âϕ(0)〉−1. The first iteration of Eqs. (13.29) and (13.30)
gives the first-order correction to the energy (which we split into the polarization part and the



834 Chapter 13

rest):

E0(1) = N
〈
ϕ(0)|V Âϕ(0)

〉
= E (1)pol + E (1)exch, (13.31)

E (1)pol ≡ Eelst =
〈
ϕ(0)|Vϕ(0)

〉
.

We have obtained the electrostatic energy that was already known, plus a correction E (1)exch which
we will discuss shortly.

The first-iteration wave function will be obtained in the following way. First, we will use the
commutation relation ÂĤ = ĤÂ or

Â(Ĥ (0) + V ) = (Ĥ0 + V )Â. (13.32)

Of course,

Â
(

Ĥ (0) − E (0)0 + V
)
=

(
Ĥ (0) − E (0)0 + V

)
Â, (13.33)

which gives32 V Â− ÂV = [Â, Ĥ (0)− E (0)0 ], as well as (V −E1)Â = Â(V −E1)+[Â, Ĥ0−
E (0)0 ]. Now we are ready to use Eq. (13.30) with n = 1:

ψ0(1) = ϕ(0) + R̂0(V − E0(1))ψ
(0)
0 = ϕ(0) + N R̂0(V − E0(1))Âϕ(0)

= ϕ(0) + N R̂0

{
Â(V − E0(1))+ Â

(
Ĥ (0) − E (0)0

)
−

(
Ĥ (0) − E (0)0

)
Â

}
ϕ(0)

= ϕ(0) + N R̂0Â
(
V − E0(1)

)
ϕ(0) + N R̂0Â

(
Ĥ (0) − E (0)0

)
ϕ(0)

−N R̂0

(
Ĥ (0) − E (0)0

)
Âϕ(0).

The third term is equal to 0 because ϕ(0) is an eigenfunction of Ĥ (0) with an eigenvalue E (0)0 . The
fourth term may be transformed by decomposing Âϕ(0) into the vector (in the Hilbert space)
parallel to ϕ(0) or 〈Âϕ(0)|ϕ(0)〉ϕ(0) and the vector orthogonal to ϕ(0), or (1−|ϕ(0)〉〈ϕ(0)|)Aϕ(0).
The result of R̂0(Ĥ (0)− E (0)0 ) acting on the first vector is zero (p. 644), while the second vector
gives (1−|ϕ(0)〉〈ϕ(0)|)Aϕ(0). This gives as the first iteration ground-state wave functionψ0(1):

ψ0(1) = ϕ(0) + N R̂0Â(V − E0(1))ϕ
(0) + NÂϕ(0) − N 〈ϕ(0)|Âϕ(0)〉ϕ(0)

= Âϕ(0)
〈ϕ(0)|Âϕ(0)〉 + N R̂0Â(V − E0(1))ϕ

(0) = B̂ϕ(0) − N R̂0Â(E0(1)− V )ϕ(0),

where

B̂ϕ(0) = Âϕ(0)
〈ϕ(0)|Âϕ(0)〉 . (13.34)

32 Let us stress in passing that the left side is of the first order in V , while the right side is of the zeroth order.
Therefore, in SAPT, the order is not a well-defined quantity, its role is taken over by the iteration number.
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After inserting ψ0(1) into the iterative scheme [Eq. (13.29)] with n = 2, we obtain the second-
iteration energy:

E0(2) = 〈ϕ(0)|Vψ0(1)〉 = 〈ϕ
(0)|V Âϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 − N 〈ϕ(0)|V R̂0Â[E0(1)− V ]ϕ(0)〉. (13.35)

These equations are identical to the corresponding corrections in perturbation theory derived
by Murrell and Shaw33 and by Musher and Amos34 (MS–MA).

13.9.5 Symmetry Forcing

Finally, there is good news. It turns out that we may formulate a general iterative scheme that
can produce various procedures, only some of them were known in the literature. In addition,
the scheme has been designed by my nearest-neighbor colleagues (Jeziorski and Kołos). This
scheme reads as

ψ0(n) = ϕ(0) + R̂0[−E0(n)+ V ]F̂ψ0(n − 1)

E0(n) = 〈ϕ(0)|V Ĝψ0(n − 1)〉

where in Eqs. (13.29) and (13.30), we have inserted operators F̂ and Ĝ, which have to fulfill
the obvious condition

F̂ψ0 = Ĝψ0 = ψ0, (13.36)

where ψ0 is the solution to the Schrödinger equation.

Why Force the Symmetry?
At the end of the iterative scheme (convergence), the insertion of the operators F̂ and Ĝ has
no effect at all, but before that, their presence may be crucial for the numerical convergence.
This is the goal of symmetry forcing.

This method of generating perturbation theories has been called by the authors the symmetry
forcing method in SAPT, Table 13.2.

33 J.N. Murrell and G. Shaw, J.Chem.Phys., 46, 1768 (1867).
34 J.I. Musher and A.T. Amos, Phys.Rev., 164, 31 (1967).
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Table 13.2. Symmetry forcing in various perturbation schemes of the SAPT com-
pared to the polarization approximation. The operator B̂ is defined by: B̂χ =
Âχ/〈ϕ(0)|Âχ〉.

Perturbation Scheme ψ0(0) F̂ Ĝ

Polarization ϕ(0) 1 1
Symmetrized polarization ϕ(0) 1 B̂
MS–MA B̂ϕ(0) 1 1
Jeziorski-Kołos schemea B̂ϕ(0) Â 1

EL–HAVb B̂ϕ(0) Â B̂
a B. Jeziorski and W. Kołos, Int.J.Quantum Chem.12, 91 (1977).
b Eisenschitz–London and Hirschfelder–van der Avoird perturbation theory:
R. Eisenschitz and F. London, Zeit.Phys. 60, 491 (1930); J.O. Hirschfelder,
Chem.Phys.Letters, 1, 363 (1967); A. van der Avoird, J.Chem.Phys. 47,
3649 (1967).

Polarization Collapse Removed

The corrections obtained in SAPT differ from those of the polarization perturbational method.
To show the relation between the results of the two approaches, let us first introduce some

new quantities. The first is an idempotent antisymmetrizer:

Â = CÂAÂB(1+ P̂),

with C = NA!NB !
(NA+NB)! , where ÂA, ÂB are idempotent antisymmetrizers for molecules A and

B, each molecule contributing NA and NB electrons. Permutation operator P̂ contains all the
electron exchanges between molecules A and B:

P̂ = P̂AB + P̂ ′

P̂AB = −
∑
i∈A

∑
j∈B

P̂i j ,

with P̂AB denoting the single exchanges only, and P̂ ′ the rest of the permutations (i.e., the
double, triple, etc. exchanges). Let us stress that ϕ(0) = ψA,0ψB,0 represents a product of two
antisymmetric functions,35 and therefore, Âϕ(0) = C(1 + P̂AB + P̂ ′)ψA,0ψB,0. Taking into
account the operator P̂ in 〈ϕ(0)|V Âϕ(0)〉 and 〈ϕ(0)|Âϕ(0)〉 produces

E (1) = 〈ψA,0ψB,0|VψA,0ψB,0〉 + 〈ψA,0ψB,0|V P̂ABψA,0ψB,0〉 + O(S4)

1+ 〈ψA,0ψB,0|P̂ABψA,0ψB,0〉 + O(S4)
, (13.37)

35 The product itself does not have this symmetry.
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and therefore,

in the polarization approximation,

E (1)pol ≡ Eelst = 〈ϕ(0)|Vϕ(0)〉, (13.38)

while in SAPT,

E (1) = 〈ϕ
(0)|V Âϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 , (13.39)

E (1) = E (1)pol + E (1)exch, (13.40)

where the exchange interaction in the first-order perturbation theory is

E (1)exch = 〈ψA,0ψB,0|V P̂ABψA,0ψB,0〉
−〈ψA,0ψB,0|VψA,0ψB,0〉〈ψA,0ψB,0|P̂ABψA,0ψB,0〉 + O(S4). (13.41)

In the most commonly encountered interaction of closed shell molecules, the E (1)exch term
represents the valence repulsion.

The symbol O(S4) stands for all the terms that vanish with the fourth power of the overlap
integrals or faster.36 The valence repulsion already appears in the first order of the perturbation
theory (besides the electrostatic energy E (1)pol) as a result of the Pauli exclusion principle.37

We have gained a remarkable thing, which may be seen by taking the example of two interact-
ing subsystems: Na+ and Cl−. In the polarization approximation, the electrostatic, induction,
and dispersion contributions to the interaction energy are negative, the total energy will go
down, and we will soon have a catastrophe: both subsystems would occupy the same place in
space and according to the energy calculated (that could attain even −∞, as shown in Fig.
13.11), the system would be extremely happy. This is absurd.

If this were true, we could not exist. Indeed, sitting safely in a chair, we have an equilibrium
of the gravitational force and…, well, and what? First of all, the force coming from the valence
repulsion that we are talking about. It is claimed sometimes that quantum effects are peculiar
to small objects (electrons, nuclei, atoms, molecules) and are visible when dealing with such

36 This means that we also take into account such a decay in situations other than in overlap integrals; e.g.,
〈1sa1sb|1sb1sa〉 is of the order S2, where S = 〈1sa |1sb〉. Thus, the criterion is the differential overlap rather than
the overlap integral.

37 Here is an intriguing idea: the polarization approximation should be an extremely good approximation for the
interaction of a molecule with an antimolecule (built from antimatter). Indeed, in the molecule we have electrons
in the antimolecule positrons, and no antisymmetrization (between the systems) is needed. Therefore, a product
wave function should be a very good starting point. No valence repulsion will appear, and the two molecules will
penetrate like ghosts. “Soon after the annihilation takes place and the system disappears”.
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(b)(a)

Fig. 13.11. Interaction energy of Na+ and Cl− (scheme). The polarization approximation gives an absurdity for small separations:
the subsystems attract very strongly (mainly because of the electrostatic interaction), while they have had to repel very strongly. (a)
The absurdity is removed when the valence repulsion is taken into account. Panel(b) shows the valence repulsion alone modeled
by the term A exp (−B R), where A and B are positive constants.

particles. We see, however, that we owe even the ability to sit in a chair to the Pauli exclusion
principle (a quantum effect).

Valence repulsion removes the absurdity of the polarization approximation, which made
the collapse of the two subsystems possible.

13.9.6 A Link to the Variational Method–The Heitler-London Interaction Energy

Since the Âϕ(0) wave function is a good approximation of the exact ground state wave function
at high values of R, we may calculate what is called the Heitler-London interaction energy
(E H L

int ) as the mean value of the total (electronic) Hamiltonian minus the energies of the isolated
subsystems:

E H L
int =

〈Âϕ(0)|ĤÂϕ(0)〉
〈Âϕ(0)|Âϕ(0)〉 − (E A,0 + EB,0).

This expression may be transformed in the following way:

E H L
int =

〈ϕ(0)|ĤÂϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 − (E A,0 + EB,0)

= 〈ϕ
(0)|Ĥ (0)Âϕ(0)〉 + 〈ϕ(0)|V Âϕ(0)〉

〈ϕ(0)|Âϕ(0)〉 − (E A,0 + EB,0)
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= (E A,0 + EB,0)〈ϕ(0)|Âϕ(0)〉 + 〈ϕ(0)|V Âϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 − (E A,0 + EB,0)

= 〈ϕ
(0)|V Âϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 .

Therefore, the Heitler-London interaction energy is equal to the first-order SAPT energy

E H L
int = E (1).

13.9.7 Summary: The Main Contributions to the Interaction Energy

From the first two iterations (n = 2) of the SAPT scheme [Eqs. (13.29) and (13.30), p. 832] we
got the energy E0(2), which now will be written in a somewhat different form:

E0(2) = Eelst + E (1)exch −
〈ϕ(0)|V R̂0Â[E0(1)− V ]ϕ(0)〉

〈ϕ(0)|Âϕ(0)〉 . (13.42)

We recognize on the right side (the first two terms) the complete first-order contribution; i.e.,
the electrostatic energy (Eelst) and the valence repulsion energy (E (1)exch). From the definition
of the induction and dispersion energies [Eqs. (13.13) on p. 808], as well as from the reduced
resolvent R̂0 of Eq. (10.76) on p. 644, (applied here to the individual molecules), one may write

R̂0 = R̂0,ind + R̂0,disp, (13.43)

where the induction part of the resolvent

R̂0,ind = R̂0,ind(A→B) + R̂0,ind(B→A), (13.44)

corresponds to deforming B by A and vice versa

R̂0,ind(A→B) =
∑

nB(	=0)

|ψA,0ψB,nB 〉〈ψA,0ψB,nB |
EB,0 − EB,nB

, (13.45)

R̂0,ind(B→A) =
∑

n A(	=0)

|ψA,n AψB,0〉〈ψA,n AψB,0|
E A,0 − E A,n A

, (13.46)

while the dispersion part of the resolvent reads as

R̂0,disp =
∑

(n A,nB)	=(0,0)

|ψA,n AψB,nB 〉〈ψA,n AψB,nB |
(E A,0 − E A,n A)+ (EB,0 − EB,nB )

. (13.47)

Let us insert these formulas into Eq. (13.42). We get (because R̂0,indϕ
(0) = R̂0,indψA,0ψB,0 =

0, and, for similar reasons, also R̂0,dispϕ
(0) = 0)

E0(2)−
(

Eelst + E (1)exch

)
= (13.48)
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〈ϕ(0)|V R̂0,indÂVϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 + 〈ϕ

(0)|V R̂0,dispÂVϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 = (13.49)

(
Eind + E (2)ind–exch

)
+

(
Edisp + E (2)disp–exch

)
. (13.50)

In this way, we have introduced

• The induction-exchange energy E (2)ind–exch representing a modification of the induction energy,
known from the polarization approximation (Eind)

E (2)ind–exch =
〈ψA,0ψB,0|V R̂0,indÂVψA,0ψB,0〉
〈ψA,0ψB,0|Â

(
ψA,0ψB,0

)〉 − Eind.

Note that after using the definition of the antisymmetrization operator Â [Eq. (M.1)
on p. e109] as well as after applying the Taylor expansion, one gets as the first term:
〈ψA,0ψB,0|V R̂0,indVψA,0ψB,0〉 ≡ Eind, which cancels the second term of the last equation.
The other terms are

E (2)ind–exch = 〈ψA,0ψB,0|V R̂0,ind P̂AB VψA,0ψB,0〉 (13.51)

−〈ψA,0ψB,0|V R̂0,indVψA,0ψB,0〉〈ψA,0ψB,0|P̂AB
(
ψA,0ψB,0

)〉 (13.52)

+ O(S4). (13.53)

Therefore, they represent the corrections for the induction energy due to the forcing of the Pauli
exclusion principle (for they appear as a result of the antisymmetrization) and are said to take
care of the electron exchanges between the two molecules (due to the single electron exchanges
from the permutation operator P̂AB , the double exchanges, etc.; see p. 836).38

• The dispersion-exchange energy E (2)disp–exch , which is a modification of the dispersion energy
defined in the polarization perturbation theory (Edisp)

E (2)disp–exch =
〈ψA,0ψB,0|V R̂0,dispÂVψA,0ψB,0〉
〈ψA,0ψB,0|Â

(
ψA,0ψB,0

)〉 − Edisp. (13.54)

After representing Â by permutation operators and application of the Taylor expansion to
the inverse of the denominator, the first term 〈ψA,0ψB,0|V R̂0,dispVψA,0ψB,0〉 ≡ Edisp cancels

out the second term on the right side. The other terms, as in the case of E (2)ind–exch, result from

38 One more thing should be mentioned at this point. Because R̂0,ind = R̂0,ind(A→B)+ R̂0,ind(B→A) one may split

E(2)ind–exch into a part associated with a modification of polarization (due to the valence repulsion) of B by A and
a similar part for polarization modification of A by B.

The electron permutations lead to the integrals that decay with R similarly as powers of the overlap integrals;
i.e., the above modifications decay very fast with increasing R.
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the Pauli exclusion principle:

E (2)disp–exch = 〈ψA,0ψB,0|V R̂0,disp P̂AB VψA,0ψB,0〉 (13.55)

−〈ψA,0ψB,0|V R̂0,dispVψA,0ψB,0〉〈ψA,0ψB,0|P̂AB
(
ψA,0ψB,0

)〉 (13.56)

+O(S4) (13.57)

In the SAPT scheme, which takes into account the overlapping of the electron clouds of both
interacting molecules, one obtains the terms known from the polarization approximation
(no antisymmetrization) plus some important modifications.

In the first order, due to the Pauli exclusion principle (i.e., to the antisymmetrization)
the electrostatic energy Eelst that is known from the polarization approximation is supple-
mented by the valence repulsion energy E (1)exch.

In the second order, the Pauli deformation (cf. Appendix Y available at booksite.
elsevier.com/978-0-444-59436-5 on p. e183) of the electronic density in the AB complex
results in exchange-based modifications (E (2)ind–exch and E (2)disp–exch) of the induction and
dispersion interactions (Eind and Edisp) that are known from the polarization perturbation
theory.

One may, therefore, suspect that a restriction of polarization and of the electron correlation
(the essence of the dispersion energy) due to the Pauli exclusion principle should result in
a smaller energy gain, and therefore, E (2)ind–exch and E (2)disp–exch should represent positive (i.e.,
destabilizing) energy effects. There is no theoretical evidence of this, but the numerical results
seem to confirm the above conjecture; see Table 13.3.

Table 13.3. The SAPT contributions to the interaction energy calculated by using the DFT electronic

density for Ne2, (H2O)2 and (C6H6)2. Numerical experience: the values for E(2)ind–exch and E(2)disp–exch are

always positive!

Contribution Ne2[cm−1]a (H2O)2
[

kcal
mol

]
a (C6H6)2

[
kcal
mol

]
b

Eelst −6.24 −7.17 −0.01

E(1)exch 26.40 5.12 3.82
Eind −4.76 −2.22 −1.30

E(2)ind–exch 4.88 1.13 1.07
Edisp −46.23 −2.15 −5.77

E(2)disp–exch 1.85 0.36 0.51

Eint −22.65 −4.50 −1.67
a A.J. Misquitta and K. Szalewicz, J.Chem.Phys., 122, 214109 (2005).
b S. Tsuzuki and H.P.Lüthi, J.Chem.Phys., 114, 3949 (2001).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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13.10 Convergence Problems and Padé Approximants

A very slow convergence (of “pathological” character) is bound to appear. To see why, let us
recall the Heitler-London function (p. 521), which for very large R approximates the exact wave
function very well. Since the function is so accurate, and therefore indispensable for a good
description, an effective iterative process is expected to reproduce it in the first few iterations.
Of course, the Heitler-London wave function can be represented as a linear combination of
the functions belonging to a complete basis set, because any complete basis set can do it.
In particular, a complete basis set can be formed from the products of two functions belonging
to complete one-electron basis sets39: the first one, describing electron 1, represents an orbital
centered on the nucleus a, while the second function (of electron 2) is an orbital centered
on b. There is, however, a difficulty of a purely numerical character: the second half of the
Heitler-London wave function corresponds to electron 1 at b, and electron 2 at a, just opposite
to what describe the functions belonging to the complete set. This would result in prohibitively
long expansions (related to a large number of iterations and a high order of the perturbation
theory) necessary for the theory reproduced the second half of the Heitler-London function.
This effort is similar to expanding the function 1sb (i.e., localized far away off the center a)
as a linear combination of the functions 1sa, 2sa, 2pxa, 2pxa, 2pya, 2pza, . . . It can be done
in principle, but in practice, it requires prohibitively long expansions, which should ensure a
perfect destructive interference (of the wave functions) at a and, at the same time, a perfect
constructive interference at b.

Another kind of convergence problems is related to a too late operation of the Pauli exclu-
sion principle. This pertains also to SAPT. Why? Look at Table 13.2. One of the perturbational
schemes given there (namely, the symmetrized polarization approximation) is based on cal-
culation of the wave function, exactly as in the polarization approximation scheme, but just
before calculation of the corrections to the energy, the polarization wave function is projected
on the antisymmetrized space. This procedure is bound to have trouble. The system excessively
changes its charge distribution without paying any attention to the Pauli exclusion principle (thus
allowing it to polarize itself in a non-physical way–this may be described as overpolarization),
and then the result has to be modified in order to fulfill a principle40 (the Pauli principle).

This became evident after a study called the Pauli blockade.41 It was shown that if the Pauli
exclusion principle is not obeyed, the electrons of the subsystem A can flow, without any penalty
and totally non-physically, to the low-energy orbitals of B. This may lead to occupation of that
orbital by four electrons (!), whereas the Pauli principle admits only a maximum of a double
occupation.

39 The hydrogen orbitals form a complete set, because they are the eigenfunctions of a Hermitian operator (Hamil-
tonian).

40 This is similar to allowing all plants grow as they want and, just after harvesting everything, select the wheat
alone. We cannot expect much from such an agriculture.

41 M. Gutowski and L. Piela, Mol.Phys., 64, 337 (1988).
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Thus, any realistic deformation of the electron clouds has to take into account simultaneously
the exchange interaction (valence repulsion, or the Pauli principle). Because of this, we have
introduced what is called the deformation-exchange interaction energy:

Edef-exch = E0(2)− (Eelst + Edisp). (13.58)

Now about making convergence faster. Any perturbational correction carries information.
Summing up (this is the way we calculate the total effect), these corrections means a certain
processing of the information. We may ask an amazing question: is there any possibility of
taking the same corrections and squeezing out more information42 than just making the sum?

In 1892, Henri Padé43 wrote his doctoral dissertation in mathematics and presented some
fascinating results.

For a power series,

f (x) =
∞∑
j=0

a j x
j , (13.59)

we may define a Padé approximant [L/M] as the ratio of two polynomials:

[L/M] = PL(x)

QM(x)
, (13.60)

where PL(x) is a polynomial of at most the Lth order, while QM(x) is a polynomial of
the M th order. The coefficients of the polynomials PL and QM will be determined by the
following condition:

f (x)− [L/M] = terms of higher order than x L+M . (13.61)

In other words,

the first L+M terms of the Taylor expansion for a function f (x) and, for its Padé approx-
imant, are identical.

42 That is, a more accurate result.
43 H. Padé, Ann.Sci.Ecole Norm.Sup.Suppl.[3], 9, 1 (1892).
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Since the numerator and denominator of the approximant can be harmlessly multiplied
by any nonzero number, we may set, without losing anything, the following normalization
condition:

QM(0) = 1. (13.62)

Let us assume also that PL(x) and QM(x) do not have any common factor.
If we now write the polynomials as

PL(x) = p0 + p1x + p2x2 + · · · pL x L

QM(x) = 1+ q1x + q2x2 + · · · qM x M ,

then multiplying Eq. (13.60) by Q and forcing the coefficients at the same powers of x to
be equal, we obtain the following system of equations for the unknowns pi and qi (there are
L + M + 1 of them; the number of equations is the same):

a0 = p0

a1 + a0q1 = p1

a2 + a1q1 + a0q2 = p2

aL + aL−1q1 + · · · a0qL = pL

aL+1 + aLq1 + · · · aL−M+1qM = 0
...

aL+M + aL+M−1q1 + · · · aLqM = 0. (13.63)

Note that the sum of the subscripts in either term is a constant integer within the range
[0, L + M], which is connected to the abovementioned equal powers of x .

Example 1. (Mathematical)
The method is best illustrated in action. Let us take a function

f (x) = 1√
1− x

(13.64)

and then expand f in a Taylor series:

f (x) = 1+ 1

2
x + 3

8
x2 + 5

16
x3 + 35

128
x4 + · · · (13.65)

Therefore, a0 = 1; a1 = 1
2 ; a2 = 3

8 ; a3 = 5
16 ; a4 = 35

128 . Now forget for the moment that
these coefficients came from the Taylor expansion of f (x). Many other functions may have
the same beginning of the Taylor series. Let us calculate some partial sums of the right side of
Eq. (13.65):
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Approx. f ( 1
2 ) Sum up to the nth term

n = 1 1.00000
n = 2 1.25000
n = 3 1.34375
n = 4 1.38281
n = 5 1.39990

We see that the Taylor series “works very hard”; and approaching f (1
2 ) =

√
2 = 1.414213562,

it succeeds, but not without a painful effort.
Now let us check how one of the simplest Padé approximants (namely, [1/1]), performs the

same job. By definition,
(p0 + p1x)

(1+ q1x)
. (13.66)

Solving Eq. (13.63) gives as the approximant44:(
1− 1

4 x
)

(
1− 3

4 x
) . (13.67)

Let us stress that information contained in the power series [Eq. (13.59)] has been limited
to a0, a1, and a2 (all other coefficients have not been used). For x = 1

2 , the Padé approximant
[1/1] has the value (

1− 1
4

1
2

)
(
1− 3

4
1
2

) = 7

5
= 1.4, (13.68)

which is more effective than the painful efforts of the Taylor series, which used a coefficients
up to a4 (this gave 1.39990). To be fair, we have to compare the Taylor series result that used
only a0, a1, a2 and this gives only 1.34375. Therefore, the approximant failed by 0.01, while
the Taylor series failed by 0.07. The Padé approximant [2/2] has the form

[2, 2] =
(
1− 3

4 x + 1
16 x2

)
(

1− 5
4 x + 5

16 x2
) . (13.69)

For x = 1
2 , its value is equal to 41

29 = 1.414, which means an accuracy of 10−4, while without
Padé approximants, but using the same information contained in the coefficients, we get an
accuracy that is two orders of magnitude worse.

Our procedure did not have information that the function expanded is (1− x)− 1
2 for we gave

the first five terms of the Taylor expansion only. Despite this, the procedure determined with
high accuracy what will give higher terms of the expansion.

44 Indeed, L = M = 1 , and therefore the equations for the coefficients p and q are the following: p0 = 1, 1
2 +q1 =

p1,
3
8 + 1

2 q1 = 0. This gives the solution: p0 = 1, q1 = − 3
4 , p1 = − 1

4 .
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Example 2. (Quantum Mechanical)
This is not the end of the story yet. The reader will see shortly some things which will be even

stranger. Perturbation theory also represents a power series (with respect to λ) with coefficients
that are energy corrections. If perturbation is small, the corrections are small as well; in principle,
the higher the perturbation order the smaller perturbational corrections are. As a result, a partial
sum of a few low-order corrections usually gives sufficient accuracy. However, the higher the
order, the more difficult are the corrections to calculate. Therefore, we may ask if there is any
possibility of obtaining good results and at a low price by using the Padé approximants. In Table
13.4, the results of a perturbational study of H+2 by Jeziorski et al. are collected.45

For R = 12.5 a.u., we see that the approximants had a very difficult task to do. First of all
they “recognized” the series limit, already about 2L + 1 = 17. Before that, they have been
less effective than the original series. It has to be stressed, however, that they “recognized”
it extremely well (see 2L + 1 = 21). In contrast to this, the (traditional) partial sums ceased
to improve when L increased. This means that either the partial sum series converges46 to a
false limit or it converges to the correct limit, but does it extremely slowly. We see from the
variational result (the error is calculated with respect to this) that the convergence is false.47 If
the variational result had not been known, we would say that the series has already converged.
However, the Padé approximants said: “no, this is a false convergence,” and they were right.

For R = 3.0 a.u. (see Table 13.4), the original series represents a real tragedy. For this
distance, the perturbation is too large and the perturbational series just evidently diverges.

Table 13.4. Convergence of the MS–MA perturbational series for the hydrogen atom in the field of a proton (2pσu
state) for internuclear distance R (a.u.). The Table reports the error (in %) for the sum of the original perturbational series
and for the Padé [L + 1, L] approximant. The error is calculated with respect to the variational method (i.e., the best for
the basis set used).

2L + 1 R = 12.5 R = 3.0

pert. series [L + 1, L] pert. series [L + 1, L]
3 0.287968 0.321460 0.265189 0.265736
5 0.080973 −0.303293 0.552202 −1.768582
7 0.012785 −0.003388 0.948070 0.184829
9 −0.000596 −0.004147 1.597343 0.003259

11 −0.003351 −0.004090 2.686945 0.002699
13 −0.003932 −0.004088 4.520280 0.000464
15 −0.004056 −0.004210 7.606607 0.000009
17 −0.004084 −0.001779 12.803908 0.000007
19 −0.004090 0.000337 21.558604 −0.000002
21 −0.004092 −0.000003 36.309897 0.000001

45 B. Jeziorski, K. Szalewicz and M. Jaszuński, Chem.Phys.Letters, 61, 391(1979).
46 We have only numerics as an argument though. The described case represents an example of vicious behavior

when summing up a series: starting from a certain order of the perturbational series, the improvement becomes
extremely slow (we see the “false” convergence), although we are far from the true limit.

47 At least, this is so as we see it numerically.



Intermolecular Interactions 847

The greater our effort, the greater the error of our result. The error is equal to 13% for 2L+1 = 17,
then it goes to 22% for 2L + 1 = 19, and finally, it attains 36% for 2L + 1 = 21. Despite of
these hopeless results, it turns out that the problem is easy for the Padé approximants.48 They
were already much better for L = 3.

Why Are the Padé Approximants so Effective?

The apparent garbage produced by the perturbational series for R = 3.0 a.u. represented for the
Padé approximants precise information that the absurd perturbational corrections pertain the
energy of the …2pσu state of the hydrogen atom in the electric field of the proton. Why does this
happen? Visibly low-order perturbational corrections, even if absolutely crazy, somehow carry
information about the physics of the problem. The convergence properties of the Rayleigh-
Schrödinger perturbation theory depend critically on the poles of the function approximated
(see the discussion on p. 250). A pole cannot be described by any power series (as happens in
perturbation theories), whereas the Padé approximants have poles built in the very essence of
their construction (the denominator as a polynomial). This is why they may fit so well to the
nature of the problems under study.49

13.11 Non-additivity of Intermolecular Interactions

13.11.1 Interaction Energy Represents the Non-additivity of the Total Energy

The total energy of interacting molecules is not an additive quantity; i.e., it does not represent
the sum of the energies of the isolated molecules. The reason for this non-additivity is the
interaction energy.

First of all, the interaction energy requires the declaration of which fragments of the total
system we are treating as (interacting) molecules (see the beginning of this chapter). The only
real system is the total system, not these subsystems. Therefore, the subsystems can be chosen
in many different ways.

If the theory were exact, the total system could be described at any such choice (cf. p. 570).
Only the supermolecular theory that is invariant with respect to such choices.50 The perturbation
theory so far has no such powerful feature (this problem is not even raised in the literature),
because it requires the intramolecular and intermolecular interactions to be treated on the same
footing.

48 Similar findings are reported in T.M. Perrine, R.K. Chaudhuri, and K.F. Freed, Intern.J.Quantum Chem., 105,
18 (2005).

49 There are cases, however, where Padé approximants may fail in a spectacular way.
50 However, this occurs for rather trivial reasons; i.e., interaction energy represents a by-product of the method. The

main goal is the total energy, which by definition is independent of the choice of subsystems.
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13.11.2 Many-body Expansion of the Rigid Interaction Energy

A next question could be: is the interaction energy pair-wise additive? That is,

is the interaction energy a sum of pairwise interactions?

If this were true, it would be sufficient to calculate all possible interactions of pairs of
molecules in the configuration identical to that they have in the total system,51 and our problem
would be solved.

For the time being, let us take the example of a stone, a shoe, and a foot. The owner of the
foot will certainly remember what the three-body interaction is, while nothing special happens
when you put a stone into the shoe, or your foot into the shoe, or a small stone on your foot
(two-body interactions). The molecules behave similarly:

their molecular interactions are not pairwise additive.

In the case of three interacting molecules, there is an effect of a strictly three-body char-
acter, which cannot be reduced to the two-body interactions. Similarly, for larger numbers of
molecules, there is a nonzero four-body effect, because all cannot be calculated as two- and
three-body interactions, etc.

In what is called the many-body expansion for N molecules A1, A2, . . .,AN the (rigid)
interaction energy Eint (A1 A2 . . . AN ), i.e., the difference between the total energy E A1 A2...AN

and the sum of the energies of the isolated molecules52 E Ai , can be represented as a series of
m-body interaction terms �E

(
m, N

)
,m = 2, 3, . . . , N :

Eint = E A1 A2...AN −
N∑

i=1

E Ai =
N∑

i> j

�E Ai A j

(
2, N

)

+
N∑

i> j>k

�E Ai A j Ak

(
3, N

)+ · · ·�E A1 A2...AN

(
N , N

)
. (13.70)

The�E
(
m, N

)
contribution to the interaction energy of N molecules (m ≤ N ) represents

the sum of the interactions of m molecules (all possible combinations of m molecules
among N molecules keeping their configurations fixed as in the total system) inexplicable
by the interactions of m′ < m molecules.

51 This would be much less expensive than the calculation for the total system.
52 With the same internal configuration as that in the total system and with the fixed number of electrons.
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Now let’s consider one more question. Should we really stay with the idea of the rigid
interaction energy? For instance, we may be interested in how the conformation of the AB
complex changes in the presence of molecule C. This is also a three-body interaction. Such
dilemmas have not yet been solved in the literature.

Example. Three Helium Atoms
Let us take the helium atoms in the equilateral triangle configuration with the side length

R = 2.52 Å. This value corresponds to 90% of the double helium atom van der Waals radius53

(1.40 Å). The MP2 calculation, gives the energy for the three atoms equal to EHe3 = −8.5986551
a.u., for a pair of the atoms: EHe2 = −5.7325785 a.u., and for a single atom: EHe = −2.8663605
a.u. Therefore, the interaction energy of a single atomic pair is equal to54 �EHe He(2.3) =
0.0001425 a.u., three such interactions give what is known as the two-body contribution (or
the two-body effect) �Etwo-body = ∑3

i< j �E Ai A j (2, 3) = 0.0001425 · 3 = 0.0004275
a.u. The three-body effect represents the rest; i.e., it is calculated as the difference between
EHe3 and the sum of the one-body and two-body effects �EHe He He(3.3) ≡ �Ethree-body =
EHe3−EHe ·3−�Etwo-body = −0.000001 a.u. Therefore, we get the ratio

∣∣∣�Ethree-body
�Etwo-body

∣∣∣ = 0.26%.

This means the three-body effect is quite small.

Example. Locality or Communication
Do two helium atoms sense each other when separated by a bridge molecule? In the other

words, do the intermolecular interactions have local character or not? By local character, we
mean that their influence is limited to, say, the nearest-neighbor atoms.55 Let us check this by
considering a bridge molecule (two cases: butane and butadiene) between two helium atoms. The
first helium atom pushes the terminal carbon atom of the butane (the distance RC He = 1.5 Å,
the attack is perpendicular to the CC bond). The question is whether the second helium atom in
the same position but at the other end of the molecule will feel that pushing or not (the positions
of all the nuclei do not change, since we are within the Born-Oppenheimer approximation)?
This means that we are interested in a three-body effect.

Let us calculate the three-body interaction for He…butane…He and for He…butadiene …He.
A large three-body effect would mean a communication between the two helium atoms through

the electronic structure of the bridge. For the butane bridge, we get
∣∣∣�Ethree-body
�Etwo-body

∣∣∣ = 0.02%, and

for the butadiene bridge, we obtain
∣∣∣�Ethree-body
�Etwo-body

∣∣∣ = 0.53%. Thus, we see the locality, but it is

quite remarkable that there is an order of magnitude larger helium-helium communication in
the case of butadiene (the distance between the terminal carbon atoms is similar in both cases:

53 The notion of the van der Waals radius of an atom (which will be introduced a bit later), even if very useful, is
arbitrary. The abovementioned 90% is set for didactic purposes in order to make the effect clearly visible.

54 The description of the MP2 method is on p. 649. In the calculations reported here, the 6-31G(d) basis set is used,
and there is no BSSE correction.

55 The intermolecular interactions in general are certainly non-local in the abovementioned sense. As an example,
look at the allosteric effect: when one ligand binds to a protein, it may help (or inhibit) the binding of another
ligand that is far away. Crucially, there are conformational transformations, which are absent in our example.



850 Chapter 13

3.7 Å for butadiene and 3.9 Å for butane), which is known for having the conjugated double
and single CC bonds:= − =, while butane has only the single CC bonds:−−−. It seems that
here we are touching one of the aspects of the all-important difference in chemistry between
the labile π electron structure (butadiene) and the stiff σ electron structure (butane).

13.11.3 What Is Additive, and What Is Not?

Already vast experience has been accumulated in this area, and some generalizations are pos-
sible.56,57 For three argon atoms in an equilibrium configuration, the three-body term is of the
order of 1%. It should be noted, however, that in the argon crystal, there are a lot of three-body
interactions and the three-body effect increases to about 7% . On the other hand, for liquid water,
the three-body effect is of the order of 20% and the higher contributions are about 5%. Three-
body effects are sometimes able to determine the crystal structure and have significant influence
on the physical properties of the system close to a phase transition (“critical region”).58 In the
case of the interaction of metal atoms, the non-additivity is much larger than that for the noble
gases, and the three-body effects may attain a few tens of percentage points.

This is important information since the force fields widely used in molecular mechanics (see
p. 345) are based almost exclusively on effective pairwise interactions (neglecting the three-
and more-body contributions).59

Although the intermolecular interactions are non-additive, we may ask whether individ-
ual contributions to the interaction energy (electrostatic, induction, dispersion, or valence
repulsion) are additive?

Let us begin from the electrostatic interaction.

13.11.4 Additivity of the Electrostatic Interaction

Suppose that we have three molecules A, B, and C, and intermolecular distances are long.
Therefore, it is possible to use the polarization perturbation theory in a very similar way to that
presented in the case of two molecules (p. 805). In this approach, the unperturbed Hamiltonian
Ĥ (0) represents the sum of the Hamiltonians for the isolated molecules A, B, and C. Let us
change the abbreviations a little bit to be more concise for the case of three molecules. A product
functionψA,n A ψB,nBψC,nC will be denoted by |n AnBnC 〉 = |n A〉 |nB〉 |nC 〉, where n A, nB, nC

(= 0, 1, 2, . . .) stand for the quantum numbers corresponding to the orthonormal wave functions

56 V. Lotrich and K. Szalewicz, Phys.Rev.Letters, 79, 1301(1997).
57 In quantum chemistry, this almost always means a numerical convergence; i.e., a fast decay of individual contri-

butions.
58 R. Bukowski and K. Szalewicz, J.Chem.Phys., 114, 9518 (2001).
59 That is, the effectivity of a force field relies on choice of interaction parameters such that the experimental data

are reproduced (in such a way that the parameters implicitly contain part of the higher-order terms).
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for the molecules A,B,C, respectively. The functions |n AnBnC 〉 = |n A〉 |nB〉 |nC 〉 are the
eigenfunctions of Ĥ (0):

Ĥ (0) |n AnBnC 〉 = [E A(n A)+ EB(nB)+ EC (nC)] |n AnBnC 〉 ,
which is analogous to Eqs. (13.7) and (13.8).

The perturbation is equal to Ĥ − Ĥ (0) = V = VAB +VBC +VAC , where the operators VXY

contain all the Coulomb interaction operators involving the nuclei and electrons of molecule X
and those of molecule Y.

Let us recall that the electrostatic interaction energy Eelst(ABC) of the ground state
(n A = 0, nB = 0, nC = 0) molecules is defined as the first-order correction to the wave
function in the polarization approximation perturbation theory60:

E (1)pol ≡ Eelst(ABC) = 〈0A0B0C |V |0A0B0C 〉 = 〈0A0B0C |VAB + VBC + VAC |0A0B0C 〉 ,
where the quantum numbers 000 have been supplied (maybe because of my excessive caution)
by the redundant and self-explanatory indices (0A, 0B, 0C ).

The integration in the last formula goes over the coordinates of all electrons. In the polarization
approximation, the electrons can be unambiguously divided into three groups: those belonging
to A, to B, and to C. Because the zero-order wave function |0A0B0C 〉 represents a product
|0A〉 |0B〉 |0C 〉, the integration over the electron coordinates of one molecule can be easily
performed and yields

Eelst(A, B,C) = 〈0A0B |V̂AB |0A0B〉 + 〈0B0C |V̂BC |0B0C 〉 + 〈0A0C |V̂AC |0A0C 〉,
where, in the first term, the integration was performed over the electrons of C, in the second
over the electrons of A, and in the third over those of B.

Now, let us look at the last formula. We easily see that the individual terms simply represent
the electrostatic interaction energies of pairs of molecules: AB, BC, and AC, that we would
obtain in the perturbational theory (within the polarization approximation) for the interaction
of AB, BC, and AC, respectively. Conclusion:

the electrostatic interaction is pairwise additive.

13.11.5 Exchange Non-additivity

What about the exchange contribution? This contribution does not exist in the polarization
approximation. It appears only in SAPT in pure form in the first-order energy correction and

60 The Eelst(ABC) term in SAPT represents only part of the first-order correction to the energy (the rest being the
valence repulsion).
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coupled to other effects in higher-order energy corrections.61 The exchange interaction is diffi-
cult to interpret because it appears as a result of the antisymmetry of the wave function (Pauli
exclusion principle). The antisymmetry is forced by the postulates of quantum mechanics (p. 34),
and its immediate consequence is that the probability density of finding two electrons with the
same spin and space coordinates is equal to zero.

Pauli Deformation
The Pauli exclusion principle leads to a deformation of the wave functions describing
the two molecules (by projecting the productlike wave function by the antisymmetrizer
Â) with respect to the productlike wave function. The Pauli deformation (cf. Appendix Y
available at booksite.elsevier.com/978-0-444-59436-5) appears already in the zeroth order
of perturbation theory, whereas in the polarization approximation, the deformation of the
wave function appears in the first order and is not related to the Pauli exclusion principle.

The antisymmetrizer pertains to the permutation symmetry of the wave function with respect
to the coordinates of all electrons and therefore is different for a pair of molecules and for a
system of three molecules.

The expression for the three-body non-additivity of the valence repulsion62 is given by Eq.
(13.42), based on Eq. (13.39) of the first-order correction in SAPT63 and Eq. (13.70) of the
three-body contribution:

E (1)exch,ABC = NABC 〈0A0B0C |V̂AB + V̂BC + V̂AC | ÂABC(0A0B0C)〉 −∑
(XY )=(AB),(AC),(BC)

NXY 〈0X 0Y |V̂XY | ÂXY (0X 0Y ), (13.71)

where NABC ÂABC |0A0B0C 〉 and NAB ÂAB |0A0B〉, and so forth represent the normalized
(NABC , etc. are the normalization coefficients) antisymmetrized productlike wave function
of the systems ABC, AB, etc. The antisymmetrizer ÂABC pertains to subsystems A, B, and C ;
similarly, ÂAB pertains to A and B, etc., all antisymmetrizers containing only the intersystem
electron exchanges and the summation goes over all pairs of molecules.

There is no chance of proving that the exchange interaction is additive; i.e., that Eq. (13.71)
gives 0. Let us consider the simplest possible example: each molecule has only a single electron:
|0A(1)0B(2)0C (3)〉. The operator ÂABC makes (besides other terms) the following permutation:
ÂABC |0A(1)0B(2)0C (3)〉 = · · · − 1(

NA+NB+NC
)! |0A(3)0B(2)0C (1)〉 + · · ·, which according to

61 Such terms are bound to appear. For instance, the induction effect is connected to deformation of the electron
density distribution. The interaction (electrostatic, exchange, dispersive, etc.) of such a deformed object will
change with respect to that of the isolated object. The coupling terms take care of this change.

62 B. Jeziorski, M. Bulski, and L. Piela, Intern.J.Quantum Chem., 10, 281 (1976).
63 Because, as we have already proved, the rest (i.e., the electrostatic energy) is an additive quantity.

http://booksite.elsevier.com/978-0-444-59436-5
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Eq. (13.71) leads to the integral− 1(
NA+NB+NC

)! NABC 〈0A(1)0B(2)0C (3)| 1
r12
|0A(3)0B(2)0C (1)〉

= − 1(
NA+NB+NC

)! NABC 〈0A(1)0B(2)| 1
r12
|0B(2)0C (1)〉, involving the wave functions centered

on A, B and C . This means that the term belongs to the three-body effect.
The permutation operators of which the ÂABC operator is composed correspond to the identity

permutation64 as well as to the exchange of one or more electrons between the interacting
subsystems: ÂABC = 1+ single exchanges + double exchanges+ · · ·

It is easy to demonstrate65 that

the larger the number of electrons exchanged, the less important such exchanges are
because the resulting contributions would be proportional to higher and higher powers
of the overlap integrals (S), which are small as a rule.

SE Mechanism66

The smallest nonzero number of electron exchanges in ÂABC equals 1. Such an exchange may
take place only between two molecules–eg., AB.67 This results in terms proportional to S2 in
the three-body expression, where S means the overlap integral between the molecular orbitals
of A and B. The third molecule does not participate in the electron exchanges, but is not just a
spectator in the interaction. If it were, the interaction would not be three-body (see Fig. 13.12).

SE Mechanism
Molecule C interacts electrostatically with the Pauli deformation of molecules A and B
(i.e., with the multipoles that represent the deformation). Such a mixed interaction is called
the SE mechanism.

When the double electron exchanges are switched on, we would obtain part of the three-body
effect of the order of S4. Since S is usually of the order of 10−2, this contribution is expected to
be small, although caution is advised, because the number of such terms is much more important.

64 The operator reproduces the polarization approximation expressions in SAPT.
65 The procedure is as follows:

1. First,we write down the exact expression for the first-order exchange non-additivity.
2. Then, we expand the expression in the Taylor series with respect to those terms that arise from all electron

exchanges except the identity permutation.
3. Next, we see that the exchange non-additivity expression contains terms of the order of S2 and higher, where

S stands for the overlap integrals between the orbitals of the interacting molecules.

66 In this expression, SE stands for single exchange.
67 After that, we have to consider AC and BC.
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(a) (b)

(c)
(d)

Fig. 13.12. A scheme of the SE and TE exchange non-additivities. Panels (a), (b), and (c) show the SE mechanism. (a) Three non-
interacting molecules (schematic representation of electron densities). (b) Pauli deformation of molecules A and B. (c) Electrostatic
interaction of the Pauli deformation resulting from single electron exchanges between A and B with the dipole moment of C. (d)
The TE mechanism: molecules A and B exchange an electron with the mediation of molecule C. All molecular electron density
distributions undergo Pauli deformation.

TE Mechanism68

Is there any contribution of the order of S3? Yes. The antisymmetrizer ÂABC is able to make
the single electron exchange between, say, A and B, but by mediation of C. The situation is
schematically depicted in Fig. 13.12.

TE Mechanism
A molecule is involved in a single exchange with another molecule by mediation of a third
one.

68 In this expression, TE stands for triple exchange.
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Exchange interaction is of short-range character

The Pauli deformation has a local (i.e., short-range) character; see Appendix Y available at
booksite.elsevier.com/978-0-444-59436-5. Let us imagine that molecule B is very long and the
configuration corresponds to A B C. When C is far from A, the three-body effect is extremely
small because almost everything in the interaction is of the two-body character. If molecule C
approaches A and has some nonzero, low-order multipoles (e.g., a charge), then it may interact
by the SE mechanism even from far away. Both mechanisms (SE and TE) operate only at short
BA distances.

The exchange interaction is non-additive, but the effects pertain to the contact region of
both molecules. The Pauli exclusion principle does not have any finite range in space; i.e., after
being introduced, it has serious implications for the wave function even at infinite intermolecular
distances (cf. p. 829). Despite this, it always leads to the differential overlap of atomic orbitals
(as in overlap or exchange integrals), which decays exponentially with increasing intermolecular
distance. This may not be true for the SE mechanism, which has a partly long-range character
and some caution is needed, when considering its spatial range.

13.11.6 Induction Non-additivity

The non-additivity of the intermolecular interaction results mainly from the non-additivity
of the induction contribution.

How do we convince ourselves about the non-additivity? This is very easy. It will be sufficient to
write the expression for the induction energy for the case of three molecules and to see whether
it gives the sum of the pairwise induction interactions. Before we do this, let us write the formula
for the total second-order energy correction (similar to the case of two molecules on p. 807):

E (2)(ABC) =
∑

n A,nB ,nC

′ |〈n AnBnC |V |0A0B0C 〉|2
[E A(0A)− E A(n A)] + [EB(0B)− EB(nB)] + [EC (0C)− EC(nC)] .

(13.72)
According to perturbation theory, the term with all the indices equal to zero has to be omitted

in the above expression (symbolized by
∑′). It is much better like this because otherwise, the

denominator would “cause explosion”. Further, the terms with all nonzero indices are equal to
zero. Indeed, let us recall that V is the sum of the Coulomb potentials corresponding to all three
pairs of the three molecules. This is the reason why it is easy to perform the integration over
the electron coordinates of the third molecule (not involved in the pair). A similar operation
has been performed for the electrostatic interaction. This time, however, the integration makes
the term equal to zero because of the orthogonality of the ground and excited states of the third

http://booksite.elsevier.com/978-0-444-59436-5
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molecule. All this leads to the conclusion that to have a nonzero term in the summation, there
has to be one index or two indices of zero value among the three indices. Let us perform the
summation in two stages: all the terms with only-two-zeros (or a single nonzero) indices will
make a contribution to Eind(ABC), while all the terms with only-one-zero (or two nonzero)
indices will sum to Edisp(ABC):

E (2)(ABC) = Eind(ABC)+ Edisp(ABC), (13.73)

where the first term represents the induction energy:

Eind(ABC) = Eind
(

AB → C
)+ Eind

(
AC → B

)+ Eind
(
BC → A

)
,

where
Eind

(
BC → A

) ≡ ∑
n A 	=0

|〈n A0B0C |V |0A0B0C 〉|2
E A

(
0A

)−E A
(
n A

) means that the “frozen” molecules B and

C acting together polarize molecule A, etc. The second term in Eq. (13.73) represents the
dispersion energy (this will be considered later in this chapter).

For the time being, let us consider the induction energy Eind(ABC). Writing V as the sum
of the Coulomb interactions of the pairs of molecules, we have

Eind
(
BC → A

) = ∑
n A 	=0

|〈n A0B0C |VAB + VBC + VAC |0A0B0C 〉|2
E A(0A)− E A(n A)

=
∑

n A 	=0

|〈n A0B |VAB |0A0B〉 + 〈n A0C |VAC |0A0C 〉|2
E A(0A)− E A(n A)

.

Look at the square in the numerator. The induction non-additivity arises because of this.
If the square were equal to the sum of squares of the two components, the total expression
shown explicitly would be equal to the induction energy corresponding to the polarization of
A by the frozen charge distribution of B plus a similar term corresponding to the polarization
of A by C (i.e., the polarization occurring separately). Together with the other such terms in
Eind

(
AB → C

) + Eind
(

AC → B
)
, we would obtain the additivity of the induction energy

Eind
(

ABC
)
. However, besides the sum of squares, we also have the mixed terms. They will

produce the non-additivity of the induction energy:

Eind(ABC) = Eind(AB)+ Eind(BC)+ Eind(AC)+�ind(ABC). (13.74)

Thus, we obtain the following expression for the induction non-additivity �ind(ABC):

�ind(ABC) = 2Re
∑

n A 	=0

〈n A0B |VAB |0A0B〉〈n A0C |VAC |0A0C 〉
[E A(0A)− E A(n A)] + · · ·, (13.75)
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where the term displayed explicitly is the non-additivity of Eind
(
BC → A

)
and “+ · · ·” stands

for the non-additivities of Eind
(

AB → C
)+ Eind

(
AC → B

)
.

Example. Induction Non-additivity
To show that the induction interaction of two molecules depends on the presence of the third

molecule, let us consider the system shown in Fig. 13.13.
Let molecule B be placed halfway between A+ and C+; thus, the configuration of the system

is: A+ . . . . . . .B . . . . . . . . .C+, with long distances between the subsystems. In such a situation,
the total interaction energy is practically represented by the induction contribution plus the
constant electrostatic repulsion of A+ and C+. Is the three-body term (induction non-additivity)
large? We will show soon that this term is large and positive (destabilizing). Since the electric
field intensities nearly cancel within molecule B, then despite the high polarizability of the latter,
the induction energy will be small. On the contrary, the opposite is true when considering two-
body interaction energies. Indeed, A+ polarizes B very strongly, C+ does the same, resulting in
high stabilization due to high two-body induction energy. Since the total effect is nearly zero,
the induction non-additivity is bound to be a large positive number.69

(a)   
 isolated subsystems

(b) 
interaction

(c)
 interaction

(d) 
interaction

Fig. 13.13. The induction interaction may produce a large non-additivity. (a) Two distant non-polarizable cations: A+, C+, and
a small, polarizable neutral molecule B placed exactly in the middle between AC. (b) The two-body induction interaction A+B,
a strong polarization. (c) The two-body induction interaction BC+, a strong polarization. (d) The two cations polarize molecule
B. Their electric field vectors cancel each other out in the middle of B and give a small electric field intensity within B (a weak
polarization).

69 If the intermolecular distances were small, B were not in the middle of AC or molecule B were of large spatial
dimension, the strength of our conclusion would diminish.
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Self-consistency and Polarization Catastrophe

The second-order induction effects pertain to polarization by the charge distributions corre-
sponding to the isolated molecules. However, the induced multipoles introduce a change in the
electric field and in this way contribute to further changes in charge distribution. These effects
already belong to the third70 and higher orders of perturbation theory.

It is therefore evident that a two-body interaction model cannot manage the induction inter-
action energy. This is because we have to ensure that any subsystem (e.g., A), has to experience
polarization in an electric field which is the vector sum of the electric fields from all its part-
ner subsystems (B,C,…) and calculated at the position of A. The calculated induced dipole
moment of A (we focus on the lowest multipole) creates the electric field that produces some
changes in the dipole moments of B,C,…, which in turn change the electric field acting on all the
molecules, including A. The circle closes and the polarization procedure has to be performed
until self-consistency is reached. This can often be done, although such a simplified interaction
model does not allow for geometry optimization, which may lead to a polarization catastrophe
ending up with induction energy equal to−∞ (due to excessive approach and lack of the Pauli
blockade described on p. 840).

13.11.7 Additivity of the Second-order Dispersion Energy

The dispersion energy is a second-order correction, [see Eq. (13.13)] that gives the formula
for interaction of two molecules. For three molecules, we obtain the following formula for the
dispersion part of the second-order effect (see the discussion on p. 855):

Edisp
(

ABC
) = ∑

(n A,nB)	=(0A,0B)

|〈n AnB0C |VAB + VBC + VAC |0A0B0C 〉|2
[E A(0A)− E A(n A)] + [EB(0B)− EB(nB)] + · · ·,

where + · · · denotes analogous terms with summations over n A, nC as well as nB, nC . Of the
three integrals in the numerator, only the first one will survive, since the other vanish due to the
integration over the coordinates of the electrons of molecule Z not involved in the interaction
VXY :

Edisp
(

ABC
) = ∑

(n A,nB)	=(0A,0B)

|〈n AnB0C | VAB |0A0B0C 〉 + 0+ 0|2[
E A

(
0A

)− E A
(
n A

)]+ [
EB

(
0B

)− EB
(
nB

)]
+

∑
(n A,nC )	=(0A,0C )

· · · +
∑

(nB ,nC )	=(0B ,0C )

· · ·

70 Each of the induced multipoles is proportional to V , their interaction introduces another V ; all together, this gives
a term proportional to V V V ; i.e., indeed of the third order.
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In the first term, we can integrate over the coordinates of C. Then the first term displayed in
the above formula turns out to be the dispersion interaction of A and B:

Edisp
(

ABC
) = ∑

(n A,nB)	=(0,0)

|〈n AnB |VAB |0A0B〉|2
[E A(0A)− E A(n A)] + [EB(0B)− EB(nB)]

+
∑

(n A,nC )	=(0A,0C )

· · · +
∑

(nB ,nC )	=(0B ,0C )

· · · = Edisp(AB)+ Edisp(AC)+ Edisp(BC).

Thus, we have proved that

the dispersion interaction (second-order of the perturbation theory) is additive:

Edisp(ABC) = Edisp(AB)+ Edisp(AC)+ Edisp(BC).

13.11.8 Non-additivity of the Third-order Dispersion Interaction

One of the third-order energy terms represents a correction to the dispersion energy. The cor-
rection, as shown by Axilrod and Teller,71 has a three-body character. The part connected to the
interaction of three distant instantaneous dipoles on A, B and C reads as

E (3)disp = 3C (3)
ddd

1+ 3 cos θA cos θB cos θC

R3
AB R3

AC R3
BC

, (13.76)

where RXY and θX denote the sides and the angles of the ABC triangle, and C (3)
ddd > 0 represents

a constant. The formula shows that

when the ABC system is in a linear configuration, the dispersion contribution is
negative (i.e., stabilizing), while the equilateral triangle configuration corresponds to a
destabilization.

71 B.M. Axilrod and E. Teller, J.Chem.Phys., 11299 (1943). The general anisotropic many-body intermolecular
potentials for a system of N molecules have been derived by P. Piecuch, Mol. Phys., 59 (1986)10671085.
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ENGINEERING OF INTERMOLECULAR INTERACTIONS

13.12 Idea of Molecular Surface

13.12.1 Van der Waals Atomic Radii

It would be of practical importance to know how close two molecules can be to each other.
We will not entertain this question too seriously, though, because this problem cannot have an
elegant solution: it depends on the direction of the approach and the atoms involved, as well
as how strongly the two molecules collide. Searching for the effective radii of atoms would
be nonsense, if the valence repulsion were not a sort of “soft wall” or if the atom sizes were
very sensitive to molecular details. Fortunately, it turns out that an atom, despite different roles
played in molecules, can be characterized by its approximate radius, called the van der Waals
radius. The radius may be determined in a naive but quite effective way. For example, we may
approach two HF molecules like that : H-F…F-H, axially with the fluorine atoms heading on,
then find the distance72 RF F at which the interaction energy is equal to, say, 5 kcals/mol. The
proposed fluorine atom radius would be rF = RF F

2 . A similar procedure may be repeated with
two HCl molecules with the resulting rCl . Now, let us consider an axial complex H-F….Cl-H
with the intermolecular distance corresponding to 5 kcals/mol. What F…Cl distance are we
expecting? We expect something close to rF + rCl . It turns out that we are about right. This is
why the atomic van der Waals radius concept is so attractive from the practical point of view.

13.12.2 Definition of Molecular Surface

We may construct a superposition of atomic van der Waals spheres. This defines what is called
the van der Waals surface of the molecule,73 or a molecular shape–which is a concept of great
importance and of the same arbitrariness as the radii themselves.

In a similar way, we may define ionic radii74 to reproduce the ion packing in ionic crystals,
as well as covalent radii to foresee chemical bond lengths.

13.12.3 Confining Molecular Space–The Nanovessels

Molecules at long distances interact through the mediation of the electric fields created by
them. The valence repulsion is of a different character, since it results from the Pauli exclusion

72 This may be done using a reliable quantum mechanical method.
73 The van der Waals surface of a molecule may sometimes be very complex; e.g., a molecule may have two or more

surfaces (like fullerenes).
74 This concept was introduced by Pauling based on crystallographic data [L. Pauling, J.Amer.Chem.Soc., 49,

765 (1927)].
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principle, and may be interpreted as an energy penalty for an attempt by electrons of the same
spin coordinate to occupy the same space (cf. Chapter 1 and p. 597).

Luty and Eckhardt75 have highlighted the role of pushing one molecule by another. Let us
imagine an atomic probe, such as a helium atom. The pushing by the probe deforms the molecular
electronic wave function (Pauli deformation), but the motion of the electrons is accompanied
by the motion of the nuclei. Both motions may lead to dramatic events. For example, we may
wonder how an explosive reaction takes place. The spire hitting the material in its metastable
chemical state is similar to the helium atom probe pushing a molecule. Due to the pushing, the
molecule distorts to such an extent that the HOMO-LUMO separation vanishes and the system
rolls down (see Chapter 14) to a deep potential energy minimum on the corresponding potential
energy hypersurface. The HOMO-LUMO gap closing takes place within the reaction barrier.
Since the total energy is conserved, the large reaction net energy gain goes to highly excited
vibrational states (in the classical approximation corresponding to large-amplitude vibrations).
The amplitude may be sufficiently large to ensure the pushing of the next molecules in the
neighborhood and a chain reaction starts with exponential growth.

Now imagine a lot of atomic probes confining the space (like a cage or template) available
to a molecule under study. In such a case, the molecule will behave differently from a free one.
For example, consider the following:

• A protein molecule, when confined, may fold to another conformation.
• Some photochemical reactions that require a space for the rearrangement of molecular

fragments will not occur, if the space is not accessible.
• In a restricted space, some other chemical reactions will take place (new chemistry - chem-

istry in “nanovessels”).
• Some unstable molecules may become stable when enclosed in a nanovessel.

These are fascinating and little-explored topics.

13.12.4 Molecular Surface Under High Pressure

Chemical reactions in nanovessels, which may run in another way than without them, suggest
that the atomic structure of materials may change under increasing pressure. Suppose that we
are dealing with a molecular crystal and we are studying what happens after applying isotropic
pressure.

The transformations after increasing pressure are characterized by the following rules of
thumb:

• The weaker the interatomic bond (whether chemical or of the van der Waals character) is,
the more its length changes. As a manifestation of this, the pressure after passing a threshold

75 T. Luty and C.J. Eckhardt, in Reactivity of Molecular Solids, eds.E. Boldyreva and V. Boldyrev, Wiley, New Jersey,
1999, p.51.
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value may change the packing of the molecules, leaving the molecules themselves virtually
unchanged (displacive phase transitions).

• Then, at higher pressure, the chemical bonds, often of mixed character (i.e., ionic and
covalent polarized bonds) become more and more covalent. This is because the overlap
integrals increase very much due to shorter interatomic distances (exponential increase)
and as a consequence, the covalent bond character becomes stronger (cf. p. 437).

• For even larger pressures, the atomic coordination numbers begin to increase. This corre-
sponds to formation of new chemical bonds, which make the atoms to be closer in space. In
order to make the new bonds, the atoms, when squeezed, open their closed core electronic
shells (e.g., under sufficiently high pressures, even the noble gas atoms open their electronic
shells; cf. Chapter 14). Some new phase transitions are accompanying these changes, known
as reconstructive phase transitions.

• At even higher pressures, the crystal structure becomes the close-packed type, which means
a further minimization of the crystal’s empty spaces.

• Empirical observation: the atoms when under high pressure behave similarly as the atoms
belonging to the same group and the next period of the Mendeleev table do at lower pressures.
For example, silicon under high pressure behaves as germanium under lower pressure, etc.

13.13 Decisive Forces

13.13.1 Distinguished Role of the Valence Repulsion and Electrostatic Interaction

The valence repulsion plays the role of a hard wall (covered by a “soft blanket”) that forbids
the closed-shell molecules to approach too closely (this represents a very important factor,
since those molecules that do not fit together receive an energy penalty).

The electrostatic contribution plays a prominent role in the intermolecular interaction,
since the electrostatic forces already operate effectively at long intermolecular distances
(their range may be reduced in polar solvents).

The induction and dispersion contributions, even if they are sometimes larger than the electro-
static interaction, usually play a less important role. This is because only the electrostatics may
change the sign of the energy contribution when the molecules reorient, thus playing the pivotal
role in creating structure.

The induction and dispersion contributions are negative (almost independent of the mutual
orientation of the molecules), and we may say, as a rule of thumb, that their role is to
stabilize the structure already determined by the valence repulsion and the electrostatics.
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13.13.2 Hydrogen Bond

Among the electrostatic interactions, the most important are those having a strong dependence
on orientation. The most representative of them are the hydrogen bonds (also known as hydrogen
bridges) X-H …Y, where an electronegative atom X plays the role of a proton donor, while an
electronegative atom Y – plays the role of a proton acceptor (see Fig. 13.14). Most often, the
hydrogen bond X-H …Y deviates only a little from linearity. Additionally, the XY separation
usually falls into a narrow range: 1.7–2.0 Å; i.e., it is to a large extent independent of X and Y.
The hydrogen bond features are unique because of the extraordinary properties of the hydrogen
atom in the hydrogen bridge. This is the only atom that occasionally may attain the partial
charge equal to 0.45 a.u., which means that it represents a nucleus devoid to a large extent of the
electron density. This is one of the reasons why the hydrogen bond is strong when compared to
other types of intermolecular interactions.

Fig. 13.14. The hydrogen bond in the water dimer described by the MP2 method. The optimal configuration (a) of an isolated
water molecule and (b) of the complex of two water molecules. The numbers displayed at the nuclei represent their Mulliken net
charges (in a.u.), at the bonds–their lengths in Å. Conclusion: the hydrogen bridge O − H . . . O is almost linear and the bridge
hydrogen atom is devoid of some 40% of its electronic cloud (exceptional case in chemistry).
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Example. Hydrogen Bond in the Water Dimer
This is the most important hydrogen bond on Earth, because liquid water means a prerequisite

of life. Moreover, since it may be thought as being representative of other hydrogen bonds, we
treat the present example as highlighting the main consequences of formation of a generic
hydrogen bond. We will perform the quantum mechanical calculations (of medium quality)
within the Born-Oppenheimer approximation, including the electron correlation and optimizing
the system geometry.76

In Fig. 13.14a, the optimized geometry of the isolated water molecule is shown (rOH =
0.959 Å, � HOH = 103.40), as well as the net Mulliken charges on the individual atoms77

(QO = −0.511, QH = 0.256). All these numbers change, when two water molecules form the
hydrogen bond (Fig. 13.14b). We see the following changes:

• The complex has C2v symmetry with the proton donor molecule and the oxygen atom of
the proton acceptor molecule within the symmetry plane (the book’s page).

• The optimized oxygen-oxygen distance turns out to be ROO = 2.91 Å, the hydrogen bond is
almost linear (�OH . . .O = 176.70), and the optimized O-H bond length (of the hydrogen
bridge) is rOH,donor = 0.965 with a tiny upward deviation of the proton from the linearity
of the OH…O bridge (the effect of repulsion with the protons of the acceptor). This very
common quasi-linearity suggests the electrostatics is important in forming hydrogen bonds.
If it were true, we should see this also from the relative position of the molecular dipoles.
At first sight, we might be disappointed though, because the dipole moments are almost
perpendicular. However, the two dipole moments deviate in the opposite directions from
the collinear configuration with the deviation angle about ±450 (this means that they are
nearly orthogonal). As seen in Fig. 13.7, despite such a large deviation, the electrostatics is
still favorable.78

• We do not see any significant charge transfer between the molecules. Indeed, the Mulliken
population analysis shows only a tiny 0.02e electron transfer from the proton donor to the
proton acceptor.

• The donor molecule is perturbed more than the acceptor one. This is seen first of all
from the Mulliken net charges on hydrogen atoms and from the deformation of geome-
try (see Fig. 13.14). One sees a remarkable positive charge on the bridge hydrogen atom

76 The Møller-Plesset method, which is accurate up to the second order, is used (the MP2 method is described in
Chapter 10), and the basis set is 6–311G(d,p). This ensures that the results will be of a decent quality.

77 Cf. Appendix S available at booksite.elsevier.com/978-0-444-59436-5 on p. e143. The charges are calculated
using the Hartree-Fock method that precedes the MP2 perturbational calculation.

78 Let us calculate from Eq. (13.23): Edip−dip = μ2
A

R3

(
sin θA sin θB − 2 cos θA cos θB

) = μ2
A

R3

(
1√
2

(
− 1√

2

)
−

2 1√
2

1√
2

)
= μ2

A
R3

(
− 3

2

)
, as compared with the optimal value −2

μ2
A

R3 . The loss of the dipole-dipole electrostatics

is of the order of 25%. The energy loss must be more than compensated by other attractive interactions.

http://booksite.elsevier.com/978-0-444-59436-5
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Table 13.5. Energy contributions to the interaction energy Eint in the system HO-H…OH2 (hydrogen bond) calculateda

within the SAPT method: electrostatic energy Eelst, valence repulsion energy E(1)exch, induction energy Eind and dispersion

energy Edisp for three O…O distances: equilibrium distance Req = 3.00 and two distances a little larger: medium 3.70 Å

and large 4.76 Å.

Contributions to Eint (in kcal/mol)

ROO(Å) Eelst E(1)exch Eind Edisp

3.00 −7.12 4.90 −1.63 −1.54
3.70 −2.79 0.30 −0.18 −0.31
4.76 −1.12 0.00 −0.02 −0.05

a B. Jeziorski and M. van Hemert, Mol.Phys., 31, 713 (1976).

QH,donor = 0.402; no other nucleus in the whole chemistry is as poor in electrons. This
hydrogen bond effect is confirmed in the NMR recordings (low shielding constant).

• The calculated binding energy79 is Ebind = E M P2 − 2E M P2
H2O = −6.0 kcal

mol . This order of
magnitude of the binding energy, about 20 times smaller than the energy of chemical bonds,
is typical for hydrogen bridges.

Example. Water-Water Dimer–Perturbational Approach
Let us take once more the example of two water molecules to show the dominant role of

electrostatics in the hydrogen bond.
As you can see from Table 13.5, while at the equilibrium distance ROO = 3.00 Å, all the

contributions are of importance (although the electrostatics dominates). All the contributions
except electrostatics diminish considerably after increasing separation by only about 0.70 Å.
For the largest separation (ROO = 4.76), the electrostatics dominates by far. This is why the
hydrogen bond is said to have a mainly electrostatic character.80

13.13.3 Coordination Interaction

Coordination interaction appears if an electronic pair of one subsystem (electron donor) low-
ers its energy by interacting81 with an electron acceptor offering an empty orbital; e.g., a
cation (acceptor) interacts with an atom or atoms (donor) offering lone electronic pairs. This
may be also seen as a special kind of electrostatic interaction.82 Fig. 13.15a shows a deriva-
tive of porphyrin, and Fig. 13.15b a cryptand (the name comes from the ritual of eternal
depositing in a crypt), both compounds offering lone pairs for the interaction with a
cation.

79 No BSSE correction is included.
80 It has been proved that covalent structures (cf. p. 610) also contribute to the properties of the hydrogen bond, but

their role decreases dramatically when the molecules move apart.
81 In this interaction, a molecular orbital is formed.
82 A lone pair has a large dipole moment (see Appendix T available at booksite.elsevier.com/978-0-444-59436-5),

which interacts with the positive charge of the acceptor.

http://booksite.elsevier.com/978-0-444-59436-5
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(b)

(a)

Fig. 13.15. A cation fits (a) the porphyrin ring or (b) the cryptand.

When concentrating on the ligands, we can see that in principle, they represent a negatively
charged cavity (lone pairs) waiting for a monoatomic cation with dimensions of a certain
range only. The interaction of such a cation with the ligand would be exceptionally large
(selectivity of the interaction).

Let us consider a water solution containing ions: Li+, Na+, K+, Rb+, and Cs+. After
adding the abovementioned cryptand and after the equilibrium state is attained (ions/cryptand,
ions/water and cryptand/water solvation), only for K+ will the equilibrium be shifted toward the
K+/cryptand complex. For the other ions, the equilibrium will be shifted toward their association
with water molecules, not the cryptand.83 This is remarkable information.

83 J.-M. Lehn, Supramolecular Chemistry, Institute of Physical Chemistry Publications (1993), p. 88: the equilibrium
constants of the ion/cryptand association reactions are: for Li+, Na+, K+, Rb+, Cs+ (only the order of magnitude is
given): 102, 107, 1010, 108, 104, respectively. As seen, the cryptand’s cavity only fits well to the potassium cation.
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We are able to selectively extract objects of some particular shape and dimensions.

13.13.4 Hydrophobic Effect

This is quite a peculiar type of interaction, which appears mainly (but not only) in water
solutions.84 The hydrophobic interaction does not represent any particular new interaction
(beyond those we have already considered), because at least potentially, they could be explained
by the electrostatic, induction, dispersion, valence repulsion, and other interactions already
discussed.

The problem, however, may be seen from a different point of view. The basic interactions
have been derived as if operating in a vacuum. However, in a medium, the molecules interact
with one another through the mediation of other molecules, including those of the solvent. In
particular, a water medium creates an elastic network of the hydrogen bonds85 that surround
the hydrophobic moieties, like hydrocarbon molecules, trying to expel them from the solvent86

and, therefore, pushing together (i.e., minimizing the hole in the hydrogen bond network). This
imitates their mutual attraction, resulting in the formation of a sort of “oil drop.”

We may say in a rather simplistic way that hydrophobic molecules aggregate not because
they attract particularly strongly, but because water strongly prefers them to be out of its
hydrogen bond net structure.

Hydrophobic interactions have a complex character and are not yet fully understood. The
interaction depends strongly on the size of the hydrophobic entities. For small sizes, such as
two methane molecules in water, the hydrophobic interaction is small, increasing consider-
ably for larger synthons. The hydrophobic effects become especially important for what is
called the amphiphilic macromolecules with their van der Waals surfaces differing in character
(hydrophobic/hydrophilic). The amphiphilic molecules, an example shown in Fig. 13.16, are
able to self-organize, forming structures up to the nanometer scale (nanostructures).

Fig. 13.17 shows an example of the hierarchic (multilevel) character of a molecular
architecture:

84 W. Kauzmann, Advan.Protein Chem., 14, 1(1959). A contemporary theory is given in K. Lum, D. Chandler, and
J.D. Weeks, J.Phys.Chem., 103, 4570 (1999).

85 M.N. Rodnikova, J.Phys.Chem.(Russ.), 67, 275 (1993).
86 Hydrophobic interactions involve not only the molecules on which we focus our attention, but also, to an important

extent, the water molecules of the solvent.
The idea of solvent-dependent interactions is a general and fascinating topic of research. Imagine the interaction

of solutes in mercury, in liquid gallium, in liquid sodium, in a highly polarizable organic solvent, etc. Due to the
peculiarities of these solvents, we will have different chemistry going on in them.
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Fig. 13.16. An amphiphilic molecule [i.e., two contradictions (hydrophobicity and hydrophilicity)] side by side and their con-
sequences in water. (a) A phospholipid with two hydrophobic aliphatic “tails” and a hydrophilic phosphate “head” (its chemical
structure given), also shown schematically. (b) The hydrophobic effect in water leads to formation of a lipid bilayer structure, while
the hydrophilic heads are exposed to the bulk water (due to a strong hydration effect). The lipid bilayer plays in biology the role of
the cell wall.

• The chemical binding of the amino acids into the oligopeptides is the first (“stiff”) level
(known as primary structure).

• The second (“soft”) level corresponds to a network of hydrogen bonds responsible for
forming the α-helical conformation of each of the two oligopeptides (secondary structure).

• The third level (tertiary structure) corresponds to packing the two α-helices through an
extremely effective hydrophobic interaction, the leucine zipper. Two α-helices form a very
stable structure87 winding up around each other and thus forming a kind of a superhelix,
the so-called coiled-coil, due to the hydrophobic leucine zipper.88

87 B. Tripet, L. Yu, D.L. Bautista, W.Y. Wong, T.R. Irvin, and R.S. Hodges, Prot.Engin., 9, 1029 (1996).
88 Leucine may be called the “flagship” of the hydrophobic amino acids, although this is not the best compliment

for a hydrophobe.
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(a) (b)

Fig. 13.17. An example of superhelix formation in the case of two oligopeptide chains(a): (EVSALEK)n with (KVSALKE)n ,
with E standing for the glutamic acid, V for valine, S for serine, A for alanine, L for leucine, and K for lysine. This is an example of a
multilevel molecular architecture. First, each of the two oligopeptide chains form α-helices, which then form a strong hydrophobic
complex due to a perfect matching of the hydrophobic residues (leucine and valine of one of the α-helices with valine and leucine
of the second one, called the leucine zipper, b). The complex is made stronger additionally by two salt bridges (COO− and NH+3
electrostatic interaction) involving pairs of glutamic acid (E) and lysine (K). The resulting complex (b) is so strong that it serves in
analytical chemistry for the separation of some proteins.

The molecular architecture described above was first planned by a chemist. The system
fulfilled all the points of the plan and self-organized in a spontaneous process.89

When the hydrophobic moieties in water are free to move, they usually form a sepa-
rate phase like the oil phase above the water phase or an oil film on the surface of
water. If this freedom is limited like in the amphiphilic molecules, a compromise is
achieved in which the hydrophobic moieties keep together, while the hydrophilic ones
are exposed to water (e.g., lipid bilayer or micelle). Finally, when the positions of the
hydrophobic amino acids are constrained by the polypeptide backbone, they have the
tendency to be buried as close to the center of the globular protein as possible, while
the hydrophilic amino acid residues are exposed to the surrounding water.

89 One day, I said to my friend Leszek Stolarczyk: “If those organic chemists wanted, they could synthesize anything
you might dream of. They are even able to cook up in their flasks a molecule composed of the carbon atoms that
would form the shape of a cavalry man on his horse.” Leszek answered: “Of course! And the cavalry man would
have a little sabre, made of iron atoms.”
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13.14 Construction Principles

13.14.1 Molecular Recognition–Synthons

Organic molecules often have quite a few donor and acceptor substituents. These names may
pertain to donating/accepting functional group or groups. Sometimes a particular side of a
molecule displays a system of donors and acceptors. Such a system “awaiting” interaction
with a complementary object is called a synthon (the notion introduced by the Indian scholar
Desiraju90). Crown ethers, therefore, contain the synthons that can recognize a narrow class of
cations (with sizes within a certain range). In Fig. 13.18, we show another example of synthons
based on hydrogen bonds X–H…Y. Due to the particular geometry of the molecules, as well
as to the abovementioned weak dependence of the XY distance on X and Y, both synthons are
complementary.

The example just reported is of immense importance because it pertains to guanine (G),
cytosine (C), adenine (A), and thymine (T). Thanks to these two pairs of synthons (GC and AT),
we exist, because the G, C, A, and T represent the four letters that are sufficient to write the book
of life, word by word, in a single molecule of DNA. The words, the sentences, and the chapters of
this book decide the majority of the very essence of your (and my) personality. The whole DNA
strand may be considered as a large single synthon. The synthon has its important counterpart
which fits the DNA perfectly because of the complementarity. The molecular machine that
synthesizes this counterpart molecule (a “negative”) is the polymerase, a wonderful molecule
(that you will learn more about in Chapter 15). Any error in this complementarity results in a
mutation.91

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 13.18. The hydrogen bond and Nature’s all-important hydrogen bond-based synthons. (a) A hydrogen bond is almost linear;
(b) the synthon of adenine (A) fits the synthon of thymine (T) forming a complementary AT pair (two hydrogen bonds involved) of
these nucleobases, and the guanine synthon (G) fits the cytosine synthon (C) forming the complementary GC pair (three hydrogen
bonds involved); (c) a section of the DNA double-helix shown in the form of a synthon-synthon interaction scheme. A single DNA
thread represents a polymer; the monomer units composed of the sugar (five-carbon) rings (deoxyribose) and of the phosphate
groups PO3−

4 , thus being a polyanion (the negative charge is compensated in the solution by the corresponding number of cations).
Each deoxyribose offers an important substituent from the set of the nucleobases A,T,G,C. In order to form the double-helix,
the second DNA thread must have the complementary bases to those of the first one. In this way, the two threads represent
two complementary polysynthons bound by the hydrogen bonds. (d) A protein represents a chain-like polymer, the monomers
being the peptide bonds − NH-CO −, one of them highlighted in the figure. The peptide bonds are bound together through the
bridging carbon atoms (known as the Cα carbons): −(NH-CO-Cα HRi )N−, where N is usually of the order of hundreds, and
the functional groups Ri , i = 1, 2, . . . , 20 stand for the aminoacid side chains (Nature has 20 kinds of these side chains). Two
structural motifs dominate in a protein 3-D structure, both created by the hydrogen bond-based self-recognition of the synthons
within the protein molecule (one peptide bond is highlighted). (e) The α-helical motif, in which a system of the intramolecular
hydrogen bonds NH …OC stabilizes a helical structure. (f) The β-sheet motif, based as well on the intramolecular hydrogen bonds
NH …OC, but formed by a lateral approaching of the peptide β-strands.

90 G.R. Desiraju, Crystal Engineering, The Design of Organic Solids Elsevier, Amsterdam, (1989).
91 Any mutation represents a potential or real danger, as well as a chance for evolution.
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13.14.2 “Key-and-Lock,” Template-like, and “Hand-Glove” Synthon Interactions

The spectrum of the energy levels of a molecule represents something like its fingerprint. An
energy level corresponds to certain electronic, vibrational, and rotational states (Chapter 6).
Different electronic states92 may be viewed as representing different chemical bond patterns.

(a)
(d)

(b) (e) (f)

(c)

92 In the Born-Oppenheimer approximation, each corresponds to a potential energy hypersurface, PES.
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Different vibrational states93 form series, each series for an energy well on the PES (Potential
Energy Surface). The energy level pattern is completed by the rotational states of the molecule
as a whole. Since the electronic excitations are of the highest energy, the PES of the ground
electronic state is most important. For larger molecules, such a PES is characterized by a lot of
potential energy wells corresponding to the conformational states. If the bottoms of the excited
conformational wells are of high energy (with respect to the lowest-energy well, as shown in
Fig. 13.19a), then the molecule in its ground state may be called rigid because high energy is
needed to change the molecular conformation.

If such rigid molecules A and B match perfectly each other, this corresponds to the key-lock
type of molecular recognition. To match, the interacting molecules sometimes only need to
orient properly in space when approaching one another and then dock (the AT or GC pairs
may serve as an example). This key-lock concept of Fischer from 100 years ago (concerning
enzyme-substrate interaction) is considered as the foundation of supramolecular chemistry –
the chemistry that deals with the complementarity and matching of molecules.

One of the molecules, if rigid enough, may serve as a template for another molecule, which
is flexible (see Fig. 13.19b). Finally two flexible molecules (Fig. 13.19c) may pay an energy
penalty for acquiring higher-energy conformations, but ones that lead to a very strong interaction
of the molecules in the hand-glove type of molecular recognition.

Fig. 13.20 shows the far-reaching consequences of a apparently minor change in the molecular
structure (replacement of 16 hydrogen atoms by fluorines). Before the replacement, the molecule
has a conelike shape, while after it the cone has to open. This means that the molecule has
a concave part and resembles a plate. What happens next represents a direct consequence
of this:

• In the first case, the conelike molecules associate laterally, which has to end up in a spherical
structure similar to a micelle. The spheres pack into a cubic structure (as in NaCl).

• In the second case, the “plates” match with each other and one gets stacks of them. The
most effective packing is of the stack-to-stack type, leading to the hexagonal liquid crystal
packing.

Still another variation of the hand-glove interaction comes into play, when during the approach,
a new type of synthon appears, and the synthons match afterward. For example, in the Hodges
superhelical structure (Fig. 13.17), only after formation of the α-helices does it turn out that the
leucine and valine side chains of one helix match perfectly similar synthons of the second helix
(the leucine-zipper).

93 The states include internal rotations, such as those of the methyl group.
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(a) (b)

(c)

Fig. 13.19. The key-lock, template, and hand-glove interactions. Any molecule may be characterized by a spectrum of its energy
levels. (a) In the key-lock type interaction of two rigid molecules A and B, their low-energy conformational states are separated from
the quasi-continuum high-energy conformational states (including possibly those of some excited electronic states) by an energy
gap, which is generally different for A and B. Due to the effective synthon interactions, the energy per molecule lowers substantially
with respect to that of the isolated molecules leading to molecular recognition without significant changes of molecular shape.
(b) In the template-like interaction, one of the molecules is rigid (large energy gap), while the other one offers a quasi-continuum
of conformational states. Among the latter, there is one that (despite of being a conformational excited state), due to the perfect
matching of synthons results in considerable energy lowering, much below the energy of isolated molecules. Thus, one of the
molecules has to distort in order to get perfect matching. (c) In the hand-glove type of interaction, the two interacting molecules
offer quasi-continua of their conformational states. Two of the excited conformational states correspond to such molecular shapes
as match each other perfectly (molecular recognition) and lower the total energy considerably. This lowering is so large that it is
able to overcome the conformational excitation energy (an energy cost of molecular recognition).
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Fig. 13.20. The key-lock interaction in two marginally different situations: the molecules (in center) involved differ by replacing
some of the hydrogens by the fluorine atoms in the substituent R. This picture shows how profound the consequences of this
seemingly small detail are. In one case (left), we obtain a conelike molecule and then a crystal of cubic symmetry; in the other
(right), the molecule has a platelike shape, and because of that, we get finally a liquid crystal with the hexagonal packing of columns
of these molecular plates [after Donald A.Tomalia, Nature Materials, 2, 711(2003)].

Hermann Emil Fischer (1852–
1919), German chemist and
founding father of the domain
of molecular recognition. Known
mainly for his excellent work on
the structure of sugar compounds.
His correct determination of the
absolute conformation of sugars
(recognized decades later) was
based solely on the analysis of
their chemical properties. Even
today, this would require advanced
physicochemical investigations. In
1902, Fischer received the Nobel

Prize “for his work on sugar and
purine syntheses.”

Another masterpiece of nature
is self-organization of the
tobacco virus, shown in Fig.
13.21. Such a complex system
self-assembles because its
parts not only fit one another
(synthons), but also found
themselves in solution and
made perfect matching accom-
panied by an energy gain.
Even more spectacular is the
structure and functioning of
bacteriophage T (Fig. 13.22).
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13.14.3 Convex and Concave–The Basics of Strategy in the Nanoscale

Chemistry can be seen from various points of view. In particular, one may think of it (liberating
oneself for a while from the overwhelming influence of the Mendeleev table) as of a general
strategy to tailor matter in the nanoscale,94 in order to achieve a suitable physicochemical goal.
Then, we see an interesting feature, that: until recently, the concepts of chemistry have been
based on the intermolecular interaction of essentially convex molecules.95

Practical use of molecular fitting in chemistry, taking place when a convex molecule interacts
with a concave one, turned out to be a real breakthrough. To get to this stage, the chemists had to
learn how to synthesize concave molecules, necessarily large ones to host the convex ones. The
convex-concave interaction has some peculiar features, which make possible precise operation
in the nanoscale through the following:

Fig. 13.21. Self-organization of the tobacco virus. The virus consists of an RNA helix (shown as a single “file”) containing
about 7000 nucleotides, which is sufficient genetic material to code the production of 5− 10 proteins (first level of supramolecular
self-organization). The RNA strand interacts very effectively with a certain protein (shown as a “drop,” which is the second level).
The protein molecules associate with the RNA strand forming a kind of necklace, and then the system folds (third level) into a
rodlike shape typical for this virus. The rods are able to form a crystal (level four, not shown here), which melts after heating but
is restored when cooled down.

94 Let us stress that chemists always had to do with nanostructures, which are quite fashionable nowadays. The
molecules have dimensions of the order of tens to hundreds of Å or more; i.e., 1–10 nm.

95 We do not count here some small concave details of molecular surfaces, which were usually the size of a single
atom and did not play any particular role in theoretical considerations.
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Fig. 13.22. Bacteriophage T represents a supramolecular construction that terrorizes bacteria. The hexagonal “head” contains a
tightly packed double helix of DNA (the virus genetic material) wrapped in a coat made of protein subunits. The head is attached
to a tubelike molecular connector built of 144 contractible protein molecules. On the other side of the connector, there is a plate
with six spikes protruding from it, as well as six long, kinked “legs” made of several different protein molecules. The legs represent
a “landing apparatus” which, using intermolecular interactions, attaches to a particular receptor on the bacterium cell wall. This
reaction is reversible, but what happens next is highly irreversible. First, an enzyme belonging to the “monster” makes a hole in the
cell wall of the bacterium. Then the 144 protein molecules contract at the expense of energy from hydrolysis of the ATP molecule
(adenosine triphosphate - a universal energy source in biology), which the monster has at its disposal. This makes the head collapse,
and the whole monster serves as a syringe. The bacteriophage’s genetic material enters the bacterium body almost immediately.
That is the end of the bacterium.

• A convex molecule of a particular shape may fit a specific concave one, much better than
other molecules are able to do (molecular recognition).

• Elimination of some potential convex reactants (“guest molecules”) to enter a reaction center
inside a concave pocket of the “host molecule,” just because their shape makes the contact
impossible (due to the steric hindrance; i.e., an excessive valence repulsion, as shown in
Fig. 13.23a1).

• Isolating the reaction center from some unwanted neighborhood (Fig. 13.23a2), which in
the extreme case leads to molecular reaction vessels, even such large ones as a biological
cell.

• Positioning the reactants in space in some particular orientation (unlike that shown in Fig.
13.23a3).

• A strong binding (many interatomic contacts distributed on large contact surface), in order
to make a molecular complex. (Fig. 13.23a4).

• The same binding to be sufficiently weak intermolecular binding in order to allow for
reorganization of the complex.

• Assuring the reaction centers (predefined by chemists) to be close in space and therefore
forcing the reaction to proceed with a high yield (Fig. 13.23b1,b2).

• Leaving the reaction pocket by the products, because they do not have enough space in the
pocket (Fig. 13.23b3).
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(b)

(a)

Fig. 13.23. How to make a particular chemical reaction of two molecules happen with high yield (scheme)? The figure shows
several ways to get two reaction centers (one in each molecule, symbolized by triangle and circle) close in space. (a1) This
architecture does not allow the reaction to proceed; (a2) the reaction will proceed with higher probability when in a reaction
cavity (the cavity protects also the molecules from influence of other molecules of the neighborhood); (a3) the two centers to meet
there must be a lot of unsuccessful attempts (what is known as entropic barrier); (a4) molecules A and B attract effectively in
one configuration only, at which they have a large contact surface; (b1 and b2) a model of catalytic center (reaction cavity); the
molecules fit best exactly at a configuration for which the reaction centers meet; (b3) the reaction products do not fit the cavity,
which results in leaving the cavity.

Therefore,

one can imagine an idea of a molecular machine, which offers a specific reaction space
(pocket), selects the right objects from the neighborhood, fixes their positions as to have the
key reaction centers close in space, makes the reaction proceed, then removes the products
from the reaction space, leaving the pocket ready for the next reaction.

Summary

• Interaction energy of two molecules (at a given geometry) may be calculated within any reliable quantum
mechanical method by subtracting from the total system energy the sum of the energies of the subsystems. This
is called a supermolecular method.
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• The supermolecular method has at least one important advantage: it works independently of the interaction
strength and of the intermolecular distance. The method has the disadvantage that due to the subtraction, a loss
of accuracy occurs and no information is obtained about the structure of the interaction energy.

• In the supermolecular method, there is a need to compensate for what is called the basis set superposition error
(BSSE). The error appears because due to the incompleteness of the atomic basis set

(
�A, �B

)
, the individual

subsystem A with the interaction switched off profits from the �A basis set only, while when interacting, the
energy is lowered due to the total�A ∪�B basis set (the same pertains to any of the subsystems). As a result, a
part of the calculated interaction energy does not come from the interaction, but from the problem of the basis set
used (BSSE) described above. A remedy is called the counter-poise method, in which all quantities (including
the energies of the individual subsystems) are calculated within the �A ∪�B basis set.

• Perturbational method has limited applicability:

– At long intermolecular separations, what is called the polarization approximation may be used
– At medium distances, a more general formalism called the symmetry adapted perturbation theory (SAPT)

may be applied
– At short distances (of the order of chemical bond lengths), perturbational approaches are inapplicable

• One of the advantages of a low-order perturbational approach is the possibility of dividing the interaction energy
into well-defined, physically distinct energy contributions.

• In a polarization approximation approach, the unperturbed wave function is assumed as a product of the exact

wave functions of the individual subsystems: ψ(0)0 = ψA,0ψB,0. The corresponding zero-order energy is

E(0)0 = E A,0 + EB,0.

• Then, the first-order correction to the energy represents what is called the electrostatic interaction energy: E(1)0 =
Eelst =

〈
ψA,0ψB,0|VψA,0ψB,0

〉
, which is the Coulombic interaction (at a given intermolecular distance) of

the frozen charge density distributions of the individual, non-interacting molecules. After using the multipole
expansion, Eelst can be divided into the sum of the multipole-multipole interactions plus a remainder, called the
penetration energy. A multipole-multipole interaction corresponds to the permanent multipoles of the isolated
molecules. An individual multipole-multipole interaction term (2k−pole with 2l−pole) vanishes asymptotically

as R−
(
k+l+1

)
; e.g., the dipole-dipole term decreases as R−

(
1+1+1

)
= R−3.

• In the second order, we obtain the sum of the induction and dispersion terms: E(2) = Eind + Edisp.

• The induction energy splits into Eind(A→ B) =∑′
nB

|〈ψA,0ψB,nB |VψA,0ψB,0〉|2
EB,0−EB,nB

, which pertains to polarization

of molecule B by the unperturbed molecule A, and Eind(B → A) =∑′
n A

|〈ψA,n AψB,0|V |ψA,0ψB,0〉|2
E A,0−E A,n A

, with the

roles of the molecules reversed. The induction energy can be represented as the permanent multipole–induced

dipole interaction, with asymptotic vanishing as R−2
(
k+2

)
.

• The dispersion energy is defined as Edisp =
∑′

n A

∑′
nB

|〈ψA,n AψB,nB |VψA,0ψB,0〉|2
(E A,0−E A,n A )+(EB,0−EB,nB )

and represents a result

of the electronic correlation. After applying the multipole expansion, the effect can be described as a series of
instantaneous multipole–instantaneous multipole interactions, with the individual terms decaying asymptotically

as R−2
(
k+l+1

)
. The most important contribution is the dipole–dipole (k = l = 1), which vanishes as R−6.

• The polarization approximation fails for medium and short distances. For medium separations, we may use SAPT.
The unperturbed wave function is symmetry-adapted; i.e., it has the same symmetry as the exact function. This
is not true for the polarization approximation, where the productlike ϕ(0) does not exhibit the proper symmetry
with respect to electron exchanges between the interacting molecules. The symmetry-adaptation is achieved by
a projection of ϕ(0).

• SAPT reproduces all the energy corrections that appear in the polarization approximation (Eelst, Eind, Edisp, . . .)
plus provides some exchange-type terms (in each order of the perturbation).

• The most important exchange term is the valence repulsion appearing in the first-order correction to the energy:

E(1)exch = 〈ψA,0ψB,0|V P̂ABψA,0ψB,0〉−〈ψA,0ψB,0|VψA,0ψB,0〉〈ψA,0ψB,0|P̂ABψA,0ψB,0〉+O(S4), where
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P̂AB stands for the single exchanges’ permutation operator and O(S4) represents all the terms decaying as the
fourth power of the overlap integral or faster.

• The interaction energy of N molecules is not pairwise additive; i.e., it is not the sum of the interactions of all
possible pairs of molecules. Among the energy corrections up to the second order, the exchange and, first of
all, the induction terms contribute to the non-additivity. The electrostatic and dispersion (in the second order)
contributions are pairwise additive.

• The non-additivity is highlighted in what is called the many-body expansion of the interaction energy, where
the interaction energy is expressed as the sum of two-body, three–body, etc. energy contributions. The m−body
interaction, in a system of N molecules, is defined as that part of the interaction energy that is non-explicable
by any interactions of m′ < m molecules, but explicable by the interactions among m molecules.

• The dispersion interaction in the third-order perturbation theory contributes to the three-body non-additivity and
is called the Axilrod-Teller energy. The term represents a correlation effect. Note that the effect is negative for
three bodies in a linear configuration.

• The most important contributions: electrostatic, valence repulsion, induction, and dispersion lead to a richness
of supramolecular structures.

• Molecular surface (although not having an unambiguous definition) is one of the most important features of the
molecules involved in the molecular recognition.

• The electrostatic interaction plays a particularly important role because it is of a long-range character as well as
very sensible to relative orientation of the subsystems. The hydrogen bond X-H…Y represents an example of the
domination of the electrostatic interaction. This results in its directionality, linearity and a small (as compared
to typical chemical bonds) interaction energy of the order of −5 kcal/mol.

• Also, valence repulsion is one of the most important energy contributions because it controls how the interacting
molecules fit together in space.

• The induction and dispersion interactions for polar systems, although contributing significantly to the binding
energy, in most cases do not have a decisive role in forming structure and only slightly modify the geometry of
the resulting structures.

• In aqueous solutions, the solvent structure contributes very strongly to the intermolecular interaction, thus
leading to what is called the hydrophobic effect. The effect expels the non-polar subsystems from the solvent,
thus causing them to approach, which looks like an attraction.

• A molecule may have such a shape that it fits that of another molecule (synthons, small valence repulsion, and
a large number of attractive atom-atom interactions).

• In this way, molecular recognition may be achieved by the key-lock-type fit (the molecules non-distorted),
template fit (one molecule distorted), or hand-glove-type fit (both molecules distorted).

• Molecular recognition may be planned by chemists and used to build complex molecular architectures, in a way
similar to that in which living matter operates.

Main Concepts, New Terms
amphiphilicity (p. 867)
Axilrod-Teller dispersion energy (p. 879)
basis set superposition error (BSSE) (p. 803)
binding energy (p. 800)
catenans (p. 801)
dipole-dipole (p. 816)
dispersion energy (p. 822)
dissociation barrier (p. 801)
dissociation energy (p. 801)
electrostatic energy (p. 807)
exchange-deformation interaction (p. 843)
function with adapted symmetry (p. 828)

ghosts (p. 837)
hand-glove interaction (p. 872)
hydrogen bond (p. 864)
hydrophobic effect (p. 867)
induction energy (p. 820)
interaction energy (p. 797)
interaction non-additivity (p. 847)
Jeziorski-Kołos perturbation theory (p. 796)
key-lock interaction (p. 874)
many-body expansion (p. 848)
molecular surface (p. 860)
MS-MA perturbation theory (p. 833)
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multipole moments (p. 813)
nanostructures (p. 867)
natural division (p. 798)
non-additivity (p. 847)
Padé approximants (p. 842)
Pauli blockade (p. 842)
penetration energy (p. 814)
permanent multipoles (p. 826)
polarization catastrophe (p. 858)
polarization collapse (p. 836)
polarization perturbation theory (p. 840)
rotaxans (p. 801)

SAPT (p. 827)
SE mechanism (p. 853)
supermolecular method (p. 804)
symmetrized polarization approximation (p. 842)
symmetry forcing (p. 835)
synthon (p. 870)
TE mechanism (p. 854)
template interaction (p. 871)
valence repulsion (p. 862)
van der Waals radius (p. 860)
van der Waals interaction energy (p. 796)

From the Research Front

Intermolecular interaction influences any liquid and solid-state measurements. Physicochemical measurement tech-
niques give only some indications of the shape of a molecule, except NMR, X-ray, and neutron analyses, which
provide the atomic positions in space, but are very expensive. This is why there is a need for theoretical tools that
may offer such information in a less expensive way. For very large molecules, such an analysis uses the force fields
described in Chapter 7. This is currently the most powerful theoretical tool for determining the approximate shape
of molecules with a number of atoms even of the order of thousands. To obtain more reliable information about
intermolecular interactions, we may perform calculations within a supermolecular approach, necessarily of an ab
initio type, because other methods give rather low-quality results. The DFT method popular nowadays fails at its
present stage of development, because the intermolecular interactions area, especially the dispersion interaction, is
a particularly weak point of the method. If the particular method chosen is the Hartree-Fock approach (currently
limited to about 300 atoms), we have to remember that it cannot take into account any dispersion contribution to
the interaction energy by definition.96 Ab initio calculations of the correlation energy still represent a challenge.
High-quality calculations for a molecule with 100 atoms may be carried out using the MP2 method. Still more time
consuming are the CCSD(T) or SAPT calculations, which are feasible only for systems with a dozen of atoms, but
offer an accuracy of 1 kcal/mol required for chemical applications.

Ad Futurum

No doubt the computational techniques will continue to push the limits mentioned above. The more coarse the
method used, the more spectacular this pushing will be. The most difficult to imagine would be a great progress in
methods using explicitly correlated wave functions. It seems that pushing the experimental demands and calculation
time required will cause experimentalists (they will perform the calculations97) to prefer a rough estimation using
primitive methods rather than wait too long for a precise result (which still is not very appropriate because it was
obtained without taking the influence of solvent, etc. into account). It seems that in the near future, we may expect
theoretical methods exploiting the synthon concept. It is evident that a theoretician has to treat the synthons on an
equal footing with other atoms, but a practice-oriented theoretician cannot do that. Otherwise, he would wait virtually
forever for something to happen in the computer, while in reality, the reaction takes only a picosecond or so. Still
further in the future, we will see the planning of hierarchic multilevel supramolecular systems, taking into account
the kinetics and competitiveness among such structures. In the still more distant future, functions performed by such
supramolecular structures, as well as their sensitivity to changing external conditions, will be investigated.

96 The dispersion energy represents an electronic correlation effect, which is absent in the Hartree-Fock energy.
97 So, what will theoreticians do? My answer is given in Chapter 15.
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Additional Literature
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York (1964).

A thick “bible” (1249 pages long) of intermolecular interactions, with most important facts that came before the
advent of computers and SAPT.

H. Margenau and N. R. Kestner, Theory of Intermolecular Forces, Pergamon, Oxford (1969).
This book contain a lot of detailed derivations. There is also a chapter devoted to the non-additivity of the

interaction energy–a rarity in textbooks.

H. Ratajczak and W. J. Orville, eds., Molecular Interactions, Wiley, Chichester (1980).
A three-volume edition containing a selection of articles by experts in the field.

A.J. Stone, “The Theory of Intermolecular Forces,” Oxford Univ.Press, Oxford, 1996.
The book contains basic facts about the field of intermolecular interactions given in the language of perturbation

theory, as well as the multipole expansion (including a lot of useful formulas for the electrostatic, induction, and dis-
persion contributions). This very well written book presents many important problems in a clear and comprehensive
way.

S. Scheiner, ed., Molecular Interactions, Wiley, Chichester (1997).
A selection of articles written by experts.

P. Hobza and R. Zahradnik, Intermolecular Complexes, Elsevier, Amsterdam (1988).
This book contains many useful details. This monograph establishes a strong link between the theoretical methods

and the experimental investigations of intermolecular interactions, including those important in biology.

Questions

1. The rigid interaction energy of the subsystems A and B in the AB system

a. does not represent a measurable quantity
b. requires calculation of the electronic energy of AB, A, and B, where the configuration of the nuclei in A

and B are the same as those in AB
c. requires calculation of the electronic energy of AB, A and B, where the configurations of the nuclei in A,

and B correspond to the minimum energy of these subsystems
d. the interaction energy of two water molecules in the H4O2 system is a unambiguously defined quantity.

2. The Boys-Bernardi method of removing the basis set superposition error (BSSE) means

a. a high-quality calculation: all calculations within the most extended basis set available, feasible separately
for A, B, and AB.

b. the energy of the total system should be calculated within the joint sets of the atomic orbitals centered on
the individual subsystems, while the energy of the subsystems should be calculated within their individual
basis sets.

c. the atomic basis set for AB represents the sum of the basis sets for A and B
d. all quantities are calculated within a common basis set being the sum of the sets for the individual molecules.

3. The zeroth order wave function in the polarization perturbation theory (for a finite intermolecular distance)

a. does not satisfy the Pauli exclusion principle
b. represents a product of the wave functions for the polarized molecules
c. admits that two electrons with the same spin coordinates occupy the same point in space
d. represents a product of the wave functions for the isolated molecules



882 Chapter 13

4. Induction energy (R denotes the intermolecular distance)

a. decays as R−7 for the interaction of two hydrogen molecules

b. decays as R−6 for the immobilized water and ammonia molecules
c. represents an attraction
d. is an electronic correlation effect.

5. Dispersion energy (R denotes the intermolecular distance)

a. is not equal to zero for two polar molecules
b. the Hartree-Fock method overestimates its value
c. represents an electronic correlation effect

d. for R sufficiently large decays as R−6

6. The multipole moments of a point particle of charge q and the coordinates x, y, z.

a. the only nonzero multipole moment of a pointlike particle represents its charge (i.e., its monopole)
b. the z-component of the dipole moment is equal to qz
c. a pointlike particle cannot have a dipole moment, so we always have μz = 0
d. the values of the multipole moments of a particle depend on the coordinate system chosen.

7. In the symmetry adapted perturbation theory (SAPT) for H2O . . .H2O

a. the dispersion energy appears in the second-order
b. one obtains a minimum of the electronic energy when the molecules approach each other
c. the valence repulsion appears in the first order
d. the zeroth-order wave function is asymmetric with respect to exchange of the coordinates of any two

electrons.

8. In the symmetry adapted perturbation theory (SAPT) for Ne…Ne

a. the wave function of the zeroth order represents an antisymmetrized product of the wave function for the
isolated neon atoms

b. the electrostatic energy appears in the first order and is equal zero within the multipole approximation
c. the exchange corrections appear in every order
d. the penetration part of the electrostatic energy is equal zero

9. Additivity and non-additivity of the interaction

a. the electrostatic energy is always additive, while the induction energy is always non-additive
b. the three-body contribution represents this part of the interaction energy of N subsystems, which cannot

be explained by the pairwise interactions of the subsystems
c. the dispersion energy (in the second order) contains only the pairwise interactions of the subsystems
d. additivity means that the interaction energy is a sum of the pairwise interaction energies.

10. Supramolecular chemistry

a. molecular recognition means a strong attraction of the molecules at their unique mutual configuration only

b. the angle O-H…O in the hydrogen bond HO-H…OH2 is equal to 180.00

c. the term hydrogen bond pertains to the hydrogen-hydrogen interaction, where the hydrogens belong to
different molecules

d. the hand-glove interaction is also known as the key-lock interaction.

Answers

1a,b, 2d, 3a,c,d, 4b,c, 5a,c,d, 6b,d, 7a,b,c, 8a,b,c, 9a,c,d, 10a



CHAPTER 14

Chemical Reactions

“Enter through the narrow gate,
for the gate is wide and the way

is broad that leads to destruction…”
St. Matthew (7.13)

Where Are We?
We are already picking fruit in the crown of the TREE.

An Example
Why do two substances react and another two do not? Why does increasing temperature start a reaction? Why does
a reaction mixture change color? As we know from Chapter 6, this tells us about some important electronic structure
changes. On the other hand, the products (when compared to the reactants) tell us about profound changes in the
positions of the nuclei that take place simultaneously. Something dramatic is going on. But what, and why?

What Is It All About?

How does atom A eliminate atom C from a diatomic molecule BC? How can a chemical reaction be described as a
molecular event? Where does the reaction barrier come from? Such questions will be discussed in this chapter.

Hypersurface of the Potential Energy for Nuclear Motion (�) p. 887

• Potential Energy Minima and Saddle Points
• Distinguished Reaction Coordinate (DRC)
• Steepest Descent Path (SDP)
• Higher-Order Saddles
• Our Goal

Chemical Reaction Dynamics (A Pioneers’ Approach) (�) p. 892

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00014-3
© 2014 Elsevier B.V. All rights reserved. 883

http://dx.doi.org/10.1016/B978-0-444-59436-5.00014-3
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Accurate Solutions (Three Atoms) (� ��) p. 896

• Coordinate System and Hamiltonian
• Solution to the Schrödinger Equation
• Berry Phase (�)

Intrinsic Reaction Coordinate (IRC) or Statics (�) p. 902
Reaction Path Hamiltonian Method (� �) p. 905

• Energy Close to IRC
• Vibrational Adiabatic Approximation
• Vibrational Non-Adiabatic Model
• Application of the Reaction Path Hamiltonian Method to the Reaction H2 + OH→ H2O+ H

Acceptor-Donor (AD) Theory of Chemical Reactions (� �) p. 920

• An Electrostatic Preludium–The Maps of the Molecular Potential
• A Simple Model of Nucleophilic Substitution–MO, AD, and VB Formalisms
• MO Picture→AD Picture
• Reaction Stages
• Contributions of the Structures as Reaction Proceeds
• Nucleophilic Attack–The Model is More General: H− + Ethylene→ Ethylene + H−
• The Model Looks Even More General: The Electrophilic Attack H++H2 →H2+H+
• The Model Also Works for the Nucleophilic Attack on the Polarized Bond

Symmetry-Allowed and Symmetry-Forbidden Reactions (�) p. 941

• Woodward-Hoffmann Symmetry Rules
• AD Formalism
• Electrocyclic Reactions
• Cycloaddition Reaction
• Barrier Means a Cost of Opening the Closed Shells

Barrier for the Electron Transfer Reaction (� �) p. 948

• Diabatic and Adiabatic Potential
• Marcus Theory
• Solvent-Controlled Electron Transfer

We are already acquainted with the toolbox for describing the electronic structure at any position of the nuclei.
It is time to look at possible large changes of the electronic structure at large changes of nuclear positions. The two
motions of the electrons and nuclei will be coupled together (especially in a small region of the configurational space).

Our discussion consists of four parts:

• In the first part (after using the Born-Oppenheimer approximation, fundamental to this chapter), we assume that
we have calculated the ground-state electronic energy (i.e., the potential energy for the nuclear motion). It will
turn out that the hypersurface has a characteristic drainpipe shape, and the bottom in the central section, in
many cases, exhibits a barrier. Taking a three-atom example, we will show how the problem could be solved,
if we were capable of calculating the quantum dynamics of the system accurately.

• In the second part, we will concentrate on a specific representation of the system’s energy that takes explicitly
into account the abovementioned reaction drain-pipe (“reaction path Hamiltonian”). Then we will focus on how
to describe the proceeding of a chemical reaction. Just to be more specific, an example will be shown in detail.

• In the third part (acceptor-donor theory of chemical reactions), we will find the answer to the question of where
the reaction barrier comes from and what happens to the electronic structure when the reaction proceeds.

• The fourth part will pertain to the reaction barrier height in electron transfer (a subject closely related to the
second and the third parts).
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Why Is This Important?

Chemical reactions are at the heart of chemistry, making possible the achievement of its ultimate goals, which include
synthesizing materials with desired properties. What happens in the chemist’s flask is a complex phenomenon that
consists of an astronomical number of elementary reactions of individual molecules. In order to control the reactions
in the flask, it would be good to understand first the rules which govern these elementary reaction acts. This is the
subject of this chapter.

What Is Needed?

• Hartree-Fock method (Chapter 8)
• Conical intersection (Chapter 6)
• Normal modes (Chapter 7)
• Appendices M, E, Z, I (recommended), G (just mentioned)
• Elementary statistical thermodynamics or even phenomenological thermodynamics: entropy, free energy

Classical Works

Everything in quantum chemistry began in the 1920s.
The first publications that considered conical intersection - a key concept for chemical reactions – were two

articles from two Budapest schoolmates: Janos (John) von Neumann and Jenó Pál (Eugene) Wigner, “Über merk-
würdige diskrete Eigenwerte” published in Physikalische Zeitschrift, 30, 465 (1929); and “Über das Verhalten von
Eigenwerten bei adiabatischen Prozessen,” which also appeared in Physikalische Zeitschrift, 30, 467 (1929). � Then
a paper called “The crossing of potential surfaces,” by their younger schoolmate Edward Teller, was published in the
Journal of Chemical Physics, 41, 109 (1937). � A classical theory of the “reaction drainpipe” with entrance and exit
channels was first proposed by Henry Eyring, Harold Gershinowitz, and Cheng E. Sun in “Potential energy surface
for linear H3,” published in the Journal of Chemical Physics, 3, 786 (1935), and then by Joseph O. Hirschfelder,
Henry Eyring and Brian Topley in an article called “Reactions involving hydrogen molecules and atoms,” in Journal
of Chemical Physics, 4, 170 (1936); and by Meredith G. Evans and Michael Polanyi in “Inertia and driving force
of chemical reactions,” which appeared in Transactions of the Faraday Society, 34, 11 (1938). � Hugh Christo-
pher Longuet-Higgins, Uno Öpik, Maurice H.L. Pryce, and Robert A. Sack in a splendid paper called “Studies of
the Jahn-Teller effect,” published in Proceedings of the Royal Society of London, A244, 1 (1958), noted for the first
time that the wave function changes its phase close to a conical intersection, which later on became known as the
Berry phase. � The acceptor-donor description of chemical reactions was first proposed by Robert S.J. Mulliken in
“Molecular compounds and their spectra,” Journal of the American Chemical Society, 74, 811 (1952). � The idea
of the intrinsic reaction coordinate (IRC) was first explained by Isaiah Shavitt in “The tunnel effect corrections in the
rates of reactions with parabolic and Eckart barriers,” Report WIS-AEC-23, Theoretical Chemistry Lab., University
of Wisconsin, (1959), as well as by Morton A. Eliason and Joseph O. Hirschfelder in the Journal of the Chemical
Physics, 30, 1426 (1959), in an article called “General collision theory treatment for the rate of bimolecular, gas
phase reactions.” � The symmetry rules allowing some reactions and forbidding others were first proposed by
Robert B. Woodward and Roald Hoffmann in two letters to the editor: “Stereochemistry of electrocyclic reactions”
and “Selection rules for sigmatropic reactions,” Journal of American Chemical Society, 87, 395, 2511 (1965), as
well as by Kenichi Fukui and Hiroshi Fujimoto in an article published in the Bulletin of the Chemical Society of
Japan, 41, 1989 (1968). � The concept of the steepest descent method was formulated by Kenichi Fukui in an
article called “A formulation of the reaction coordinate,” which appeared in the Journal of Physical Chemistry, 74,
4161 (1970), although the idea seems to have a longer history. � Other classical papers include a seminal article by
Sason S. Shaik called “What happens to molecules as they react? Valence bond approach to reactivity,” published
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John Charles Polanyi (b. 1929),
Canadian chemist of Hungarian ori-
gin, son of Michael Polanyi (one of
the pioneers in the field of chemical
reaction dynamics), and profes-
sor at the University of Toronto.
John was attracted to chemistry by
Meredith G. Evans, who was a stu-
dent of his father. Three scholars,
John Polanyi, Yuan Lee, and Dudley
Herschbach shared the 1986
Nobel Prize “for their contributions

concerning the dynamics of chemi-
cal elementary processes.”

in Journal of the American Chem-
ical Society, 103, 3692 (1981). �
The Hamiltonian path method was
formulated by William H. Miller,
Nicolas C. Handy, and John E.
Adams, in an article called “Reac-
tion path Hamiltonian for poly-
atomic molecules,” published in
the Journal of Chemical Physics,
72, 99 (1980). � The first quan-
tum dynamics simulation was per-
formed by a Ph.D. student named
George C. Schatz (under the
supervision of Aron Kupperman)
for the reaction H2 + H → H +
H2, reported in “Role of direct
and resonant processes and of
their interferences in the quantum
dynamics of the collinear H+H2
exchange reaction,” in Journal of
Chemical Physics, 59, 964 (1973).
� John Polanyi, Dudley Her-
schbach, and Yuan Lee proved that
the lion’s share of the reaction
energy is delivered through the
rotational degrees of freedom of
the products; e.g., J.D. Barnwell,
J.G. Loeser, and D.R. Herschbach,
“Angular correlations in chem-
ical reactions. Statistical theory
for four vector correlations,” pub-
lished in the Journal of Physi-
cal Chemistry, 87, 2781 (1983).
� Ahmed Zewail (Egypt/USA)
developed an amazing experimen-
tal technique known as femtosec-
ond spectroscopy, which for the
first time allowed the study of
the reacting molecules at differ-
ent stages of an ongoing reac-
tion [Femtochemistry – Ultrafast
Dynamics of The Chemical Bond,
vols. I and II, A.H. Zewail, World
Scientific, New Jersey, Singapore
(1994)]. � Among others, Josef
Michl, Lionel Salem, Donald G.
Truhlar, Robert E. Wyatt, and W.
Ronald Gentry also contributed to
the theory of chemical reactions.

Yuan Tseh Lee (b. 1936) is a native of Taiwan.
He has been called “a Mozart of physical
chemistry ” by his collegues. His first scientific
research was conducted at the National Taiwan
University, in very poor financial conditions. He
understood that he has to rely on his own hard
work. Lacking the proper courses at the Uni-
versity, he decided to study by his own (quan-
tum mechanics, statistical mechanics, but also
German and Russian). He wrote that he was
deeply impressed by a biography of Marie Curie
and that her idealism decided his own path.

Dudley Herschbach (b. 1932) writes
that he spent his childhood in a vil-
lage close to San Jose, picking fruit,
milking cows, etc. Thanks to his
wonderful teacher, he became inter-
ested in chemistry. He graduated
from Harvard University (majoring
in physical chemistry), where as he
says, he has found “an exhilerating
academic environment.”

In 1959, he became professor at
the University of California at Berke-
ley. In 1967, his laboratory was join-
ed by Yuan Lee and constructed a
“supermachine” for studying cross-

ing molecular beams and the reac-
tions in them.

One of the topics was the alkali
metal atom - iodine collisions.
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14.1 Hypersurface of the Potential Energy for Nuclear Motion

Theoretical chemistry is currently in a stage that experts in the field characterize as “the primitive
beginnings of chemical ab initio dynamics”.1 The majority of the systems studied so far are
three-atomic.2

The Born-Oppenheimer approximation works wonders, as it is possible to consider the (clas-
sical or quantum) dynamics of the nuclei, while the electrons disappear from the scene (their
role became determining the potential energy for the motion of the nuclei, described in the
electronic energy, the quantity corresponding to E0

0(R) from Eq. (6.8) on p. 266).
Even with this approximation, our job is not simple, for the following reasons:

• The reactants, as well as the products, may be quite large systems and the many-dimensional
ground-state potential energy hypersurface E0

0(R)may have a very complex shape, whereas
we are most often interested in the small fragment of the hypersurface that pertains to a
particular one of many possible chemical reactions.

• We have many such hypersurfaces E0
k (R), k = 0, 1, 2, . . ., each corresponding to an elec-

tronic state: k = 0 means the ground state, k = 1, 2, . . . corresponds to the excited states.
There are processes that take place on a single hypersurface without changing the chemical
bond pattern3, but the very essence of chemical reaction is to change the bond pattern, and
therefore excited states come into play.

It is quite easy to see where the fundamental difficulty is. Each of the hypersurfaces E0
k (R) for

the motion of N > 2 nuclei depends on 3N −6 atomic coordinates (the number of translational
and rotational degrees of freedom was subtracted).

Determining the hypersurface is not an easy matter, for the following reasons:

• A high accuracy of 1 kcal/mol is required, which is (for a fixed configuration) very difficult
to achieve for ab initio methods,4 and even more difficult for the semi-empirical or empirical
methods.

1 R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity, Oxford University Press
(1987).

2 John Polanyi recalls that the reaction dynamics specialists used to write as the first equation on the blackboard
A + BC→ AB + C, which made any audience burst out laughing. However, one of the outstanding specialists
(Zare) said about the simplest of such reactions (H3) (Chem. Engin. News, June 4 (1990)32): “I am smiling, when
somebody calls this reaction the simplest one. Experiments are extremely difficult, because one does not have
atomic hydrogen in the stockroom, especially the high speed hydrogen atoms (only these react). Then, we have
to detect the product i.e., the hydrogen, which is a transparent gas. On top of that it is not sufficient to detect the
product in a definite spot, but we have to know which quantum state it is in.”

3 Strictly speaking, a change of conformation or formation of an intermolecular complex represents a chemical
reaction. Chemists, however, reserve this notion for more profound changes of electronic structure.

4 We have seen in Chapter 10 that the correlation energy is very difficult to calculate.
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• The number of points on the hypersurface that have to be calculated is extremely large and
increases exponentially with the system size.5

• There is no general methodology telling us what to do with the calculated points. There is
a consensus that we should approximate the hypersurface by a smooth analytical function,
but no general solution has yet been offered.6

14.1.1 Potential Energy Minima and Saddle Points

Let us denote E0
0(R) ≡ V . The most interesting points of the hypersurface V are its critical

points; i.e., the points for which the gradient ∇V is equal to zero:

Gi = ∂V

∂Xi
= 0 for i = 1, 2, . . . , 3N , (14.1)

where Xi denote the Cartesian coordinates that describe the configurations of N nuclei. Since
−Gi represents the force acting along the axis Xi , no forces act on the atoms in the configuration
of a critical point.

There are several types of critical points. Each type can be identified after considering the
Hessian; i.e., the matrix with elements

Vi j = ∂2V

∂Xi∂X j
(14.2)

calculated for the critical point. There are three types of critical points: maxima, minima and sad-
dle points (cf., Chapter 7 and Fig. 7.12, as well as the Bader analysis, p. 667). The saddle points,
as will be shown shortly, are of several classes depending on the signs of the Hessian eigenval-
ues. Six of the eigenvalues are equal to zero (rotations and translations of the total system, see,
p. 359) because this type of motion proceeds without any change of the potential energy V .

We will concentrate on the remaining 3N − 6 eigenvalues:

• In the minimum, the 3N − 6 Hessian eigenvalues λk ≡ ω2
k (ω is the angular frequency of

the corresponding normal modes) are all positive,
• In the maximum, all are negative.

5 Indeed, if we assume that 10 values for each coordinate axis is sufficient (and this looks like a rather poor

representation), then for N atoms, we have 103N−6 quantum mechanical calculations of good quality to perform.
This means that for N = 3, we may still pull it off, but for larger N , everybody has to give up. For example, for
the reaction HCl+ NH3 → NH4Cl, we would have to perform 1012 quantum mechanical calculations.

6 Such an approximation is attractive for two reasons: first, we dispose the (approximate) values of the potential
energy for all points in the configuration space (not only those for which the calculations were performed), and
second, the analytical formula may be differentiated and the derivatives give the forces acting on the atoms.

It is advisable to construct the abovementioned analytical functions following some theoretical arguments.
These are supplied by intermolecular interaction theory (see Chapter 13).
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• For a saddle point of the nth order, n = 1, 2, . . . , 3N − 7, the n eigenvalues are negative,
while the rest are positive. Thus, a first-order saddle point corresponds to all but one of the
Hessian positive eigenvalues; i.e., one of the angular frequencies ω is therefore imaginary.

The eigenvalues were obtained by diagonalization of the Hessian. Such diagonalization cor-
responds to a rotation of the local coordinate system (cf., p. 359). Imagine a two-dimensional
surface that at the minimum could be locally approximated by an ellipsoidal valley. The diag-
onalization means such a rotation of the coordinate system x, y that both axes of the ellipse
coincide with the new axes x ′, y′ (as discussed in Chapter 7). On the other hand, if our sur-
face locally resembled a cavalry saddle, diagonalization would lead to such a rotation of the
coordinate system that one axis would be directed along the horse, and the other across.7

IR and Raman spectroscopies providing the vibration frequencies and force constants tell
us a lot about how the energy hypersurface close to minima looks, both for the reactants and
the products. On the other hand, theory, and recently also the femtosecond spectroscopy,a

are the only source of information about the first-order saddle points. However, the latter
are extremely important for determining reaction rates since any saddle point is a kind of
pivot point – it is as important for the reaction as the Rubicon was for Caesar.b

a In this spectroscopy, we hit a molecule with a laser pulse of a few femtoseconds. The pulse perturbs the
system, and when relaxing, it is probed by a series of new pulses, each giving a spectroscopic fingerprint of
the system. A femtosecond is an incredibly short time, light is able to run only about 3 · 10−5 cm. Ahmed
Zewail, the discoverer of this type of spectroscopy, received the Nobel Prize in 1999.

b In 49 BC, Julius Caesar heading his Roman legions crossed the Rubicon River (the border of his province
of Gaul), which initiated civil war with the central power in Rome. His words, “alea iacta est” (the die is
cast) became a symbol of a final and irreversible decision.

The simplest chemical reactions are those that do not require crossing any reaction barrier. For
example, the reaction Na+ + Cl− → NaCl or other similar reactions that are not accompanied
by bond breaking or bond formation take place without any barrier.8

After the barrierless reactions, there is a group of reactions in which the reactants and the
products are separated by a single saddle point (no intermediate products). How do we describe
such a reaction in a continuous way?

A PES (Potential Energy Surface and therefore all possible configurations of the nuclei) can
be divided into separate valleys with the saddle points at their borders. Let us focus on a particular
energy valley of the ground-state PES. One may ask about the stability of the system occupying
this valley. A suitable kinetic energy may be sufficient to allow the system pass the saddle points
at the border of the valley (Fig. 14.1). The distances from the bottom of the valley to these saddle
points may be different (depending on how large deformation of nuclear configuration is needed

7 A cavalry saddle represents a good illustration of the first-order saddle of a 2-D surface.
8 As a matter of fact, the formation of van der Waals complexes may also belong to this group. However, in large

systems, when precise docking of molecules take place, the final docking may occur with a steric barrier.
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Fig. 14.1. An analogy between the electronic ground-state PES and a mountain landscape, as well as between the stability of a
molecular system and the stability of a ball in the landscape. On the right side is the lake, and its bottom’s lowest point represents the
most stable position of the ball. If the ball had a small kinetic energy, it would only circulate around the bottom of the valley, which
is analogous to molecular vibrations (preserving the pattern of the chemical bonds). If the kinetic energy were larger, this would
mean a larger amplitude of such oscillations, in particular, one that corresponds to passing over the barrier (the arrow toward the
lowest saddle point) and getting to the next valley, which means a change of the chemical bond pattern, one reaction channel is open.
One sees, that when the kinetic energy is getting larger, the number of possible reaction channels increases quickly (other arrows).

to reach a given saddle point) and, more importantly, may correspond to different energies
(“barriers for a given reaction”). The destabilization is the easiest when moving toward the
lowest-energy saddle point, which is often associated with the motion described by the lowest-
frequency vibrational mode. The larger the kinetic energy of the system, the more numerous
possibilities of crossing over the saddle points, each characterized by some particular products.9

A possibility to pass to next and next valleys (through the saddle points) means a chain of
chemical reactions.

14.1.2 Distinguished Reaction Coordinate (DRC)

We often define a reaction path in the following way.

• First, we choose a particular distance (s) between the reacting molecules (e.g., an interatomic
distance, one of the atoms belongs to molecule A, the other to B).

• Then we minimize the potential energy by optimization of all atomic positions, while
keeping the s distance fixed.10

9 In other words, we are opening new reaction channels.
10 This is similar to calculating the relaxed interaction energy of Eq. (13.2).
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• Change s by small increments from its reactant value until the product value is obtained
(for each s optimizing all other distances).

• This defines a path (DRC) in the configurational space, and the progress along the path is
measured by s.

A deficiency of the DRC is an arbitrary choice of the distance. The energy profile obtained
(the potential energy versus s) depends on the choice. Often the DRC is reasonable close to
the reactant geometry and becomes misleading when close to the product value (or vice versa).
There is no guarantee that such a reaction path passes through the saddle point. Not only that,
but other coordinates may undergo discontinuities, which feels a little catastrophic.

14.1.3 Steepest Descent Path (SDP)

Because of the Boltzmann distribution, the potential energy minima are most important, mainly
low-energy ones.11

The saddle points of the first order are also important because it is believed that any two
minima may be connected by a chain of the first-order saddle points. Several first-order saddle
points to pass mean a multistage reaction that consists of several steps, each one representing
a pass through a single first-order saddle point (elementary reaction). Thus, the least energy-
demanding path from the reactants to products goes via a saddle point of the first order. This
steepest descent path (SDP) is determined by the direction−∇V . First, we choose a first-order
saddle point R0, then diagonalize the Hessian matrix calculated at this point and the eigenvector
L corresponding to the single negative eigenvalue of the Hessian. Now, let us move all atoms a
little from position R0 in the direction indicated in the configurational space by L, and then let
us follow vector −∇V until it reduces to zero (then we are at the minimum). In this way, we
have traced half the SDP. The other half will be determined starting from the other side of the
saddle point and following the −L vector first.

Shortly, we will note a certain disadvantage of the SDP, which causes us to prefer another
definition of the reaction path (see, p. 902).

14.1.4 Higher-Order Saddles

The first-order saddle points play the prominent role in the theory of chemical reactions. How can
a chemist imagine a higher-order saddle point? Are they feasible at all in chemistry? The first-
order saddle point may be modeled by a bond A-X with the X atom in a position with a repulsion
with the atom B, from which a departure of X means an energy relief. A multiple-order saddle
point may correspond to a geometry with several such atoms stuck in a high-energy position.

11 Putting aside some subtleties (e.g., does the minimum support a vibrational level), the minima correspond to
stable structures, since a small deviation from the minimum position causes a gradient of the potential to become
nonzero, and this means a force pushing the system back toward the minimum position.
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14.1.5 Our Goal

We would like to present a theory of elementary chemical reactions within the Born-Oppenheimer
approximation, which describes nuclear motion on the potential energy hypersurface.

We have the following alternatives:

1. To perform molecular dynamics12 on the hypersurface V (a point on the hypersurface
represents the system under consideration).

2. To solve the time-independent Schrödinger equation Ĥψ = Eψ for the motion of the nuclei
with potential energy V .

3. To solve the time-dependent Schrödinger equation with the boundary condition forψ(x, t =
0) in the form of a wave packet.13 The wave packet may be directed into the entrance channel
toward the reaction barrier (from various starting conditions). In the barrier range, the wave
packet splits into a wave packet crossing the barrier and a wave packet reflected from the
barrier (cf., p. 180).

4. To perform a semi-classical analysis that highlights the existence of the SDP, or a similar
path, leading from the reactant to the product configuration.

Before going to more advanced approaches, let us consider possibility 1.

14.2 Chemical Reaction Dynamics (A Pioneers’ Approach)

The SDP does not represent the only possible reaction path. It is only the least-energy expensive
path from reactants to products. In real systems, the point representing the system will attempt
to get through the pass in many different ways. Many such attempts are unsuccessful (non-
reactive trajectories). If the system leaves the entrance channel (reactive trajectories), it will
not necessarily pass through the saddle point, because it may have some extra kinetic energy,
which may allow it to go with a higher energy than that of the barrier. Everything depends on
the starting position and velocity of the point running through the entrance channel.

In the simplest case of a three-atom reaction,

A+ BC→ AB+ C,

the potential energy hypersurface represents a function of 3N − 6 = 3 coordinates (the transla-
tions and rotations of the total system were separated). Therefore, even in such a simple case, it
is difficult to draw this dependence. We may simplify the problem by considering only a limited
set of geometries (e.g., the three atoms in a linear configuration). In such a case, we have only

12 This is a classical approach. We have to ensure that the bonds may break; this is a very non-typical molecular
dynamics.

13 One example of this is a Gaussian function (in the nuclear coordinate space) moving from a position in this space
with a starting velocity.
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two independent variables14 RAB and RBC and the function V (RAB, RBC) may be visualized
by a map quite similar to those used in geography. The map has a characteristic shape, shown
in Fig. 14.2.

• “Reaction map”. First of all we can see the characteristic “drainpipe” shape of the potential
energy V for the motion of the nuclei [i.e., the function V (RAB, RBC)→∞ for RAB → 0
or for RBC → 0]; therefore, we have a high energy wall along the axes. When RAB and
RBC are both large, we have a kind of plateau that goes gently downhill toward the bottom
of the curved drain-pipe, that extends nearly parallel to the axes. The chemical reaction
A + BC → AB + C means a motion, close to the bottom of the drainpipe, from a point
corresponding to a large RAB , while RBC has a value corresponding to the equilibrium
BC length (Fig. 14.2a, see the entrance arrow), until a large RBC and RAB with a value
corresponding to the length of the isolated molecule AB (exit arrow).

• Barrier. A projection of the drainpipe bottom on the RAB RBC plane gives the SDP. There-
fore, the SDP represents one of the important features of the “landscape topography.”

14 This is the case after separating the center-of-mass motion. The separation may be done in the following way.
The kinetic energy operator has the form

T̂ = − �
2

2MA

∂2

∂X2
A
− �

2

2MB

∂2

∂X2
B
− �

2

2MC

∂2

∂X2
C

. We introduce some new coordinates:

• The center-of-mass coordinate XC M = MA X A+MB X B+MC XC
M with the total mass M = MA + MB + MC

• RAB = X B − X A
• RBC = XC − X B

To write the kinetic energy operator in the new coordinates, we start with relations

∂

∂X A
= ∂RAB

∂X A

∂

∂RAB
+ ∂XC M

∂X A

∂

∂XC M
= − ∂

∂RAB
+ MA

M

∂

∂XC M
,

∂

∂X B
= ∂RAB

∂X B

∂

∂RAB
+ ∂RBC

∂X B

∂

∂RBC
+ ∂XC M

∂X B

∂

∂XC M
= ∂

∂RAB
− ∂

∂RBC
+ MB

M

∂

∂XC M
,

∂

∂XC
= ∂RBC

∂XC

∂

∂RBC
+ ∂XC M

∂XC

∂

∂XC M
= ∂

∂RBC
+ MC

M

∂

∂XC M
.

After squaring these operators and substituting them into T̂ , we obtain, after a brief derivation, T̂ =
− �

2

2M
∂2

∂X2
C M
− �

2

2μAB

∂2

∂R2
AB
− �

2

2μBC

∂2

∂R2
BC
+T̂ABC , where the reduced masses 1

μAB
= 1

MA
+ 1

MB
, 1
μBC
= 1

MB
+ 1

MC
,

whereas T̂ABC stands for the mixed term

T̂ABC = �
2

MB

∂2

∂RAB∂RBC
.

In this way, we obtain the center-of-mass motion separation (the first term). The next two terms represent the

kinetic energy operators for the independent pairs AB and BC, while the last one is the mixed term T̂ABC ,
whose presence is understandable: atom B participates in two motions, those associated with RAB and RBC . We
may eventually get rid of T̂ABC after introducing a skew coordinate system (the coordinates are determined by
projections parallel to the axes). After rewriting T̂ , we obtain the following condition for the angle θ between
the two axes, which ensures that the mixed terms vanish: cos θopt = 2

MB

μABμBC
μAB+μBC

. If all the atoms have their

masses equal, we obtain θopt = 600.
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(a) (b)

(c) (d)

(e)

(g) (h)

(f)

Fig. 14.2. The “drainpipe” A+BC→ AB+C (for a fictitious collinear system). The surface of the potential energy for the motion
of the nuclei is a function of distances RAB and RBC. On the left side, there is the view of the surface, while on the right side, the cor-
responding maps are shown. The barrier positions are given by the crosses on the right figures. Panels (a) and (b) show the symmetric
entrance and exit channels with the separating barrier. Panels (c) and (d) correspond to an exothermic reaction with the barrier in the
entrance channel (“an early barrier”). Panels (e) and (f) correspond to an endothermic reaction with the barrier in the exit channel
(“a late barrier”). This endothermic reaction will not proceed spontaneously, because due to the equal width of the two channels, the
reactant’s free energy is lower than the product’s free energy. Panels (g) and (h) correspond to a spontaneous endothermic reaction,
because due to the much wider exit channel (as compared to the entrance channel), the free energy is lower for the products. Note
that there is a van der Waals complex well in the entrance channel just before the barrier. There is no such well in the exit channel.
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Travel on the potential energy surface along the SDP is not a flat trip, because the drainpipe
consists of two valleys: the reactant valley (entrance channel) and the product valley (exit
channel) separated by a pass (saddle point), which causes the reaction barrier. The saddle
point corresponds to the situation, in which the old chemical bond is already weakened
(but still exists), while the new bond is just emerging. This explains (as has been shown by
Henry Eyring, Michael Polanyi, and Meredith Evans) why the energy required to go from
the entrance to the exit barrier is much smaller than the dissociation energy of BC ; e.g., for
the reaction H + H2 → H2 + H, the activation energy (to overcome the reaction barrier)
amounts only to about 10% of the hydrogen molecule binding energy. Simply, when the
BC bond breaks, a new bond AB forms at the same time compensating for the energy cost
needed to break the BC bond.

The barrier may have different positions in the reaction drainpipe, e.g., it may be in the
entrance channel (early barrier), Fig. 14.2c and d, or in the exit channel (late barrier), Fig.
14.2e and f, or, it may be in between (symmetric case, Figs. 14.2a,b). The barrier position
influences the course of the reaction.

When determining the SDP, kinetic energy was neglected; i.e., the motion of the point repre-
senting the system resembles a “crawling.” A chemical reaction does not, however, represent any
crawling over the energy hypersurface, but rather a dynamic that begins in the entrance channel
and ends in the exit channel, including motion “uphill” the potential energy V . Overcoming the
barrier thus is possible only, when the system has an excess of kinetic energy.

What will happen, if we have an early barrier? A possible reactive trajectory for such a case
is shown in Fig. 14.3a.

(a) (b)

Fig. 14.3. A potential energy map for the collinear reaction A+ BC → AB + C as a function of RAB and RBC (scheme). The
distances R#

AB and R#
BC determine the saddle point position. (a) shows a reactive trajectory. If the point that represents the system

runs sufficiently fast along the entrance channel toward the barrier, it will overcome the barrier by a “charge ahead.” Then, in the
exit channel, the point has to oscillate, which means product vibrations. (b) shows a reaction with a late barrier. In the entrance
channel, a promising reactive trajectory is shown as a wavy line. This means that the system oscillates in the entrance channel in
order to be able to attack the barrier directly after passing the corner area (the bobsleigh effect).
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It is seen that the most effective way to pass the barrier is to set the point (representing
the system) in fast motion along the entrance channel. This means that atom A has to have
high kinetic energy when attacking the molecule BC . After passing the barrier the point slides
downhill, entering the exit channel. Since, after sliding down, it has high kinetic energy, a
bobsleigh effect is taking place; i.e., the point climbs up the potential wall (as a result of the
repulsion of atoms A and B) and then moves by making zigzags similar to a bobsleigh team.
This zigzag means, of course, that strong oscillations of AB take place (and the C atom leaves
the rest of the system). Thus,

early location of a reaction barrier may result in a vibrational excited product.

A different thing happens when the barrier is late. A possible reactive (i.e., successful)
trajectory is shown in Fig. 14.3b. For the point to overcome the barrier, it has to have a high
momentum along the BC axis, because otherwise it would climb up the potential energy wall
in vain, as the energy cost was too large. This may happen if the point moves along a zigzag
way in the entrance channel (as shown in Fig. 14.4b). This means that

to overcome a late barrier, the vibrational excitation of the reactant BC is effective

because an increase in the kinetic energy of A will not produce much. Of course, the conditions
for the reaction to occur matter less for high-collision energies of the reactants. On the other
hand, a collision that is too fast may lead unwanted reactions to occur (e.g., dissociation of the
system into A + B + C). Thus, there is an energy window for any given reaction.

14.3 Accurate Solutions (Three Atoms15)

14.3.1 Coordinate System and Hamiltonian

This approach to the chemical reaction problem corresponds to point 2 on p. 892.

Jacobi Coordinates

For three atoms of masses M1,M2,M3, with total mass M = M1+M2+M3, we may introduce
the Jacobi coordinates (see p. 341) in three different ways (Fig. 14.4).

Each of the coordinate systems (let us label them k = 1, 2, 3) highlights two atoms (i, j)
“close” to each other and a third (k) that is “distant”, Fig. 14.4a.” Now, let us choose a pair
of vectors rk, Rk for each of the choices of the Jacobi coordinates by the following procedure

15 The method was generalized for an arbitrary number of atoms [D. Blume, and C.H. Greene, “Monte Carlo
Hyperspherical Description of Helium Cluster Excited States”, 2000].
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(a)

(b)

Fig. 14.4. (a) The three equivalent Jacobi coordinate systems; (b) the Euler angles show the mutual orientation of the two Cartesian
coordinate systems. First, we project the y-axis on the x ′, y′ plane (the result is the dashed line). The first angle α is the angle
between axes z′ and z, and the two other ones (β and γ ) use the projection line described above. The relations among the coordinates
are given by H.Eyring, J.Walter, and G.E.Kimball, Quantum Chemistry John Wiley, New York (1967).

(Xi represents the vector identifying nucleus i in a space-fixed coordinate system, SFCS, cf.,
Appendix I available at booksite.elsevier.com/978-0-444-59436-5). First, let us define rk :

rk = 1

dk
(X j − Xi ), (14.3)

where the square of the mass scaling parameter equals

d2
k =

(
1− Mk

M

)
Mk

μ
, (14.4)

while μ represents the reduced mass (for three masses):

μ =
√

M1 M2 M3

M
. (14.5)

http://booksite.elsevier.com/978-0-444-59436-5
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Now the second vector needed for the Jacobi coordinates is chosen as

Rk = dk

[
Xk − Mi Xi + M j X j

Mi + M j

]
. (14.6)

The three Jacobi coordinate systems are related by the following formulas (cf., Fig. 14.4):(
ri

Ri

)
=
(

cosβi j sin βi j

− sin βi j cosβi j

)(
r j

R j

)
, (14.7)

tan βi j = −Mk

μ
, (14.8)

βi j = −β j i .

The Jacobi coordinates will now be used to define what is called the (more convenient)
hyperspherical democratic coordinates.

Hyperspherical Democratic Coordinates

When a chemical reaction proceeds, the role of the atoms changes and using the same Jacobi
coordinate system all the time leads to technical problems. In order not to favor any of the three
atoms despite possible differences in their masses, we introduce hyperspherical democratic
coordinates.

First, let us define the z-axis of a Cartesian coordinate system, which is perpendicular to the
molecular plane at the center of mass i.e., parallel to A = 1

2 r× R, where r and R are any ( just
democracy, the result is the same) of the vectors rk,Rk . Note that by definition, |A| represents
the area of the triangle built of the atoms. Now, let us construct the x- and y-axes of the rotating
with molecule coordinate system (RMCS; cf., p. 293) in the plane of the molecule, taking care
of the following:

• The Cartesian coordinate system is right-handed
• The axes are oriented along the main axes of the moments of inertia,16 with Iyy ≥ Ixx .

Finally, we introduce hyperspherical democratic coordinates equivalent to the RMCS:

• The first coordinate measures the size of the system, or its “radius”:

ρ =
√

R2
k + r2

k , (14.9)

where ρ has no subscript, because the result is independent of k (to check this, use Eq. (14.7)).

16 These directions are determined by diagonalization of the inertia moment matrix (cf., Appendix K available at
booksite.elsevier.com/978-0-444-59436-5).

http://booksite.elsevier.com/978-0-444-59436-5
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• The second coordinate describes the system’s shape:

cos θ = 2 |A|
ρ2 ≡ u. (14.10)

Since |A| is the area of the triangle, 2 |A| means, therefore, the area of the corresponding
parallelogram. The last surface (in the numerator) is compared to the surface of a square with
side ρ (in the denominator; if u is small, the system is elongated like an ellipse with three atoms
on its circumference):

• As the third coordinate we choose the angle φk for any of the atoms (in this way, we
determine, where the kth atom is on the ellipse):

cosφk = 2(Rk · rk)

ρ2 sin θ
≡ cosφ. (14.11)

As chosen, the hyperspherical democratic coordinates which cover all possible atomic posi-
tions within the plane z = 0 have the following ranges: 0 ≤ ρ <∞, 0 ≤ θ ≤ π

2 , 0 ≤ φ ≤ 4π .

Hamiltonian in these Coordinates

The hyperspherical democratic coordinates represent a useful alternative for RMCS from
Appendix I available at booksite.elsevier.com/978-0-444-59436-5 (they themselves form
another RMCS), and therefore do not depend on the orientation with respect to the body-fixed
coordinate system (BFCS). However, the molecule has somehow to “be informed” that it rotates
(preserving the length and the direction of the total angular momentum), because a centrifugal
force acts on its parts and the Hamiltonian expressed in BFCS (cf., Appendix I available at
booksite.elsevier.com/978-0-444-59436-5) has to contain information about this rotation.

The exact kinetic energy expression for a polyatomic molecule in a space-fixed coordinate
system (SFCS; cf. Appendix I available at booksite.elsevier.com/978-0-444-59436-5) has been
given in Chapter 6 (Eq. 6.39). After separation of the center-of-mass motion, the Hamiltonian is
equal to Ĥ = T̂ + V , where V represents the electronic energy playing the role of the potential
energy for the motion of the nuclei (an analog of E0

0

(
R
)

from Eq. (6.8), and we assume the
Born-Oppenheimer approximation). In the hyperspherical democratic coordinates, we obtain17

Ĥ = − �
2

2μρ5

∂

∂ρ
ρ5 ∂

∂ρ
+ Ĥ+ Ĉ + V

(
ρ, θ, φ

)
, (14.12)

with

Ĥ = �
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, (14.13)

Ĉ = �
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(
Ĵ 2

x − Ĵ 2
y

)]]
, (14.14)

17 J.G. Frey and B.J. Howard, Chem.Phys., 99, 415 (1985).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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where the first part and the term with ∂2

∂φ2 in Ĥ represent what are called deformation terms;

next, there is a term with Ĵ 2
z describing the rotations about the z-axis, the terms in Ĉ contain

the Coriolis term (with i Ĵzu ∂
∂φ

).

14.3.2 Solution to the Schrödinger Equation

Shortly, we will need some basis functions that depend on the angles θ and φ, preferentially
each of them somehow adapted to the problem we are solving. These basis functions will be
generated as the eigenfunctions of Ĥ obtained at a fixed value ρ = ρp:

Ĥ (ρp
)
k�

(
θ, φ; ρp

) = εk�
(
ρp
)
k�

(
θ, φ; ρp

)
, (14.15)

where, because of two variables θ, φ we have two quantum numbers k and � (numbering the
solutions of the equations).

The total wave function that also takes into account rotational degrees of freedom (θ, φ)
is constructed as (the quantum number J = 0, 1, 2, . . . determines the length of the angular
momentum of the system, while the quantum number M = −J ,−J + 1, . . . , 0, . . . J gives
the z-component of the angular momentum) a linear combination of the basis functions Uk� =
D J M
�

(
α, β, γ

)
k�

(
θ, φ; ρp

)
:

ψ J M = ρ− 5
2
∑
k�

F J
k�

(
ρ; ρp

)
Uk�

(
α, β, γ, θ, φ; ρp

)
, (14.16)

where α, β, γ are the three Euler angles (Fig. 14.4b) that define the orientation of the molecule
with respect to the distant stars, D J M

�

(
α, β, γ

)
represents the eigenfunctions of the symmetric

top,18 and k� is the solution to Eq. (14.15), while F J
k�

(
ρ; ρp

)
stands for the ρ-dependent

expansion coefficients [i.e., functions of ρ (centered at point ρp)]. Thanks to D J M
�

(
α, β, γ

)
,

the function ψ J M is the eigenfunction of the operators Ĵ 2 and Ĵz .
In what is known as the close coupling method, the function from Eq. (14.16) is inserted

into the Schrödinger equation Ĥψ J M = E Jψ
J M . Then, the resulting equation is multiplied

by a function Uk′�′ = D J M
�′
(
α, β, γ

)
k′�′

(
θ, φ; ρp

)
and integrated over angles α, β, γ, θ, φ,

which means taking into account all possible orientations of the molecule in space (α, β, γ ) and
all possible shapes of the molecule (θ, φ) which are allowed for a given size ρ. We obtain a set
of linear equations for the unknowns F J

k�

(
ρp; ρ

)
:

ρ−
5
2
∑
k�

F J
k�(ρ; ρp)〈Uk′�′ |(Ĥ − E J )Uk�〉ω = 0. (14.17)

The summation extends over some assumed set of k, � (where the number of k, � pairs is
equal to the number of equations). The symbol ω ≡ (α, β, γ, θ, φ) means integration over the
angles. The system of equations is solved numerically.

18 D.M. Brink, and G.R. Satchler, Angular Momentum Clarendon Press, Oxford (1975).
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If, when solving the equations, we apply the boundary conditions suitable for a discrete spec-
trum (vanishing forρ = ∞), we obtain the stationary states of the three-atomic molecule. We are
interested in chemical reactions, in which one of the atoms comes to a diatomic molecule, and
after a while, another atom flies out, leaving (after reaction) the remaining diatomic molecule.
Therefore, we have to apply suitable boundary conditions. As a matter of fact, we are not inter-
ested in the details of the collision; we are positively interested in what comes to our detector
from the spot where the reaction takes place. What may happen at a certain energy E to a given
reactant state (i.e., what the product state is; such a reaction is called state-to-state) is determined
by the corresponding cross section19 σ(E). The cross section can be calculated from what is
called the S matrix, whose elements are constructed from the coefficients F J

k�

(
ρ; ρp

)
found

from Eq. (14.17). The S matrix plays a role of an energy dependent dispatcher: such a reactant
state changes to such a product state with such and such probability.

We calculate the reaction rate constant k assuming all possible energies E of the system
(satisfying the Boltzmann distribution) and taking into account that fast products arrive more
often at the detector when counting per unit time:

k = const
∫

d E Eσ(E) exp

(
− E

kB T

)
, (14.18)

where kB is the Boltzmann constant.
The calculated reaction rate constant k may be compared with the result of the corresponding

state-to-state experiment.

14.3.3 Berry Phase

When considering accurate quantum dynamics calculations (point 3 on p. 892), people met the
problem of what is called the Berry phase.

In Chapter 6, wave function 6.9 corresponding to the adiabatic approximation, was assumed.
In this approximation, the electronic wave function depends parametrically on the positions of
the nuclei. Let us imagine we take one (or more) of the nuclei on an excursion. We set off, go
slowly (in order to allow the electrons to adjust), the wave function deforms, and then, we go
back home and put the nucleus exactly in place. Did the wave function come back exactly, too?
Not necessarily. By definition (cf. Chapter 2), a class Q function has to be a unique function
of coordinates. This, however, does not pertain to a parameter. What certainly came back is the
probability densityψk(r;R)∗ψk(r;R), because it decides that we cannot distinguish the starting
and the final situations. The wave function itself might undergo a phase change; i.e., the starting

19 After summing up the experimental results over all the angles, this is to be compared with the result of the
abovementioned integration over angles.
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function is equal to ψk(r;R0), while the final function is ψk(r;R0) exp (iφ) and φ = 0. This
phase shift is the Berry phase.20 Did it happen or not? Sometimes we can tell.

Let us consider a quantum dynamics description of a chemical reaction according to point 3
cited earlier. For example, let us imagine a molecule BC fixed in space, with atom B directed to
us. Now, atom A, represented by a wave packet, rushes toward atom B. We may imagine that the
atom A approaches the molecule and makes a bond with the atom B (atom C leaves the diatomic
molecule) or atom A may first approach atom C, then turn back and make a bond with atom B
(as before). The two possibilities correspond to two waves, which finally meet and interfere. If
the phases of the two waves differed, we would see this in the results of the interference. The
scientific community was surprised that some details of the reaction H + H2 → H2 + H at
higher energies are impossible to explain without taking the Berry phase21 into account. One
of the waves described above made a turn around the conical intersection point (because it had
to by-pass the equilateral triangle configuration; cf. Chapter 6). As it was shown in the work of
Longuet-Higgins et al. mentioned above, this is precisely the reason why the function acquires
a phase shift. We have shown in Chapter 6 (p. 314) that such a trip around a conical intersection
point results in changing the phase of the function by π .

The phase appears, when the system makes a “trip” in configurational space. We may make
the problem of the Berry phase more familiar by taking an example from everyday life. Let
us take a 3-D space. Put your arm down against your body with the thumb directed forward.
During the operations described below, do not move the thumb with respect to your arm. Now
stretch your arm horizontally sideways, rotate it to your front, and then put down along your
body. Note that now your thumb is not directed toward your front anymore, but toward your
body. When your arm went back, the thumb made a rotation of 900.

Your thumb corresponds to ψk(r;R) (i.e., a vector in the Hilbert space), which is coupled
with a slowly varying neighborhood (R corresponds to the hand positions). When the neighbor-
hood returns, the vector may have been rotated in the Hilbert space [i.e., multiplied by a phase
exp (iφ)].

14.4 Intrinsic Reaction Coordinate (IRC) or Statics

This section addresses point 4 of our plan on p. 892.
Two reaction coordinates were proposed till now: DRC and SDP. Use of the first of these may

lead to some serious difficulties (like energy discontinuities). The second reaction coordinate
will undergo in a moment a useful modification and will be replaced by what is known as the
intrinsic reaction coordinate (IRC).

20 The discoverers of this effect were H.C. Longuet-Higgins, U. Öpik, M.H.L. Pryce, and R.A. Sack,
Proc.Roy.Soc.London, A244, 1 (1958). The problem of this geometric phase diffused into the consciousness
of physicists much later, after an article by M.V. Berry, Proc.Roy.Soc.London, A392, 45 (1984).

21 Y.-S.M. Wu, and A. Kupperman, Chem.Phys.Letters, 201, 178 (1993).
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What Is the IRC?

Let us use the Cartesian coordinate system once more, with 3N coordinates for the N nuclei:
Xi , i = 1, . . . 3N , where X1, X2, X3 denote the x-, y-, and z-coordinates of atom 1 of mass
M1, etc. The i th coordinate is therefore associated with mass Mi of the corresponding atom.
The classical Newtonian equation of motion for an atom of mass Mi and coordinate Xi is22:

Mi Ẍi = − ∂V

∂Xi
for i = 1, . . . , 3N . (14.19)

Let us introduce what are called mass-weighted coordinates (or, more precisely, weighted by
the square root of mass):

xi =
√

Mi Xi . (14.20)

In such a case, we have√
Mi

√
Mi Ẍi = −∂V

∂xi

∂xi

∂Xi
= √Mi

(
−∂V

∂xi

)
(14.21)

or

ẍi = −∂V

∂xi
≡ −gi , (14.22)

where gi stands for the i th component of the gradient calculated in the mass-weighted coordi-
nates. This equation can be integrated for a short time t, and we obtain

ẋi = −gi t + v0,i , (14.23)

or, for a small time increment dt and initial speed v0,i = 0 (for the definition of the IRC as a path
characteristic for potential energy V we want to neglect the influence of the kinetic energy), we
obtain

dxi

−gi
= tdt = independent of i . (14.24)

Thus,

in the coordinates weighted by the square roots of the masses, a displacement of atom
number i is proportional to the potential gradient (and does not depend on the atom mass).

If mass-weighted coordinates were not introduced, a displacement of the point representing
the system on the potential energy map would not follow the direction of the negative gradi-
ent or the steepest descent (on a geographic map such a motion would look natural, because
slow rivers flow this way). Indeed, the formula analogous to Eq. (14.24) would have the form

22 Mass× acceleration equals force; a dot over the symbol means a time derivative.
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dXi−Gi
= t

Mi
dt , where Gi = ∂V

∂Xi
and therefore, during a single watch tick dt , light atoms would

travel long distances while heavy atoms short distances. Thus, the trajectory would depend on
mass, contrary to the discovery of Galileo Galilei. This means a counterintuitive sliding across
the gradient direction.

Thus, after introducing mass-weighted coordinates, we may forget about masses, in particular
about the atomic and the total mass, or equivalently, we may treat these as unit masses. The
atomic displacements in this space will be measured in units of

√
mass × length, usually in:√

ua0, where 12u = 12C atomic mass, u = 1822.887 m (m is the electron mass), and sometimes
also in units of

√
uÅ.

Eq. (14.24) takes into account our assumption about the zero initial speed of the atom in any
of the integration steps (also called trajectory-in-molasses), because otherwise, we would have
an additional term in dxi : the initial velocity times time. Shortly speaking, when the watch ticks,

the system, represented by a point in 3N -dimensional space, crawls over the potential
energy hypersurface along the negative gradient of the hypersurface (in mass weighted
coordinates). When the system starts from a saddle point of the first order, a small deviation
of the position makes the system slide down on one or the other side of the saddle. The tra-
jectory of the nuclei during such a motion is called the intrinsic reaction coordinate (IRC).

The point that represents the system slides down with infinitesimal speed along the IRC.

Measuring the Travel Along the IRC

In the space of the mass-weighted coordinates, trajectory IRC represents a certain curve xIRC

that depends on a parameter s : xIRC(s).

The parameter s measures the position along the reaction path IRC;

e.g., in
√

ua0 or
√

u Å. Let us take two close points on the IRC and construct the vector:
ξ
(
s
) = xIRC

(
s + ds

)− xIRC(s), then(
ds
)2 =∑

i

[ξi
(
s
)]2. (14.25)

We assume that s = 0 corresponds to the saddle point, s = −∞ to the reactants, and s = ∞
to the products, (Fig. 14.5).

For each point on the IRC [i.e., on the curve xIRC(s)], we may read the mass-weighted
coordinates and use them to calculate the coordinates of each atom. Therefore, each point
on the IRC corresponds to a certain spatial and electronic structure of the system.
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(b)(a)

Fig. 14.5. A schematic representation of the IRC. (a) Curve xIRC(s) and (b) energy profile when moving along the IRC [i.e.,
curve V0(xIRC(s))] in the case of two mass-weighted coordinates x1, x2.

14.5 Reaction Path Hamiltonian Method

14.5.1 Energy Close to IRC

A hypersurface of the potential energy represents an expensive product. We have first to calculate
the potential energy for a grid of points. If we assume that 10 points per coordinate is a sufficient
number, then we have to perform 103N−6 advanced quantum mechanical calculations, and for
N = 10 atoms, this gives 1024 calculations, which is an impossible task. Now you see why
specialists like three-atomic systems so much.

Are all the points necessary? For example, if we assume low energies, the system will, in
practice, stay close to the IRC. If that is so, then why worry about other points? This idea was
examined by Miller, Handy and Adams.23 They decided to introduce the coordinates that are
natural for the problem of motion in the reaction drainpipe. The approach corresponds to point
4, cited on p. 892.

The authors derived the

Reaction Path Hamiltonian:
an approximate expression for the energy of the reacting system in the form, that stresses
the existence of the IRC and system’s possible departures from it.

This formula (Hamilton function of the reaction path) takes the following form:

H(s, ps, {Qk, Pk}) = T (s, ps, {Qk, Pk})+ V (s, {Qk}), (14.26)

where T is the kinetic energy, V stands for the potential energy, s denotes the reaction coor-
dinate along the IRC, ps = ds

dt represents the momentum coupled with s (mass = 1), {Qk},
k = 1, 2, . . . 3N − 7 stand for other coordinates orthogonal to the reaction path xI RC (s) (this
is why Qk will depend on s) and the momenta {Pk} conjugated with them.

23 W.H. Miller, N.C. Handy, and J.E. Adams, J.Chem.Phys., 72, 99 (1980).
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We obtain the coordinates Qk in the following way. At point s of the IRC, we diagonalize
the Hessian (i.e., the matrix of the second derivatives of the potential energy) and consider all
the resulting normal modes [ωk(s) are the corresponding frequencies; cf. Chapter 7] other than
that which corresponds to the reaction coordinate s (the latter corresponds to the “imaginary”24

frequency ωk). The diagonalization also gives the orthonormal vectors Lk(s), each having a
direction in the (3N − 6)-dimensional configurational space (the mass-weighted coordinate
system). The coordinate Qk ∈

(−∞,+∞) measures the displacement along the direction of
Lk(s). The coordinates s and {Qk} are called the natural coordinates. To stress that Qk is related
to Lk(s), we will write it as Qk(s).

The potential energy close to the IRC can be approximated (harmonic approximation) by

V (s, {Qk}) ∼= V0(s)+ 1

2

3N−7∑
k=1

ωk(s)
2 Qk(s)

2, (14.27)

where the term V0(s) represents the potential energy that corresponds to the bottom of the
reaction drainpipe at a point s along the IRC, while the second term tells us what will happen
to the potential energy if we displace the point (i.e., the system) perpendicular to xI RC(s) along
all the normal oscillator coordinates. In the harmonic approximation for the oscillator k, the
energy goes up by half the force constant× the square of the normal coordinate Q2

k . The force
constant is equal to ω2

k because the mass is equal to 1.
The kinetic energy turns out to be more complicated:

T (s, ps, {Qk, Pk}) = 1

2

[ps −∑3N−7
k=1

∑3N−7
k′=1 Bkk′Qk′Pk]2

[1+∑3N−7
k=1 Bks Qk]2

+
3N−7∑
k=1

P2
k

2
(14.28)

The last term is recognized as the vibrational kinetic energy for the independent oscillations
perpendicular to the reaction path (recall that the mass is treated as equal to 1). If in the first
term we insert Bkk′ = 0 and Bks = 0, the term would be equal to 1

2 p2
s and, therefore, would

describe the kinetic energy of a point moving as if the reaction coordinate were a straight line.

Coriolis and Curvature Couplings:
Bkk′ are called the Coriolis coupling constants. They couple the normal modes perpendic-
ular to the IRC.
The Bks are called the curvature coupling constants, because they would equal zero if the
IRC were a straight line. They couple the translational motion along the reaction coordinate
with the vibrational modes orthogonal to it. All the above coupling constants B depend on s.

24 For large |s|, the correspondingω2 is close to zero. When |s| decreases (we approach the saddle point),ω2 becomes
negative (i.e., ω is imaginary). For simplicity, we will call this the “imaginary frequency” for any s.
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Therefore, in the reaction path Hamiltonian, we have the following quantities that characterize
the reaction drainpipe:

• The reaction coordinate s that measures the progress of the reaction along the drainpipe.
• The value V0(s) ≡ V0(xI RC (s)) represents the energy that corresponds to the bottom of the

drainpipe25 at the reaction coordinate s.
• The width of the drainpipe is characterized26 by a set {ωk(s)}.
• The curvature of the drainpipe is hidden in constants B; their definition will be given

later in this chapter. Coefficient Bkk′(s) tells us how normal modes k and k′ are coupled
together, while Bks(s) is responsible for a similar coupling between reaction path xIRC(s)
and vibration k perpendicular to it.

14.5.2 Vibrational Adiabatic Approximation

Most often when moving along the bottom of the drainpipe, potential energy V0(s) changes only
moderately when compared to the potential energy changes that the molecule undergoes when
oscillating perpendicularly27 to xI RC (s). Simply, the valley bottom profile results from the fact
that the molecule hardly holds together when moving along the reaction coordinate s, a chemical
bond breaks, while other bonds remain strong, and it is not so easy to stretch their springs. This
suggests that there is slow motion along s and fast oscillatory motion along the coordinates Qk .

Since we are mostly interested in the slow motion along s, we may average over the fast
motion.

The philosophy behind the idea is that while the system moves slowly along s, it undergoes
a large number of oscillations along Qk . After such vibrational averaging, the only information
that remains about the oscillations are the vibrational quantum levels for each of the oscillators
(the levels will depend on s).

Vibrational Adiabatic Approximation:
The fast vibrational motions will be treated quantum-mechanically and their total energy
will enter the potential energy for the classical motion along s.

This approximation parallels the adiabatic approximation made in Chapter 6, where fast
motion of electrons was separated from the slow motion of nuclei. There the total electronic

25 That is, the classical potential energy corresponding to the point of the IRC given by s (this gives an idea of how
the potential energy changes when walking along the IRC).

26 A small ω corresponds to a wide valley; when measured along a given normal mode coordinate (“soft” vibration),
a large ω means a narrow valley (“hard” vibration).

27 That is, when moving along the coordinates Qk , k = 1, 2, . . . 3N − 7.
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energy became the potential energy for motion of nuclei, here the total vibrational energy
(the energy of the corresponding harmonic oscillators in their quantum states) becomes the
potential energy for the slow motion along s. This concept is called the vibrational adiabatic
approximation.

In this approximation, to determine the stage of the reaction we give two classical quantities:
where the system is on the reaction path (s), how fast the system moves along the reaction
path (ps), as well as what are the quantum states of the oscillators vibrating perpendicularly
to the reaction path (vibrational quantum number vk = 0, 1, 2, . . . for each of the oscillators).
Therefore, the potential energy for the (slow) motion along the reaction coordinate s is28

Vadiab(s; v1, v2, . . . , v3N−7) = V0(s)+
3N−7∑
k=1

(
vk + 1

2

)
�[ωk(s)−ωk(−∞)], (14.29)

where we have chosen an arbitrary additive constant in the potential as being equal to the
vibrational energy of the reactants (with minus sign): −∑3N−7

k=1 (vk + 1
2 )�ωk(−∞). Note that

even if one would have vk = 0 for each of the oscillators, there would be a nonzero vibrational
correction to V0(s), because the zero-vibrational energy changes if s changes.

The vibrational adiabatic potential Vadiab was created for a given set of the vibrational quan-
tum numbers vk , fixed during the reaction process. Therefore, it is impossible to exchange
energy between the vibrational modes (we assume, therefore, that the Coriolis coupling
constants Bkk′ = 0), as well as between the vibrational modes and the reaction path (we
assume that the curvature coupling constants Bks = 0). This would mean a change of vk’s.

From Eq. (14.29), we may draw the following conclusion:

When the frequency of a normal mode decreases dramatically (which corresponds to break-
ing of a chemical bond) during the reaction, the square bracket becomes negative. This
means that an excitation of the bond, before the reaction, decreases the (vibrational adia-
batic) reaction barrier and the reaction rate will increase.

As a matter of fact, this is a quite obvious: a vibrational excitation that engages the chemical
bond to be broken already weakens the bond before the reaction.

28 Even if (according to the vibrational adiabatic approximation) the vibrational quantum numbers were kept constant
during the reaction, their energies, depending on s through ω, would change.
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Why Do Chemical Reactions Proceed?

Exothermic Reactions

When the reactants (products) have kinetic energy higher than the barrier and the corresponding
momentum ps is large enough, there is a high probability that the barrier will be overcome
(cf. p. 180). Even if the energy is lower than the barrier, there is still a nonzero probability of
passing to the other side because of the tunneling effect. In both cases (passing over and under
the barrier), it is easier when the kinetic energy is large.

The barrier height is usually different for the reaction reactants→products and for the
products→reactants (Fig. 14.2). If the barrier height is smaller for the reactants, this may result
in an excess of the product concentration over the reactant concentration.29 Since the reactants
have higher energy than the products, the potential energy excess will change into the kinetic
energy30 of the products (which is observed as a temperature increase–the reaction is exother-
mic). This may happen if the system has the possibility to pump the potential (i.e., electronic)
energy excess into the translational and rotational degrees of freedom or to a “third body or
bodies” (through collisions with the solvent molecules, for example) or has the possibility to
emit light quanta. If the system has no such possibilities, the reaction will not take place.

Endothermic Reactions

The barrier height does not always decide.

Besides the barrier height, the widths of the entrance and exit channels also count.

For the time being, let us take an example with V0
(−∞) = V0(∞) i.e., the barrier calculated

from IRC is the same in both directions. Imagine a narrow entrance channel, (i.e., large force
constants for the oscillators,) and a wide exit channel [i.e., low force constants (Fig. 14.2g and h
and 14.6)].

The vibrational levels in the entrance channel are high, while in the exit channel, they are
low. This results in Vadiab(−∞; v1, v2, . . . , v3N−7) > Vadiab(∞; v1, v2, . . . , v3N−7); i.e., the
barrier for the reaction reactants→products is lower, while for the reaction products→reactants,
it is higher. The products will form more often than the reactants.

On top of that, if the entrance channel is narrow while the exit channel is wide, the density
of the vibrational states will be small in the entrance channel and large in the exit channel.
Therefore, for T > 0, there will be a lot of possibilities to occupy the low-energy vibrational

29 This occurs because a lower barrier is easier to overcome.
30 In most cases, this is rotational energy.
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Fig. 14.6. Why do some endothermic reactions proceed spontaneously? As we can see, the reactants have lower energy than the
products. Yet it is not V that decides the reaction to proceed, but the free energy F = E − T S, where T is the temperature and S
the entropy. The free energy depends on the density of the vibrational states of the reactants and products. The more numerous the
low-energy vibrational levels, the larger the entropy and the lower the free energy, if T > 0. As we can see, the reactant vibrational
levels are scarce, while on the product side, they are densely distributed. When the energy gain related to the entropy overcomes
the potential energy loss, then the (endothermic) reaction will proceed spontaneously.

levels for the products, while only a few possibilities for the reactants. This means a high entropy
of the products and a small entropy of the reactants; i.e., the products will be more stabilized
by the entropy than the reactants.31 Once again we can see that

while the energy in a spontaneous endothermic reaction increases, the decisive factor is
the free energy, which decreases. The reactants→products reaction occurs “uphill” for the
potential energy, but “downhill” for the free energy.

Kinetic and Thermodynamic Pictures

• In a macroscopic reaction carried out in a chemist’s flask, we have a statistical ensemble of
the systems that are in different microscopic stages of the reaction.

• The ensemble may be modeled by a reaction drainpipe (we assume here that the barrier
exists) with a lot of points, each representing one of the reacting systems.

31 It pertains to the term −T S in the free energy. Biology is a masterpiece of chemistry, the endothermic reactions,
which are not spontaneous, are often coupled with exothermic ones. In such a way, the whole process may go
spontaneously.
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• When the macroscopic reaction begins (e.g., we mix two reactants), a huge number of points
appear in the entrance channel; i.e., we have the reactants only. As the reactant molecules
assemble or dissociate, the points appear or disappear.

• If the barrier were high (no tunneling) and temperature T = 0, all the reactants would be in
their zero-vibrational states32 and in their ground rotational states. This state would be stable
even when the product valley corresponded to a lower energy (this would be a metastable
state).

• Raising the temperature causes some of the ensemble elements (points) in the entrance chan-
nel to acquire energy comparable to the barrier height. Those points might have a chance to
pass the barrier either by tunneling (for energy smaller than the barrier) or by going over the
barrier. Not all of the elements with sufficient energies would pass the barrier–only those
with reactive trajectories.

• After passing the barrier, the energy is conserved, but in the case of exothermic reactions, the
excess of energy changes into the translational, vibrational, and rotational energy of prod-
ucts or may be transferred to a “third body” (e.g., the solvent molecules). This increases the
temperature.

• The probability of the reactive trajectories might be calculated in a way similar to that
described in Chapter 4 (tunneling33), with additional taking into account the initial vibra-
tional and rotational states of the reactants, as well as averaging over the energy-level
populations.

• The products also would have a chance to pass the barrier back to the reactant side, but
in the beginning, the number of the elements passing the barrier in the reactant-to-product
direction would be larger (a non-equilibrium state).

• However, the higher the product concentration, the more often the products transform into
the reactants. As an outcome, we arrive at the thermodynamic equilibrium state, in which the
average numbers of the elements passing the barrier per unit time in either direction are equal.

• If the barrier is high and the energies are considered low, then the stationary states of the sys-
tem could be divided into those (of energy Ei,R), with high amplitudes in the entrance chan-
nel (the reactant states) and those (of energy Ei,P) with high amplitudes in the exit channel
(product states). In such a case, we may calculate the partition function for the reactants (R):

Z R
(
T
) =∑

i

gi exp

(
−Ei,R − E0,R

kB T

)
,

and for the products (P),

Z P
(
T
) =∑

i

gi exp

(
−Ei,P − E0,R

kB T

)
=
∑

i

gi exp

(
−Ei,P − E0,P +�E

kB T

)
,

32 Note, that even in this case (T = 0), the energy of these states would not only depend on the bottom of the valley,
V0(s), but also on the valley’s width through ωk(s), according to Eq. (14.29).

33 See also H. Eyring, J. Walter, and G.E. Kimball, Quantum Chemistry John Wiley, New York (1967).
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where gi stands for the degeneracy of the i th energy level and the difference of the ground-
state levels is �E = E0,P − E0,R .

• Having the partition functions, we may calculate (at a given temperature, volume and a fixed
number of particles34) the free or Helmholtz energy (F) corresponding to the entrance and
to the exit channels (in thermodynamic equilibrium):

FR
(
T
) = −kB T

∂

∂T
ln Z R

(
T
)
, (14.30)

FP
(
T
) = −kB T

∂

∂T
ln Z P

(
T
)
. (14.31)

• The reaction goes in such a direction as to attain the minimum of free energy F .
• The higher the density of states in a given channel (this corresponds to higher entropy),

the lower the value of F . The density of the vibrational states is higher for wider channels
(see Fig. 14.6).

14.5.3 Vibrational Non-adiabatic Model

Coriolis Coupling

The vibrational adiabatic approximation is hardly justified because the reaction channel is
curved. This means that motion along s couples with some vibrational modes, and also the
vibrational modes couple among themselves. Therefore, we have to use the non-adiabatic theory,
and this means that we need coupling coefficients B (p. 906). The Miller-Handy-Adams reaction
path Hamiltonian theory gives the following expression for the Bkk′ (Fig. 14.7):

Bkk′(s) = ∂Lk(s)

∂s
· Lk′(s), (14.32)

where Lk, k = 1, 2, . . . 3N − 7 represent the orthonormal eigenvectors (3N -dimensional; cf.
Chapter 7, p. 359) of the normal modes Qk of frequency ωk .

If the derivative in Eq. (14.32) is multiplied by an increment of the reaction path�s, we obtain
∂Lk(s)
∂s �s which represents a change of normal mode vector Lk when the system moved along the

IRC by the increment �s. This change might be similar to normal mode eigenvector Lk′ . This
means that Bkk′ measures how much eigenvector Lk′(s) resembles the change of eigenvector

34 Similar considerations may be performed for a constant pressure (instead of volume). The quantity that then attains
the minimum at the equilibrium state is the Gibbs potential G.
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reactants

products

Fig. 14.7. A scheme: the Coriolis coupling coefficient (B12) and the curvature coefficients (B1s and B2s ) related to the normal
modes 1 and 2 and reaction coordinate s. Diagonalization of the two Hessians calculated at points s = s1 and s = s2 gives two
corresponding normal mode eigenvectors L1

(
s1
)

and L2
(
s1
)

as well as L1
(
s2
)

and L2
(
s2
)
. At points s1 and s2, we also calculate

the versors w
(
s1
)

and w
(
s1
)

that are tangent to the IRC (curved line). The calculated vectors inserted into the formulas give the
approximations to B1s , B2s and B12.

Lk(s) (when the system moves along the reaction path).35 Coupling coefficient Bkk′ is usually
especially large close to those values of s, for which ωk

∼= ωk′ i.e., for the crossing points of
the vibrational frequency (or energy) curves ωk(s). These are the points where we may expect
an important energy flow from one normal mode to another, because the energy quanta match
(�ωk(s) ∼= �ωk′(s)). Coriolis coupling means that the directions of Lk and Lk′ change, when
the reaction proceeds and this resembles a rotation in the configurational space about the IRC.

35 From differentiating the orthonormality condition Lk
(
s
) · Lk′

(
s
) = δkk′ , we obtain

∂

∂s

[
Lk
(
s
) · Lk′

(
s
)]

=
[
∂Lk

(
s
)

∂s
· Lk′

(
s
)+ Lk

(
s
) · ∂Lk′

(
s
)

∂s

]

=
[
∂Lk

(
s
)

∂s
· Lk′

(
s
)+ ∂Lk′

(
s
)

∂s
· Lk

(
s
)]

= Bkk′ + Bk′k = 0.

Hence, Bkk′ = −Bk′k .
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Curvature Couplings

Curvature coupling constant Bks links the motion along the reaction valley with the normal
modes orthogonal to the IRC (Fig. 14.7):

Bks(s) = ∂Lk(s)

∂s
· w(s), (14.33)

where w(s) represents the unit vector tangent to the intrinsic reaction path xI RC(s) at point
s. Coefficient Bks(s) therefore represents a measure of how the change in the normal mode
eigenvector Lk(s) resembles a motion along the IRC. Large Bks(s) makes an energy flow from
the normal mode to the reaction path (or vice versa) much easier.

Donating Modes:
The modes with large Bks(s) in the entrance channel are called the donating modes, because
an excitation of such modes makes possible an energy transfer to the reaction coordinate
degree of freedom (an increase of the kinetic energy along the reaction path). This will
make the reaction rate increase.

In the vibrational adiabatic approximation, coefficients Bks equal zero. This means that in
such an approximation, an exothermic reaction would transform the net reaction energy (defined
as the difference between the energy of the reactants and the products) into the kinetic energy
of translational motion of products, because the energy of the system in the entrance channel
could not be changed into the vibrational energy of the products (including the “vibrations” of
a rotational character). However, as was shown by John Polanyi and Dudley Herschbach, the
reactions do not go this way–a majority of the reaction energy goes into the rotational degrees
of freedom (excited states of some modes). The rotations are hidden in these of the vibrations
at s = 0, which are similar to the internal rotations and in the limit of s → +∞ transform
into product rotations. Next, the excited products emit infrared quanta (heat) in the process of
infrared fluorescence. This means that in order to have a realistic description of reaction, we
have to abandon the vibrational adiabatic approximation.

14.5.4 Application of the Reaction Path Hamiltonian Method to the Reaction
H2 +OH → H2O+H

The reaction represents one of a few polyatomic systems for which precise calculations were
performed.36 It may be instructive to see how a practical implementation of the reaction path
Hamiltonian method looks.

36 G.C.J. Schatz, J.Chem.Phys. 74, 113 (1981); D.G. Truhlar, and A.D. Isaacson, J.Chem.Phys. 77, 3516 (1982);
A.D. Isaacson, and D.G. Truhlar, J.Chem.Phys. 76, 380 (1982) and above all, the paper by Thom Dunning, Jr.
and Elfi Kraka in Advances in Molecular Electronic Structure Theory: The Calculation and Characterization of
Molecular Potential Energy Surfaces, ed. T.H. Dunning, Jr., JAI Press, Greenwich, CT, (1989), p. 1.
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s, a.u.

Fig. 14.8. The reaction H2 + OH → H2O + H energy profile V0(s) for −∞ ≤ s ≤ ∞. The value of the reaction coordinate
s = −∞ corresponds to the reactants, while s = ∞ corresponds to the products. It turns out that the product energy (shown by
a small square on the right) is lower than the energy of the reactants (i.e., the reaction is exothermic). The barrier height in the
entrance channel calculated as the difference of the top of the barrier and the lowest point of the entrance channel amounts to
6.2 kcal/mol. Source: T. Dunning, Jr. and E. Kraka, from Advances in Molecular Electronic Structure Theory, ed. T. Dunning, Jr.,
JAI Press, Greenwich, C T (1989), courtesy of the authors.

Potential Energy Hypersurface

The ab initio configuration interaction calculations (p. 615) of the electronic energy for the
system under study were performed by Walsh and Dunning37 within the Born-Oppenheimer
(“clamped nuclei”) approximation; see p. 269. The electronic energy obtained as a function of
the nuclear configuration plays the role of the potential energy for the motion of the nuclei.
The calculation gave the electronic energy for a relatively scarce set of the configurations of the
nuclei, but then the numerical results were fitted by an analytical function.38 The IRC energy
profile obtained is shown in Fig. 14.8.

It is seen from this figure that the barrier height for the reactants is equal to about 6.2 kcal/mol,
while the reaction energy calculated as the difference of the products minus the energy of the
reactants is equal to about−15.2 kcal/mol (an exothermic reaction). What happens to the atoms
when the system moves along the reaction path? This is shown in Fig. 14.9.

The saddle point configuration of the nuclei when compared to those corresponding to the
reactants and to products tells us whether the barrier is early or late. The difference of the OH
distances for the saddle point and for the product (H2O) amounts to 0.26 Å, which represents
0.26
0.97 = 27%, while the HH distance difference for the saddle point and of the reactant (H2) is
equal to 0.11 Å, which corresponds to 0.11

0.74 = 15%. In conclusion, the saddle point resembles
the reactants more than the products; i.e., the barrier is early.

Normal Mode Analysis

Let us see what the normal mode analysis gives when performed for some selected points along
the IRC. The calculated frequencies are shown in Fig. 14.10 as wave numbers ν̄ = ω/(2πc).

37 S.P. Walsh, and T.H. Dunning, Jr., J.Chem.Phys. 72, 1303 (1980).
38 G.C. Schatz, and H. Elgersma, Chem.Phys.Letters, 73, 21 (1980).
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Fig. 14.9. The optimum atomic positions (read please as two columns) in the reacting system H2+OH→ H2O+H as functions
of the reaction coordinate s. Source: T. Dunning, Jr. and E. Kraka, from Advances in Molecular Electronic Structure Theory, ed.
T. Dunning, Jr., JAI Press, Greenwich, C T (1989), courtesy of the authors.

As we can see, before the reaction takes place, we have two normal mode frequencies ωHH

and ωOH. When the two reacting subsystems approach one another, we have to treat them as a
single entity. The corresponding number of vibrations is 3N−6 = 3×4−6 = 6 normal modes.
Fig. 14.10 shows five (real) frequencies. Two of them have frequencies close to those of HH
and OH, and three others have frequencies close to zero and correspond to the vibrational and
rotational motions of the loosely bound reactants.39 The last “vibrational mode” (not shown) is
connected with a motion along the reaction path and has imaginary frequency. Such a frequency
means that the corresponding curvature of the potential energy is negative.40 For example, at

39 By the van der Waals interactions; see Chapter 13.
40 Note that ω = √k/m, where the force constant k stands for the second derivative of the potential energy (i.e., its

curvature).
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s, a.u.

HOHbend

Fig. 14.10. The reaction H2 + OH → H2O + H. The vibrational frequencies (in wave numbers ν̄ = ω/(2πc)) for the normal
modes along the coordinate s. The little squares correspond to the asymptotic values. Only the real wave numbers are given (the
“vibration” along s is imaginary and not given). Source: T. Dunning, Jr. and E. Kraka, from Advances in Molecular Electronic
Structure Theory, ed. T. Dunning, Jr., JAI Press, Greenwich, C T (1989), courtesy of the authors.

the saddle point, when moving along the reaction path, we have a potential energy maximum
instead of a minimum as would be for a regular oscillator.

The frequency ωHH drops down close to the saddle point. This is precisely the bond to be
broken. Interestingly, the frequency minimum is attained at 9 a.u. beyond the saddle point.
Afterward the frequency increases fast, and when the reaction is completed, it turns out to be
the OH symmetric stretching frequency of the water molecule. Only from this, we can tell what
has happened: the HH bond was broken and a new OH bond was formed. At the end of the
reaction path, we also have the antisymmetric stretching mode of the H2O, which evolved from
the starting value of ωOH while changing only a little (this reflects that one OH bond exists
all the time and in fact represents a reaction spectator) as well as the HOH bending mode,
which appeared as a result of the strengthening of an intermolecular interaction in H2 + OH
when the reaction proceeded. The calculations have shown that this vibration corresponds to the
symmetric stretching mode41of the H2O. The two other modes at the beginning of the reaction

41 At first sight, this looks like contradicting chemical intuition since the antisymmetric mode is apparently compatible
to the reaction path (one hydrogen atom being far away while the other is close to the oxygen atom). However,
everything is all right. The SCF LCAO MO calculations for the water molecule within a medium size basis set
give the OH bond length equal to 0.95 Å, whereas the OH radical bond length is equal to 1.01 Å. This means
that when the hydrogen atom approaches the OH radical (making the water molecule), the hydrogen atom of
the radical has to get closer to the oxygen atom. The resulting motion of both hydrogen atoms is similar to the
symmetric (not antisymmetric) mode.
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a.u.
Fig. 14.11. The reaction H2 + OH→ H2O + H (within the vibrational adiabatic approximation). Three sets of the vibrational
numbers (vOH, vHH) = (0, 0), (1, 0), (0, 1) were chosen. Note that the height and position of the barrier depend on the vibrational
quantum numbers assumed. An excitation of H2 decreases considerably the barrier height. Source: T. Dunning, Jr. and E. Kraka, from
Advances in Molecular Electronic Structure Theory, ed. T. Dunning, Jr., JAI Press, Greenwich, C T (1989), courtesy of the authors.

have almost negligible frequencies, and after an occasional increasing of their frequencies near
the saddle point end up with zero frequencies for large s. Of course, at the end, we have to have
3× 3− 6 = 3 vibrational modes of the H2O and so we do.

Example. Vibrational Adiabatic Approximation

Let us consider several versions of the reaction that differ by assuming various quantum vibra-
tional states of the reactants.42 Using Eq. (14.29), for each set of the vibrational quantum
numbers we obtain the vibrational adiabatic potential Vadiab as a function of s (Fig. 14.11).

The adiabatic potentials obtained are instructive. It turns out that the following is true:

• The adiabatic potential corresponding to the vibrational ground state ( vOH, vHH) = (0, 0)
gives lower barrier height than the classical potential V0(s) (5.9 kcal/mol vs 6.1). The reason
for this is the lower zero-vibration energy for the saddle point configuration than for the
reactants.43

• The adiabatic potential for the vibrational ground state has its maximum at s = −5 a.u.,
not at the saddle point s = 0.

42 We need the described frequencies of the modes that are orthogonal to the reaction path.
43 This stands to reason because when the Rubicon is crossed, all the bonds are weakened with respect to the reactants.
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• Excitation of the OH stretching vibration does not significantly change the energy profile,
in particular the barrier is lowered by only about 0.3 kcal/mol. Thus, the OH is definitely a
spectator bond.

• This contrasts with what happens when the H2 molecule is excited. In such a case, the
barrier is lowered by as much as about 3 kcal/mol. This conforms that the HH stretching
vibration is a donating mode.

Example. Non-adiabatic Theory

Now let us consider the vibrational non-adiabatic procedure. To do this, we have to include the
coupling constants B. This is done in the following way. Moving along the reaction coordinate s,
we perform the normal mode analysis, resulting in the vibrational eigenvectors Lk(s). This
enables us to calculate how these vectors change and to determine the derivatives ∂Lk/∂s. Now
we may calculate the corresponding dot products [see Eqs. (14.32) and (14.33)] and obtain
the coupling constants Bkk′(s) and Bks(s) at each selected point s. A role of the coupling
constants B in the reaction rate can be determined after dynamic studies assuming various
starting conditions (the theory behind this approach will not be presented in this book). Yet
some important information may be extracted just by inspecting functions B(s). The functions
Bks(s) are shown in Fig. 14.12.

s, a.u.

a.
u.

Fig. 14.12. The reaction H2+OH→ H2O+H. The curvature coupling costants Bks (s) as functions of s. The Bks (s) characterize
the coupling of the kth normal mode with the reaction coordinate s. Source: T. Dunning, Jr. and E. Kraka, from Advances in Molecular
Electronic Structure Theory, ed. T. Dunning, Jr., JAI Press, Greenwich, C T (1989), courtesy of the authors.
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s, a.u.

HOHbendHOHbend

HOHbend HOHbend

Fig. 14.13. The reaction H2 + OH → H2O + H. The Coriolis coupling constants Bkk′ (s) as functions of s. A high value of
|Bkk′ (s)| means that close to reaction coordinate s the changes of the k-th normal mode eigenvector resemble eigenvector k′.
Source: T. Dunning, Jr. and E. Kraka, from Advances in Molecular Electronic Structure Theory, ed. T. Dunning, Jr., JAI Press,
Greenwich, C T (1989), courtesy of the authors.

As we can see:

• In the entrance channel, the value of BOH,s is close to zero, so there is practically no
coupling between the OH stretching vibrations and the reaction path. As a result, there will
be practically no energy flow between those degrees of freedom. This might be expected
from a weak dependence of ωOH as a function of s. Once more, we see that the OH bond
plays only the role of a reaction spectator.

• This is not the case for BHH,s . This quantity attains its maximum just before the saddle point
(let us recall that the barrier is early). Therefore, the energy may flow from the vibrational
mode of H2 to the reaction path (and vice versa) and a vibrational excitation of H2 may
have an important impact on the reaction rate (recall that the adiabatic barrier lowers when
this mode is excited).

The Coriolis coupling constants Bkk′ as functions of s are plotted in Fig. 14.13 (only for the
OH and HH stretching and HOH bending modes).

As we can see from Fig. 14.13:

• The maximum coupling for the HH and OH modes occurs long before the saddle point (close
to s = −18 a.u.), enabling the system to exchange energy between the two vibrational modes.
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• In the exit channel, we have quite significant couplings between the symmetric and anti-
symmetric OH modes and the HOH bending mode.

This means that formation of H-O…H obviously influences both the OH stretching and HOH
bending.

14.6 Acceptor-Donor (AD) Theory of Chemical Reactions

14.6.1 An Electrostatic Preludium–The Maps of the Molecular Potential

Chemical reaction dynamics is possible only for very simple systems. Chemists, however, have
most often to do with medium-size or large molecules. Would it be possible to tell anything
about the barriers for chemical reactions in such systems? Most of chemical reactions start
from a situation when the molecules are far away but already interact. The main contribution
is the electrostatic interaction energy, which is of the most long-range character (Chapter 13).
Electrostatic interaction depends strongly on the mutual orientation of the two molecules (the
steric effect). Therefore, the orientations are biased toward the privileged ones (energetically
favorable). There is quite a lot of experimental data suggesting that privileged orientations lead,
at smaller distances, to low reaction barriers. There is no guarantee of this, but it often happens
for electrophilic and nucleophilic reactions, because the attacking molecule prefers those parts
of the partner that correspond to high electron density (for electrophilic attack) or to low electron
density (for nucleophilic attack).

We may use an electrostatic probe (e.g., a unit positive charge) to detect, which parts of the
molecule “like” the approaching charge (energy lowering), and which do not (energy increasing).

The electrostatic interaction energy of the point-like unit charge (probe) in position r
with molecule A is described by the following formula (the definition of the electrostatic
potential produced by molecule A, Fig. 14.14a):

VA(r) = +
∑

a

Za

|ra − r| −
∫
ρA(r′)
|r′ − r|dr′, (14.34)

where the first term describes the interaction of the probe with the nucleia denoted by index
a, and the second means the interaction of the probe with the electron density distribution
of the molecule A denoted by ρA (according to Chapter 11).
a By the way, to calculate the electrostatic interaction energy of the molecules A and B, we have to take

(instead of a probe) the nuclei of the molecule B and sum the corresponding contributions, and then do the
same with the electronic cloud of B. This corresponds to the following formula: Eelst =

∑
b ZbVA(rb)−∫

drρB(r)VA(r), where b goes over the nuclei of B, and ρB represents its electronic cloud.
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(b)

(c)

(a)

Fig. 14.14. Molecular electrostatic potential (MEP) represents the electrostatic interaction of the positive unit charge (probe)
with molecule A. (a) the coordinate system and the vectors used in Eq. (14.34); (b) the equipotential surfaces |VA(r)| for the
water molecule; (c) another way of showing the MEP: one computes VA(r) on the molecular surface (defined somehow). In more
expensive books this is shown by coloring the surface using a certain convention: color↔MEP. Such information is useful, because
the role of the MEP is to predict the site of attack of another molecule, which is able to approach the surface. MEP in a.u. means
the interaction of a proton with the molecule. It is seen that the proton will attack the region of the oxygen atom, while an attack
of Cl− would happen from the side of the hydrogens.
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In the Hartree-Fock or Kohn-Sham approximation (as discussed in Chapter 11, p. 667, we
assume the ni -tuple occupation of the molecular orbital ϕA,i , ni = 0, 1, 2),

ρA(r) =
∑

i

ni |ϕA,i (r)|2. (14.35)

These molecular orbitals ϕA,i are calculated in the literature for the isolated molecule, but
one can imagine them to be computed in the presence of the probe charge. The first possibility
has one advantage: we characterize the isolated molecule under study; however, we do not see
how the charge flows in our molecule under the influence of the attacking object, and this should
count during the attack. Taking the second possibility removes this deficiency, but only in part
because the attacking object usually does not have a unit charge on it.

Therefore, in order to obtain VA(r) at point r, it is sufficient to calculate the distances of the
point from any of the nuclei (trivial) as well as the one-electron integrals, which appear after
inserting into Eq. (14.34) ρA(r′) = 2

∑
i |ϕA,i (r′)|2. Within the LCAO MO approximation,

the electron density distribution ρA represents the sum of products of two atomic orbitals (in
general centered at two different points). As a result, the task reduces to calculating typical
one-electron three-center integrals of the nuclear attraction type (cf., Chapter 8 and Appendix P
available at booksite.elsevier.com/978-0-444-59436-5), because the third center corresponds to
the point r (Fig. 14.14). There is no computational problem with this for contemporary quantum
chemistry.

In order to represent VA(r) graphically, we usually choose to show an equipotential surface
corresponding to a given absolute value of the potential, while also indicating its sign (Fig.
14.14b). The sign tells us which parts of the molecule are preferred for the probelike object
to attack and which are not. In this way, we obtain basic information about the reactivity of
different parts of the molecule.44

Who Attacks Whom?

In chemistry, a probe will not be a point charge, but rather a neutral molecule or an ion. Never-
theless our new tool (electrostatic potential) will still be useful for the following reasons:

• If the probe represents a cation, it will attack those parts of the molecule A which are
electron-rich (electrophilic reaction).

• If the probe represents an anion, it will attack the electron-deficient parts (nucleophilic
reaction).

• If the probe represents a neutral molecule (B) with partial charges on its atoms, its elec-
trostatic potential VB is the most interesting. Those AB configurations that correspond to

44 Having the potential calculated according to Eq. (14.34), we may ask about the set of atomic charges that reproduce
it. Such charges are known as ESP (Electrostatic Potential).

http://booksite.elsevier.com/978-0-444-59436-5
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the contacts of the associated sections of VA and VB with the opposite signs are the most
electrostatically stable.

The site of the molecular probe (B) which attacks an electron-rich site of A itself has to be of
electron-deficient character (and vice versa). Therefore, from the point of view of the attacked
molecule (A), everything looks “upside down”: an electrophilic reaction becomes nucleophilic
and vice versa. When two objects exhibit an affinity to each other, who attacks whom represents a
delicate and ambiguous problem and let it be that way. Therefore where does such nomenclature
in chemistry come from? Well, it comes from the concept of …didactics.

14.6.2 A Simple Model of Nucleophilic Substitution–MO, AD, and VB Formalisms

Let us take an example of a substitution reaction (we try to be as simple as possible):

H− + H2 → H2 + H−, (14.36)

and consider what is known as the acceptor-donor formalism (AD). The formalism may be
treated as intermediate between the configuration interaction (CI) and the valence bond (VB)
formalisms (see Chapter 10). Any of the three formalisms is equivalent to the two others,
provided they differ only by a linear transformation of many-electron basis functions.

In the CI formalism, the Slater determinants are built from the molecular spinorbitals.
In the VB formalism, the Slater determinants are built from the atomic spinorbitals.
In the AD formalism, the Slater determinants are built from the acceptor and donor
spinorbitals.

14.6.3 MO Picture→AD Picture

As usual molecular orbitals for the total systemϕ1, ϕ2, ϕ3 in a minimal basis set may be expressed
(Fig. 14.15) using the molecular orbital of the donor (in our case, it is n, the 1s atomic orbital
of H−) and the acceptor molecular orbitals (bonding χ and antibonding χ∗):

ϕ1 = a1n + b1χ − c1χ
∗

ϕ2 = a2n − b2χ − c2χ
∗

ϕ3 = −a3n + b3χ − c3χ
∗,

(14.37)
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Fig. 14.15. A schematic representation of the molecular orbitals and their energies: of the donor (H−, n representing the
hydrogen atom 1s orbital), of the acceptor (H2, bonding χ and antibonding χ∗ of the hydrogen molecule) as well as of the total
system H3 in a linear configuration (center). The lowest-energy molecular orbital of H3 does not have any node, the higher has
one, while the highest has two nodes. In all cases, we use the approximation that the molecular orbitals are built from the three
1s hydrogen atomic orbitals only.

where ai , bi , ci > 0, for i = 1, 2, 3. This convention comes from the fact that ϕ1 is of the lowest
energy and therefore exhibits no node, ϕ2 has to play the role of the orbital second in energy scale
and therefore has a single node, and ϕ3 is the highest in energy and therefore has two nodes.45

Any N -electron Slater determinant �M O composed of the molecular spinorbitals {φi }, i =
1, 2, . . . [cf., Eq. (M.1) on p. e109] may be written as a linear combination of the Slater deter-
minants � AD

i composed of the spinorbitals ui , i = 1, 2, . . . of the acceptor and donor46 (AD
picture)47:

�M O
k =

∑
i

Ck
(
i
)
� AD

i , (14.38)

Soon we will be interested in some of the coefficients Ck
(
i
)
. For example, the expansion for

the ground-state Slater determinant (in the MO picture),

�0 = N0 |ϕ1ϕ̄1ϕ2ϕ̄2|, (14.39)

45 Positive values of a, b, c make possible the node structure described above.
46 We start from the Slater determinant built of N molecular spinorbitals. Any of these is a linear combination

of the spinorbitals of the donor and acceptor. We insert these combinations into the Slater determinant and
expand the determinant according to the first row (Laplace expansion, see Appendix A available at booksite.
elsevier.com/978-0-444-59436-5 on p. e1). As a result, we obtain a linear combination of the Slater determinants,
all having the donor or acceptor spinorbitals in the first row. For each of the resulting Slater determinants, we
repeat the procedure, but focusing on the second row, then the third row, etc. We end up with a linear combination of
the Slater determinants that contain only the donor or acceptor spinorbitals. We concentrate on one of them, which
contains some particular donor and acceptor orbitals. We are interested in the coefficient Ck(i) that multiplies this
Slater determinant number i .

47 A similar expansion can also be written for the atomic spinorbitals (VB picture) instead of the donors and acceptors
(AD picture).

http://booksite.elsevier.com/978-0-444-59436-5
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gives

�0 = C0(DA)�D A + C0(D
+A−)�D+A− + · · · , (14.40)

where ϕ̄i denotes the spinorbital with spin function β, and ϕi , the spinorbital with spin func-
tion α, N0 stands for the normalization coefficient, and �D A, �D+A− represent the normal-
ized Slater determinants with the following electronic configurations, in �D A : n2χ2, in
�D+A− : n1χ2(χ∗)1, etc.

Roald Hoffmann (b.1937), Polish-born American
chemist and professor at Cornell University in Ithaca,
New York. Hoffmann discovered the symmetry rules
that pertain to some reactions of organic compounds. In
1981, he shared the Nobel Prize with Kenichi Fukui “for
their theories, developed independently, concerning the
course of chemical reactions.” Hoffmann is also a poet
and playwright. His poetry is influenced by chemistry,
which, as he wrote, was inspired by Marie Curie.

His CV reads as a film script. When in 1941 the
Germans entered Złoczów, Hoffmann’s hometown, the
four-year-old Roald was taken with his mother to a labor
camp. One of the Jewish detainees betrayed a camp
network of conspirators to Germans. They massacred
the camp, but Roald and his mother had earlier been
smuggled out of the camp by his father and hidden in
a Ukrainian teacher’s house. Soon after, his father was
killed. The Red Army pushed the Germans out in 1944,
and Roald and his mother went via Przemyśl to Cracow.
In 1949 they finally reached America. Roald Hoffmann
graduated from Stuyvesant High School, Columbia Uni-
versity, and Harvard University. At Harvard, Roald met

the excellent chemist Robert Burns Woodward (synthe-
ses of chlorophyl, quinine, strychnine, cholesterol, peni-
cilline structure, vitamins), a Nobel Prize winner in 1965.
Woodward alerted Hoffmann to the mysterious behav-
ior of polyens in substitution reactions. Hoffmann clari-
fied the problem using the symmetry properties of the
molecular orbitals (now called the Woodward-Hoffmann
symmetry rules; cf. p. 941).

We are mainly interested in the coefficient C0(DA). As shown by Fukui, Fujimoto and Hoff-
mann (see Appendix Z available at booksite.elsevier.com/978-0-444-59436-5, p. e191)a

C0(DA) ≈ 〈�D A|�0〉 =
∣∣∣∣a1 b1

a2 −b2

∣∣∣∣
2

= (a1b2 + a2b1)
2, (14.41)

where in the determinant, the coefficients of the donor and acceptor orbitals appear in
those molecular orbitals ϕi of the total system that are occupied in the ground-state Slater
determinant �0 [the coefficients of n and χ in ϕ1 are a1 and b1, respectively, while those
in ϕ2 are a2 and −b2, respectively, see Eq. (14.37)].
a We assume that the orbitals n, χ and χ∗ are orthogonal (approximation).

http://booksite.elsevier.com/978-0-444-59436-5
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Kenichi Fukui (1918–1998), Japanese
chemist and professor at Kyoto Uni-
versity. One of the first scholars
who stressed the importance of the
IRC, and introduced what is called
the frontier orbitals (mainly HOMO
and LUMO), which govern practically
all chemical processes. The HOMO-
LUMO separation is crucial in chem-
istry. Fukui received the Nobel Prize
in chemistry in 1981.

Function �0 will play a prominent
role in our story, but now let us take
two excited states, the doubly excited
configurations of the total system48:

�2d = N2|ϕ1ϕ̄1ϕ3ϕ̄3| (14.42)

and

�3d = N3|ϕ2ϕ̄2ϕ3ϕ̄3|, (14.43)

where Ni stand for the normalization coefficients. Let us ask about the coefficients that they
produce for the DA configuration [let us call these coefficients C2(DA) for �2d and C3(DA)
for �3d ]; i.e.,

�2d = C2(DA)�D A + C2(D
+A−)�D+A− + · · · , (14.44)

�3d = C3(DA)�D A + C3(D
+A−)�D+A− + · · · (14.45)

According to the result described above (see p. e191), we obtain:

C2(DA) =
∣∣∣∣ a1 b1

−a3 b3

∣∣∣∣
2

= (a1b3 + a3b1)
2, (14.46)

C3(DA) =
∣∣∣∣ a2 −b2

−a3 b3

∣∣∣∣
2

= (a2b3 − a3b2)
2. (14.47)

Such formulas enable us to calculate the contributions of the particular donor-acceptor
resonance structures (e.g., DA,D+A−, etc.; cf. p. 610) in the Slater determinants built of
the molecular orbitals [Eq. (14.37)] of the total system. If one of these structures prevailed
at a given stage of the reaction, this would represent important information about what has
happened in the course of the reaction.
At every reaction stage, the main object of interest will be the ground-state of the system.
The ground state will be dominateda by various resonance structures. As usual, the reso-
nance structures are associated with the corresponding chemical structural formulas with
the proper chemical bond pattern.
a That is, these structures will correspond to the largest expansion coefficients.

14.6.4 Reaction Stages

We would like to know the a, b, c values at various reaction stages because we could then
calculate the coefficients C0,C2 and C3 [Eqs. (14.41), (14.46), and (14.47)] for the DA, as well

48 We will need this information later to estimate the configuration interaction role in calculating the CI ground state.
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as for other donor-acceptor structures (e.g., D+A−, see below), and deduce what really happens
during the reaction.

Reactant Stage (R)

The simplest situation is at the starting point. When H− is far away from H-H, then of course
(Fig. 14.15) ϕ1 = χ, ϕ2 = n, ϕ3 = −χ∗. Hence, we have b1 = a2 = c3 = 1, while the other
a, b, c = 0, therefore:

Using Eqs.(14.41), (14.46), and (14.47), we get (the superscript R recalls that the results
correspond to reactants):

C R
0 (DA) = (0 · 1+ 1 · 1)2 = 1, (14.48)

C R
2 (DA) = 0, (14.49)

C R
3 (DA) = (1 · 0− 0 · 0)2 = 0. (14.50)

When the reaction begins, the reactants are correctly described as a Slater determinant with
doubly occupied n and χ orbitals, which corresponds to the DA structure.

This is, of course, what we expected to obtain for the electronic configuration of the non-
interacting reactants.

Intermediate Stage (I)

What happens at the intermediate stage (I)?
It will be useful to express first the atomic orbitals 1sa, 1sb, 1sc through orbitals n, χ, χ∗

(they span the same space). From Chapter 8, p. 439, we obtain

1sa = n, (14.51)

1sb = 1√
2

(
χ − χ∗) , (14.52)

1sc = 1√
2

(
χ + χ∗) , (14.53)

where we have assumed that the overlap integrals between different atomic orbitals are equal
to zero.49

49 In reality, they are small, but nonzero. Making them zero makes it possible to write down the molecular orbitals
without any calculations.
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The I stage corresponds to the situation in which the hydrogen atom in the middle (b) is at
the same distance from a as from c, and therefore, the two atoms are equivalent. This implies
that the nodeless, one-node, and two-node orbitals have the following form (where © stands
for the 1s orbital and

⊕
for the −1s orbital):

ϕ1 = © © © = 1√
3
(1sa + 1sb + 1sc)

ϕ2 = © · ⊕ = 1√
2
(1sa − 1sc)

ϕ3 =⊕©⊕ = 1√
3
(−1sa + 1sb − 1sc)

(14.54)

Inserting Eq. (14.52), we obtain

ϕ1 = 1√
3
(n +√2χ + 0 · χ∗)

ϕ2 = 1√
2

(
n − 1√

2
(χ + χ∗)

)
ϕ3 = 1√

3

(
−n + 0 · χ −√2χ∗

) (14.55)

or
ai bi ci

i = 1 1√
3

2
3 0

i = 2 1√
2

1
2

1
2

i = 3 1√
3

0 2
3 (14.56)

From Eqs.(14.41), (14.46), and (14.47), we have

C I
0 (DA) =

(
1√
3

1

2
+ 1√

2

√
2

3

)2

= 3

4
= 0.75, (14.57)

C I
2 (DA) =

(
1√
3
· 0+

√
2

3

1√
3

)2

= 2

9
= 0.22, (14.58)

C I
3 (DA) =

(
1√
2
· 0− 1

2

1√
3

)2

= 1

12
= 0.08, (14.59)

The first is most important of these three numbers. Something happens to the electronic ground
state of the system. At the starting point, the ground-state wave function had a DA contribution
equal to C R

0 (DA) = 1, while now this contribution has decreased to C I
0 (DA) = 0.75. Let us

see what will happen next.

Product Stage (P)

How does the reaction end up?
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Let us see how molecular orbitals ϕ corresponding to the products are expressed by n, χ ,
and χ∗. At the end, we have the molecule H-H (made of the middle and left hydrogen atoms)
and the outgoing ion H− (made of the right hydrogen atom).

Therefore, the lowest-energy orbital at the end of the reaction has the form

ϕ1 = 1√
2
(1sa + 1sb) = 1√

2
n + 1

2
χ − 1

2
χ∗, (14.60)

which corresponds to a1 = 1√
2
, b1 = 1

2 , c1 = 1
2 .

Since the ϕ2 orbital is identified with 1sc, we obtain from Eqs.(14.41), (14.46), and (14.47):
a2 = 0, b2 = c2 = 1√

2
(never mind that all the coefficients are multiplied by −1), and finally

as ϕ3, we obtain the antibonding orbital

ϕ3 = 1√
2
(1sa − 1sb) = 1√

2
n − 1

2
χ + 1

2
χ∗; (14.61)

i.e., a3 = 1√
2
, b3 = 1

2 , c3 = 1
2 (the sign is reversed as well). This leads to

i ai bi ci

1 1√
2

1
2

1
2

2 0 1√
2

1√
2

3 1√
2

1
2

1
2 (14.62)

Having ai , bi , ci for the end of the reaction, we may easily calculate C P
0 (DA) of Eq. (14.41),

as well as C P
2 (DA) and C P

3 (DA) from Eqs. (14.46) and (14.47), respectively, for the reaction
products

C P
0 (DA) =

(
1√
2
· 1√

2
+ 0 · 1

2

)2

= 1

4
(14.63)

C P
2 (DA) =

(
1√
2
· 1

2
+ 1√

2
· 1

2

)2

= 1

2
(14.64)

C P
3 (DA) =

(
0 · 1

2
− 1√

2
· 1√

2

)2

= 1

4
. (14.65)

Now we can reflect on this for a while. It is seen that during the reaction, some important
changes occur, namely

when the reaction begins, the system is 100% described by the structure DA, while after
the reaction it resembles this structure only by 25%.
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Role of the Configuration Interaction

We may object that our conclusions seem quite naive. Indeed, there is something to worry
about. We have assumed that, independent of the reaction stage, the ground-state wave function
represents a single Slater determinant �0, whereas we should use a configuration interaction
expansion. In such an expansion, besides the dominant contribution of �0, double excitations
would be the most important (p. 653), which in our simple approximation of the three ϕ orbitals
means a leading role for �2d and �3d :

�C I = �0 + κ1�2d + κ2�3d + · · ·
The two configurations are multiplied by some small coefficients κ (because we always deal

with the electronic ground state dominated by �0). It will be shown that the κ coefficients in
the CI expansion � = �0 + κ1�2d + κ2�3d are negative. This will serve us to make a more
detailed analysis (than that performed so far) of the role of the DA structure at the beginning
and end of the reaction.

The coefficients κ1 and κ2 may be estimated using perturbation theory, with�0 as unperturbed
wave function. The first-order correction to the wave function is given by formula 5.24 on p.
245, where we may safely insert the total Hamiltonian Ĥ instead of the operator50 Ĥ (1) (this
frees us from saying what Ĥ (1) looks like). Then we obtain

κ1 ∼= 〈ϕ2ϕ̄2|ϕ3ϕ̄3〉
E0 − E2d

< 0, (14.66)

κ2 ∼= 〈ϕ1ϕ̄1|ϕ3ϕ̄3〉
E0 − E3d

< 0, (14.67)

because from the Slater-Condon rules (see Appendix M available at booksite.elsevier.com/

978-0-444-59436-5) we have
〈
�0|Ĥ�2d

〉
= 〈ϕ2ϕ̄2|ϕ3ϕ̄3〉−〈ϕ2ϕ̄2|ϕ̄3ϕ3〉 = 〈ϕ2ϕ̄2|ϕ3ϕ̄3〉−0 =

〈ϕ2ϕ̄2|ϕ3ϕ̄3〉 and, similarly,
〈
�0|Ĥ�3d

〉
= 〈ϕ1ϕ̄1|ϕ3ϕ̄3〉, where E0, E2d , E3d represent the ener-

gies of the corresponding states. The integrals 〈ϕ2ϕ̄2|ϕ3ϕ̄3〉 =
(
ϕ2ϕ2|ϕ3ϕ3

)
and 〈ϕ1ϕ̄1|ϕ3ϕ̄3〉 =(

ϕ1ϕ1|ϕ3ϕ3
)

are Coulombic repulsions of a certain electron density distribution with the same
charge distribution51; therefore 〈ϕ2ϕ̄2|ϕ3ϕ̄3〉 > 0 and 〈ϕ1ϕ̄1|ϕ3ϕ̄3〉 > 0, and indeed κ1 < 0 and
κ2 < 0.

Thus, the contribution of the DA structure to the ground-state CI function results mainly from
its contribution to the single Slater determinant �0 [coefficient C0(DA)], but is modified by a
small correction κ1C2(DA)+ κ2C3(DA), where κ < 0.

What are the values of C2(DA) and C3(DA) at the beginning and at the end of the reaction? In
the beginning, our calculations gave: C R

2 (DA) = 0 and C R
3 (DA) = 0. Note that C R

0 (DA) = 1.
Thus, the electronic ground state at the start of the reaction mainly represents the DA structure.

50 This is because the unperturbed wave function �0 is an eigenfunction of the Ĥ (0) Hamiltonian and is orthogonal
to any of the expansion functions.

51 These are ϕ∗2ϕ3 in the first case and ϕ∗1ϕ3 in the second one.

http://booksite.elsevier.com/978-0-444-59436-5
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And what about the end of the reaction? We have calculated that C P
2 (DA) = 1

2 > 0 and
C P

3 (DA) = 1
4 > 0. This means that at the end of the reaction, the coefficient corresponding

to the DA structure will be certainly smaller than C P
0 (DA) = 0.25, the value obtained for the

single determinant approximation for the ground-state wave function.
Thus,

taking the CI expansion into account makes our conclusion based on the single Slater
determinant even sharper. When the reaction starts, the wave function means the DA
structure, while when it ends, this contribution is very strongly reduced.

14.6.5 Contributions of the Structures as Reaction Proceeds

What, therefore, represents the ground-state wave function at the end of the reaction?
To answer this question, let us consider first all possible occupations of the three energy

levels (corresponding to n, χ, χ∗) by four electrons. As before we assume for the orbital energy
levels: εχ < εn < εχ∗ . In our simple model the number of such singlet-type occupations is
equal only to six, Table 14.1 and Fig. 14.16.

Now, let us ask what is the contribution of each of these structures52 in �0, �2d , and �3d in
the three stages of the reaction. This question is especially important for�0, because this Slater
determinant is dominant for the ground-state wave function. The corresponding contributions
in �2d and �3d are less important because these configurations enter the ground-state CI wave
function multiplied by the tiny coefficients κ . We have already calculated these contributions
for the DA structure. The contributions of all the structures are given53 in Table 14.2 (with the
largest contributions in bold).

First, let us focus on which structures contribute mainly to �0 at the three stages of the
reaction. As has been determined,

Table 14.1. All possible singlet-type occupations of the orbitals: n, χ
and χ∗ by four electrons. These occupations correspond to the resonance
structures: DA,D+A−,DA∗,D+A−∗,D+2A−2 and DA∗∗.

Ground state DA (n)2(χ)2

Singly excited state D+A− (n)1(χ)2(χ∗)1
Singly excited state DA∗ (n)2(χ)1(χ∗)1
Doubly excited state D+A−∗ (n)1(χ)1(χ∗)2
Doubly excited state D+2A−2 (χ)2(χ∗)2
Doubly excited state DA∗∗ (n)2(χ∗)2

52 We have already calculated some of these contributions.
53 Our calculations gave C I

0 (DA) = 0.75,C I
2 (DA) = 0.22,C I

3 (DA) = 0.08. In Table 14.2, these quantities are
equal: 0.729, 0.250, and 0.020. The only reason for the discrepancy may be the nonzero overlap integrals, which
were neglected in our calculations and were taken into account in those given in Table 14.2.
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Fig. 14.16. The complete set of the six singlet wave functions (“structures”), that arise from occupation of the donor orbital n
and of the two acceptor orbitals (χ and χ∗).

Table 14.2. Contributions C0(i),C2(i),C3(i) of the six donor-acceptor structures in the three Slater determinants
�0, �2d i �3d built of molecular orbitals at the three reaction stages: reactant (R), intermediate (I), and product
(P)a . The |C0(i)| > 0.5 are in bold.

Structure MO Determinant R I P

DA �0 C0(DA) 1 0.729 0.250
�2d C2(DA) 0 0.250 0.500
�3d C3(DA) 0 0.020 0.250

D+A− �0 c0(D+A−) 0 −0.604 −0.500
�2d C2(D+A−) 0 0.500 0.000
�3d C3(D+A−) 0 0.103 0.500

DA∗ �0 C0(DA∗) 0 0.177 0.354
�2d C2(DA∗) 0 0.354 −0.707
�3d C3(DA∗) 0 0.177 0.354

D+A−∗ �0 C0(D+A−∗) 0 0.103 0.500
�2d C2(D+A−∗) 0 0.500 0.000
�3d C3(D+A−∗) 0 −0.604 −0.500

DA∗∗ �0 C0(DA∗∗) 0 0.021 0.250
�2d C2(DA∗∗) 0 0.250 0.500
�3d C3(DA∗∗) 1 0.729 0.250

D+2A−2 �0 C0(D+2A−2) 0 0.250 0.500
�2d C2(D+2A−2) 1 0.500 0.000
�3d C3(D+2A−2) 0 0.250 0.500

aS. Shaik, J.Am.Chem.Soc., 103, 3692 (1981)
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• At point R, we have only the contribution of the DA structure.
• At point I, the contribution of DA decreases to 0.729, other structures come into play

with the dominant D+A− structure (the coefficient equal to −0.604).
• At point P, there are three dominant structures: D+A−,D+A−∗ and D+2A−2.

Now we may think of going beyond the single determinant approximation by performing the
CI. At the R stage, the DA structure dominates as before, but has some small admixtures of DA∗∗
(because of�3d ) and D+2A−2 (because of�2d ), while at the product stage, the contribution of
the DA structure almost vanishes. Instead, some important contributions of the excited states
appear, mainly of the D+A−,D+A−∗ and D+2A−2 structures, but also other structures of less
importance.

The value of such qualitative conclusions comes from the fact that they do not depend on
the approximation used (e.g., on the atomic basis set, neglecting the overlap integrals, etc).

For example, the contributions of the six structures in�0 calculated using the Gaussian atomic
basis set STO-3G and within the extended Hückel method are given in Table 14.3. Despite the
fact that even the geometries used for the R, I, and P stages are slightly different, the qualitative
results are the same. It is rewarding to learn things that do not depend on detail.

Where Do the Final Structures D+A−,D+A−∗ and D+2A−2 Come From?

As seen from Table 14.2, the main contributions at the end of the reaction come from the
D+A−,D+A−∗ and D+2A−2 structures. What do they correspond to when the reaction starts?
From Table 14.2, it follows that the D+2A−2 structure simply represents Slater determinant�2d

(Fig. 14.17). But where do the D+A− and D+A−∗ structures come from? There are no such
contributions either in�0, or in�2d or in�3d . It turns out however that a similar analysis applied

Table 14.3. More advanced methods see the same! Contributions C0(i) of the six donor-acceptor
structures (i) in the �0 Slater determinant at three different stages (R, I, and P) of the reactiona . Bold
shows the most important contributions.

Structure STO-3G Extended Hückel

R I P R I P

DA 1.000 0.620 0.122 1.000 0.669 0.130
D+A− 0.000 −0.410 −0.304 −0.012 −0.492 −0.316
DA∗ 0.000 0.203 0.177 0.000 0.137 0.179
D+A−∗ 0.000 0.125 0.300 0.000 0.072 0.298
DA∗∗ 0.000 0.117 0.302 0.000 0.176 0.301
D+2A−2 0.000 0.035 0.120 0.000 0.014 0.166
aS. Shaik, J.Am.Chem.Soc., 103, 3692 (1981).
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Most important acceptor–donor structures at P

These structures correspond to the following MO configurations at R

Fig. 14.17. What final structures are represented at the starting point?

to the normalized configuration54 N |ϕ1ϕ̄1ϕ2ϕ̄3| at stage R gives exclusively the D+A− structure,
while applied to the N |ϕ1ϕ̄2ϕ3ϕ̄3| determinant, it gives exclusively the D+A−∗ structure (Fig.
14.17). So we have traced them back. The first of these configurations corresponds to a single-
electron excitation from HOMO to LUMO–this is, therefore, the lowest excited state of the
reactants. Our picture is clarified:

the reaction starts from DA; at the intermediate stage (transition state), we have a large
contribution of the first excited state that at the starting point was the D+A− structure
related to the excitation of an electron from HOMO to LUMO.

54 N stands for the normalization coefficient.
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14.6.6 Nucleophilic Attack–The Model is More General:
H− + Ethylene → Ethylene+H−

Maybe the acceptor-donor theory described above pertains only to the H− + H-H reaction?
Fortunately, its applicability goes far beyond that. Let us consider a nucleophilic attack SN2 of
the H− ion on the ethylene molecule (Fig. 14.18), perpendicular to the ethylene plane toward the
position of one of the carbon atoms. The arriving ion binds to the carbon atom forming the CH
bond, while another proton with two electrons (i.e., H− ion) leaves the system. Such a reaction
looks like it has only academic interest (except some isotopic molecules are involved, e.g.,

Fig. 14.18. The AD approach turns out to be more general. Nucleophilic substitution of ethylene by H−. This aims to demonstrate
that, despite considering a more complex system than the H− + H2 → H2 + H− reaction discussed so far, the machinery behind
the scene works in the same way. The attack of H− goes perpendicularly to the ethylene plane, onto one of the carbon atoms.
The image shows the (orbital) energy levels of the donor (H−, left side) and of the acceptor (ethylene, right side). Similarly as for
H− +H2, the orbital energy of the donor orbital n is between the acceptor orbital energies χ and χ∗ corresponding to the bonding
π and antibonding π∗ orbitals. Other molecular orbitals of the ethylene (occupied and virtual: 2χ∗, 3χ∗, . . .) play a marginal role
due to high energetic separation from the energy level of n.
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when one of the protons is replaced by a deuteron), but comprehension comes from the simplest
examples possible, when the fewest things change.

The LCAO MO calculations for the ethylene molecule give the following result. The HOMO
orbital is of theπ bonding character, while the LUMO represents the antibondingπ∗ orbital (both
are linear combinations of mainly carbon 2pz atomic orbitals, z being the axis perpendicular to
the ethylene plane). On the energy scale, the H− 1s orbital goes between the π and π∗ energies,
similar to what happened with the χ and χ∗ orbitals in the H− + H-H reaction. The virtual
orbitals (let us call them 2χ∗, 3χ∗, and 4χ∗) are far up in the energetic scale, while the doubly
occupied σ -type orbitals are far down in the energetic scale. Thus, the H− n = 1s orbital energy
is close to that of χ and χ∗, while other orbitals are well separated from them.

This energy level scheme allows for many possible excitations, far more numerous than con-
sidered before. Despite this, because of the effective mixing of only those donor and acceptor
orbitals that are of comparable energies, the key partners are, as before, n, χ and χ∗. The role
of the other orbitals is only marginal: their admixtures will only slightly deform the shape of the
main actors of the drama n, χ and χ∗ known as the frontier orbitals. The coefficients at various
acceptor-donor structures in the expansion of�0 are shown in Table 14.4. The calculations were
performed using the extended Hückel method55 at three stages of the reaction (R, in which the H−
ion is at a distance of 3 Å from the attacked carbon atom; I, with a distance 1.5 Å and P, with a dis-
tance equal to 1.08 Å; in all cases, the planar geometry of the ethylene was preserved). It is seen,
(see Table 14.4), that despite the fact that a more complex method was used, the emerging picture
is basically the same (see bold numbers in the Table): at the beginning the DA structure prevails;
at the intermediate stage, we have a “hybrid” of the DA and D+A− structures; and at the end, we
have a major role for the D+A− and D+A−∗ structures. We can see also that even if some higher
excitations were taken into account (to the orbitals 2σ ∗, 3σ ∗), they play only a marginal role. The
corresponding population analysis (not reported here) indicates a basically identical mechanism.
This resemblance extends also to the SN 2 nucleophilic substitutions in aromatic compounds.

Table 14.4. Expansion coefficients C0(i) at the acceptor-donor structures in the
ground-state wave function at various stages of the SN2 substitution reaction of
ethylene: reactant (R), intermediate (I), and product (P). The most important con-
tributions are in bold.a

Structure Coefficients

R I P

DA 1.000 0.432 0.140
D+A−(n → π∗) 0.080 0.454 0.380
DA∗(π → π∗) −0.110 −0.272 −0.191
D+A−∗(n → π∗, π → π∗) −0.006 −0.126 −0.278
D+A−(n → 2σ∗) <10−4 0.006 0.004
D+A−(n → 3σ∗) <10−4 −0.070 −0.040
aS. Shaik, J.Am.Chem.Soc., 103, 3692 (1981).

55 This model was introduced to chemistry by Roald Hoffmann. He used to say that he cultivates chemistry with an
old, primitive tool, which because of this, ensures access to the wealth of the complete Mendeleyev periodic table.
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Table 14.5. Expansion coefficients at the acceptor-donor structures for the
reaction of proton with the hydrogen molecule at three different stages of the
reaction: reactant (R), intermediate (I), and product (P).a

Structure Coefficients

R I P

DA 1.000 0.729 0.250
D+A− 0 0.604 0.500
D+∗A− 0 −0.104 −0.500
D∗A 0 −0.177 −0.354
D∗∗A 0 0.021 0.250
D+2A−2 0 0.250 0.500

aS. Shaik, J.Am.Chem.Soc., 103, 3692 (1981).

14.6.7 The Model Looks Even More General: The Electrophilic Attack
H+ +H2 → H2 +H+

Let us see whether this mechanism is even more general and consider the electrophilic substitu-
tion in the model reaction H+ +H-H → H-H+H+. This time, the role of the donor is played
by the hydrogen molecule, while that of the acceptor is taken by the proton. The total number
of electrons is only two. The DA structure corresponds to (χ)2(n)0(χ∗)0. Other structures are
defined by a full analogy with the previous case of the H−3 system: structure D+A− means
(χ)1(n)1(χ∗)0, structure D+∗A− obviously corresponds to (χ)0(n)1(χ∗)1, structure D∗A to
(χ)1(n)0(χ∗)1,D∗∗A to (χ)0(n)0(χ∗)2 and D+2A−2 to (χ)0(n)2(χ∗)0. As before, the ground-
state Slater determinant may be expanded into the contributions of these structures. The results
(the overlap neglected) are collected in Table 14.5.

It is worth stressing that we obtain essentially the same reaction machinery as before. First,
at stage R, the DA structure prevails; next, at intermediate stage I, we have a mixture of the
DA and D+A− structures, and we end up (stage P) with D+A− and D+∗A− (the energy levels
for the donor are the same as the energy levels were previously for the acceptor; hence, we
have D+∗A−, and not D+A−∗ as before). This picture would not change qualitatively if we
considered electrophilic substitution of the ethylene or benzene.

14.6.8 The Model Also Works for the Nucleophilic Attack on the Polarized Bond

Let us consider a nucleophilic attack of the species X on the polarized double bond >C = Y,
where Y represents an atom more electronegative than carbon (say, oxygen):

X− +>C = Y→ >C = X+ Y−.

The problem is similar to the ethylene case except the double bond is polarized. The arguments
of the kind already used for ethylene make it possible to limit ourselves exclusively to the frontier
orbitals n, π ≡χ and π∗ ≡χ∗.
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(b)

(a)

Fig. 14.19. Nucleophilic attack X− +>C = Y→ >C = X+ Y−. The orbitals π and π∗ are polarized (their polarizations are
opposite, the + and − signs correspond to the positive and negative values of the orbitals). (a) The orbital energy levels with the
starting electronic configuration (DA structure); (b) with the nucleophilic substitution reaction SN 2; within the plane of the three
atoms XC Y, there are also two C-H bonds (not displayed).

This time the bonding π orbital is also a linear combination of the 2pz atomic orbitals (the z
axis is perpendicular to the>C = Y plane, Fig. 14.19a), but is polarized what is shown as (a = b)

π = a · (2pz)C + b · (2pz)Y. (14.68)

The role of the donor orbital n will be played by (2pz)X. We assume (by convention) that
the coefficients are both positive with the normalization condition a2 + b2 = 1 (the overlap
integrals between the atomic orbitals are neglected). Due to a higher electronegativity of Y we
have b > a. In this situation the antibonding orbital π∗ may be obtained directly from the
orthogonality condition of the orbital π as:

π∗ = b · (2pz)C − a · (2pz)Y. (14.69)

Note that π∗ has the opposite polarization to that of π , i.e. the electron described by π∗ prefers
to be close to the less electronegative carbon atom.

The DA structure corresponds to double occupation of n and π . From Eq. (10.28) we know
that in the VB language the corresponding Slater determinant contains three structures: one
of the Heitler-London type and the two ionic structures. In our case of a polarized bond, the
Heitler-London function would continue to treat the C and Y nuclei on the equal footing, the
polarity of the CY bond would be correctly restored by different weights of the ionic structures,
b2 > a2. In conclusion: this will be the CY double bond but polarized.
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Now, consider the all important D+A− structure in the new situation. According to Eq. (14.69):

D+A− ≡

∣∣∣∣∣∣∣∣
π∗(1) π∗(2) ... π∗(4)
π̄(1) π̄(2) ... π̄(4)
n(1) n(2) ... n(4)
n̄(1) n̄(2) ... n̄(4)

∣∣∣∣∣∣∣∣

= b

∣∣∣∣∣∣∣∣
(2pz)C(1) (2pz)C(2) ... (2pz)C(4)
π̄(1) π̄(2) ... π̄(4)
n(1) n(2) ... n(4)
n̄(1) n̄(2) ... n̄(4)

∣∣∣∣∣∣∣∣
− a

∣∣∣∣∣∣∣∣
(2pz)Y(1) (2pz)Y(2) ... (2pz)Y(4)
π̄(1) π̄(2) ... π̄(4)
n(1) n(2) ... n(4)
n̄(1) n̄(2) ... n̄(4)

∣∣∣∣∣∣∣∣
= −a

⎧⎨
⎩

Ẋ↓
|
C − Ẏ↑

structure

⎫⎬
⎭+ b

⎧⎨
⎩

Ẋ↓
|

Ċ↑ − Y
structure

⎫⎬
⎭ ≈ b

⎧⎨
⎩

Ẋ↓
|

Ċ↑ − Y
structure

⎫⎬
⎭ .

We see that the spin pairing takes place between C and X atoms. Thus, D+ A− corresponds
to breaking the old CY bond and creating the new CX bond. This is what we have displayed in
Fig. 14.19b and Fig. 14.20 shows the same in a pictorial representation.

The avoided crossing is needed to cause such a change of the electronic structure as to break
the old bond and form the new one. Taking the leading VB structures only, we may say the
following:

• The avoided crossing appears between two hypersurfaces, from which one corresponds
to the old bond pattern (the first diabatic hypersurface) and the other to the new bond
pattern (the second diabatic hypersurface).

• We see from the VB results why the variational method chose the D+A− structure
among the six possible ones. This configuration was chosen because it corresponds
exactly to the formation of the new bond: the two unpaired electrons with opposite
spins localized on those atoms that are going to bind.

• The mechanism given is general and applies wherever at least one of the reactants has
a closed shell. When both the reacting molecules are of the open-shell type, there will
be no avoided crossing and no reaction barrier: the reactants are already prepared for
the reaction.

(a) (b)

Fig. 14.20. Pictorial description of the DA and D+A− structures. For a large donor-acceptor distance, the electronic ground state
is described by the DA structure (a). Structure D+A− already becomes very important for the intermediate stage (I). This structure,
belonging to the acceptor-donor picture, is shown (b) in the VB representation, where the opposite spins of the electrons remind us
that we have the corresponding covalent structure (note that b > a).
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What Is Going on in the Chemist’s Flask?

Let us imagine the molecular dynamics on energy hypersurface calculated using a quantum-
mechanical method (classical force fields are not appropriate since they offer non-breakable
chemical bonds). The system is represented by a point that slides downhill (with an increasing
velocity) and climbs uphill (with deceasing velocity). The system has a certain kinetic energy
because chemists usually heat their flasks.

Let us assume that first, the system wanders through those regions of the ground-state hyper-
surface that are far in the energy scale from other electronic states. In such a situation, the
adiabatic approximation (Chapter 6) is justified and the electronic energy (corresponding to the
hypersurface) represents potential energy for the motion of the nuclei. The system corresponds
to a given chemical bond pattern (we may work out a structural formula). The point representing
the system in the configurational space “orbits” at the bottom of an energy well, which means
that the bond lengths vibrate as do bond angles and torsional angles, but a single bond remains
single, double remains double, etc.

Due to heating the flask accidentally (to cite on example), the system climbs up the wall
of the potential energy well. This may mean, however, that it approaches a region of the con-
figurational space in which another diabatic hypersurface (corresponding to another electronic
state) lowers its energy to such an extent that the two hypersurfaces tend to intersect. In this
region, the adiabatic approximation fails, since we have two electronic states of comparable
energies (both have to be taken into account), and the wave function cannot be taken as the
product of an electronic function and a function describing the nuclear motion (as is required by
the adiabatic approximation). As a result of mixing, the crossing is avoided and two adiabatic
hypersurfaces (upper and lower) appear. Each is composed of two parts. One part corresponds
to a molecule looking as if it had one bond pattern, while the other pertains to a different
bond pattern. The bond pattern on each of the adiabatic hypersurfaces changes and the Rubicon
for this change is represented by the boundary i.e., the region of the quasi-avoided crossing
that separates the two diabatic parts of the adiabatic hypersurface. Therefore, when the system
in its dynamics goes uphill and enters the boundary region, the corresponding bond pattern
becomes fuzzy and changes to another pattern after crossing the boundary. The reaction is
completed.

What will happen next? The point representing the system in the configurational space con-
tinues to move, and it may happen to arrive at another avoided-crossing region56 and its energy
is sufficient to overcome the corresponding barrier. This is the way multistep chemical reactions
happen. It is important to realize that in experiments, we have to do with an ensemble of such
points rather than with a single one. The points differ by their positions (configurations of the
nuclei) and nuclear momenta. Only a fraction of them has sufficiently high kinetic energy to
cross the reaction barrier. The rest wander through a superbasin (composed of numerous basins)
of the initial region, thus undergoing vibrations, rotations including internal rotations, etc. Of

56 This new avoided crossing may turn out to be the old one. In such a case, the system will cross the barrier in the
opposite direction. Any chemical reaction is reversible (to different extents).
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those which cross a barrier, only a fraction crosses the same barrier (i.e., the barrier of the same
reaction). Others, depending on the initial conditions (nuclear positions and momenta) may cross
other barriers. The art of chemistry means that in such a complicated situation, it is still possible
to perform reactions with nearly 100% yield and obtain a pure chemical compound–which is
the chemist’s goal.

14.7 Symmetry-Allowed and Symmetry-Forbidden Reactions

14.7.1 Woodward-Hoffmann Symmetry Rules

The rules pertain to such an approach of two molecules that all the while, some symmetry
elements of the nuclear framework are preserved (there is a symmetry group associated with
the reaction, see Appendix C available at booksite.elsevier.com/978-0-444-59436-5). Then we
have:

• The molecular orbitals belong to the irreducible representations of the group.
• During the approach the orbital energies change, but their electron occupancies do not.
• The reaction is symmetry-allowed when the total energy (often taken as the sum of the

orbital energies) lowers; otherwise, it is symmetry-forbidden.

14.7.2 AD Formalism

A VB point of view is simple and beautiful, but sometimes the machinery gets stuck. For
instance, this may happen when the described mechanism has to be rejected because it does
not meet some symmetry requirements. Imagine that instead of a linear approach of H− to
H2, we consider a T-shape configuration. In such a case, the all-important D+A− structure
becomes useless for us because the resonance integral, which is proportional to the overlap
integral between the 1s orbital of H− (HOMO of the donor) and χ∗ (LUMO of the acceptor),
is equal to zero for symmetry reasons. If the reaction were to proceed, we would have had to
form molecular orbitals from the above orbitals, which is impossible.

Yet there is an emergency exit from this situation. Let us turn our attention to the D+A−∗
structure, which corresponds to a doubly occupied χ∗, but a singly occupied χ . This structure
would lead to the reaction because the overlap integral of 1s H− and χ H-H has a nonzero value.
In this way,

a forbidden symmetry will simply cause the system to choose as the lead another structure,
such that it allows the formation of new bonds in this situation.

The above example shows that symmetry can play an important role in chemical reactions.
In what follows, the role of symmetry will be highlighted.

http://booksite.elsevier.com/978-0-444-59436-5
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14.7.3 Electrocyclic Reactions

Robert Burns Woodward had an intriguing puzzle for his student, young Roald Hoffmann.
The puzzle had to do with cyclization of alkens (molecules with alternant double and single
carbon-carbon bonds). All these molecules had at the ends the planar H2C = group and in the
cyclization reaction, these terminal groups had to rotate somehow in order to form a CC single
bond: −H2C − CH2− closing the cycle. In the case of H2C =, the direction of the rotation
(conrotation and disrotation; see Fig. 14.21a) is irrelevant for the final product. However, when
a similar cyclization were carried out with the HRC= groups (R = H)), the two products possible
would differ, as these are two distinct isomers.

One might, however, presume that both products will appear, since which rotation is carried
out is a matter of a stochastic process.

The crux of the puzzle was, however, that only one of the two possible transformations
took place, as if one of the rotations was forbidden, but another one allowed. It was even
pire, since the allowed rotation was sometimes conrotation and sometimes disrotation,
depending which alkene was considered.

Hoffmann solved the problem introducing the notion of symmetry-allowed and symmetry-
forbidden chemical reactions. What really mattered was the symmetry of the π molecular
orbitals involved. These are the orbitals, which certainly have to change their character when
the reaction proceeds: one of them changes from π to σ . In the case of the cis-butadiene, we
have two π orbitals (Fig. 14.21b): ϕ1 and ϕ2 (which are HOMO-1 and HOMO, respectively).
The two electrons occupying ϕ1 do not change their π character; they just go on a two-center
CC π orbital in the cyclobutene.

The two electrons occupyingϕ2 change their character fromπ toσ . Note that they transform
differently under the conrotation or under the disrotation (see Fig. 14.21c). The conrotation
preserves the C2 axis in the carbon atoms’ plane, while during the disrotation, the mirror
plane perpendicular to the carbon atoms’ plane is preserved. The conrotation results in
the in-phase (i.e., bonding, or low-energy) overlapping of the terminal 2p atomic orbitals,
while the disrotation would lead to the out-of-phase, high-energy σ ∗ orbital. Thus, the
conrotation is symmetry-allowed (because there is an important energy gain), while the
disrotation is forbidden (because it would correspond to an increase of the energy). For
other alkenes, the same reasoning leads to the conclusion that 4n π -electrons give the
conrotation allowed (the butadiene means n = 1) and the disrotation is forbidden, while
4n + 2 π -electrons give the disrotation allowed, while the conrotation is forbidden. This
is closely related to the type of isomer - the product of the cyclization reaction. The very
reason for such a selection rule is that for the case of 4n + 2, the HOMO π orbital has the
two terminal 2p orbitals in-phase, while for the case of 4n, the HOMO π orbital has the
two terminal 2p orbitals out-of-phase (as in Fig. 14.21b).
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Fig. 14.21. Cyclization of the cis-butadiene. (a) Start from the top: conrotation (leftward) and disrotation (rightward) lead in
general to different products, but only one of these transformation is symmetry allowed. (b) The doubly occupied π orbitals of the
butadiene: ϕ1 (HOMO-1) and ϕ2 (HOMO). (c) The transformation of ϕ2 under the conrotation and disrotation. The conrotation is
symmetry-allowed, and the disrotation is symmetry-forbidden.

14.7.4 Cycloaddition Reaction

Let us take the example of the cycloaddition of two ethylene molecules when they bind together,
forming the cyclobutane. The frontier orbitals of the ground-state ethylene molecule are the
doubly occupied π (HOMO) and the empty π∗ (LUMO) molecular orbitals.
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The right side of Fig. 14.22a shows that the reaction would go toward the products if we pre-
pared the reacting ethylene molecules in their triplet states. Such a triplet state has to be stabilized
during the reaction, while the state corresponding to the old bond pattern should lose its impor-
tance. Is it reasonable to expect the triplet state to be of low energy in order to have the chance to
be pulled sufficiently down the energy scale? Yes, it is, because the triplet state arises by exciting
an electron from the HOMO (i.e., π ) to the LUMO (i.e., π∗), and this energy cost is the lowest
possible (in the orbital picture). Within the π -electron approximation, the Slater determinant
corresponding to the triplet state (and representing the corresponding molecular orbitals as linear
combination of the carbon 2pz with atomic orbitals denoted simply as a and b) takes the form

N det
(
π(1)α(1)π∗(2)α(2)

)
(14.70)

= N
(
π(1)α(1)π∗(2)α(2)− π(2)α(2)π∗(1)α(1)) (14.71)

= Nα(1)α(2)
((

a(1)+ b(1)
) (

a(2)− b(2)
)− (a(2)+ b(2)

) (
a(1)− b(1)

))
(14.72)

= −2Nα(1)α(2)
(
a(1)b(2)− a(2)b(1)

)
. (14.73)

Such a function means that when one electron is on the first carbon atom, the other is on the
second carbon atom (no ionic structures). The “parallel” electron spins of one molecule may
be in the opposite direction to the similar electron spins of the second molecule. Everything is
prepared for the cycloaddition (i.e., formation of the new chemical bonds).

Similar conclusions can be drawn from the Woodward-Hoffmann symmetry rules.

Example. The Diels-Alder Reaction (Woodward-Hoffmann approach)

The two ethylene molecules are oriented as shown in Fig. 14.22c. Let us focus on the frontier
orbitals at long intermolecular distances. All are built of the symmetry orbitals composed of
the four 2p carbon atomic orbitals (perpendicular to the planes corresponding to the individual
molecules) and can be classified as symmetric (S) or antisymmetric (A) with respect to the
symmetry planes P1 and P2. Moreover, by recognizing the bonding or antibonding interactions,
without performing any calculations, we can tell that the SS-symmetry orbital, shown in Fig.
14.22c, is of the lowest energy (because of the bonding character of the intramolecular as well as
intermolecular interactions), then the SA-symmetry (the bonding intramolecular - the π orbitals
and the antibonding intermolecular, the intramolecular being more important) follows. Next, the
AS-symmetry (the antibonding intra- and bonding intermolecular - orbitalsπ∗), and the highest-
energy orbital AA (the antibonding intra- and intermolecular) follow. Since four electrons are
involved, they occupy the SS and SA orbitals.57 This is what we have at the beginning of the
reaction, Fig. 14.22b, center.

What do we have at the end of the reaction? At the end, there are no π -electrons whatsoever;
instead, we have two new σ chemical bonds, each built from the two sp3 hybrids (Fig. 14.22d)

57 What a nasty historical association.
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oriented from the first former ethylene molecule to the other.58 Therefore, we may form the
symmetry orbitals once again, recognize their bonding and antibonding character and hence
the energetic order of their orbital energies without any calculations, just by inspection (Fig.
14.22b, right). The lowest energy corresponds, of course, to SS (because the newly formed σ
chemical bonds correspond to the bonding combination and the lateral bonding overlap of the
hybrids is also of the bonding character). The next in energy, however, is the AS (because of the
bonding interactions in the newly formed σ bonds, while the lateral orbital interaction is weakly
antibonding), and then the SA-symmetry orbital (antibonding interaction along the bonds that
is only slightly compensated by the lateral in-phase overlap of the hybrids) follows. Finally, the
highest-energy corresponds to the totally antibonding orbital of the AA-symmetry.

According to the Woodward-Hoffmann rules, the four π electrons, on which we are focusing,
occupy the SS and SA orbitals from the beginning to the end of the reaction. This corresponds
to low energy at the beginning of the reaction (R) but is very unfavorable at its end (P), because
the unoccupied AS orbital is lower in the energy scale.

And what if we were smart and excited the reactants using a laser? This would allow double
occupation of the AS orbital right at the beginning of the reaction and end up with a low energy
configuration. To excite an electron per molecule means to put one on orbital π∗, while the
second electron stays on orbital π . Of two possible spin states (singlet and triplet), the triplet
state is lower in energy (see Chapter 8, p. 460). This situation was described by Eq. (14.73),
and the result is that when one electron sits on nucleus a, the other sits on b. These electrons
have parallel spins–everything is prepared for the reaction.

Therefore, the two ethylene molecules, when excited to the triplet state, open their closed
shells in such a way that favors cycloaddition.

The cycloaddition is, therefore, forbidden in the ground state (no thermally activated reac-
tion) and allowed via an excited state (photochemistry).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 14.22. Two equivalent schemes for the cycloaddition reaction of ethylene. Two ethylene molecules, after excitation to the
triplet state, dimerize forming cyclobutane (a), because everything is prepared for electron pairing and formation of the new bonds.
We obtain the same from the Woodward-Hoffmann rules (panels b, c, and d). According to these rules, we assume that the ethylene
molecules preserve two planes of symmetry: P1 and P2 during all stages of the reaction. We concentrate on four π electrons–the
main actors in the drama. In the beginning, the lowest-energy molecular orbital of the total system (b,c) is of the SS type (i.e.,
symmetric with respect to P1 and P2). The other three orbitals (not shown in Panel c) are of higher energies that increases in the
following order: SA, AS, AA. Hence, the four electrons occupy SS and SA (b). Panel d shows the situation after the reaction. The
four electrons are no longer of the π type—we now call them the σ type, and they occupy the hybrid orbitals shown here. Once
more, the lowest energy (b) corresponds to the SS symmetry orbital (d). The three others (not shown in Panel d) have higher energy,
but their order is different from before (b): AS, SA, AA. The four electrons should occupy, therefore, the SS and AS type orbitals,
whereas (according to the Woodward-Hoffmann rule) they still occupy SS and SA. This is energetically unfavorable, and such a
thermic reaction does not proceed. Yet, if before the reaction, the ethylene molecules were excited to the triplet state (π)1(π∗)1,
then at the end of the reaction, they would correspond to the configuration: (SS)2(AS)2, of very low energy, and the photochemical
reaction proceeds.

58 We are dealing with a four-membered ring, so the sp3 hybrids match the bond pattern only roughly.
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14.7.5 Barrier Means a Cost of Opening the Closed Shells

Now we can answer more precisely the question of what happens when two molecules react.
When the molecules are of the closed-shell character, a change of their electronic structure has
to take place first. For that to happen, the kinetic energy of molecular collisions (the temperature
plays an important role) has to be sufficiently high in order to push and distort59 the nuclear
framework, together with the electron cloud of each of the partners (i.e., the kinetic energy contra
valence repulsion described in Chapter 13), to such an extent that the new configuration already
corresponds to that behind the reaction barrier. For example, in the case of an electrophilic or
nucleophilic attack, these changes correspond to the transformation D → D+ and A → A−,
while in the case of the cycloaddition to the excitation of the reacting molecules to their triplet
states. These changes make the unpaired electrons move to the proper reaction centers. So long
as this state is not achieved, the changes within the molecules are small and, at most, a molecu-
lar complex forms, in which the partners preserve their integrity and their main properties. The
profound changes follow from a quasi-avoided crossing of the DA diabatic hypersurface with
an excited-state diabatic hypersurface, the excited state being to a large extent a “picture of the
product.”60

Reaction barriers appear because the reactants have to open their valence shells and prepare
the electronic structure to be able to form new bonds. This means that their energy goes
up until the right excited structure lowers its energy so much that the system slides down
the new diabatic hypersurface to the product configuration.

The right structure means the electronic distribution in which, for each to-be-formed chemical
bond, there is a set of two properly localized unpaired electrons. The barrier height depends on
the energetic gap between the starting structure and the excited state which is the picture of the
products. By proper distortion of the geometry (due to the valence repulsion with neighbors)
we achieve a “pulling down” of the excited state mentioned, but the same distortion causes
the ground state to go up. The larger the initial energy gap, the harder to make the two states
interchange their order. The reasoning is supported by the observation that the barrier height

59 Two molecules cannot occupy the same volume due to the Pauli exclusion principle; cf. p. 861.
60 Even the noble gases open their electronic shells when subject to extreme conditions. For example, xenon atoms

under pressure of about 150 GPa change their electronic structure so much, that their famous closed-shell electronic
structure ceases to be the ground state. Recall the Pauli Blockade, discussed in Chapter 13. Space restrictions
for an atom or molecule by the excluded volume of other atoms; i.e., mechanical pushing leads to changes in its
electronic structure. These changes may be very large under high pressure. The energy of some excited states
lowers so much that the xenon atoms begin to exist in the metallic state [see, e.g., M.I. Eremetz, E.A. Gregoryantz,
V.V. Struzhkin, H. Mao, R.J. Hemley, N. Muldero, and N.M. Zimmerman, Phys.Rev.Letters, 85, 2797 (2000)].
The xenon was metallic in the temperature range 300 K–25 m K. The pioneers of these investigations were
R. Reichlin, K.E. Brister, A.K. McMahan, M. Ross, S. Martin, Y.K.Vohra, and A.L. Ruoff, Phys.Rev.Letters, 62,
669 (1989).
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for electrophilic or nucleophilic attacks is roughly proportional to the difference between the
donor ionization energy and the acceptor electronic affinity, while the barrier for cycloaddition
increases with the excitation energies of the donor and acceptor to their lowest triplet states.
Such relations show the great interpretative power of the acceptor-donor formalism. We would
not see this in the VB picture because it would be difficult to correlate the VB structures based
on the atomic orbitals with the ionization potentials or the electron affinities of the molecules
involved. The best choice is to look at all three pictures (MO, AD, and VB) simultaneously.
This is what we have done.

14.8 Barrier for the Electron-Transfer Reaction

In the AD theory, a chemical reaction of two closed-shell entities means opening their electronic
shells (accompanied by an energy cost), and then forming of the new bonds (accompanied by
an energy gain). The electronic shell opening might have been achieved in two ways: either an
electron transfer from the donor to the acceptor, or an excitation of each molecule to the triplet
state and subsequent electron pairing between the molecules.

Now we will be interested in the barrier height when the first of these possibilities occurs.

14.8.1 Diabatic and Adiabatic Potential

Example. Electron Transfer in H+2 + H2

Let us imagine two molecules, H+2 and H2, in a parallel configuration61 at distance R from
one another and having identical length 1.75 a.u. (see Fig. 14.23a). The value chosen is the
arithmetic mean of the two equilibrium separations (2.1 a.u. for H+2 , 1.4 a.u. for H2).

There are two geometry parameters to change (Fig. 14.23): the length qL of the left (or first)
molecule and the length qR of the right (or second) molecule. Instead of these two variables,
we may consider the other two: their sum and their difference. Since our goal is to be as simple
as possible, we will assume,62 that qL + qR = const, and therefore the geometry of the total
nuclear framework, may be described by a single variable: q = qL − qR , with q ∈ (−∞,∞).

Now we assume that the extra electron is on the left molecule, so we have the H2. . .H
+
2 system.

It is quite easy to imagine what happens when q changes from 0 (i.e., from both bonds of equal
length) to a somewhat larger value. Variable q = qL − qR > 0 means that qL > qR , so when
q increases a bit, the energy of the system will decrease because the H+2 molecule elongates,
while the H2 shortens; i.e., both approach their equilibrium geometries. If q increases further, it
will soon reach the value q = q0 = 2.1−1.4 = 0.7 a.u., the optimum value for both molecules.
A further increase of q will mean, however, a kind of discomfort for each of the molecules and

61 We freeze all the translations and rotations.
62 This assumption stands to reason because a shortening of one molecule will be accompanied by an almost identical

lengthening of the other when they exchange an electron.
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(a) (b)

Fig. 14.23. An electron transfer is accompanied by a geometry change. (a) The black curve corresponds to the system H2 . . .H
+
2

(i.e., the extra electron is on the left molecule), and the gray curve pertains to the system H+2 . . .H2 (the electron is on the right
molecule). Variable q equals the difference of the bond lengths of the r.h.s. molecule and the l.h.s. molecule. At q = ±q0, both
molecules have their optimum bond lengths. (b) The HF pendulum oscillates between two sites, A and B, which accommodate an
extra electron becoming either A−B or AB−. The curves that are similar to parabolas (the black one for AB− and the gray one for
A−B) denote the energies of the diabatic states as functions of the pendulum angle.

the energy will go up–and for large q, it goes up very much. And what will happen for q < 0?
q < 0 means an elongation of an already-too-long H2 and a shortening of an already-too-short
H+2 . The potential energy goes up, and the total plot is similar to a parabola with the minimum
at q = q0 > 0 (see the black curve in Fig. 14.23a).

If, however, we assume that the extra electron resides all the time on the right molecule, so
we have to do with H+2 . . .H2, then we will obtain the identical parabola-like curve as before,
but with the minimum position at q = −q0 < 0 (see the gray curve in Fig. 14.23a).

Diabatic and Adiabatic Potentials:
Each of these curves with a single minimum and with the extra electron residing all the
time on a given molecule represents the diabatic potential energy curve for the motion of
the nuclei. If, when the donor-acceptor distance changes, the electron keeps pace with it
and jumps on the acceptor, then increasing or decreasing q from 0 gives a similar result: we
obtain a single electronic ground-state potential energy curve with two minima in positions
±q0. This is the adiabatic curve.

Whether the adiabatic or diabatic potential has to be applied is equivalent to asking whether
the nuclei are slow enough that the electron keeps pace (adiabatic) or not (diabatic) with their
motion.63 This is within the spirit of the adiabatic approximation; cf. Chapter 6, p. 302. Also, a

63 In the electron transfer reaction H+2 + H2 → H2 + H+2 the energy of the reactants is equal to the energy of the
products because the reactants and the products represent the same system. Is it, therefore, a kind of fiction? Is there
any reaction at all taking place? From the point of view of a bookkeeper (thermodynamics), no reaction took place,
but from the point of view of a molecular observer (kinetics), such a reaction may take place. It is especially visible
when instead of one of the hydrogen atoms, we use deuterium. Then the reaction HD+ + H2 → HD + H+2
becomes real even for the bookkeeper (mainly because of the difference in the zero-vibration energies of the
reactants and products).
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diabatic curve corresponding to the same electronic structure (the extra electron sitting on one
of the molecules all the time) is an analog of the diabatic hypersurface that preserved the same
chemical bond pattern encountered before.

Example. The “HF Pendulum”

Similar conclusions come from another ideal system (Fig. 14.23b); namely, the hydrogen fluo-
ride molecule is treated as the pendulum of a grandfather clock (the hydrogen atom down, the
clock axis going through the fluorine atom) moving over two molecules: A and B, each of them
may accommodate an extra electron.64

The electron is negatively charged, the hydrogen atom in the HF molecule carries a partial
positive charge, and both objects attract each other. If the electron sits on the left molecule and
during the pendulum motion does not keep pace and does not jump over to the right molecule,
the potential energy has a single minimum for the angle −θ0 (the diabatic potential might be
approximated by a parabola-like curve with the minimum at −θ0). A diabatic analogous curve
with the minimum at θ0 arises when the electron resides on B all the time. When the electron
keeps pace with any position of the pendulum, we have a single adiabatic potential energy curve
with two minima: at −θ0 and θ0.

14.8.2 Marcus Theory

Rudolph Arthur Marcus (b. 1923),
American chemist and professor
at the University of Illinois in
Urbana and at California Institute
of Technology in Pasadena. In
1992, Marcus received the Nobel
Prize “for his contribution to the
theory of electron transfer reac-
tions in chemical systems.”

The contemporary theory of the elec-
tron transfer reaction was proposed by
Rudolph Marcus.65 The theory is based
to a large extent on the harmonic
approximation for the diabatic potentials
involved (i.e., the diabatic curves rep-
resent parabolas). One of the parabolas
corresponds to the reactants VR(q), the
other to the products VP(q) of the elec-
tron transfer reaction (see Fig. 14.24).

Now let us assume that both parabolas have the same curvature (force constant f ).66 The
reactants correspond to the parabola with the minimum at qR (without losing generality, we
adopt a convention that at q = qR , the energy equals zero):

VR(q) = 1

2
f (q − qR)

2,

64 Let the mysterious q be a single variable for a while, whose deeper meaning will be given later. In order to make
the story more concrete, let us think about two reactant molecules (R) that transform into the product molecules
(P): A− + B→ A+ B−.

65 The reader may find a good description of the theory in a review article by P.F. Barbara, T.J. Meyer, and M.A.
Ratner, J.Phys.Chem., 100, 13148 (1996).

66 This widely used assumption is better fulfilled for large molecules, when one electron more or less does not change
much.
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Fig. 14.24. The Marcus theory is based on two parabolic diabatic potentials VR(q) and VP (q) for the reactants (gray curve) and
products (black curve), having minima at qR and qP , respectively. The quantity�G0 ≡ VP (qP )− VR(qR) represents the energy
difference between the products and the reactants at their equilibrium geometries, the reaction barrier�G∗ ≡ VR(qc)−VR(qR) =
VR(qc), where qc corresponds to the intersection of the parabolas. The reorganization energy λ ≡ VR(qP )− VR(qR) = VR(qP )

represents the energy expense for making the geometry of the reactants identical with that of the products (and vice versa).

while the parabola with the minimum at qP is shifted in the energy scale by �G0 (�G0 < 0
corresponds to an exothermic reaction67):

VP(q) = 1

2
f (q − qP)

2 +�G0.

So far, we just have treated the quantity �G0 as a potential energy difference VP
(
qP
) −

VR
(
qR
)

of the model system under consideration (H+2 + H2 or the “pendulum” HF), although
the symbol suggests that this interpretation will be generalized in the future.

Such parabolas represent a simple situation. The parabolas’ intersection point qc satisfies by
definition VR(qc) = VP(qc). This gives68

qc = �G0

f

1

qP − qR
+ qP + qR

2
.

Of course, on the parabola diagram, the most important are the two minima, the intersec-
tion point qc and the corresponding energy, which represents the reaction barrier reactants→
products.

67 That is, the energy of the reactants is higher than the energy of the products (as in Fig. 14.24).
68 If the curves did not represent parabolas, we might have serious difficulties. This is why we need harmonicity.
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Marcus Formula:
The electron-transfer reaction barrier is calculated as

�G∗ = VR
(
qc
) = 1

4λ

(
λ+�G0)2 , (14.74)

where the reorganization energy λ represents the energy expense for distorting the products to
the equilibrium configuration of the reactants, or distorting the reactants to get the equilibrium
configuration of the products:

λ = VP(qR)− VP(qP) = 1

2
f (qR − qP)

2 +�G0 −�G0 = 1

2
f (qR − qP)

2.

The reorganization energy is, therefore, always positive.

Reorganization Energy:
Reorganization energy is the energy cost needed for making products in the nuclear con-
figuration of the reactants.

If we ask about the energy needed to transform the optimal geometry of the reactants into the
optimal geometry of the products, we obtain the same number. Indeed, we immediately obtain
VR(qP)− VR(qR) = 1

2 f (qR − qP)
2, which is the same as before. This result is a consequence

of the harmonic approximation and the same force constant assumed for VR and VP . It is seen
that the barrier for the thermal electron transfer reaction is higher if the geometry change is
larger upon the electron transfer [large (qR − qP)

2] and if the system is stiffer (large f ).

Svante August Arrhenius (1859-1927),
Swedish physical chemist, astrophysicist,
professor at the Stockholm University,
and originator of the electrolytic theory of
ionic dissociation, measurements of the
temperature of planets and of the solar
corona, and also of the theory deriving
life on Earth from outer space. In 1903,
he received the Nobel Prize in chemistry
“for the services he has rendered to the
advancement of chemistry by his elec-
trolytic theory of dissociation.”

From the Arrhenius theory,
the electron transfer reaction
rate constant reads as

kET = Ae
−
(
λ+�G0

)2

4λkB T .

(14.75)
How would the reaction rate
change if parabola VR(q)
stays in place, while parabola
VP(q)moves down in energy

scale? In experimental chemistry, this corresponds to a class of the chemical reactions A−+B→
A+ B−, with A (or B) from a homological series of compounds. The homology suggests that
the parabolas are similar because the mechanism is the same (the reactions proceed similarly),
and the situations considered differ only by a lowering the second parabola with respect to the
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(a) (b)

(c) (d)

Fig. 14.25. Four qualitatively different cases in the Marcus theory. The reactant (product) parabola is gray (black). The adiabatic
ground state energy is denoted as thick lower gray-and-black curve. We assume that �G0 ≤ 0. (a) �G0 = 0, hence �G∗ = λ

4 .

(b)
∣∣∣�G0

∣∣∣ < λ. (c)
∣∣∣�G0

∣∣∣ = λ. (d) inverse Marcus region
∣∣∣�G0

∣∣∣ > λ.

first; i.e., the reactions in the series become more and more exothermic. We may have four cases,
Fig. 14.25:

Case 1: If the lowering is zero (i.e., �G0 = 0), the reaction barrier is equal to λ/4 (Fig.
14.25a).

Case 2: If
∣∣�G0

∣∣ < λ the reaction barrier is lower, because of the subtraction in the exponent,
and the reaction rate increases (Fig. 14.25b). Hence, the �G0 is the “driving force”
in such reactions.

Case 3: When the
∣∣�G0

∣∣ keeps increasing, at
∣∣�G0

∣∣ = λ, the reorganization energy cancels
the driving force, and the barrier vanishes to zero. Note that this represents the highest
reaction rate possible (Fig. 14.25c).

Case 4: Let us imagine now that we keep increasing the driving force. We have a reaction for
which �G0 < 0 and

∣∣�G0
∣∣ > λ. Compared to the previous case, the driving force

has increased, whereas the reaction rate decreases. This might look like a possible
surprise for experimentalists. A case like this is called the inverse Marcus region (Fig.
14.25d), foreseen by Marcus in the 1960s, using the two-parabola model. People could
not believe this prediction until experimental proof69 was established in 1984.

69 J.R. Miller, L.T. Calcaterra, and G.L. Closs, J.Am.Chem.Soc., 97, 3047 (1984).
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New Meaning of the Variable q

Let us make a subtraction:

VR(q)− VP(q) = f (q − qR)
2/2− f (q − qP)

2/2−�G0

= f

2
[2q − qR − qP ][qP − qR] −�G0 = Aq + B, (14.76)

where A and B represent constants. This means that in parabolic approximation,

the diabatic potential energy difference depends linearly on coordinate q. In other
words, measuring the stage of a given electron transfer reaction, we may use either q or
VR(q)− VP(q).

14.8.3 Solvent-Controlled Electron Transfer

The above examples and derivations pertain to a 1-D model of electron transfer (a single
variable q), while in reality (imagine a solution), the problem pertains to a huge number of
variables. What happens here? Let us take the example of electron transfer between Fe2+ and
Fe3+ ions in an aqueous solution Fe2+ + Fe3+ → Fe3+ + Fe2+ (Fig. 14.26)70

It turns out that

the solvent behavior is of key importance for the electron-transfer process.

For the reaction to proceed, the solvent has to reorganize itself next to both ions. The hydration
shell of Fe2+ ion is of larger radius than the hydration shell of Fe3+ ion, because Fe3+ is smaller
than Fe2+ and, in addition, creates a stronger electric field due to its higher charge. Both factors
add to a stronger association of the water molecules with the Fe3+ ion than with Fe2+. In a crude
approximation, the state of the solvent may be characterized by two variable cavities (shown as
circles), say: left and right (or, numbers 1 and 2) that could accommodate the rigid ions. Let us
assume that the cavities have radii r1 and r2, whereas the fixed ionic radii are rFe2+ and rFe3+

(shown as vertical sections) with rFe2+ > rFe3+ and that r1 + r2 = const = rFe2+ + rFe3+ and
introduce a single variable q = r2−r1 that in this situation characterizes the state of the solvent.
Let us see what happens when q changes.

We first consider that the extra electron sits on the left ion all the time (the gray reactant
curve VR in Fig. 14.26) and the variable q is a negative number (with a high absolute value; i.e.,
r1 � r2). As seen from Fig. 14.26, the energy is very high because the solvent squeezes the Fe3+
ion out (the second cavity is too small). It does not help that the Fe2+ ion has a lot of space in its
cavity. Now we begin to move toward higher values of q. The first cavity begins to shrink, for a

70 In this example, �G0 = 0; i.e., Case 1 discussed above.
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Fig. 14.26. The diabatic potential energy curves: VR for the reactants (gray) and VP for the products (black) pertaining to the
electron transfer reaction Fe2+ + Fe3+ → Fe3+ + Fe2+ in an aqueous solution. The curves depend on the variable q = r2 − r1
that describes the solvent, which is characterized by the radius r1 of the cavity for the first (say, left) ion and by the radius r2 of
the cavity for the second ion. For the sake of simplicity, we assume that r1 + r2 = const and is equal to the sum of the ionic radii
of Fe2+ and Fe3+. For several points q, the cavities were drawn (shown as circles) as well as the vertical sections that symbolize
the diameters of the left and right ions. In this situation, the plots VR and VP have to differ widely. The dashed lines represent the
adiabatic curves (in the peripheral sections, they coincide with the diabatic curves).

while without any resistance from the Fe2+ ion, the second cavity begins to lose its pressure, thus
making the Fe3+ ion happier. The energy decreases. Finally we reach the minimum of VR , at
q = qR and the radii of the cavities match the ions perfectly. Meanwhile, variable q continues to
increase. Now the solvent squeezes the Fe2+ ion out, while the cavity for Fe3+ becomes too large.
The energy increases again, mainly because of the first effect. We arrive at q = 0. The cavities are
of equal size, but do not match either ion. This time, the Fe2+ ion experiences some discomfort,
and after passing the point q = 0, the pain increases more and more, and the energy continues
to increase. The whole story pertains to an extra electron sitting on the left ion all the time
(no jump; i.e., the reactant situation). A similar dramatic story can be told when the electron is
sitting all the time on the right ion (products situation). In this case, we obtain the VP plot (black).

The VR and VP plots just described represent the diabatic potential energy curves for the
motion of the nuclei, valid for the extra electron residing on the same ion all the time. Fig. 14.25
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also shows the adiabatic curve when the extra electron has enough time to adjust to the motion
of the approaching nuclei and the solvent, and jumps at the partner ion.

Taking a single parameter q to describe the electron transfer process in a solvent is certainly a
crude simplification. Actually there are billions of variables in the game describing the degrees of
freedom of the water molecules in the first and further hydration shells. One of the important steps
toward successful description of the electron transfer reaction was the Marcus postulate,71 that

despite the multidimensionality of the problem, Eq. (14.76) is still valid; i.e., VR − VP is a
single variable describing the position of the system on the electron-transfer reaction path (it
is, therefore, a collective coordinate that describes the positions of the solvent molecules).

No doubt low potential energy value is important, but it is also important how often this value
can be reached by the system. This is connected to the width of the low-energy basin associated
with the entropy,72 as well as to the free energy. In statistical thermodynamics, we introduce
the idea of the mean force, related to the free energy. Imagine a system in which we have two
motions on different time scales: fast (e.g., of small solvent molecules) and slow (e.g., which
changes the shape of a macromolecule). To focus on the slow motion, we average the energy
over the fast motion (the Boltzmann factor needed will introduce a temperature dependence in
the resulting energy). In this way, from the potential energy, we obtain the mean force potential
depending only on the slow variables,73 sometimes called the free energy (which is a function
of geometry of the macromolecule); cf. p. 353.

The second Marcus assumption is that the ordinate axis should be treated as the mean force
potential, or the free energy G rather than just potential energy V .

It is very rare in theoretical chemistry that a many-dimensional problem can be transformed to
a single variable problem. This is why the Marcus idea described above of a collective coordinate,

71 Such collective variables are used very often in everyday life. Who cares about all the atomic positions when
studying a ball rolling down an inclined plane? Instead, we use a single variable (the position of the center of the
ball), which gives us a perfect description of the system in a certain energy range.

72 A wide potential energy well can accommodate a lot of closely lying vibrational levels, and therefore the number
of possible states of the system in a given energy range may be huge (large entropy). Recall the particle-in-a-box
problem: the longer the box, the more dense the energy levels.

73 The free energy is defined as F(T ) = −kT ∂
∂T ln Z , where Z =∑i exp

(
− Ei

kT

)
represents the partition function

(also known as the sum of states), Ei stands for the i th energy level. In the classical approach, this energy
level corresponds to the potential energy V (x), where x represents a point in configurational space, and the sum

corresponds to an integral over the total configurational space Z = ∫ dx exp
(
− V

kT

)
. Note that the free energy is a

function of the temperature only, not of the spatial coordinates x . If however, the integration were only carried out
over part of the variables (say, only the fast variables), then Z , and therefore also F , would become a function of the
slow variables and of the temperature (mean force potential). Despite the incomplete integration, we sometimes
use the name free energy for this mean force potential by saying that “the free energy is a function of coordinates…”



958 Chapter 14

provokes the reaction: “No way.” However, as it turned out later, this simple postulate lead to a
solution that grasps the essential features of electron transfer.

What Do the Marcus Parabolas Mean?

The example just considered of the electron transfer reaction : Fe2+ + Fe3+ → Fe3+ + Fe2+
reveals that in this case, the reaction barrier is controlled by the solvent (i.e., by billions of
coordinates). As shown by Marcus, this plethora can be effectively replaced by a single collective
variable. Only after this approximation may we draw the diabatic parabola-like curves. The
intersection point of the two diabatic curves can be found easily only after assuming their
parabolic character. And yet any collective variable means motion along a line in an extremely
complex configurational space (solvent molecules plus reactants). Moving along this line means
that, according to Marcus, we encounter the intersection of the ground and excited electronic
states. As shown in Chapter 6, such a crossing occurs at the conical intersection. Is it, therefore,
that during the electron transfer reaction, the system goes through the conical intersection
point? How do we put together such notions as reaction barrier, reaction path, entrance and exit
channels, not to mention the acceptor-donor theory? Looking at Fig. 14.27, pertaining to the
reaction DA→ D+A−, will be of some help to us in answering this question.

• The diabatic hypersurfaces, one corresponds to DA (i.e., the extra electron is on the donor all
the time) and the second to D+A− (i.e., the extra electron resides on the acceptor), undergo
the conical intersection (see Fig. 14.27a). For conical intersection to happen, at least three
atoms are required. Imagine a simple model, with a diatomic acceptor A and an atom D as
donor. Atom D has a dilemma: transfer the electron to either the first or the second atom of
A. This dilemma means conical intersection. The variables ξ1 and ξ2 described in Chapter 6
were chosen (they lead to splitting of the adiabatic hypersurfaces; see Fig. 14.27b,c), which
measure the deviation of the donor D with respect to the corner of the equilateral triangle
of side equal to the length of the diatomic molecule A. The conical intersection point [i.e.,
(0, 0)] corresponds to the equilateral triangle. The figure also shows the upper and lower
cones touching at (0, 0).

• The conical intersection led to two adiabatic hypersurfaces: lower (electronic ground
state) and upper (electronic excited state). Each of the adiabatic hypersurfaces shown in

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 14.27. Electron transfer in the reaction DA → D+A−, as well as the relation of the Marcus parabolas to the concepts of
the conical intersection, diabatic and adiabatic states, entrance and exit channels and the reaction barrier. Panel (a) shows two
diabatic surfaces as functions of the ξ1 and ξ2 variables that describe the deviation from the comical intersection point (within the
bifurcation plane; cf., p. 312). Both surfaces are shown schematically in the form of the two intersecting paraboloids: one for the
reactants (DA), and the second for products (D+A−). (b) The same as (a), but the hypersurfaces are presented more realistically.
The upper and lower adiabatic surfaces touch at the conical intersection point. (c) A more detailed view of the same surfaces. On
the ground-state adiabatic surface (the lower one), we can see two reaction channels I and II, each with its reaction barrier. On the
upper adiabatic surface, an energy valley is visible that symbolizes a bound state that is separated from the conical intersection by a
reaction barrier. (d) The Marcus parabolas represent the sections of the diabatic surfaces along the corresponding reaction channel,
at a certain distance from the conical intersection. Hence, the parabolas in reality cannot intersect (undergo an avoided crossing).
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(c)

(b)

(a)

(d)



960 Chapter 14

Fig. 14.27 consists of the dark gray half (the diabatic states of the reactants, DA) and the
light gray half (the diabatic state of the products, D+A−). The border between them reveals
the intersection of the two diabatic states and represents the line of change of the electronic
structure reactants/products. Crossing the line means the chemical reaction happens.

• The “avoided crossing” occurs everywhere along the border except at the conical inter-
section. It is improbable that the reactive trajectory passes through the conical intersection
because it usually corresponds to higher energy. It will usually pass by (this resembles an
avoided crossing), and the electronic state DA changes to electronic state D+A− or vice
versa. This is why we speak of the avoided crossing in a polyatomic molecule, whereas the
concept pertains to diatomics only.

• Passing the border is easiest at two points (see Fig. 14.27c). These are the two saddle
points (barriers I and II). A thermally induced electron transfer reaction goes through one
of them. In each case, we obtain different products. Both saddle points differ in that D,
when attacking A has the choice if joining either of the two ends of A, usually forming two
different products. We therefore usually have two barriers. In the example given (H3), they
are identical, but in general they may differ. When the barrier heights are equal because
of symmetry, it does not matter which is overcome. When they are different, one of them
dominates (usually the lower barrier74).

• The Marcus parabolas (Fig. 14.27d) represent a special section (along the collective variable)
of the hypersurfaces passing through the conical intersection (parabolas VR and VP ). Each
parabola represents a diabatic state, so a part of each reactant parabola is on the lower
hypersurface, while the other one is on the upper hypersurface. We see that the parabolas
are only an approximation to the hypersurface profile. The reaction is of a thermal character,
and as a consequence, the parabolas should not pass through the conical intersection, because
it corresponds to high energy, instead it passes through one of the saddle points.

• The “light gray” part of the excited state hypersurface (Fig. 14.27c) runs up to the “dark
gray” part of the ground state hypersurface or vice versa. This means that photoexcita-
tion (following the Franck-Condon rule this corresponds to a vertical excitation) means a
profound change: the system looks as if it has already reacted (photoreaction).

Quantum Mechanical Modification

In Marcus equation (14.74), we assume that in order to make the electron transfer effective, we
have to supply at least the energy equal to the barrier height. The formula does not obviously
take into account the quantum nature of the transfer. The system may overcome the barrier
not only by having its energy higher than the barrier, but also by tunneling,75 when its energy
is lower than the barrier height (cf. p. 174). Besides, the reactant and product energies are

74 There may be some surprises. Barrier height is not all that matters. Sometimes what decides is access to the barrier
region, in the sense of its width (this is where the entropy and free energy matter).

75 We will also consider shortly an electron transfer due to optical excitation.
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quantized (vibrational-rotational levels76). The reactants may be excited to one of such levels.
The reactant vibrational levels will have different abilities to tunnel.

According to Chapter 2, only a time-dependent perturbation is able to change the system
energy. As such a perturbation may serve the electric field of the electromagnetic wave. When
the perturbation is periodic, with the angular frequency ωmatching the energy difference of ini-
tial state k and one of the states of higher energy (n), then the transition probability between these

states is equal to : Pn
k

(
t
) = 2π t

�
|vkn|2 δ

(
E
(
0
)

n − E
(
0
)

k − �ω

)
(the Fermi golden rule, Eq. (2.28),

p. 92 is valid for relatively short times t), where vkn = 〈k|v|n〉, with v(r) representing the per-
turbation amplitude,77 V (r, t) = v(r)eiωt . The Dirac delta function δ is a quantum-mechanical
way of saying that the total energy has to be conserved. In phototransfer of the electron state, k
represents the quantum mechanical state of the reactants, and n a product state, each of diabatic
character.78 In practice, the adiabatic approximation is used, in which the reactant and product
wave functions are products of the electronic wave functions (which depend on the electronic
coordinates r and, parametrically, on the nuclear configuration R) and the vibrational functions
f (R) describing the motion of the nuclei: ψk,R

(
r;R) fv1,R(R) and ψn,P

(
r;R) fv2,P(R). The

indices v1 and v2 in functions f denote the vibrational quantum numbers.
Then, the transition probability depends on the integral (Chapter 2)

|vkn|2 =
∣∣〈ψk,R

(
r;R) fv1,R(R)|v(r)|ψn,P

(
r;R) fv2,P(R)

〉∣∣2 .
Let us rewrite it, making the integration over the nuclear and electronic coordinates explicit

(where dVnucl and dVe mean that the integrations is over the nuclear and electronic coordinates,
respectively):

vkn =
∫

dVnucl f ∗v1,R

(
R
)

fv2,P
(
R
) ∫

dVe ψ
∗
k,R

(
r;R) v (r)ψn,P

(
r;R) .

Now, let us use the Franck-Condon approximation that the optical perturbation makes the
electrons move instantaneously while the nuclei do not keep pace with the electrons and stay in
the same positions (we assume, therefore, equilibrium positions of the nuclei R0 in the reactants):

vkn ≈
∫

dVnucl f ∗v1,R

(
R
)

fv2,P
(
R
) ∫

dVe ψ
∗
k R

(
r;R0

)
v
(
r
)
ψn,P

(
r;R0

)
.

The last integral, therefore, represents a constant, and so

|vkn|2 = |VR P |2 |Sosc(v1, v2)|2 ,
76 For large molecules, we may forget the rotational spectrum since, because of the large inertia momentum, the

rotational states form a quasi-continuum (“no quantization”).
77 r stands for those variables on which the wave functions depend.
78 They will be denoted by the subscripts R and P.
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where

VR P =
∫

dVe ψ
∗
k,R

(
r;R0

)
v
(
r
)
ψn,P

(
r;R0

)
Sosc

(
v1, v2

) = ∫ dVnucl f ∗v1,R

(
R
)

fv2,P
(
R
)
. (14.77)

The |Sosc(v1, v2)|2 is called the Franck-Condon factor.

Franck-Condon Factor:
A Franck-Condon factor is the square of the absolute value of the overlap integral of
the vibrational wave functions: one pertaining to the reactants with vibrational quantum
number v1 and the second pertaining to the products with vibrational quantum number v2.

The calculation of VR P is not an easy matter; therefore, we often prefer an empirical approach
by modeling the integral as79

VR P = V0exp[−β(R − R0)],
where R0 stands for the van der Waals distance of the donor and acceptor, R represents their
distance, β > 0 is a constant, and V0 means VR P for the van der Waals distance.80

A large Franck-Condon factor means that by exciting the reactants to the vibrational state v1

there is a particularly high probability for the electron transfer (by tunneling) with the products
in vibrational state v2.

Reorganization Energy

In the Marcus formula, reorganization energy plays an important role. This energy is the
main reason for the electron-transfer reaction barrier.

The reorganization pertains to the neighborhood of the transferred electron81 (i.e., to the
solvent molecules, but also to the donors and acceptors themselves).82 This is why the reorgani-
zation energy, in the first approximation consists of the internal reorganization energy (λi ) that

79 Sometimes the dependence is different. For example, in Twisted Intramolecular Charge Transfer (TICT), after the
electron is transferred between the donor and acceptor moieties (a large VR P ) the molecule undergoes an internal
rotaton of the moieties, which causes an important decreasing of the VR P [K. Rotkiewicz, K.H. Grellmann, and
Z.R. Grabowski, Chem.Phys.Letters, 19, 315 (1973)].

80 As a matter of fact, such formulas only contain a simple message: VR P decreases very fast when the donor and
acceptor distance increases.

81 The neighborhood is adjusted perfectly to the extra electron (to be transferred) in the reactant situation, and very
unfavorable for its future position in the products. Thus, the neighborhood has to be reorganized to be adjusted
for the electron transfer products.

82 It does not matter for an electron what in particular prevents it from jumping.



Chemical Reactions 963

pertains to the donor and acceptor molecules, and of the solvent reorganization energy (λ0):

λ = λi + λ0.

Internal Reorganization Energy

For the electron to have a chance of jumping from molecule A− to molecule83 B, it has to have
the neighborhood reorganized in a special way. The changes should make the extra electron’s
life hard on A− (together with solvation shells) and seduce it by the alluring shape of molecule B
and its solvation shells. To do this, work has to be done. First, this is an energy cost for the proper
deformation of A− to the geometry of molecule A [i.e., already without the extra electron (the
electron obviously does not like this–this is how it is forced out)]. Next, molecule B is deformed
to the geometry of B− (this is what makes B attractive to the extra electron–everything is
prepared for it in B). These two energy effects correspond to λi .

Calculation of λi is simple:

λi = E(A−B; geom AB−)− E(A−B; geom A−B),

where E(A−B; geom AB−) denotes the energy of A−B calculated for the equilibrium geometry
of another species (namely AB−), while E(A−B; geom A−B) stands for the energy of A−B at
its optimum geometry.

Usually the geometry changes in AB− and A−B attain several percentage points of the bond
lengths or the bond angles. The change is therefore relatively small, and we may represent it
by a superposition of the normal mode vectors84 Lk, k = 1, 2, . . . , 3N described in Chapter 7.
We may use the normal modes of the molecule A−B (when we are interested in electron transfer
from A− to B) or of the molecule AB− (back transfer). Some normal modes are more effective
than others in facilitating electron transfer. The normal mode analysis would show85 that

the most effective normal mode of the reactants deforms them in such a way as to resemble
the products. This vibration reorganizes the neighborhood in the desired direction (for
electron transfer to occur), and therefore effectively lowers the reaction barrier.

83 “−” denotes the site of the extra electron. It does not necessarily mean that A− represents an anion.
84 Yet the normal modes are linear combinations of the Cartesian displacements.
85 It usually turns out that there are several such vibrations. They will help electron transfer from A− to B. The

reason is obvious; e.g., the empirical formula for VR P says that a vibration that makes the AB distance smaller
will increase the transfer probability. This could be visible in what is known as resonance Raman spectroscopy
close to a charge transfer optical transition. In such spectroscopy, we have the opportunity to observe particular
vibronic transitions. The intensity of the vibrational transitions (usually from v = 0 to v = 1) of those normal
modes that facilitate electron transfer will be highest.



964 Chapter 14

Solvent Reorganization Energy

Spectroscopic investigations are unable to distinguish between the internal or solvent reorgani-
zation because nature does not distinguish between the solvent and the rest of the neighborhood.
An approximation to the solvent reorganization energy may be calculated by assuming a continu-
ous solvent model. Assuming that the mutual configuration of the donor and acceptor (separated
by distance R) allows for enclosing them in non-overlapping spheres of radii a1 and a2, the
following formula was derived by Marcus:

λ0 = (�e)2
{

1

2a1
+ 1

2a2
− 1

R

}{
1

ε∞
− 1

ε0

}
,

where ε∞ and ε0 denote the dielectric screening constants measured at infinite and zero electro-
magnetic field frequency, respectively, and�e is equal to the effective electric charge transferred
between the donor and acceptor. The dielectric screening constant is related to the polarization of
the medium. The value ε0 is larger than ε∞, because, at a constant electric field, the electrons as
well as the nuclei (mainly an effect of the reorientation of the molecules) keep pace to adjust to the
electric field. At high frequency, only the electrons keep pace; hence ε∞ < ε0. The last parenthe-
sis takes care of the difference; i.e., of the reorientation of the molecules in space (cf. Chapter 12).

Summary

• A chemical reaction represents a molecular catastrophe, in which the electronic structure, as well as the nuclear
framework of the system, changes qualitatively. Most often, a chemical reaction corresponds to the breaking of
an old and the creation of a new bond.

• The simplest chemical reactions correspond to overcoming a single reaction barrier on the way from reactants to
products through a saddle point along the intrinsic reaction coordinate (IRC). The IRC corresponds to the steepest
descent trajectory (in the mass-weighted coordinates) from the saddle point to configurations of reactants and
products.

• Such a process may be described as the system passing from the entrance channel (reactants) to the exit channel
(products) on the electronic energy map as a function of the nuclear coordinates. For reaction A + BC →
AB+C, the map shows a characteristic reaction drainpipe. Passing along the drainpipe bottom usually requires
overcoming a reaction barrier, its height being a fraction of the energy of breaking the old chemical bond.

• The reaction barrier reactants→products, is, as a rule, of different height to the corresponding barrier for the
reverse reaction.

• We have shown how to obtain an accurate solution for three-atomic reactions. After introducing the hyperspher-
ical democratic coordinates, it is possible to solve the Schrödinger equation (within the Ritz approach). We
obtain the rate constant for the state-to-state elementary chemical reaction.

A chemical reaction may be described by the reaction path Hamiltonian in order to focus on the IRC measuring
the motion along the drainpipe bottom (reaction path) and the motion orthogonal to the IRC.

• During the reaction, energy may be exchanged between the vibrational normal modes, as well as between the
vibrational modes and the motion along the IRC.

• Two atoms or molecules may react in many different ways (reaction channels). Even if in some conditions they
do not react (e.g., the noble gases), the reason for this is that their kinetic energy is too low with respect to the
corresponding reaction barrier, and the opening of their electronic closed shells is prohibitively expensive in the
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energy scale. If the kinetic energy increases, more and more reaction channels open because it is possible for
higher and higher energy barriers to be overcome.

• A reaction barrier is a consequence of the “quasi-avoided crossing” of the corresponding diabatic hypersurfaces.
As a result, we obtain two adiabatic hypersurfaces (“lower,” or electronic ground state, and “upper,” or electronic
excited state). Each of the adiabatic hypersurfaces consists of two diabatic parts stitched along the border passing
through the conical intersection point. On both sides of the conical intersection, there are usually two saddle
points along the border line leading in general to two different reaction products (Fig. 14.27).

• The two intersecting diabatic hypersurfaces (at the reactant configuration) represent the electronic ground state
DA and that electronic excited state that resembles the electronic charge distribution of the products–usually
D+A−.

• The barrier appears, therefore, as the cost of opening the closed shell in such a way as to prepare the reactants
for the formation of new bond(s).

• In Marcus electron transfer theory, the barrier also arises as a consequence of the intersection of the two diabatic
potential energy curves. The barrier height depends mainly on the (solvent and reactant) reorganization energy.

Main Concepts, New Terms

acceptor-donor (AD) reaction theory (p. 921)
Berry phase (p. 901)
bobsleigh effect (p. 896)
collective coordinate (p. 957)
Coriolis coupling (p. 906 and 912)
critical points (p. 888)
cross section (p. 901)
curvature coupling (p. 906 and 914)
cycloaddition reaction (p. 944)
democratic coordinates (p. 898)
diabatic and adiabatic states (p. 949)
donating mode (p. 914)
early and late reaction barriers (p. 895)
electrophilic attack (p. 938)
entrance and exit channels (p. 895)
exo- and endothermic reactions (p. 909)
femtosecond spectroscopy (p. 889)
Franck-Condon factors (p. 962)
intrinsic reaction coordinate (IRC) (p. 902)
inverse Marcus region (p. 954)
mass-weighted coordinates (p. 903)

mean force potential (p. 957)
MO and AD pictures (p. 924)
molecular electrostatic potential (p. 921)
natural coordinates (p. 906)
nucleophilic attack (p. 936)
reaction “drainpipe” (p. 895)
reaction path Hamiltonian (p. 905)
reaction rate (p. 901)
reaction spectator (p. 917)
reaction stages (p. 927)
reactive and non-reactive trajectories (p. 892)
reorganization energy (p. 962)
role of states DA,D+A−,D+A−∗ (p. 932)
saddle point (p. 888)
skew coordinate system (p. 893)
steepest descent trajectory (SDP) (p. 891)
steric effect (p. 921)
“trajectory-in-molasses” (p. 904)
vibrational adiabatic approximation (p. 907)
vibrational adiabatic potential (p. 908)
Woodward-Hoffmann rules (p. 942)

From the Research Front

Chemical reactions represent a very difficult problem for quantum chemistry for the following reasons:

• There are a lot of possible reaction channels. Imagine the number of all combinations of atoms in a monomolec-
ular dissociation reaction, also in their various electronic states. We have to select first which reaction to choose
and a good clue may be the lowest possible reaction barrier.

• A huge change in the electronic structure is usually quite demanding for standard quantum mechanical methods.
• Given a chosen single reaction channel, we confront the problem of calculating the potential energy hypersur-

face. Let us recall (as detailed in Chapters 6 and 7) the number of quantum mechanical calculations to perform,
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this is of the order of 103N−6. For as small number of nuclei as N = 4, we already have a million computation
tasks to perform.

• Despite unprecedented progress in the computational technique, the cutting edge possibilities are limited in ab
initio calculations to two diatomic molecules.

On the other hand, a chemist always has some additional information on which chemical reactions are expected
to occur. Very often the most important changes happen in a limited set of atoms e.g., in functional groups, their
reactivity being quite well understood. Freezing the positions of those atoms which are reaction spectators only,
allows us to limit the number of degrees of freedom to consider.

Ad Futurum

Chemical reactions with the reactants precisely oriented in space will be more and more important in chemical
experiments of the future. Here it will be helpful to favor some reactions by supramolecular recognition, docking
in reaction cavities or reactions on prepared surfaces. For theoreticians, such control of orientation will mean the
reduction of certain degrees of freedom. This, together with eliminating or simulating the spectator bonds, may reduce
the task to manageable size. State-to-state calculations and experiments that will describe an effective chemical
reaction that starts from a given quantum mechanical state of the reactants and ends up with another well-defined
quantum mechanical state of the products will become more and more important. Even now, we may design with
great precision practically any sequence of laser pulses (a superposition of the electromagnetic waves, each of a given
duration, amplitude, frequency, and phase). For a chemist, this means that we are able to modulate the shape of the
hypersurfaces (ground and excited states) in a controllable way because every nuclear configuration corresponds to
a dipole moment that interacts with the electric field (cf., Chapter 12). The hypersurfaces may shake and undulate in
such a way as to make the point representing the system move to the product region. In addition, there are possible
excitations, and the products may be obtained via excited hypersurfaces. As a result, we may have selected bonds
broken, and others created in a selective and highly efficient way. This technique demands important developments
in the field of chemical reaction theory and experiment, because currently we are far from such a goal.

Note that the most important achievements in the chemical reaction theory pertained to ideas (von Neumann,
Wigner, Teller, Woodward, Hoffmann, Fukui, Evans, Polanyi, Shaik) rather than computations. The potential energy
hypersurfaces are so complicated that it took the scientists 50 years to elucidate their main machinery. Chemistry
means first of all chemical reactions, and most chemical reactions still represent unbroken ground. This will change
considerably in the years to come. In the longer term this will be the main area of quantum chemistry.

Additional Literature
R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity, Oxford University Press,
Oxford (1987).

An accurate approach to the reactions of small molecules.

H. Eyring, J. Walter, and G. F. Kimball, Quantum Chemistry, John Wiley, New York (1967).
A good old textbook written by the outstanding specialists in the field. To my knowledge, no later textbook has

covered this subject of quantum chemistry in more detail.

R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Acadamic Press, New York (1970).
A summary of the important discoveries made by these authors (Woodward-Hoffmann symmetry rules).

S. S. Shaik, “What happens to molecules as they react? Valence bond approach to reactivity,” J. Amer. Chem. Soc.,
103, 3692 (1981).

An excellent paper that introduces many important concepts in a simple way.
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Questions

1. The intrinsic reaction coordinate (IRC) represents (with N being the number of the nuclei):

a. an arbitrary atom-atom distance, that changes from the value for the reactants’ configuration to that of the
products.

b. a steepest descent path from the saddle point to the corresponding minima (using a Cartesian coordinate
system in the nuclear configuration space).

c. a steepest descent path from the saddle point to the corresponding minima (within a Cartesian coordinate
system of the nuclei scaled by the square roots of the atomic masses).

d. a curve in the (3N−6) -dimensional space that connects two minima corresponding to two stable structures
separated by a barrier.

2. In the vibrational adiabatic approximation within the reaction path Hamiltonian theory,

a. the potential energy for the motion of the nuclei depends on the frequencies and excitations of the normal
modes

b. the vibrational contribution to the potential energy for the nuclei depends on the value of the coordinate s
along the IRC

c. excitations of some particular vibrational modes may lower the reaction barrier.
d. no normal mode can change its vibrational quantum number at any s.

3. The donation mode

a. is the one that offers the largest value of the zero-point energy in the entrance channel.
b. when excited lowers the reaction barrier
c. has a large value of the Coriolis coupling with at least one mode in the exit channel
d. means a mode that has a large value of the curvature coupling in the entrance channel.

4. A spontaneous endothermic reaction proceeds (at T > 0), because

a. the density of the vibrational energy levels is larger in the exit channel than in the entrance channel
b. the energy of the bottom of the entrance channel is higher than that of the exit channel
c. what decides about the direction is not the energy, but the free energy
d. the exit channel is much wider than the entrance channel

5. In the acceptor-donor theory,

a. the reactants correspond to the DA structure
b. in the D+A− structure, the acceptor’s bond becomes weaker, due to the electron occupation of its anti-

bonding molecular orbital
c. the D+A− structure represents a low-energy excited state of the products
d. the reaction barrier comes from an intersection of the diabatic potential energy hypersurfaces for the DA

and D+A− structures.

6. In the acceptor-donor theory at the intermediate stage of the reaction (I),

a. an electron of the donor molecule jumps on the acceptor and occupies its antibonding orbital

b. the structure D2+A2− becomes the dominating one
c. the dominating structures are D+A− and D+A−∗
d. the dominating structures are DA and D+A−

7. At the conical intersection for H3,

a. the excited state adiabatic PES increases linearly with the distance from the conical intersection point
b. the ground state adiabatic PES increases linearly with the distance from the conical intersection point.
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c. the excited state adiabatic PES is composed of two diabatic surfaces corresponding to different electronic
distributions

d. the ground and the excited state adiabatic PESs coincide for any equilateral triangle configuration of H3.

8. The conical intersection

a. pertains to relative position (in energy scale) of two electronic states as functions of the configuration of
the nuclei

b. moving on the ground-state PES from its one diabatic part to the other corresponds to a thermally induced
chemical reaction

c. thanks to the conical intersection a UV excitation from the ground state may end up in a non-radiative
transition back to the ground state.

d. an electronic excitation (according to the Franck-Condon rule) of the reactants leads to a product-looking
compound having the geometry of the reactants.

9. In the electron transfer theory of Marcus,

a. the reorganization energy can be calculated as the energy needed to change the geometry of the reactants
(from the equilibrium one) to the optimum nuclear configuration of the products

b. the larger the absolute value of the energy difference between the products and the reactants the faster the
reaction

c. the activation energy is equal to the reorganization energy

d. when the reactants and the products are the same, the barrier equals to 1
4 of the reorganization energy.

10. In the electron transfer theory of Marcus,

a. one assumes the same force constants for the reactants and for the products
b. the reorganization energy can be calculated as the energy needed to change the geometry of the products

(from the equilibrium one) to the optimum nuclear configuration of the reactants
c. one assumes the harmonic approximation for either of the diabatic states

d. the reason why there is an energy barrier for the electron transfer in the reaction Fe2+ + Fe3+ −→
Fe3+ + Fe2+ is the reorganization energy of the solvent.

Answers

1c,d, 2a,b,c,d, 3b,d, 4a,c,d, 5a,b,d, 6a,d, 7a,c,d, 8a,b,c,d, 9a,d, 10a,b,c,d



CHAPTER 15

Information Processing–
The Mission of Chemistry1

“Concern for man and his fate
it must always form the chief interest

of all technical endeavors. Never forget
this in the midst of your diagrams and equations”

Albert Einstein

Where Are We?

We are on the top of the TREE crown.

An Example

Information is of key importance, not only for human civilization, but also for the functioning of any biological system.
In those systems the hardware and software of information processing is based on chemistry. Thus, molecules, so
interesting by themselves for chemists, theoreticians and experimentalists, and which are difficult to describe correctly,
participate in their “second life,” of a completely different character - they process information. In this special life,
they cooperate with thousands of other molecules in a precise spatiotemporal algorithm that has its own goal. Do you
recall the first words of the Introduction of this book, which talked about thrushes and finches and the program that
has been written inside these animals? This book has made a loop. Imagine that molecules are devoid of this “second
function,” this would mean a disaster for our world.2 Despite of its striking importance this “second life” is virtually
absent in chemistry nowadays, which does not even have an appropriate language for describing information flows.

1 This chapter is based in part on a lecture by the author delivered in Warsaw Academic Laser Center on December
7, 1999, as well as on his article in the Reports of the Advanced Study Institute of the Warsaw Technical University,
2(2013).

2 In that case, we would be unable even to notice it.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00015-5
© 2014 Elsevier B.V. All rights reserved. 969
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What Is It All About?

Chemistry has played, and continues to play, a prominent role in human civilization. If you doubt it, just touch any

surface around you – no matter what it is, it probably represents a product of the chemical industry.3 Pharmaceutical
chemistry may be seen as a real benefactor, for it makes our lives longer and more comfortable. Is it the case,
therefore, that the mission of chemistry is the production of better dyes, polymers, semiconductors, and drugs? No,
its true mission is much more exciting.

Multilevel Supramolecular Structures (Statics) (��) p. 972

• Complex Systems
• Self-Organizing Complex Systems
• Cooperative Interactions
• Combinatorial Chemistry–Molecular Libraries

Chemical Feedback–A Steering Element (Dynamics) (��) p. 978

• A Link to Mathematics–Attractors
• Bifurcations and Chaos
• Brusselator Without Diffusion
• Brusselator with Diffusion–Dissipative Structures
• Hypercycles
• From Self-Organization and Complexity to Information

Information and Informed Matter (��) p. 990

• Abstract Theory of Information
• Teaching Molecules
• Dynamic Information Processing of Chemical Waves
• The Mission of Chemistry
• Molecules as Computer Processors

Why Is This Important?

In this book, we have dealt with many problems of quantum chemistry. If this book were only about quantum
chemistry, I would not write it. My goal was to focus on perspectives and images, rather than on pixel-like, separate
problems. Before being quantum chemists, we are scientists, happy eyewitnesses of miracles going on around us. We
are also human beings and have the right to ask ourselves where we are aiming. Why does the Schrödinger equation
need to be solved? Why does we want to understand the chemical foundations of the world? Just for curiosity? Well,
should curiosity legitimize any investigation?4 What will the future role of chemistry be?

Chemistry is on the threshold of a big leap forward. Students of today will participate in this revolution. The limits
will be set by our imagination, and maybe by our responsibility as well. The way that future progress in chemistry
and biochemistry will be chosen, will determine the fate of human civilization. This is important.

3 Here are just a few random examples in the room I’m sitting in: laptop (polymers), marble table (holes filled with
a polymer), pencil (wood, but coated by a polymer), and box of paper tissue (dyes and polymer coat).

4 Do not answer “yes” too quickly because then it gives other people the right to conduct any experiments they want
on you and me.
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What Is Needed?

• Elements of chemical kinetics
• Elements of differential equations
• Your natural curiosity

Classical Works

The classic papers pertain to three topics that appear at first sight to be unrelated: molecular recognition, differen-
tial equations, and information flow. These topics evolved virtually separately within chemistry, mathematics, and
telecommunication, and only now5 have begun to converge. � It seems that the first experiment with an oscillatory
chemical reaction was reported by Robert Boyle in the 17th century (oxidation of phosphorus). Then several new
reports on chemical oscillations were published (including books). These results did not attract any significant inter-
est in the scientific community because they contradicted the widely known, all-important, and successful equilibrium
thermodynamics. � Emil Hermann Fischer was the first to stress the importance of molecular recognition. In the
article “Einfluss der Configuration auf die Wirkung der Enzyme,” published in Berichte [27, 2,985 (1894)], Fischer
used the self-explanatory words “key-lock” for the perfect fit of an enzyme and its ligand. � In 1903, Jules Henri
Poincaré published in Journal de Mathematiques Pures et Appliques [7, 251 (1881)] an article called “Mémoire sur
les courbes définies par une équation différentielle,” in which he showed that a wide class of two coupled nonlin-
ear differential equations leads to oscillating solutions that tend to a particular behavior independent of the initial
conditions (called the limit cycle). � In 1910, Alfred J. Lotka in an article “Contributions to the theory of chemical
reactions,” published in the Journal of Physical Chemistry, 14, 271, (1910), proposed some differential equations
that corresponded to the kinetics of an autocatalytic chemical reaction, and then, with Vito Volterra, gave a differ-
ential equation that describes a prey-predator feedback (oscillation) known as the Lotka-Volterra model. Chemistry
of that time turned out to be non-prepared for such an idea. � In another domain, Harry Nyquist published an
article called “Certain factors affecting telegraph speed,” in The Bell Systems Technical Journal, 3, 324 (1924); and
four years later, in the same journal [7, 535 (1928)], Ralph V.L. Hartley published a paper called “Transmission of
information,” in which for the first time, the quantitative notion of information and the effectiveness of information
transmission have been considered. � Twenty years later, the same topic was developed by Claude E. Shannon in
“A mathematical theory of communication,” which was also published in The Bell Systems Technical Journal, 27,
379 and 623 (1948), in which he related the notion of information and that of entropy. � The Soviet general Boris
Belousov finally agreed to publish his only unclassified paper, “Periodichesky deystvouyoushchaya rieakcya i yeyo
miekhanism,” in an obscure Soviet medical journal called Sbornik Riefieratow Radiacjonnoj Miediciny, Medgiz,
Moskwa, 1, 145, (1959), reporting spectacular color oscillations in his test tube: yellow Ce4+ and then colorless
Ce3+, and again yellow, etc. (today called the Belousov-Zhabotinsky reaction). Information about this oscillatory
reaction diffused to Western science in the 1960s and made a real breakthrough. � Belgian scientists Ilya Prigogine
and Gregoire Nicolis in a paper called “On symmetry breaking instabilities in dissipative systems,” published in
Journal of Chemical Physics, 46, 3542, (1967), introduced the notion of the dissipative structures. � Charles John
Pedersen reopened (after the pioneering work of Emil Fischer) the field of supramolecular chemistry, publishing
an article called “Cyclic polyethers and their complexes with metal salts,” which appeared in the Journal of the
American Chemical Society, 89, 7017, (1967), and dealt with molecular recognition (cf. Chapter 13). This, together
with later works of Jean-Marie Lehn and Donald J. Cram, introduced the new paradigm of chemistry known as
supramolecular chemistry � Manfred Eigen and Peter Schuster, in three articles “The hypercycle. A principle of nat-
ural self-organization,” in Naturwissenschaften [11 (1977), and 1 and 7 (1978)] introduced to chemistry the idea of
the hypercycles and of the natural selection of molecules. � Mathematician Leonard Adleman published in Science,
[266, 1021 (1994)] an article called “Molecular computation of solutions to combinatorial problems,” in which he
described his own chemical experiments that shed new light on the role that molecules can play in processing infor-
mation. � Ivan Huc and Jean-Marie Lehn in a paper called “Virtual combinatorial libraries: Dynamic generation of

5 The aim of this chapter is to highlight these connections.
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molecular and supramolecular diversity by self-assembly,” published in Proceedings of the National Academy of Sci-
ences (USA), 94, 2106 (1997), stressed importance in chemistry of the idea of a molecular library as an easy-to-shift
equilibrium mixture of molecular complexes, which was in contradiction with usual chemical practice of purifying
substances.

What are the most important problems in chemistry? Usually we have no time to compose
such a list, not to speak of presenting it to our students. The choice made reflects the author’s
personal point of view. The author tried to keep in mind that he is writing for mainly young
(undergraduate and graduate) students, who are seeking not only for detailed research reports,
but also for new guidelines in chemistry, for some general trends in it, and who want to establish
strong and general links among mathematics, physics, chemistry, and biology. An effort was
made to expose the ideas, not only to students’ minds but also to their hearts.

It is good to recall from time to time that all of us: physicists, chemists, and biologists
share the same electrons and nuclei as the objects of our investigation. It sounds trivial, but
sometimes there is an impression that these disciplines investigate three different worlds. In the
triad physics-chemistry-biology, chemistry plays a bridging role. By the middle of the twentieth
century, chemistry had closed the period of the exploration of its basic building blocks: elements,
chemical bonds and their typical lengths, and typical values of angles between chemical bonds.
Future discoveries in this field are not expected to change our ideas fundamentally. Now we
are in a period of using this knowledge for the construction of what we only could dream of. In
this chapter, I will refer now and then to mathematicians and mathematics, who deal with ideal
worlds. For some strange reason, at the foundation of (almost6) everything, there are logic and
mathematics. Physics, while describing the real rather than the ideal world, more than other
natural sciences is symbiotic with mathematics.

15.1 Multilevel Supramolecular Structures (Statics)

15.1.1 Complex Systems

Even a relatively simple system (e.g., an atom) often exhibits strange properties. Understanding
simple objects seemed to represent a key for describing complex systems (e.g., molecules).
Complexity can be explained using the first principles.7 However, the complexity itself may
add some important features. In a complex system, some phenomena may occur, which would
be extremely difficult to foresee from knowledge of their component parts. Most important,
sometimes the behavior of a complex system is universal; i.e., it is independent of the properties
of the parts of which it is composed and related to the very fact that the system consists of many
small parts interacting in a simple way.

6 Yes, we mean almost: e.g., generosity is not included here.
7 In the 1920s after presenting his equation (see Chapter 3), Paul Dirac said that now chemistry is explained. Yet,

the journey from the equation to foreseeing the function of the ribosome in the human body is a long, long way.
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The behavior of a large number of argon atoms represents a difficult task for theoretical
description, but is still quite predictable. When the number of atoms increases, they pack together
in compact clusters similar to those that we would have with the densest packing of tennis balls
(the maximum number of contacts). We may be dealing with complicated phenomena (similar
to chemical reactions) that is connected to the different stability of the clusters (e.g., “magic
numbers” related to particularly robust closed shells8). Yet, the interaction of the argon atoms,
however difficult for quantum mechanical description, comes from the quite primitive two-body,
three-body etc. interactions (as discussed in Chapter 13).

15.1.2 Self-Organizing Complex Systems

Chemistry offers a wealth of intermolecular interactions.
Some intermolecular interactions are specific; i.e., a substrate A interacts with a particu-

lar molecule Bi from a set B1,B2, . . .BN (N is large) much more strongly than with others.
The reasons for this are their shape, the electric field9 fitness, a favorable hydrophobic interac-
tion, etc., resulting either in the “key-lock”, template or “hand-glove” types of interaction (cf.
Chapter 13). A molecule may provide a set of potential contacts localized in space (called a
synthon), which may fit to another synthon of another molecule.

This idea is used in supramolecular chemistry.10 Suppose that a particular reaction does not
proceed with sufficient yield. Usually the reason is that, to run just this reaction, the molecules
have to find themselves in a very specific position in space (a huge entropy barrier to overcome),
but before this happens, they undergo some unwanted reactions. We may however “instruct” the
reactants by substituting them with synthons such that the latter lock the reactants in the right
position in space. The reaction that we want to happen becomes inevitable. The driving force
for all this is the particularly high interaction energy of the reactants. Very often, however, the
interaction energy has to be high, but not too high, in order to enable the reaction products to
separate. This reversibility is one of the critically important features for “intelligent” molecules,
which could adapt to external conditions in a flexible way.

If the system under consideration is relatively simple, even if the matching of corresponding
synthons is completed, we would still have a relatively primitive spatial structure. However, we
may imagine a far more interesting situation, when the following happens:

• The molecules were prepared in such a way as to assure some intermolecular interaction is
particularly attractive. A specific matching is called molecular recognition.

8 Similar closed shells are observed in nuclear matter, where the “tennis balls” correspond to nucleons.
9 Both molecules carry their charge distributions, and their interaction at a certain geometry may considerably lower

the Coulombic energy.
10 C.J. Pedersen, J.Am.Chem.Soc. 89, 2495 and 7017 (1967); B. Dietrich, J.-M. Lehn, and J.-P. Sauvage, Tetrahedron

Lett. 2885 and 2889 (1969), D.J. Cram, J.M. Cram, Science (Washington), 183, 803 (1974).
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• The molecular complexes formed this way may recognize themselves again by using syn-
thons previously existing or created in situ. In this way, a multilevel structure can be formed,
each level characterized by its own stability.

• The multilevel molecular structure may depend very strongly on its environment. When
this changes, the structure may decompose, and eventually another structure may emerge.

Therefore,

a hierarchical multilevel structure is formed, where the levels may exhibit different stabil-
ities with regard to external perturbations.

An example is shown in Fig. 15.1.
There is nothing accidental in this system. The helices are composed of amino acids that

ensure that the external surface is hydrophobic, and therefore they easily enter the hydrophobic
lipid bilayer of the cell walls. The peptide links serve to recognize and dock some particular
signaling molecules. Such seven-helix systems serve in biology as a universal sensor, with
variations to make it specific for some particular molecular recognition and the processes that
occur afterward. After docking with a ligand or by undergoing photochemical isomerization of
the retinal, some conformational changes take place, which after involving several intermediates,
finally result in a signal arriving at a nerve cell. We see what this structure is able to do in
dynamics, not statics.

15.1.3 Cooperative Interactions

Some events may cooperate. Suppose that we have an extended object, which may undergo a set
of events: A,B,C,..., each taking place separately and locally with a small probability. However, it
may happen that for a less extended object, the events cooperate; i.e., event A makes it easier for
event B to occur, and when A and then B happens, this makes it easier for event C to happen, etc.

Self-organization is possible without cooperativity, but cooperativity may greatly increase
its effectiveness. The hemoglobin molecule may serve as an example of cooperativity in inter-
molecular interactions, where its interaction with the first oxygen molecule makes its interaction
with the second easier, despite a considerable separation of the two binding events in space.

An example is shown in Fig. 15.2.
A schematic Fig. 15.2a shows a perfect molecular recognition of an endogenic (i.e., func-

tioning in living organism, native) ligand by the receptor, followed by releasing a signaling
molecule. Fig. 15.2b shows an agonist type of a ligand: its functioning is the same as that of the
native ligand, but it differs from the latter. Finally, Fig. 15.2c shows an imperfect recognition:
the ligand (antagonist) binds, but it fails to release the signaling molecule.
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Fig. 15.1. A universal biological sensor based on rhodopsin (a protein), a schematic view. (a) The sensor consists of seven α-
helices (shown here as ribbons) connected in a sequential way by some oligopeptide links. The molecule is anchored in the cell
wall (lipid bilayer), due to the hydrophobic effect: the rhodopsin’s lipophilic amino acid residues are distributed on the rhodopsin
surface. (b) The α−helices (this time shown for simplicity as cylinders) form a cavity. Some of the cylinders have been cut out to
display a cis-retinal molecule bound (in one of the versions of the sensor) to the amino acid 296 (lysine denoted as K, in helix 7).
(c) The cis-retinal (a chain of alternating single and double bonds) is able to absorb a photon and change its conformation to trans
(at position 11). This triggers the cascade of processes responsible for our vision. The protruding protein loops exhibit specific
interactions with some drugs. Such a system is at the basis of the interactions with about 70% of drugs.
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Fig. 15.2. Some examples of cooperativity (appearance of a phenomenon makes easier another phenomenon to appear). (a) Molec-
ular recognition of synthons (upper side, endogenic ligand-receptor) causes an effect (e.g., releasing of a signaling molecule). (b)
A similar perfect molecular recognition, where the effect appears, despite the fact that the ligand is not endogenic (this is known
as agonist–its shape differs from the natural, endogenic one). (c) An example of antagonist: the recognition is so imperfect that the
effect does not appear, although the ligand is blocking the receptor.

15.1.4 Combinatorial Chemistry–Molecular Libraries

Jean-Marie Lehn (b.1939), French
chemist and professor of the University
of Strasbourg. Lehn, together with
Pedersen and Cram (all three received
the Nobel Prize in 1987), changed the
paradigm of chemistry by stressing the
importance of molecular recognition,
which developed into the field he
termed supramolecular chemistry. By
proposing dynamic molecular libraries,
Lehn broke with another longstanding
idea that of pure substances as the
only desirable products of chemical
reaction, by stressing the potential of
diversity and instructed mixtures. Cour-
tesy of Professor Jean-Marie Lehn.

Chemistry is often regarded
as dealing with pure, uniquely
defined substances, which is
obviously a very demanding
area. There are cases, however,
when a chemist is interested
in a mixture of all possible
isomers instead of a single
isomer or in a mixture of com-
ponents that can form different
complexes.

A complex system in a
labile equilibrium may adjust
itself to an external stimulus

by changing its molecular composition. This is known as the dynamic combinatorial library,11

but in fact it corresponds to quasi-dynamics, for we are interested mainly in shifting equilibrium

11 I.Huc., and J.-M.Lehn, Proc.Natl Acad.Sci.(USA), 94, 2106 (1997).
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Fig. 15.3. A model of the immune system. (a) This image shows schematically some monomers in a solvent. They have the shape
of a slice of pie with two synthons: protruding up and protruding down and differing in shape. The monomers form some side-by-
side aggregates containing from two to six monomers, each aggregate resulting in some pattern of synthons on one face and the
complementary pattern on the other face. Therefore we have a library of all possible associates in the thermodynamical equilibrium.
There are plenty of monomers, a smaller number of dimers, even fewer trimers, etc., up to a tiny concentration of hexamers. (b)
The attacking factor I (the irregular body shown) is best recognized and bound by one of the hexamers. If the concentration of I is
sufficiently high, the equilibrium among the aggregates shifts towards the hexamer mentioned above, which therefore binds all the
molecules of I, making them harmless. If the attacking factor were II and III, binding could be accomplished with some trimers or
dimers (as well as some higher aggregates). The defense is highly specific and at the same time highly flexible (adjustable).

due to an external stimulus. Liquid water may be regarded as a molecular combinatorial library
of various clusters, all of them being in an easy-to-shift equilibrium. This is why water is able to
hydrate a nearly infinite variety of molecular shapes shifting the equilibrium toward the clusters
that are just needed to wrap the solute by a water coat.

The immune system in our body is able to fight a lot of enemies and win, regardless of their
shape and molecular properties (charge distribution). How is it possible? Would the organism
be prepared for everything? Well, yes and no. Let us imagine a system of molecules (building
blocks) having some synthons and able to create some van der Waals complexes (see Fig. 15.3).
Since the van der Waals forces are quite weak, the complexes are in dynamic equilibrium. All
complexes are present in the solution, but possibly none of the complexes dominates.

Now, let us introduce some “enemy-molecules.” The building blocks use part of their synthons
for binding the enemies (that have complementary synthons) and at the same time bind among
themselves in order to strengthen the interaction. Some of the complexes are especially effective
in this binding. Now, the Le Chatelier rule comes into the picture, and the equilibrium shifts
to produce as many of the most effective binders as possible. On top of this, the most effective
binder may undergo a chemical reaction that replaces the weak van der Waals forces by strong
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chemical forces (the reaction rate is enhanced by the supramolecular interaction). The enemy
was tightly secured, and the invasion is over.12

15.2 Chemical Feedback–A Steering Element (Dynamics)

Steering is important to maintain the stability of the system and to its reaction upon the external
conditions imposed. The idea of feedback is at the heart of any steering, since it is used to
control the output of a device to correct its input data. In a sense, the feedback means also a use
of information about itself.

15.2.1 A Link to Mathematics–Attractors

Systems often exhibit a dynamic, or time-dependent, behavior (chemical reactions, non-
equilibrium thermodynamics).

Dynamic systems have been analyzed first in mathematics. When applying an iterative method
of finding a solution to an equation, one first decides which operation is supposed to bring us
closer to the solution, as well as what represents a reasonable zero-order guess (a starting
point being a number, a function, or a sequence of functions). Then one forces an evolution
(“dynamics”) of the approximate solutions by applying the operation first to the starting point,
then to the result obtained by the operation on the starting point, and then again and again until
the convergence is achieved.

Mitchell Feigenbaum (b.1944), American
physicist, employee of the Los Alamos
National Laboratory, and then professor at
the Cornell University and at the Rock-
efeller University. Feigenbaum discovered
attractors after making some observations
just playing with a pocket calculator.

He is also known for discovering some
strange regularity in successive period-
doubling bifurcation processes.

As an example, look at the
equation sin (x2 + 1) − x = 0.
There is an iterative way to solve
this equation numerically: xn+1 =
sin (x2

n + 1), where n stands for
the iteration number. The iterative
scheme means choosing any x0,
and then applying many times a
sequence of four keys on the calcu-
lator keyboard (square, +, 1, sin).

The result (0.0174577) is independent of the starting point chosen. The number 0.0174577
represents an attractor or a fixed point for the operation. As a chemical analog of the fixed point
may serve as the thermodynamic equilibrium of a system (e.g., dissolving a substance in water),
the same can be attained from any starting point (e.g., various versions of making solutions).

12 A simple model of immunological defense, similar to that described here, was proposed by F. Cardull, M. Crego
Calama, B.H.M. Snelling-Ruël, J.-L. Weidmann, A. Bielejewska, R. Fokkens, N.M.M. Nibbering, P. Timmerman,
and D.N. Reinhoudt, J.Chem.Soc.Chem.Commun. 367 (2000).
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There are other types of attrac-
tors. In 1881, Jules Henri Poincaré
has shown that a wide class of two
coupled nonlinear differential equa-
tions leads to the solutions that tend
to a particular oscillatory behavior
independently of the initial condi-
tions (limit cycle).

Let us take an example of a set of
two coupled differential equations:

ṙ = μr − r2,

θ̇ = ω + br2

Jules Henri Poincaré (1854–1912),
French mathematician and physi-
cist and professor at the Sorbonne,
made important contributions to the
theory of differential equations, topol-
ogy, celestial mechanics, probability
theory, and the theory of functi-
ons. Known as the “last universalist,”
Poincaré was excellent in virtually
all domains of his time. Maybe the
exceptions were music and physical
education, where he was scored as,
average at best.

(a dot over a symbol means a derivative with respect to time t), where r and θ are polar
coordinates on a plane, (Fig. 15.4) and ω > 0, μ > 0, b > 0 are constants. When r is small,
one may neglect the r2 term with respect to μr . The resulting equation ṙ = μr > 0 means

Fig. 15.4. An example of a limit cycle. Two special solutions (trajectories) of a set of two differential equations. Trajectories 1
(dashed line) and 2 (solid line) start from a point close to the origin and from a point very distant from the origin, respectively. As
t →∞, the two trajectories merge into a single one (limit cycle).
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that r starts to increase (while bringing the angular velocity θ̇ = ω). However, when r gets
large enough, the −r2 term starts to come into play, and this means an increasing tendency to
diminish r . As a result, a compromise is achieved and one gets a stable trajectory.

Whatever the starting r and θ are, the trajectory tends to be at the circle of radius r = √μ,
and is rotating at a constant velocity θ̇ = ω+bμ. This circle represents a limit cycle. Thus,
a limit cycle may be viewed as a feedback, a prototype of any steering, also a chemical one.

The steering of chemical concentrations is at the heart of how the biological systems control
the concentrations of thousands of substances.

This feedback-type behavior has been first considered in the domain of mathematics, with
explicit targeting chemistry. In 1910, Alfred Lotka proposed some differential equations that
corresponded to the kinetics of an autocatalytic chemical reaction,13 and then with Vito Volterra
derived a differential equation that describes a general feedback mechanism (oscillations) known
as the Lotka-Volterra model. However, chemistry has not been ready yet for this link.

15.2.2 Bifurcations14 and Chaos

Nonlinear dynamics turned out to be extremely sensitive to coupling with some external param-
eters (representing the “neighborhood”).

Let us take what is called the logistic equation:

x = K x(1− x),

where K > 0 is a constant. This is a quadratic equation, and there is no problem with solving
it by the traditional method. However, here we will focus on an iterative scheme:

xn+1 = K xn(1− xn),

which is obviously related to the iterative solution of the logistic equation. The biologist Robert
May gave a numerical exercise to his Australian graduate students. They had to calculate how a
rabbit population evolves when we let it grow according to the rule xn+1 = K xn(1− xn), where
the natural number n denotes the current year, while xn stands for the (relative) population of,
say, rabbits in a field, such that 0 ≤ xn ≤ 1. The number of the rabbits in year (n + 1) is
proportional to their population in the preceding year (xn), because they reproduce very fast,
but the rabbits eat grass, and the field has a finite size. The larger xn is, the less the amount of

13 A.J. Lotka, J. Phys. Chem., 14, 271 (1910).
14 A bifurcation (corresponding to a parameter p) denotes in mathematics a doubling of an object when the param-

eter exceeds a value p0. For instance, when the object corresponds to the number of solutions of equation
x2 + px + 1 = 0, then the bifurcation point p0 = 2. Another example of bifurcation is branching of roads,
valleys, etc.
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grass there is to eat, which makes the rabbits a bit weaker and less able to reproduce (this effect
corresponds to 1− xn).

The logistic equation contains a feedback mechanism.

The constant K measures the population-grass coupling strength (low-quality grass means
a small K ). What interests us is the fixed point of this operation (i.e., the final population the
rabbits develop after many years at a given coupling constant K ). For example, for K = 1, the
evolution leads to a steadily self-reproducing population x0, and x0 depends on K (the larger K
is, the larger x0 is). The graduate students took various values of K . Nobody imagined that this
quadratic equation could be hiding a mystery.

If K were small (0 ≤ K < 1, extremely poor grass), the rabbit population would simply
vanish (as shown in the first part of Fig. 15.5). If K increased (the second part of the plot,
1 ≤ K < 3), the population would flourish. When K exceeded 3, this flourishing would give
a unexpected twist: instead of reaching a fixed point, the system would oscillate between two

Fig. 15.5. The diagram of the fixed points and the limit cycles for the logistic equation as a function of the coupling constant K .
From J. Gleick, Chaos, Viking, New York (1988). Reproduced with permission of the author.
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sizes of the population (every second year, the population was the same, but two consecutive
years have different populations). This resembles the limit cycle described above–the system
just repeats the same cycle all the time.

This mathematical phenomenon was carefully investigated and the results were really amaz-
ing (Fig. 15.5). Further increase in K introduces further qualitative changes. First, for 3 ≤
K < 3.44948, the oscillations have period two (bifurcation), then at 3.44948 ≤ K < 3.5441,
the oscillations have period four (next bifurcation, the four-member limit cycle), and then for
3.5441 ≤ K < 3.5644, the period is eight (next bifurcation).15

Then, the next surprise: exceeding K = 3.56994, we obtain populations that do not exhibit
any regularity (no limit cycle, or just chaos). A further surprise is that this is not the end of the
surprises. Some sections of K began to exhibit odd-period behavior, separated by some sections
of chaotic behavior.

15.2.3 Brusselator Without Diffusion

Could we construct chemical feedback? Why would we want to do that? Those who have ever
seen feedback working know the answer16–this is the very basis of control. Such control of
chemical concentrations is at the heart of how biological systems operate.

Ilya Prigogine (1917–2003) Belgian
physicist and professor at the Uni-
versité Libre de Bruxelles. In 1977,
he received the Nobel prize “for his
contributions to non-equilibrium ther-
modynamics, particularly the theory of
dissipative structures.”

The dissipative structures appear in
a medium as a result of matter and
energy fluxes in open systems.

The first idea is to prepare such a
system in which an increase in the
concentration of species X triggers
the process of its decreasing. The
decreasing occurs by replacing X
by a very special substance Y, each
molecule of which, when disintegrat-
ing, produces several X molecules.
Thus, we would have a scheme (X
denotes a large concentration of X,

and x is a small concentration of X; and this situation is similar for the species Y): (X, y) →
(x,Y)→ (X, y) or oscillations of the concentration of X and Y in time.

15 Mitchell Feigenbaum was interested to see at which value K
(
n
)

the next bifurcation into 2n branches occurs.

It turned out that there is a certain regularity–namely, limn→∞ Kn+1−Kn
Kn+2−Kn+1

= 4.669201609 . . . ≡ δ. To the
astonishment of scientists, the value of δ turned out to be “universal”; i.e., characteristic for many very different
mathematical problems and, therefore, reached a status similar to that of the numbers π and e. The numbers
π and e satisfy the exact relation eiπ = −1, but so far, no similar relation was found for the Feigenbaum
constant. There is an approximate relation (used by physicists in phase transition theory) which is satisfied:
π + tan−1 eπ = 4.669201932 ≈ δ.

16 For example, an oven heats until the temperature exceeds an upper bound, then it switches off. When the temperature
reaches a lower bound, the oven switches itself on (therefore, we have temperature oscillations).
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sink

stirring

Fig. 15.6. A flow reactor (a narrow tube used to make a 1-D description possible) with stirring. The concentrations of A and B
are kept constant at all times (the corresponding fluxes are constant).

Imagine that we carry out a complex chemical reaction in flow conditions17; i.e., the reactants
A and B are pumped with a constant speed into a long, narrow tube reactor, there is intensive
stirring in the reactor, then the products flow out to the sink (Fig. 15.6). After a while, a steady
state is established.18

After A and B are supplied, the substances19 X and Y appear, which play the role of catalysts;
i.e., they participate in the reaction, but in total, their amounts do not change. To model such a
situation, let us assume the following chain of chemical reactions20:

A → X

B+ X → Y+ D

2X+ Y → 3X

X → E

in total :
A + B+ 4X+ Y → D+ E + 4X+ Y

This chain of reactions satisfies our feedback postulates. In step 1, the concentration of X
increases; in step 2, Y is produced at the expense of X; in step 3, substance Y enhances the
production of X (at the expense of itself–this is an autocatalytic step); then again X transforms
to Y (step 2), etc.

If we shut down the fluxes in and out, a thermodynamic equilibrium is attained after a while
with all the concentrations of the six substances (A,B,D,E,X,Y; their concentrations will be
denoted as A, B, D, E, X , Y , respectively) being constant in space (along the reactor) and
time. On the other hand, when we fix the in and out fluxes to be constant (but nonzero) for a

17 Such reaction conditions are typical in industry.
18 This is distinguished from the thermodynamic equilibrium state, where the system is isolated (no energy or matter

flows).
19 These substances appear due to the chemical reactions running.
20 See, e.g., A.Babloyantz, Molecules, Dynamics and Life, Wiley, New York (1987).
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long time, we force the system to be in a steady state and as far from thermodynamic equilibrium
as we wish. In order to simplify the kinetic equations, let us assume the irreversibility of all
the reactions considered (as shown in the reaction equations above) and put all the velocity
constants equal to 1. This gives the kinetic equations for what is called the brusselator model
(of the reactor):

d X

dt
= A − (B + 1)X + X2Y

dY

dt
= B X − X2Y (15.1)

These two equations, plus the initial concentrations of X and Y, totally determine the concen-
trations of all the species as functions of time (due to the stirring, there will be no dependence
on the position in the reaction tube).

Steady State

A steady state (at constant fluxes of A and B) means d X
dt = dY

dt = 0, and therefore, we easily
obtain the corresponding steady-state concentrations Xs, Ys by solving Eq. (15.1)

0 = A − (B + 1)Xs + X2
s Ys

0 = B Xs − X2
s Ys .

You can see that these equations are satisfied by

Xs = A,

Ys = B

A
.

Evolution of Fluctuations from the Steady State

Any system undergoes some spontaneous concentration fluctuations, or we may perturb the
system by injecting a small amount of X and/or Y. What will happen to the stationary state
found a while before, if such a fluctuation happens?

We have fluctuations x and y from the steady state:

X
(
t
) = Xs + x(t),

Y
(
t
) = Ys + y(t). (15.2)

What will happen next?
After inserting Eq. (15.2) into Eq. (15.1) we obtain the equations describing how the fluctu-

ations evolve in time:
dx

dt
= −(B + 1)x + Ys(2Xs x + x2)+ y(X2

s + 2x Xs + x2),

dy

dt
= Bx − Ys(2Xs x + x2)− y(X2

s + 2x Xs + x2). (15.3)
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Since a mathematical theory for arbitrarily large fluctuations does not exist, we will limit
ourselves to small x and y. Then, all the quadratic terms of these fluctuations can be neglected
[the linearization of Eq. (15.3)]. We obtain

dx

dt
= −(B + 1)x + Ys(2Xs x)+ y X2

s ,

dy

dt
= Bx − Ys(2Xs x)− y X2

s . (15.4)

Let us assume fluctuations of the form21

x = x0 exp
(
ωt
)
,

y = y0 exp
(
ωt
)
. (15.5)

and represent particular solutions of Eqs. (15.4) provided the proper values of ω, x0 and y0 are
chosen. After inserting Eq. (15.5) into Eq. (15.4), we obtain the following set of equations for
the unknowns ω, x0, and y0:

ωx0 = (B − 1)x0 + A2 y0

ωy0 = −Bx0 − A2 y0. (15.6)

This represents a set of homogeneous linear equations with unknown to x0 and y0. This
means that we have to ensure that the determinant, composed of the coefficients multiplying
the unknowns x0 and y0, vanishes (cf., secular equation, p. 238):∣∣∣∣ω − B + 1 −A2

B ω + A2

∣∣∣∣ = 0.

This equation is satisfied by some special values22 of ω:

ω1,2 = T ±√T 2 − 4�

2
, (15.7)

where

T = − (A2 − B + 1
)
, (15.8)

� = A2. (15.9)

21 Such a form allows for very versatile behavior: exponential growth (ω > 0), decaying (ω < 0) or staying constant
(ω = 0), as well as for periodic behavior (Reω = 0, Imω �= 0), quasiperiodic growth (Reω > 0, Imω �= 0), or
decay (Reω < 0, Imω �= 0).

22 They represent an analog of the normal mode frequencies from Chapter 7.
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Fig. 15.7. Evolution types of fluctuations from the reaction steady state. The classification is based on the numbers ω1 and ω2
of Eq. (15.7). The individual figures correspond to the rows of Table 15.1. The behavior of the system (in the space of chemical
concentrations) resembles the sliding of a point or rolling of a ball over certain surfaces in a gravitational field directed downward,
as follows: (a) The unstable node resembles sliding from the top of a mountain. (b) The stable node resembles moving inside a
bowl-like shape. (c) The unstable stellar node is similar to case (a), with a slightly different mathematical reason behind it. (d) A
similar situation exists for the stable stellar node [resembles case (b)]. (e) Saddle–the corresponding motion is similar to a ball
rolling over a cavalry saddle. (f) Stable focus–the motion resembles rolling a ball over the interior surface of a cone pointing
downward. (g) Unstable focus–a similar rolling motion, but on the external surface of a cone that points up. (h) Center of marginal
stability corresponds to a circular motion (oscillation).

Table 15.1. Fluctuation stability analysis (i.e., what happens if the concentrations undergo a fluctuation from the steady
state values). The analysis is based on the values of ω1 and ω2 from Eq. (15.7); they may have real (subscript r ) as well
as imaginary (subscript i) parts, hence: ωr ,1, ωi,1, ωr ,2, ωi,2.

T � T 2 − 4� ωr ,1 ωi,1 ωr ,2 ωi,2 Stability

+ + + + 0 + 0 Unstable node
− + + − 0 − 0 Stable node
− + 0 − 0 − 0 Stable stellar node
+ + 0 + 0 + 0 Unstable stellar node
− + − − iω − −iω Stable focus
+ + − + iω + −iω Unstable focus
0 + − 0 iω 0 −iω Center of marginal stability

Fluctuation Stability Analysis

Now it is time to pick the fruits of our hard work.
The way that the fluctuations depend on time is characterized by the roots ω1(t) and ω2(t)

of Eq. (15.7), because x0 and y0 are nothing but some constant amplitudes of the changes. We
have the following possibilities (see Fig. 15.7 and Table 15.1):
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• Both roots are real, which happens only if T 2 − 4� ≥ 0. Since � > 0, the two roots are
of the same sign (sign of T ). If T > 0, then both roots are positive, which means that the
fluctuations x = x0 exp

(
ωt
)
, y = y0 exp

(
ωt
)

increase over time and the system will never
return to the steady state (unstable node). Thus, the steady state represents a repeller of the
concentrations X and Y

• If, as in the previous case at T 2−4� ≥ 0, but this time T < 0, then both roots are negative,
and this means that the fluctuations from the steady state will vanish (stable node). It looks
as if we had in the steady state, an attractor of the concentrations X and Y.

• Now let us take T 2 − 4� = 0, which means that the two roots are equal (“degeneracy”).
This case is similar to the two previous ones. If the two roots are positive, then the point is
called the stable stellar node (attractor); if they are negative, it is called the unstable stellar
node (repeller).

• If T 2 − 4� < 0, we have an interesting situation: both roots are complex conjugates ω1 =
ωr+iωi , ω2 = ωr−iωi , or expω1,2t = expωr t exp

(±iωi t
) = expωr t

(
cosωi t ± i sinωi t

)
.

Note that ωr = T
2 . We have, therefore, three special cases:

• T > 0. Because of expωr t we have, therefore, a monotonic increase in the fluctuations,
and at the same time because of cosωi t ± i sinωi t the two concentrations oscillate.
Such a point is called the unstable focus (and represents a repeller).

• T < 0. In a similar way, we obtain the stable focus, which means some damped
vanishing concentration oscillations (attractor)

• T = 0. In this case, expω1,2t = exp
(±iωi t

)
; i.e., we have the undamped oscillations

of X and Y in time (of Belousov-Zhabotinsky type) about the stationary point Xs, Ys ,
which is called, in this case, the center of marginal stability.

Qualitative Change

Can we qualitatively change the behavior of the reaction? Yes; it is sufficient just to change the
concentrations of A or B (i.e., to rotate the reactor taps). For example, let us gradually change B.
Then, from Eq. (15.8), it follows that the key parameter T begins to change, which leads to an
abrupt qualitative change in the behavior. Such changes may be of great importance (also in the
sense of information processing), as the control switch may serve to regulate the concentrations
of some substances in the reaction mixture.

15.2.4 Brusselator with Diffusion–Dissipative Structures

If the stirrer were removed from the reactor, Eq. (15.1) has to be modified by adding diffusion
terms:

d X

dt
= A − (B + 1)X + X2Y + DX

∂2 X

∂r2 , (15.10)

dY

dt
= B X − X2Y + DY

∂2Y

∂r2 . (15.11)
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(c)

(a) (b)

Fig. 15.8. (a) Such an animal “should not exist.” Indeed, how did the molecules know that they have to make a beautiful pattern?
I have looked at zebras many times, but only recently was I struck by the observation that what I see on the zebra’s skin is described
by the logistic equation. The skin on the zebra’s neck exhibits quasiperiodic oscillations of black and white (period 2), and in the
middle of the zebra’s body, we have a period doubling (period 4), the zebra’s back has period 8. Panel (b) shows the waves of the
chemical information (concentration oscillations in space and time) in the Belousov-Zhabotinski reaction from several sources in
space. A “freezing” (for any reason) of the chemical waves leads to a striking similarity with the zebra’s skin. Panel (c) shows
similar waves of an epidemic in a rather immobile society. The epidemic broke out in center A. Those who have contact with the
sick person get sick, but after some time, they regain their health and become immune for some time. After the immune period is
over, these people get sick again because there are a lot of microbes around. This is how epidemic waves propagate.

A stability analysis similar to that carried out before results not only in oscillations in time,
but also in space; i.e., in the reaction tube, there are waves of the concentrations of X and Y
moving in space (dissipative structures). Now, look at the photo of a zebra (Fig. 15.8) and at
the bifurcation diagram in the logistic equation (Fig. 15.4).

15.2.5 Hypercycles

Let us imagine a system with a chain of consecutive chemical reactions. There are a lot of
such reaction chains around, and it is difficult to single out an elementary reaction without such
a chain being involved. They end up with a final product and everything stops. What would
happen, however, if at a given point of the reaction chain, a substance X were created that was the
same as one of the reactants at a previous stage of the reaction chain? The X would take control
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over its own fate, according to the Le Chatelier rule. In such a way, feedback would have been
established, and instead of the chain, we would have a catalytic cycle. A system with feedback
may adapt to changing external conditions, reaching a steady or oscillatory state. Moreover, in
our system, a number of such independent cycles may be present. However, when two of them
share a common reactant X, both cycles would begin to cooperate, usually exhibiting a very
complicated stability/instability pattern or an oscillatory character. We may think of coupling
many such cycles in a hypercycle, etc.23

Cooperating hypercycles based on multilevel supramolecular structures could behave in an
extremely complex way when subject to variable fluxes of energy and matter. No wonder, then,
that a few photons produced by the prey hidden in the dark and absorbed by the retinal in
the lynx’s eye may trigger an enormous variety of hunting behaviors. Or, maybe from another
domain: a single glimpse of a girl may change the fates of many people,24 and sometimes the
fate of the world. This is because the retina in the eye, hit by the photon of a certain energy
changes, its conformation from cis to trans. This triggers a cascade of further processes, which
ends up as a nerve impulse traveling to the brain, and it is over.

15.2.6 From Self-Organization and Complexity to Information

Using the multilevel supramolecular architectures, one may tailor new materials exhibiting
desired properties; e.g., adapting themselves to changes of the neighborhood (“smart materials”).
The shape and the stability of such architectures may depend on a more or less subtle interplay
of external stimuli. Such materials by the chemical synthesis of their building blocks are taught
to have a function to perform (i.e., an action like ligand binding and/or releasing, transporting a
ligand, an electron, or a photon). A molecule may perform several functions. Sometimes these
functions may be coupled getting a functional cooperativity.

A vast majority of chemistry these days deals either with mastering the structure and/or
studying how this structure behaves when allowing its dynamics in a closed system attaining
equilibrium (a beakerlike approach). In the near future, chemistry will face the nonlinear, far
from equilibrium dynamics of systems composed of multilevel supramolecular architectures.
To my knowledge, no such endeavors have been undertaken yet. These will be very complex and
very sensitive systems. It will probably be several years before we see such systems in action.
It seems much more difficult for contemporary chemistry to control/foresee theoretically what
kind of behavior to expect.

Biology teaches us that an unbelievable effect is possible: molecules may form spontaneously
some large aggregates with very complex dynamics and the whole system is searching for
energy-rich substances to keep itself running. The molecular functions of many molecules may
be coupled in a complex space-temporal relationship at several time and space scales involving

23 M.Eigen and P.Schuster, Naturwissenschaften 11 (1977) and 1 and 7 (1978).
24 Well, think of a husband, children, grandchildren, etc.
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enormous transport problems at huge distances of the size of our body. All this spans the time
scale from femtoseconds to years, and on the spatial scale from angstroms to meters.

Future chemists will deal with molecular scenarios involving interplay of sophisticated, mul-
tilevel structures transforming in nonlinear dynamic processes into an object that has a purpose
and plays a certain complex role. The achievements of today, such as molecular switches,
molecular wires, etc. will be important, but they will represent just a few simple elements of a
space-temporal molecular interplay that will come tomorrow.

15.3 Information and Informed Matter

The body acts as a medium in which a massive information processing is going on. What living
organisms do is exchange information not only at the level of an individual, but also at molecular,
cellular, and tissue levels. The corresponding hardware and software are chemical systems. It
looks as if the chemical identity were much less important than the function the molecules
perform. For example, the protein with the generic name cytochrome C is involved in electron
transfer in all organisms, from yeast to humans. Each species, however, has a specific sequence
of the amino acids in its cytochrome C that differs from the cytochromes of all other species. The
differences range from a single amino acid to 50% of amino acids. Yet the function is preserved
in all these molecules.

Thus, the most advanced chemistry we are dealing with is used for information processing.
Chemistry is still in a stage in which one does not consider quantitatively the exchange of infor-
mation. Information became, however, an object of quantitative research in telecommunication.
As soon as 1924, Harry Nyquist was studying the efficiency of information channels when
using a given number of electric potential entries in telegraphs. A few years later, Ralph Hartley
published an article on measuring information. Twenty years after that, Claude E. Shannon
introduced the notion of information entropy.

15.3.1 Abstract Theory of Information

As a natural measure of the amount of information contained in a binary sequence (a message,
e.g., 00100010 . . .) of length N , one may propose just the number N (i.e., the message length).
To reconstruct the message, one has to ask N questions: does the next position equal 1?

The number of all possible messages of length N is equal to M = 2N . Hence, the amount of
information in a message (I , measured in bits) is

I ≡ N = log2 M .

Assumption of Equal Probabilities

If one assumes that the probability of picking out a particular message to be sent is the same
for all the messages, p = 1

M , one obtains the amount of information in a particular message as
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defined by Hartley:

I = − log2 p.

The receiver does not know M and therefore judges the amount of information (its importance
in bits) by his own estimation of p before the particular information comes. Hence, I may be
viewed as a measure of receiver’s surprise that this particular information came true (a message
about a marginally probable event contains a lot of information). This means that the amount of
information in a message does not represent a feature of this message, but in addition, it tells us
about our knowledge about the message. If one receives the same message twice, the amount
of the first information coming is I1 = − log2 p1 (where p1 is the probability of the event
described by the message as judged by the receiver), while the second (identical) information
carries I2 = − log2 1 = 0, because there is no surprise. The situation becomes more ambiguous,
when there are several receivers, each of them having his own estimation of p. Thus, the amount
of information received by each of them may be different.25

The Probabilities May Differ–The Shannon Entropy of Information

Suppose that we have an alphabet
of letters a1, a2, . . . am . For a
particular language, these are the
letters of the language (m = 26
for the English language), for the
genetic code m = 4 (adenine,
thymine, guanine, cytosine), for
proteins m = 20 (the number of
the native amino acids), etc. A let-
ter ai appears Ni times in a large
object (animal, plant, in biosphere,
a given language etc.). Using the

Claude Elwood Shannon (1916–
2001), American mathematician and
professor at the Massachusetts Insti-
tute of Technology (MIT), his profes-
sional life was associated with the
Bell Laboratories. His idea, which is
obvious today, that information may
be transmitted as a sequence of 0s
and 1s was shocking in 1948. It was
said that Shannon used to under-
stand problems ‘in zero time’.

He was equally successful in
applying his information theory to
the stock market.

Laplace definition, one may calculate for each letter its probability to appear in the object
pi = Ni∑

i Ni
for i = 1, 2, . . .m. Let a long message (e.g., a letter, a portion of DNA, a protein)

contains N such letters. The number of different messages of length N that one is able to
construct from a given set of letters can be computed if we knew how many times every letter
appears in the message. One may estimate these numbers from the probabilities pi , if one
assumes that the message is not only long, but also typical for the language. Then the letter ai

25 On top of that, it is not clear how to define p (i.e., a chance for some event to happen). Laplace’s definition says
that p can be calculated as frequencies if one assumes that there is no reason to think that some events are more
probable than other events. This means subjectivity. Such a procedure is useless in case no repeating is possible,
such as when estimating a chance to win a battle, to die in the next twenty minutes, etc. An alternative definition
of p by Thomas Bayes is subjective as well (“a degree of someone’s conviction”). Both definitions are used in
practice.
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will appear most probably N pi times. Since the permutations of the same letters do not lead to
different messages, the number of different messages of length N is

M = N !
(N p1)!(N p2)! . . . (N pm)! . (15.12)

Analogous with the case of messages of the same probability, one defines the expected amount
of information as the entropy of information, or the Shannon information entropy26:

〈I 〉 = log2 M = log2
N !

(N p1)!(N p2)! . . . (N pm)! ≈ N
m∑
i

[−pi log2 pi
]
.

The expected amount of information per letter of the message, therefore, is

〈I 〉N ≡
〈I 〉
N
≈

m∑
i=1

[−pi log2 pi
]
. (15.13)

Properties of the Information Entropy

• 〈I 〉N may be treated as a function of a discrete probability distribution27: 〈I 〉N = 〈I 〉N
(p1, p2, . . . pm), or as a functional of a continuous distribution p

(
x
)
, x being the random

variable or variables.
• The information entropy attains a minimum (equal to 0) for any of the following situations:
〈I 〉N (1, 0, . . . 0) = 〈I 〉N (0, 1, . . . 0) = 〈I 〉N (0, 0, . . . 1) = 0.

• The information entropy attains a maximum for uniform probability distribution 〈I 〉N
( 1

m ,
1
m , . . .

1
m ), and in such a case, 〈I 〉N =

∑m
i=1

[− 1
m log2

1
m

] = log2 m.

Thus, the information entropy, N 〈I 〉N or 〈I 〉N , represents a measure of our lack of knowl-
edge about which particular message one may expect given the probability distribution of
random variables. If the probability distribution is of the kind (1, 0, . . . 0), the message is fully
determined. The worst case (i.e., the largest lack of knowledge what one may expect as a mes-
sage) corresponds to a uniform distribution (maximum of the information entropy). Our lack of
knowledge will decrease, if we are able to tell with higher probability what will happen.

15.3.2 Teaching Molecules

Molecular recognition represents one of many possible areas of application of the informa-
tion theory. Suppose that we consider the formation of a molecular complex composed of two

26 We use the Stirling formula, valid for large N : ln N ! ≈ N ln N − N . Indeed, log2
N !

(N p1)!(N p2)!...(N pm )! =
log2 N ! − ∑

i log2 (N pi )! = ln N !
ln 2 −

∑
i

ln (N pi )!
ln 2 ≈ N ln N−N

ln 2 − ∑
i

N pi ln (N pi )−N pi
ln 2 = N ln N

ln 2 −∑
i

N pi ln (N pi )
ln 2 = 1

ln 2

[
N ln N −∑i N pi ln N −∑i N pi ln pi

] = −N
∑

i pi log2 pi .
27 It is a symmetric function of variables pi > 0; i.e., 〈I 〉N (p1, p2, . . . pm) = 〈I 〉N (p2, p1, . . . pm), which is

similar for all other permutations of variables.
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molecules A and E. The molecule E is considered as a “teacher” and the A molecule as a
“student.” If all possible stable interaction energy minima on the potential energy surface (PES)
are of the same depth, the lack of knowledge (information entropy) of which particular con-
figuration one observes reaches its maximum. If the depth of one energy well is much larger
than the depth of other energy valleys, the calculated Boltzmann probability is very close to 1
and the corresponding Shannon entropy reaches its minimum. In all other cases of calculating
the Boltzmann probability distribution, one may calculate the information entropy 〈IAE 〉 for A
recognizing E. Then the molecule A may be modified chemically (yielding molecule B) and the
new molecule may fit better the molecule E. Also in this case, one can calculate the information
entropy 〈IB E 〉. If 〈IB E 〉 < 〈IAE 〉, the change from A to B meant acquiring a temperature-
dependent amount of knowledge by the first molecule and we can calculate the information
associated to this molecular lesson as �I = 〈IAE 〉 − 〈IB E 〉, also as a function of tempera-
ture. Such a lesson is meaningless if one considers the educated molecule alone, without any
“teacher” to check the level of education. Information is related to the teaching-and-learning
process through molecular interaction.

Fig. 15.9 shows an example of such a teaching28 in a very simple model of the teacher
molecule E and the taught molecule: A → B → C → D (in three lessons: A → B, B → C,
C → D). The model is simple, we intend only to bring the idea of molecular teaching, rather
than to be interested in particular molecules, not speaking about currently prohibitively time-
consuming study of several PES’s for real molecules of necessarily considerable size (both in
quantum-mechanical ab initio or semi-empirical type calculations). The following simplifying
assumptions have been made in our model:

• The “model molecules” are planar objects (see Fig. 15.9) and approach each other within a
common plane, with possible reversal of the plane of one of the molecules.

• For the sake of simplicity in counting the contact positions, each molecule on the contact
side is built in a certain spatial resolution (the square structure unit shown at the bottom of
Fig. 15.9).

• The interaction energy is zero unless the molecules form a contact along a line length
larger than the structure unit side. The interaction energy is assumed to be equal to 1

3n (in
kcals/mole), where the natural number n is the number of contact units.

All possible contacts have been taken into account, and the normalized Boltzmann probability
distributions, as well as the Shannon information entropies, have been calculated for each pair of
the molecules (i.e., AE, BE, CE, DE) as functions of temperature T within the range from 100 K
to 400 K. The results (Fig. 15.9) show that the molecule A (with the simplest structure) does not
recognize molecule E at any temperature T under study. The ignorance (Shannon’s entropy)
of A with respect to E is of the order of 5 bits. Transforming molecule A into B improves the

28 L. Piela, Rep.Advan.Study Instit., Warsaw Technical University, 2(2012).
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Fig. 15.9. A model of the temperature-dependent molecular teaching the left-side object (“student molecule”) is recognize the
shape of the right-side molecule (“teacher molecule”) in three steps (“lessons”): A→ B→ C→ D. Each of the complexes (AE,
BE, CE, DE) is characterized by the state of ignorance (Shannon information entropy), while the knowledge learned in each lesson
(A→ B, B→ C, C→ D) is a measure of diminishing the ignorance of the student molecule (in bits).

situation, but only at low temperatures, resulting in molecules teaching and learning by 5 bits
at T = 100 K, at room temperature by about 2 bits, and by only 1 bit at T = 400. The second
lesson (teaching B to C) makes the recognition almost perfect below 200 K and very good
matching below 300 K. Finally, the last step (C→ D) gives perfect matching below 300 K and
still very good matching even at 400 K.

15.3.3 Dynamic Information Processing of Chemical Waves

Mathematical Model

The Belousov-Zhabotinsky (BZ) reactive solution can be prepared in a special stable state
that exhibits a remarkable sensitivity (“excitable state”). When a local small perturbation is
applied in such a state, the system comes back to the initial state very quickly, but when the
local perturbation exceeds a certain threshold, the system undergoes very large changes before
returning a long way to the stable state. Another remarkable feature of such a system is that it
becomes refractable to any consecutive excitation (at this locality) during a certain time after
the first excitation (the refraction time). A local perturbation may propagate further in space,
while the originally perturbed place relaxes to the stationary state. This means that there are
profile preserving traveling waves possible.
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Such a system can be
described by a mathematical
model known as the FitzHugh
- Nagumo (FHN) scheme,
originally applied to the prop-
agation of electric excitation
pulses in nerve tissues.29 In
the chemical context, these
(mathematical) waves may
correspond to time- and space-
dependent concentration of
some particular substance.
The BZ system may be viewed
as a medium that can process
information: for instance, an
excess of a chemical species at
a point of the reactor may be
treated as 1 (or “true”), while
its deficit as 0 (or “false”).
Alternatively, the arrival or the
absence of a wave in a prede-
fined part of the reactor may
be interpreted in a similar way.

Boris Pavlovich Belousov (1893–
1970) looked for an inorganic
analog of the biochemical Krebs
cycle. The investigations began
in 1950 in a Soviet secret military
institute. Belousov studied mix-
tures of potassium bromate with
citric acid, and a small admixture
of a catalyst: a salt of cerium
ions. He expected a monotonic
transformation of the yellow Ce4+
ions into the colorless Ce3+.
Instead, he found oscillations of
the color of the solvent (colorless-
yellow-colorless-...etc, also called
by Russians “vodka-cognac-
vodka-...”). He wrote a paper and
sent it to a Soviet journal, but
the paper was rejected with a
referee’s remark that what the
author had described was simply
impossible. His involvement in
classified research caused him
to limit himself to bringing (by an
intermediate) a piece of paper
with reactants and his phone
number written on it. He refused
to meet anybody. Finally, Schnoll
persuaded him to publish his
results. Neither Schnoll nor his

Ph.D. student Zhabotinsky ever
met Belousov, though all they
lived in Moscow.

Belousov’s first chemistry
experience was at the age of 12,
while engaged in making bombs
in the Marxist underground. Stalin
thought of everything. When,
formally underqualified, Belousov
had problems as head of the lab,
Stalin’s handwritten instruction in
ordinary blue pencil on a piece of
paper, “Has to be paid as a head
of laboratory as long as he has
this position,” worked miracles.

After S.E.Schnoll, Gheroy i
zladieyi rossiyskoy nauki Kron-
Press, Moscow (1997).

This was the basis of chemical reactors using the BZ reaction, which can behave as logical gates
(AND, OR, NOT).30

Following Sielewiesiuk and Górecki,31 we consider here the FHN model of the BZ reaction
in the case of a square planar reactor containing a thin layer of the BZ reactive solution [the
position in the reactor is given by

(
x, y

)
, the solution’s depth is assumed being negligible].

Two quantities, u
(
x, y

)
and v

(
x, y

)
, denote the concentration amplitudes of two chemical

substances, one called the activator (which is present in the solution) and the other called the
inhibitor (which is uniformly immobilized on the bottom of the reactor). The time evolution of
their values is modeled by the following set of FHN equations32:

τ
∂u

∂t
= −γ [ku(u − α)(u − 1)+ v]+ Du∇2u, (15.14)

29 R. FitzHugh, Biophysics J., 1, 445 (1961); J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE, 50, 2061 (1962).
30 A. Toth, and K. Showalter, J. Chem. Phys. 103, 2058 (1995); O. Steinbock, P. Kettunen, and K. Showalter, J. Phys.

Chem. 100, 18970 (1996).
31 J. Sielewiesiuk and J. Górecki, Acta Phys. Pol. B 32, 1589 (2001); J. Sielewiesiuk and J. Górecki, GAKUTO Intern.

Series Math. Sci.Appl. 17(2001).
32 R. FitzHugh, Biophysics J., 1, 445 (1961); J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE, 50, 2061 (1962).
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∂v

∂t
= γ u, (15.15)

where t stands for time and τ, k, α, Du are constants, the last one being the diffusion constant
for the activator (the diffusion of the inhibitor is neglected). The system of Eqs. (15.14) and
(15.15) was found to correspond to an excitable state of the BZ solution for the following values
of the parameters33: k = 3, τ = 0.03, α = 0.02, Du = 0.00045. The quantity γ is a parameter
that defines the architecture of the reactor: γ = 1 is set everywhere in the reactor, except the
predefined regions called “passive” ones, where γ = 0. In the passive regions no production of
the activator, only its diffusion, takes place according to Eq. (15.14). The passive regions are
inhibitor-free, since v = const follows from Eq. (15.15), and the constant is set to be zero.

Reactor’s Geometry

After the excitation a traveling wave appears that propagates freely in the regions with γ = 1,
while the passive regions (γ = 0) represent for the wave a kind of barrier to overcome. The
wave penetrates the passive region. For a passive stripe of a certain width, the penetration depth
depends on the stripe/incident wave impact angle34, the most efficient being a perpendicular
impact (with the parallel wave front and the stripe, as follows):

• If the stripe is too wide, the wave disappears.
• If the stripe is sufficiently narrow, the wave passes through it.

We will consider a chemical reactor called later on the double-cross reactor, in which the
passive regions form a double cross (gray stripes) shown in Fig. 15.10a. The gray lines are the
inhibitor-free stripes of a certain width (passive stripes). The role of the double cross is to provide
a partitioning of the reactor into cells, within which the chemical wave can travel freely, while
the stripes play the role of barriers for such a motion. In the model described here, their width
is taken to be sufficiently small to allow the wave cross perpendicular stripes, but sufficiently
large to prohibit leaking the wave sideways when the wave glides along the corridor between
two parallel stripes (with the wave front at a right angle with the stripes).

Test Waves

This is seen in Figs. 15.10b and 15.10c, where a wave front 1 (2) moves with a constant
velocity in the corridor eastward (northward). The wave is displayed at two instants of time:

33 Given the values of parameters for the excitable solution, one can see that for small u, in Eq. (15.14), the terms
linear and quadratic in u have the positive coefficient at the right side; i.e., those terms lead to the increase of u.
Only at very large u does the negative −γ ku3 term come into play, dumping finally the value of u. As one can
see, v acts as an inhibitor, since it enters the right-side of Eq. (15.14) with the negative coefficient for ∂u

∂t . As
seen from Eq. (15.15), the production of the inhibitor v is enhanced by the presence of u, therefore diminishing
u through Eq. (15.14). Thus, a stimulation of u up to very large amplitude before any significant damping by the
−γ ku3 term begins means that Eqs. (15.14) and (15.15) may indeed describe an excitable system.

34 I.N. Motoike and K. Yoshikawa, Phys. Rev. E, 59, 5354 (1999).
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1

(a) (b)

(c) (d)

1

2
2

Fig. 15.10. Geometry of the double-cross reactor in the FHN mathematical model. (a) The gray stripes forming the double cross
are passive regions; i.e., they correspond to the absence of the inhibitor (v = 0, γ = 0). This means that no autocatalytic reaction is
taking place within the stripes, only diffusion is possible. (b,c) Two chemical waves of u are shown at two time values (earlier–lighter
color; later–darker color), one heading east (b), the other one north (c). It was shown in calculations (Sielewiesiuk and Górecki)
that both waves cross the perpendicular stripes, but are able to propagate along a single corridor without any leaking sideways. (d)
Two such waves before the collision in the double-cross reactor. Wave 1 (heading East) comes to the reactor’s center first, wave 2
(heading North) has a delay time t with respect to wave 1.

the lighter color for the earlier time snapshot, while the darker color for the later snapshot.
From Figs. 15.10b and 15.10c, it is seen that the waves move straight along their corridors.
The reason why the waves are numbered is possibly to distinguish them after two such waves
collide. Fig. 15.10d shows preparation to such a collision: we see the two incoming wave fronts
arriving at the center (the second one with delay t).

Waves’ Collisions

After the collision, the outgoing waves (darker colors) are formed. Figs. 15.11–15.17 show how
sensitive the output’s dependence on the delay time between the two waves (1 and 2, lighter
color going in and darker color going out) is. The output looks complicated, but in fact it can be
understood by applying a simple analogy, related to the FHN equations. Imagine the white areas
in Figs. 15.11–15.17 to be covered by grass, the double-cross’s gray stripes being bare ground
(no grass). The variable u may be thought to be a fire activator (like sparks). Since the stripes are
sufficiently narrow, the sparks may diffuse through them (especially at the right-angle impact),
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Fig. 15.11. Several solutions of the FHN equations simulating an excitable BZ reaction mixture in the double-cross reactor. The
two incoming wave fronts (1 and 2) in two entrance channels (from the west and south directions–lighter color) differ in their time
of arrival to the central square. The first wave (1) is heading to the center from the west direction, while the second one (2) goes
north with a delay. The outcoming waves (darker color) depend on the delay time t . If an outcoming wave can be identified with
the corresponding incoming one, they are denoted by the same label (number). For a delay of t < 0.26 time units with respect to
wave 1, there are two outgoing chemical waves: one heading southwest, and the other one heading in the opposite direction. Both
waves have been labeled “1/2” in order to stress that in this case, one cannot tell which of the incoming waves turns out to be the
outcoming one.

despite the fact that there is no grass within the stripes that could support their production over
there. If the fire front is perpendicular to the stripe, it is unable to set fire behind the stripe (unless
it receives some help from another fire front). After the fire front passes, the grass behind begins
to grow and then, after a certain refraction time, becomes again able to catch a fire. Indeed, note
the following:

• When the delay (t > 0) is smaller than t = 0.26 time units (Fig. 15.11), there are two
outgoing chemical waves: one heading southwest, the other one heading in the opposite
direction. Both waves have been labeled 1/2 in order to stress that in this particular case,
one cannot tell which of the incoming waves turn out to be the outcoming ones. Our analogy
gives an explanation: both fire fronts when meeting about the lower-left corner of the central
square help one another (across the stripes) to set fire in the corner, first in the outer one,
then in the inner one (thus creating the two 1/2 fire fronts).

• When 0.28 < t < 3.45 (Fig. 15.12), wave 1 goes through, while wave 2. . . disappears.
Again, this stands to reason because fire front 1 comes first and leaves ashes in the center,
thus causing the wave 2 to die.

• For 3.48 < t < 3.79 (Fig. 15.13), wave 1 goes through, while wave 2 deflects, with a rather
strange deflection angle of 3π

4 . In our analogy, this corresponds to the situation, when the
fire front 1, coming first to the central square, just leaves the square and meets at the central
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Fig. 15.12. The delay time 0.28 < t < 3.45. See caption for Fig. 15.11.

Fig. 15.13. The delay time 3.48 < t < 3.79. See caption for Fig. 15.11.

lower-right corner the incoming fire front 2. Both are able to set fire front (denoted therefore
1/2) heading southeast.

• For 3.81 < t < 4.22 (Fig. 15.14), one has a similar behavior as in the case of 0.28 < t <
3.45 (Fig. 15.12): wave 1 goes through, while wave 2 disappears. This also looks reasonable,
since the fire front 1 is already in the exit corridor, while the fire front 2 does not find the
grass in the center, because the refraction time is longer than the delay time.

• For t = 4.25 (Fig. 15.15), wave 1 continues its motion (eastward), while wave 2 turns right
following the first one; thus, a double-front wave going eastward is formed. Comparing this
to the previous case, now the refraction time is smaller than the delay time and the grass is
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Fig. 15.14. The delay time 3.81 < t < 4.22. See caption for Fig. 15.11.

Fig. 15.15. The delay time t = 4.25. See caption for Fig. 15.11.

already grown, but there are also some sparks left from fire front 1. This causes a propensity
for the fire front 2 to turn right.

• For 4.28 < t < 5.41 (Fig. 15.16), there is a qualitative change once more: wave 2 splits,
so in addition to the double wave described above, we get a second wave traveling north.
In our analogy, since the refraction time is smaller that the delay time the two fire fronts
move almost independent in their corridors, except that when fire front 2 passes the center
it receives some additional sparks from the wave front 1, which already passed the center.
This sets fire to the newly grown grass in the horizontal corridor.
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Fig. 15.16. The delay time 4.28 < t < 5.41. See caption for Fig. 15.11.

Fig. 15.17. The delay time t > 5.41. See caption for Fig. 15.11.

• Finally, for t > 5.41 (Fig. 15.17), the delay is so large that the two waves do not interact
and pass through unchanged.

The versatility of this behavior witnesses about a large potential for such dynamic infor-
mation processing. By using one parameter (time delay), one is able to ignite very different
cells in the reactor. The chemical wave coming to a cell may trigger a cascade of other
processes.
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15.3.4 The Mission of Chemistry

There is an impression that in biology, chemistry is only a kind of substitute, a pretext, no more
than a material carrier of the mission of the whole organism. Textbooks of biochemistry do not
say much about chemistry, they talk about molecular functions to perform, so in a sense they
are about metachemistry. A particular molecule seems not to be so important. What counts is
its function. A good example is enzymes. One type of enzyme may perform the same or similar
functions in many different organisms (from fungi to man). The function is the same, but the
composition of the enzyme changes from species to species: two species may differ by as much
as 70% of the amino acids. However, those amino acids that are crucial for the enzyme function
are preserved in all species.

We may perceive chemistry as a potential medium for information processing. This unbeliev-
able chemical task would be collecting, transporting, changing, dispatching, and transferring of
information.

Chemistry, as we develop it, is far from such a masterpiece. What we are doing currently
might be compared to chemical research by a Martian with a beautifully edited “Auguries of
Innocence” by William Blake. The little green guy would perform a chemical analysis of the
paper (he probably would even make a whole branch of science of that), examine the chemical
composition of the printing dye; with other Martian professors, he would make some crazy
hypotheses on the possible source of the leather cover, list the 26 different black signs, as well
as their perpendicular and horizontal clusters, analyze their frequencies, etc. He would, however,
be very far from the information the book contains, including the boring matrix of black marks:

To see a world in a grain of sand
And heaven in a wild flower
Hold infinity in the palm of your hand
And eternity in an hour

and most important, he could not even imagine his heart if any... beating any faster after read-
ing this passage, because of thousands of associations he could never have had... We are close to

Leonard M.Adleman (b.1945), Ameri-
can mathematician and professor of
computer science and of molecular biol-
ogy at the University of California, Los
Angeles. As a young boy, he dreamed
of becoming a chemist, then a medical
doctor. These dreams led him to the dis-
covery described in this chapter. He not
only designed a new role for molecules,
but also made the chemical experiments
by himself.

what the Martian professor would
do. We have wonderful matter in our
hands from which we could make
chemical poems, but so far we are
able to do only very little.

Molecules could play much more
demanding roles than those that we
have foreseen for them: they can pro-
cess information. The first achieve-
ment in this direction came from
Leonard Adleman, a mathematician.
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15.3.5 Molecules as Computer Processors

Computers have changed human civilization. Their speed doubles every year or so, but the
expectations are even greater. A possible solution is parallel processing, or making lots of
computations at the same time, another is miniaturization. As will be seen in a moment, both
these possibilities could be offered by molecular computers, in which the elementary devices
would be the individual molecules chemists work with all the time. This stage of technology
is not yet achieved. The highly elaborated silicon lithographic technology makes it possible to
create electronic devices of size of the order of 1000 Å. Chemists would be able to go down
to the hundreds or even tens of angstroms. Besides, the new technology would be based on
self-organization (supramolecular chemistry) and self-assembling. In 1 cm3, we could store the
information of a billion of today CD-ROMs. People thought a computer had to have the form
of a metallic box. But then, things changed…

In 1994, mathematician Leonard M.Adleman,35 began his experiments in a genetics lab,
while learning biology in the evenings. Once, reading in bed Watson’s textbook The Molecular
Biology of the Gene he recognized that the features of the polymerase molecule interacting
with the DNA strand described in the textbook perfectly match the features of what is called in
mathematics a Turing machine, or, an abstract representation of a computing device elaborated
just before World War II by Alan Turing.

Alan Mathison Turing (1912–1954), British mathe-
matician, defined a device (“Turing machine”) that
consists of a read/write head that scans a 1-D tape
divided into squares, each of which contains a 0 or a
1. The behavior of the machine is completely charac-
terized by its current state, the content of the square
it is just reading, and a table of instructions.

Such a theoretical concept was of importance in
considering the feasibility of any program coded on
the tape. Turing is known also for decoding further ver-
sions of the German Enigma code during the World
War II. This was a continuation of the breaking of the
Enigma code in 1933 by three young Polish mathe-
maticians: Marian Rejewski, Jerzy Różycki and Hen-
ryk Zygalski. They constructed and at the outbreak
of World War II in July, 1939, delivered to British and
French the famous deciphering bombe. The British

further massive development was especially suc-
cessful, with thousands of top-secret German war
documents deciphered. Alan Turing, a mathematical
genius, was the key person in this effort.

Therefore, it was certain that the polymerase and the DNA (and certainly some other
molecules) could be used as computers. If we think about it now, the computer in our head
is more similar to water, than to a box with hard disks, etc. The achievement of Adleman was
that he was able to translate a known and important mathematical problem into the language of

35 L. Adleman, Science, 266, 1021 (1994).
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Fig. 15.18. A graph of airplane flights. Is the graph of the Hamilton type? This was a mathematical question for the molecular
computer. (a) The graph from the Adleman’s experiment; (b) a simplified graph described in this book.

laboratory recipes, and then using a chemical procedure he was able to solve the mathematical
problem.

Fig. 15.18a shows the original problem that Adleman faced: a graph with 14 airplane flights
involving seven cities.

The task is called the traveling salesman problem, notorious in mathematics as extremely
difficult.36 The salesman begins his journey from the city START and wants to go to the city
GOAL, visiting every other city exactly once. This is feasible only for some flight patterns.
Those graphs for which it is feasible are called Hamilton graphs. When the number of cities is
small, such a problem may be quite effectively solved by the computer in our head. For seven
cities, it takes on average 56 s, as stated by Adleman. For a little larger number, we need a desk
computer, but for 100 cities, all the computers of the world would be unable to provide the
answer. But a molecular computer would have the answer within a second.

William Rowan Hamilton (1805–1865) was an
Astronomer Royal in Ireland. At the age of 17, he
found an error in the famous “Celestial Mechanics”
by Laplace. This drew the attention of scientists and
was the beginning of Hamilton’s scientific career. In
this book, his name is repeated many times (because
of the word Hamiltonian). At the age of 13 he knew
about the same number of languages, among others:
Persian, Sanskrit, Arabic and Hindustani.

How Does a Molecular Computer Work?

Let us recall two important examples of complementary synthons: guanine and cytosine (GC)
and adenine with thymine, which we discussed in Chapter 13, p. 869.

Let us repeat Adleman’s algorithm for a much simpler graph (Fig. 15.18b). What Adleman
did was the following.

36 This problem belongs to what is called NP-hard (NP from non-polynomial ), in which the difficulties increase
faster than any polynomial with the size of the problem.



Information Processing–The Mission of Chemistry 1005

1. He assigned for every city a particular piece of DNA (sequence) composed of eight nucleic
bases:

City A A C T T G C A G
City B T C G G A C T G
City C G G C T A T G T
City D C C G A G C A A

2. Then to each existing flight X→ Y, another eight-base DNA sequence was assigned, which
was composed of the second half of the sequence of X and the first half of the sequence of Y:

Flight A→ B G C A G T C G G
Flight A→ D G C A G C C G A
Flight B→ C A C T G G G C T
Flight B→ D A C T G C C G A
Flight B→ A A C T G A C T T
Flight C→ D A T G T C C G A

3. Then, Adleman ordered the synthesis of the DNA sequences37 of the flights and the DNA
sequences complementary to the cities, i.e.,

co-City A T G A A C G T C
co-City B A G C C T G A C
co-City C C C G A T A C A
co-City D G G C T C G T T

4. All these substances were mixed together and dissolved in water, and then you add a bit of
salt and an enzyme called ligase.38 Your computer just started.

How to Read the Solution

What happened in the test tube? First, matching and pairing of the corresponding synthons took
place. For example, the DNA strand that codes the AB-flight (i.e., GCAGTCGG) found in the
solution the complementary synthon of city B (i.e., the co-city AGCCTGAC), and because of
the molecular recognition mechanism, it made a strong intermolecular complex:

flights G C A G T C G G
...

...
...

...

co-cities A G C C T G A C

,

37 Nowadays is a matter of commercial activity.
38 To be as effective as nature, we want to have conditions similar to those in living cells.
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where the upper part is flights, and the lower part is co-cities. Note that the flights are the only
feasible ones because only feasible flights’ DNA sequences were synthesized. The role of a
co-city’s DNA is to provide the information that there is the possibility to land and take off in
this particular city.

In the example just given, the complex will also find the synthon that corresponds to flight
B→ C i.e., ACTGGGCT, and we obtain a more extended strand

G C A G T C G G |A C T G G G C T
...

...
...

...
...

...
...

...

A G C C T G A C.

In this way, from the upper part (from the lower part as well) of the intermolecular complexes,
we can read a particular itinerary. The ligase was needed because this enzyme binds the loose
ends of the DNA strands (thus removing the perpendicular separators above). Therefore,

every possible itinerary is represented by a DNA oligomer. If the graph were Hamiltonian,
then there would be in the solution the DNA molecule that encodes the right itinerary. In
our example this molecule corresponds to itinerary A→ B→ C→ D and is composed
of 24 nucleotides: GCAGTCGGACTGGGCTATGTCCGA.

Eliminating Wrong Trajectories

Practically, independent of how large N is, after a second, the solution to the traveling salesman
problem is ready. The only problem now is to be able to read the solution. This will currently
take much more than a second, but in principle, it only depends linearly on the number of cities.

To get the solution, we use three techniques: polymerase chain reaction (PCR), electrophore-
sis, and separation through affinity. The machinery behind all this is supramolecular chemistry,
with the recognition of synthons and co-synthons (called hybridization in biochemistry39).

The itineraries coded by the hybridization are mostly wrong. One of the reasons is that they
do not start from the START CITY (A) and do not end up at the GOAL CITY (D). Using the
PCR technique,40 it is possible to increase the concentration of only those itineraries, which start
from START and end at GOAL to such an extent that concentrations of all the other molecules
may be treated as marginal.

39 But this term is a bit misleading, if we think of the hybridization of atomic orbitals, p. 481.
40 The PCR technique is able to copy a chosen DNA sequence and to grow its population, even from a single molecule

to a high concentration, by using the repeated action of an enzyme, a polymerase.
The reaction was invented by Kary B.Mullis (b.1944), an American technical chemist in an industrial company.

In 1983, Mullis was driving to his favorite California surfing area when the idea of a DNA copying molecular
machine struck him suddenly. He stopped the car and made a note of the reaction. In 1993, Mullis received the
Nobel Prize in chemistry “for his invention of the polymerase chain reaction (PCR) method.”
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Still there are a lot of wrong itineraries. First, there are a lot of itineraries that are too long or
too short. This problem may be fixed by electrophoresis,41 which allows the separation of DNA
strands of a given length (in our case, the 24-city itineraries). In this way, we have itineraries
starting from START and ending at GOAL and having 24 cities. They can be copied again by
PCR to increase their concentration for further operations.

Now we have to eliminate wrong itineraries from these 24-city-long sequences: those which
repeat some transit cities and leave others unvisited. This is done by the affinity separation
method.42 First, the co-synthon for the first transit city (in our case, C) on the list of transit
cities (in our case, C and D) is attached to the surface of iron balls. The iron balls are then
added to the solution and after allowing a second to bind to those itineraries that contain the
city, they are picked out using a magnet. The balls are then placed in another test tube, the
attached “itineraries” released from the surface of the iron balls and the empty iron balls are
separated. Thus, we have in a test tube the “itineraries” that begin and end correctly, have the
correct number of 24 nucleotides and certainly go through the first transit city (C) on our list of
transit cities.

The process is repeated for the second transit city, and then the third, etc.

If, in the last test tube, any molecular “itinerary” swims, it has to be the Hamiltonian-
like and is identified by the described procedure. The answer to the salesman problem is,
therefore, positive. Otherwise, the answer is negative.

Thus, a mathematical problem was solved using a kind of molecular biocomputer. From the
information processing point of view, this was possible because parallel processing was under
way–a lot of DNA oligomers interacted with themselves at the same time. The number of such
molecular processors is of the order of 1023. This number is so huge, that such a biocomputer
is able to check (virtually) all possibilities and to find the solution.

Summary

• Chemistry entered the second half of the twentieth century with detailed knowledge of the main building blocks
of molecular structures: atoms, chemical bonds, bond angles and intermolecular interactions.

• The accumulated knowledge now serves to build more and more complex molecular architectures.

41 Electrophoresis is able to physically separate DNA sequences according to their length. It is based on the
electrolysis of a gel. Since DNA is an anion, it will travel through the gel to anode. The shorter the molecule, the
longer distance it will reach. The DNA molecules of a given length can then be picked out by cutting the particular
piece of gel and then they can be multiplied by PCR.

42 The affinity separation method makes possible to separate particular sequences from a mixture of DNA sequences.
This is achieved by providing its co-synthon attached to iron spheres. The particular sequence we are looking for
binds to the surface of the iron ball, which may be separated from the solution afterward using a magnet.
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• In these architectures, we may use chemical bonds (with energy of the order of 50–150 kcal/mol) to build the
molecules, as well as intermolecular interactions (with energy of about 1–20 kcal/mol) to construct supramolec-
ular structures from them.

• In supramolecular chemistry, we operate with synthons (i.e., some special systems of functional groups that fit
together perfectly), giving rise to molecular recognition.

• The interaction leads to a molecular complex that facilitates further evolution of the system: either by a chemical
reaction going on selectively at such a configuration of the molecules, or by further self-organization due to
next-step molecular recognition of the newly formed synthons.

• This may result in forming complex systems of multilevel architecture, each level characterized by its own
stability.

• The self-organization may take place with significant interaction non-additivity effects (“nonlinearity” in math-
ematical terms) that may lead to cooperation in forming the multilevel structure.

• The self-organized structures may interact with other such structures (chemical reactions or association).
• In particular, they may create the autocatalytic cycle, which represents chemical feedback.
• Such cycles may couple in a higher-order cycle, forming hypercycles.
• A dynamic system with hypercycles, when perturbed by an external stimulus, reacts in a complex and nonlinear

way.
• One of the possibilities in non-equilibrium conditions are the limit cycles, which lead to dissipative structures,

which may exhibit periodicity (in space and time) and chaotic behavior.
• Some dynamic systems may represent molecular libraries with the proportions of species strongly depending

on external conditions (cf. the immune system).
• Molecules may act (e.g., transfer photon, electron, proton, ion, induce a conformational change, etc.) thus

performing a function.
• Several functions may cooperate exhibiting a space/time organization of the individual functions.
• Some molecules may serve for effective information processing.
• Information processing seems to represent the ultimate goal of chemistry in the furture.
• Molecules can be “taught” by adjusting their shape to the requirements of a “teacher molecule,” and the

temperature-dependent amount of knowledge acquired can be measured in bits.
• Chemical waves can carry information very effectively changing their behavior that depends strongly on the

spatial and time restrictions imposed.
• Molecules may serve as massively parallel computer processors in a way that is fundamentally distinct from

performance of the contemporary computers.

Main Concepts, New Terms

activator (p. 995)
attractors (p. 978)
autocatalysis (p. 983)
Belousov-Zhabotinsky reaction (p. 994)
bifurcation (p. 980)
brusselator (p. 982)
center of marginal stability (p. 986)
chaos (p. 980)
chemical waves (p. 994)
combinatorial chemistry (p. 976)
complex systems (p. 976)
cooperativity (p. 974)
dissipative structures (p. 987)
DNA computing (p. 1003)

DNA hybridization (p. 1006)
excitable state (p. 994)
feedback (p. 978)
FitzHugh-Nagumo (FHN) model (p. 995)
fixed point (p. 978)
fluctuation (p. 984)
focus (stable and unstable, p. 986)
Hamilton graph (p. 1004)
hypercycles (p. 988)
information (p. 990)
limit cycle (p. 979)
logistic equation (p. 980)
molecular evolution (p. 1010)
molecular lesson (p. 993)
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molecular libraries (p. 976)
nodes (stable and unstable, p. 987)
non-additivity (p. 1008)
NP-hard problem (p. 1004)
PCR (p. 1006)
polymerase (p. 1003)
reaction center (p. 997)
repellers (p. 987)
saddle point of reaction (p. 984)
self-organization (p. 989)
separation by affinity (p. 1004)
Shannon information entropy (p. 992)

stable focus (p. 986)
stable node (p. 986)
stable stellar node (p. 986)
stellar nodes (stable and unstable, p. 986)
student molecule (p. 984)
teacher molecule (p. 994)
teaching molecule (p. 992)
traveling salesman problem (p. 1004)
Turing machine (p. 1003)
unstable focus (p. 986)
unstable node (p. 986)
unstable stellar node (p. 986)

From the Research Front

One might think that to say that organic chemists are able to synthesize almost any molecule is certainly an exag-
geration, but the statement seems sometimes to be very close to reality. Chemists were able to synthesize the
five-Olympic-ring molecule, the three interlocked Borromean rings, the football made of carbon atoms, the “cuban,”
a hydrocarbon cube, “basketan,” in the form of an apple basket (p. 802), a molecule in the form of Möbius band,
etc. Now we may ask why the enormous synthetic effort was undertaken and what these molecules were synthesized
for. Well, the answer seems to be that contemporary chemists are fascinated by their art of making complex and
yet perfect and beautiful molecular objects. The main goal apparently was to demonstrate the mastership of modern
chemistry. However, high symmetry does not necessarily means a particular usefulness. The synthetic targets should
be identified by the careful planning of molecular functions, rather than molecular beauty.

Ad Futurum

We may expect that more and more often chemical research will focus on molecular function, and (later) on the
space/time cooperation of the functions. Research projects will be formulated in a way that will highlight the role of
the molecular function, and will consist of several (interrelated) steps:

1. First, the technical goal will be defined.
2. The molecular functions will be identified, which will make this goal achievable.
3. Theoreticians will design and test in computers (“in silico”) the molecules that will exhibit the above functions.
4. Synthetic chemists will synthesize the molecules designed.
5. Physicochemists will check whether the molecular functions are there.
6. Finally, the material will be checked against the technical goal.

We will be able to produce “intelligent” materials that will respond to external conditions in a previously designed,
complex, yet we hope, predictable way. The materials that will be created this way will not resemble the materials
of today, which are mostly carrying out one often primitive function. The drugs of today are usually quite simple
molecules, which enter the extremely complex system of our body. The drugs of tomorrow will involve much larger
molecules (like proteins). Will we be clever enough to avoid unpredictable interactions with our body? What in
principle do we want to achieve?

What will the motivation of our work be? Will we take into account the psychological needs of the human being,
equilibrium of their minds?

What will the future of the human family be, which was able in the past to create such wonderful music, Chartres
cathedral, breathtaking painting, moving poetry, abstract mathematics, proudly landed on other celestial bodies? In
the past, nothing could stop their curiosity and ingeniousness–they were able to resist the harshest conditions on
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their planet. Humans have reached nowadays the technical level that probably will assure avoiding the next
glaciation,43 maybe allow a small asteroid to push by nuclear weapons off the target, if it were aimed dangerously
at the Earth, also erasing in nuclear war most of its own population, together with the wonders of our civilization.

What is the goal of these beings and what will be the final limit of their existence? What they are aiming at? Do
we want to know the smell of fresh bread, to be charmed by Chartres cathedral with all it is for, to use our knowledge
to cherish the friendship of the human family, or will it be sufficient to pack a newborn into a personal container and
make computers inject substances that will make his neural system as happy as in Seventh Heaven?

Which of the goals we want, as chemists, to participate in?

Additional Literature
M. Eigen and P. Schuster, The Hypercycle. A Principle of Natural Organization, Springer Verlag, Berlin (1979).

An excellent, comprehensible book, written by the leading specialists in the domain of molecular evolution.

I. Prigogine, From Being to Becoming. Time and Complexity in Physical Sciences, Freeman, San Francisco (1980).
A book written by the most prominent specialist in the field.

A. Bablyoyanz, Molecules, Dynamics, and Life, Wiley, New York (1987).
The author describes the scientific achievements of Prigogine and his group, which she participated in. An

excellent, competent book, the most comprehensible of these recommended books.

J.-M. Lehn, Supramolecular chemistry: Concept and Perspectives, VCH, 1995.
A vision of supramolecular chemistry given by one of its founders.

Question

1. An oscillatory solution of differential equations

a. represents an attractor
b. has been discovered in the twentieth century
c. when met in chemistry means concentration oscillations
d. is a limit cycle

2. A dissipative structure

a. may appear in thermodynamic equilibrium
b. represents a space and/or time-dependent distribution of concentrations of chemical substances
c. depends on the matter and energy fluxes in the system
d. may appear, when the system is sufficiently far from a thermodynamic equilibrium

3. A molecular library

a. cannot exist in thermodynamic equilibrium
b. in case of mixture of A and B substances, contains molecular complexes AnBm with various m, n
c. has the ability to shift the equilibrium under the influence of some other substances
d. means a complete set of books on molecular physics.

4. A molecular self-organization

a. means a spontaneous formation of molecular complexes resulting in the supramolecular structures exhibit-
ing a short-range and/or a long-range order

b. is possible only in non-equilibrium
c. is a result of the molecular recognition through spatial and electrical matching
d. is impossible without a planned chemist’ action

43 Well, it is expected within the next 500 years.
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5. In the iterative solution xn+1 = K xn(1− xn) of the logistic equation

a. one obtains a fixed point at any K
b. any attempt of increasing K leads to a bifurcation
c. there is a range of K that corresponds to a chaotic behavior of the solution x
d. at a sufficiently small K the population vanishes

6. In the brussellator without diffusion (x and y stand for fluctuations of the substances X and Y)

a. a stable node corresponds to an exponential vanishing of x and y
b. a stable focus means vanishing oscillations of x and y
c. at least one of the reactions should have an autocatalytic character
d. X is a catalyst but Y is not

7. In an isolated system

a. the entropy does not change
b. after a sufficiently long time the gradient of the temperature must attain zero
c. the concentration gradients are zero
d. one cannot observe dissipative structures

8. Information entropy

a. is equal to −∑i pi log2 pi
b. represents a measure of our ignorance about a coming message
c. is equal to the mean number of questions necessary to define the probability distribution
d. attains the minimum for all pi being equal.

9. An event has only four possible outputs with a priori probabilities: p1 = p2 = p3 = p4 = 1
4 . Reliable

information comes that in fact the probabilities are different: p1 = 1
2 , p2 = 1

4 , p3 = 1
8 , p4 = 1

8 . This
information had I1 bits, and I1 equals to

a. 1 bit
b. 0.5 bit
c. 2 bits
d. 0.25 bit

10. The situation corresponds to Question 9, but a second piece of reliable information coming says that the situation

changed once more and now: p1 = 1
2 , p2 = 0, p3 = 0, p4 = 1

2 . The second piece of information had I2 bits.
We pay for information in proportion to its quantity. Therefore, for the second piece of information we have to
pay

a. the same as for the first piece of information
b. twice as much as for the first piece of information
c. half of the price for the first piece of information
d. three time more than for the first piece of information.

Answers

1a,c,d, 2b,c,d, 3b,c, 4a,c, 5c,d, 6a,b,c, 7b, 8a, b, 9d, 10d





APPENDIX A

Reminding Matrices and Determinants

Matrices

Definition

A n × m matrix A represents a rectangular table of numbers1 Ai j standing like soldiers in n
perfect rows and m columns (index i tells us in which row, and index j tells us in which column
the number Ai j is located):

A =

⎛
⎜⎜⎜⎝

A11 A12 . . . A1m

A21 A22 . . . A2m
...

...
. . .

...

An1 An2 . . . Anm

⎞
⎟⎟⎟⎠ .

This notation allows us to operate the whole matrices (like troops), instead of specifying
what happens to each number (“soldier”) separately. If matrices were not invented, then the
equations would be very long and clumsy, instead of short and clear.

Addition

Two matrices A and B may be added, if their dimensions n and m match. The result is matrix
C = A + B (of the same dimensions as A and B), where each element of C is a sum of the
corresponding elements of A and B:

Ci j = Ai j + Bi j ,

e.g.,

(
1 −1
−3 4

)
+
(

2 1
−2 3

)
=
(

3 0
−5 7

)
.

Multiplying by a Number

A matrix may be multiplied by a number by multiplying every element of the matrix by this

number: cA = B with Bi j = cAi j . E.g., 2

(
1 −1
3 −2

)
=
(

2 −2
6 −4

)
.

1 If instead of the numbers a matrix contained functions, then everything in this Appendix would remain valid (at
particular values of the variables instead of the functions, we would have their values).

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00021-0
© 2014 Elsevier B.V. All rights reserved. e1
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Matrix Product

A product of two matrices A and B is matrix C, denoted by C = AB; its elements are calculated
using elements of A and B:

Ci j =
N∑

k=1

Aik Bkj ,

where the number of the columns (N ) of matrix A has to be equal to the number of rows in
matrix B. The resulting matrix C has the number of rows equal to the number of rows in A and
the number of columns equal to the number of columns in B. Let us see how it works in an
example. The product AB = C:

⎛
⎝ A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

⎞
⎠
⎛
⎜⎜⎝

B11 B12 B13 B14 B15 B16 B17

B21 B22 B23 B24 B25 B26 B27

B31 B32 B33 B34 B35 B36 B37

B41 B42 B43 B44 B45 B46 B47

⎞
⎟⎟⎠

=
⎛
⎝C11 C12 C13 C14 C15 C16 C17

C21 C22 C23 C24 C25 C26 C27

C31 C32 C33 C34 C35 C36 C37

⎞
⎠ ;

e.g., C23 is the dot product of two vectors, or in matrix notation:

C23 =
(

A21 A22 A23 A24
) ·
⎛
⎜⎜⎝

B13

B23

B33

B43

⎞
⎟⎟⎠

= A21 B13 + A22 B23 + A23 B33 + A24 B43.

At this point, note the following:

• The result of matrix multiplication depends in general on whether one has AB or BA; i.e.,
in general,2 AB �= BA.

• Matrix multiplication satisfies the following relation (which is easy to check): A(BC) =
(AB)C; i.e., the parentheses do not count and we can write simply: ABC.

• Often we will have multiplication of a square matrix A by a matrix B composed of one
column. Then, using the rule of matrix multiplication, we obtain the matrix C in the form
of a single column (with the number of elements identical to the dimension of A):⎛

⎜⎜⎜⎝
A11 A12 . . . A1m

A21 A22 . . . A2m
...

...
. . .

...

Am1 Am2 . . . Amm

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

B1

B2
...

Bm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

C1

C2
...

Cm

⎞
⎟⎟⎟⎠ .

2 Note, however, that it may be that AB = BA.
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Transposed Matrix

For a given matrix A, we may define the transposed matrix AT as (AT )i j = A j i .

For example, if A =
(

1 2
−2 3

)
, then AT =

(
1 −2
2 3

)
.

If matrix A = BC, then AT = CT BT ; i.e., the order of multiplication is reversed. Indeed,
(CT BT )i j =∑k (C

T )ik(BT )k j =∑k Cki B jk =∑k B jkCki = (BC) j i = (AT )i j .

Inverse Matrix

For some square matrices A (which will be called non-singular), we can define the so-called
inverse matrix as A−1, which has the property AA−1 = A−1A = 1, where 1 stands for the unit
matrix:

1 =

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...
...
. . .

...

0 0 . . . 1

⎞
⎟⎟⎟⎠. E.g., for the matrix A =

(
2 0
0 3

)
we can find A−1 =

( 1
2 0
0 1

3

)
.

For square matrices, A1 = 1A = A.
If we cannot find A−1 (because it does not exist), then A is called a singular matrix. For

example, the matrix A =
(

1 1
1 1

)
is singular. The inverse matrix for A = BC is A−1 = C−1B−1.

Indeed, AA−1 = BCC−1B−1 = B1B−1 = BB−1 = 1.

Adjoint, Hermitian, Symmetric Matrices

If the matrix A is transposed and all its elements are changed to their complex conjugates, then
we obtain the adjoint matrix denoted as A† = (AT )∗ = (A∗)T . If for a square matrix we have
A† = A, then A is called Hermitian. If A is real, then, of course, A† = AT . In addition, if for

a real square matrix AT = A, then A is called symmetric. Examples: A =
(

1+ i 3− 2i
2+ i 3− i

)
;

AT =
(

1+ i 2+ i
3− 2i 3− i

)
;A† =

(
1− i 2− i

3+ 2i 3+ i

)
.

Matrix A =
(

1 −i
i −2

)
represents an example of a Hermitian matrix because A† = A. Matrix

A =
(

1 −5
−5 −2

)
is a symmetric matrix.

Unitary and Orthogonal Matrices

If for a square matrix A we have A† = A−1, then A is called a unitary matrix. If B is Hermitian,
then the matrix exp (iB) is unitary, where we define exp (iB) by using the Taylor expansion:
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exp (iB) = 1 + iB + 1
2!(iB)2 + · · · . Indeed, [exp (iB)]† = 1 − iBT + 1

2!(−iBT )2 + · · · =
1− iB+ 1

2!(−iB)2 + · · · = exp (−iB), while exp (iB) exp (−iB) = 1.
If A is a real unitary matrix A† = AT , then it is called orthogonal with the property

AT = A−1. For example if A =
(

cos θ sin θ
− sin θ cos θ

)
, then AT =

(
cos θ − sin θ
sin θ cos θ

)
= A−1.

Indeed, AAT =
(

cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=
(

1 0
0 1

)
.

Determinants

Definition

For any square matrix A = {Ai j }, we may calculate a number called its determinant and denoted
by det A or |A|. The determinant is computed by using the Laplace expansion

det A =
N∑
i

(−1)i+ j Ai j Āi j =
N∑
j

(−1)i+ j Ai j Āi j ,

where (N is the dimension of the matrix). Here, the result does not depend on which column
j has been chosen in the first expression or which row i is the second expression. The symbol
Āi j stands for the determinant of the matrix, which is obtained from A by removing the i th row
and the j th column. Thus, we have defined a determinant (of dimension N ) by saying that it is
a certain linear combination of determinants (of dimension N − 1). It is sufficient, then, to tell
what we mean by the determinant that contains only one number c (i.e., having only one row
and one column); this is simply det c ≡ c.

For example, the matrix A =
⎛
⎝1 0 −1

2 2 4
3 −2 −3

⎞
⎠;

and the determinant

det A =
∣∣∣∣∣∣
1 0 −1
2 2 4
3 −2 −3

∣∣∣∣∣∣ = (−1)1+1 × 1×
∣∣∣∣ 2 4
−2 −3

∣∣∣∣+ (−1)1+2 × 0×
∣∣∣∣2 4
3 −3

∣∣∣∣
+ (−1)1+3 × (−1)×

∣∣∣∣2 2
3 −2

∣∣∣∣ =
∣∣∣∣ 2 4
−2 −3

∣∣∣∣−
∣∣∣∣2 2
3 −2

∣∣∣∣
= (2× (−3)−4× (−2))− (2× (−2)−2× 3) = 2+ 10 = 12.

In particular,

∣∣∣∣a b
c d

∣∣∣∣ = ad − bc.
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By repeating (i.e., expanding Āi j , etc.) the Laplace expansion again and again, we arrive
finally at a linear combination of products of the elements:

det A =
∑

P

(−1)p P̂[A11 A22 · · · ANN],

where the permutation operator P̂ pertains to the second indices (shown in bold), and p is the
parity of the permutation P̂ .

Slater Determinant

In this book, we will most often be dealing with determinants of the matrices, whose ele-
ments are functions, not numbers. In particular, the most important will be the so-called Slater
determinants. A Slater determinant for the N electron system is built of the functions called
spinorbitals φi ( j), i = 1, 2, . . . , N , where the symbol j means the space and spin coordinates
(x j , y j , z j , σ j ) of electron j :

ψ(1, 2, . . . , N ) = 1√
N !

∣∣∣∣∣∣∣∣∣

φ1(1) φ1(2) . . . φ1(N )
φ2(1) φ2(2) . . . φ2(N )
...

...
. . .

...

φN (1) φN (2) . . . φN (N )

∣∣∣∣∣∣∣∣∣
.

After that, the Laplace expansion gives

ψ(1, 2, . . . , N ) = 1√
N !
∑

P

(−1)p P̂[φ1(1)φ2(2) · · ·φN (N )],

where the summation is over N ! permutations of the N electrons, P̂ stands for the permutation
operator that acts on the arguments of the product of the spinorbitals [φ1(1)φ2(2) · · ·φN (N )],
and p is the parity of the permutation P̂ (i.e., the number of the transpositions that change
[φ1(1)φ2(2) · · ·φN (N )] into P̂[φ1(1)φ2(2) · · ·φN (N )].

All the properties of determinants also pertain to the Slater determinants.

Some Useful Properties

• det AT = det A.
• From the Laplace expansion, it follows that if one of the spinorbitals is composed of two

functions φi = ξ + ζ , then the Slater determinant is a sum of the two Slater determinants,
one with ξ instead of φi , and the second with ζ instead of φi .

• If we add to a row (column) any linear combination of other rows (columns), the value of
the determinant does not change.
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• If a row (column) is a linear combination of other rows (columns), then det A = 0. In
particular, if two rows (columns) are identical, then det A = 0. Conclusion: in a Slater
determinant, the spinorbitals have to be linearly independent; otherwise, the Slater deter-
minant equals zero.

• If in a matrix A we exchange two rows (columns), then det A changes the sign. Conclusion:
the exchange of the coordinates of any two electrons leads to the change of the sign of the
Slater determinant (the Pauli exclusion principle).

• det (AB) = det A det B.
• From the Laplace expansion, it follows that multiplying the determinant by a number is

equivalent to multiplying an arbitrary row (column) by this number. Therefore, det (cA) =
cN det A, where N is the matrix dimension.3

• If matrix U is unitary then det U = exp (iφ), where φ is a real number. This means that if
U is an orthogonal matrix, then det U = ±1.

3 Note that to multiply a matrix by a number, we have to multiply every element of the matrix by this number.
However, to multiply a determinant by a number means to multiply by this number of one row (column).



APPENDIX B

A Few Words on Spaces, Vectors,
and Functions

Vector Space

A vector space means a set V of elements x, y, . . . (i.e., x, y, . . . ∈ V ), that form an Abelian
group, and can be “added” together1 and “multiplied” by numbers α, β thus producing z =
αx + β y, z ∈ V . The multiplication (α, β are, in general, complex numbers) satisfies the usual
rules:

1 · x = x
α(βx) = (αβ)x
α(x + y) = αx + αy
(α + β)x = αx + βx

Example 1. Integers
The elements x, y, . . . are integers, “addition” means simply the usual addition of integers, the
numbers α, β, . . . are also integers, and “multiplication” means just the usual multiplication.
Does the set of integers form a vector space? Let us see. The integers form a group (with addition
as the operation in the group). Checking all the above axioms, one easily proves that they are
satisfied by integers. Thus, the integers (with the operations defined above) form a vector space.

Example 2. Integers with real multipliers
If, in the previous example, we admitted that α, β are real, then the multiplication of integers
x, y by the real numbers would give the real numbers (not necessarily the integers). Therefore,
in this case, x, y, . . . do not represent any vector space.

Example 3. Vectors
Suppose that x, y, . . . are vectors, each represented by a N -element sequence of real numbers
(they are called the vector components) x = (a1, a2, . . . aN ), y = (b1, b2, . . . bN ), etc. Their
addition (x + y) is an operation that produces the vector z = (a1+ b1, a2+ b2, . . . , aN + bN ).

1 See Appendix C available at booksite.elsevier.com/978-0-444-59436-5; to form a group, any pair of the elements
can be “added” (operation in the group), the addition is associative, there exists a unit element, and to each element
the inverse one exists.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00022-2
© 2014 Elsevier B.V. All rights reserved. e7
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The vectors form an Abelian group because x + y = y + x , the unit (“neutral”) element is
(0, 0, . . . 0), the inverse element to (a1, a2, . . . aN ) is equal to (−a1,−a2, . . .−aN ). Thus, the
vectors form a group. “Multiplication” of a vector by a real number αmeans α(a1, a2, . . . aN ) =
(αa1, αa2, . . . αaN ). Check that the above four axioms are satisfied. Conclusion: the vectors
form a vector space.

Note that if only the positive vector components were allowed, then they would not form
an Abelian group (no neutral element), and on top of that, their addition (which might mean a
subtraction of components, because α, β could be negative) could produce vectors with non-
positive components. Thus, the vectors with all positive components do not form a vector space.

Example 4. Functions
This example is important in the scope of the book. This time, the vectors have real com-
ponents.2 Their “addition” means the addition of two functions f (x) = f1(x) + f2(x). The
“multiplication” means multiplication by a real number. The unit (“neutral”) function means
f = 0, the “inverse” function to f is − f (x) . Therefore, the functions form an Abelian group.
A few seconds are needed to show that the above four axioms are satisfied. Such functions form
a vector space.

Linear Independence A set of vectors is called a set of linearly independent vectors if no
vector of the set can be expressed as a linear combination of the other vectors of the set. The
number of the linear independent vectors in a vector space is called the dimension of the space.

Basis A set of n linearly independent vectors in the n -dimensional space.

Euclidean Space

A vector space (with real multiplying numbers α, β) represents an Euclidean space, if for any
two vectors φ,ψ of the space we assign a real number called a inner product 〈φ|ψ〉 with the
following properties:

• 〈φ|ψ〉 = 〈ψ |φ〉
• 〈αφ|ψ〉 = α〈φ|ψ〉
• 〈φ1 + φ2|ψ〉 = 〈φ1|ψ〉 + 〈φ2|ψ〉
• 〈φ|φ〉 = 0, only if φ = 0

Inner Product and Distance The concept of the inner product is used to introduce the
following:

• The length of the vector φ is defined as ‖φ‖ ≡ √〈φ|φ〉.
• The distance between two vectors φ andψ is defined as a non-negative number ‖φ − ψ‖ =√〈φ − ψ |φ − ψ〉 . The distance satisfies some conditions, which we treat as obvious from

the everyday experience.

2 Note a similarity of the present example with the previous one: a function f (x)may be treated as a vector with the
infinite number of the components. The components are listed in the sequence of increasing x ∈ R, the component
f (x) corresponding to x .
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• The distance from Cracow to Cracow has to equal zero (just insert φ = ψ).
• The distance from Cracow to Warsaw has to be the same as from Warsaw to Cracow (just

exchange φ ↔ ψ).
• The Cracow-Warsaw distance is shorter than or equal to the sum of two distances: Cracow-X

and X-Warsaw for any town X (which is a little more difficult to show).

Schwartz Inequality For any two vectors belonging to the Euclidean space, the Schwartz
inequality holds3:

|〈φ|ψ〉| ≤ ‖φ‖ ‖ψ‖ , (B.1)

or, equivalently
|〈φ|ψ〉|2 ≤ ‖φ‖2 ‖ψ‖2 .

Orthogonal Basis All basis vectors φ j , j = 1, 2, . . . N are orthogonal to each other:〈
φi |φ j

〉 = 0 for i 
= j .
Orthonormal Basis An orthogonal basis set with all the basis vectors having length
‖φi‖ = 1. Thus, for the orthonormal basis set we have

〈
φi |φ j

〉 = δi j .

Example 5. Dot Product
Let us take the vector space from Example 3 and let us introduce the dot product (representing
the inner product) defined as

〈φ|ψ〉 =
N∑

i=1

ai bi . (B.2)

Let us check whether this definition satisfies the properties required for a inner product:

• 〈φ|ψ〉 = 〈ψ |φ〉, because the order of a and b in the sum is irrelevant.
• 〈αφ|ψ〉 = α 〈φ|ψ〉, because the sum says that multiplication of each ai by α is equivalent

to multiplying by α, the inner product.
• 〈φ1 + φ2|ψ〉 = 〈φ1|ψ〉 + 〈φ2|ψ〉, because if the vector φ is decomposed into two vectors

φ = φ1 + φ2 in such a way that ai = ai1 + ai2 (with ai1, ai2 being the components of
φ1, φ2, respectively), then the summation of 〈φ1|ψ〉 + 〈φ2|ψ〉gives 〈φ|ψ〉.

• 〈φ|φ〉 = ∑N
i=1

(
ai
)2, and this is equal to zero if and only if all the components ai = 0.

Therefore, the proposed formula operates as the inner product definition requires.

Unitary Space

If three changes are introduced in the definition of the Euclidean space, then we would obtain
another space: the unitary space. These changes are as follows:

• The numbers α, β, . . . are complex instead of real.

3 The Schwartz inequality agrees with what everyone recalls about the dot product of two vectors: 〈x |y〉 =
‖x‖ ‖y‖ cos θ , where θ is the angle between the two vectors. Taking the absolute value of both sides, we obtain
|〈x |y〉| = ‖x‖ ‖y‖ |cos θ | ≤ ‖x‖ ‖y‖.
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• The inner product instead of 〈φ|ψ〉 = 〈ψ |φ〉 has the property 〈φ|ψ〉 = 〈ψ |φ〉∗.
• Instead of 〈αφ|ψ〉 = α 〈φ|ψ〉, we have4: 〈αφ|ψ〉 = α∗ 〈φ|ψ〉.

After the new inner product definition is introduced, the related quantities, the length of
a vector and the distance between the vectors, are defined in exactly the same way as in the
Euclidean space. Also, the definitions of the orthogonality and the Schwartz inequality remain
unchanged.

Hilbert Space

This is for us the most important unitary space–its elements are wave functions, which often
will be denoted as f , g, . . . , φ, χ,ψ, . . .. etc. The wave functions with which we are dealing
in quantum mechanics (according to John von Neumann) are the elements (i.e., vectors) of the
Hilbert space. The inner product of two functions f and g means 〈 f |g〉 ≡ ∫ f ∗gdτ , where the
integration is over the whole space of variables, on which both functions depend. The length
of vector f is denoted by || f || = √〈 f | f 〉. Consequently, the orthogonality of two functions f
and g means 〈 f |g〉 = 0 i.e., an integral

∫
f ∗g dτ = 0 over the whole range of the coordinates

on which the function f depends. The Dirac notation, Fig. 1.6 and Eq. (1.9), is in fact the inner
product of such functions in a unitary space.

David Hilbert (1862–1943),
German mathematician and
professor at the University of
Göttingen. At the II Congress
of Mathematicians in Paris,
Hilbert formulated 23 goals
of mathematics considered
by him as very important.
This had a great impact on
mathematics and led to some
unexpected results (e.g., the
Gödel theorem). Hilbert’s
investigations in 1900–1910
on integral equations resulted
in the concept of the Hilbert
space. Hilbert worked
also on the foundations of
mathematics, on mathemati-
cal physics, number theory,

variational calculus, etc. This
hard-working and extremely
prolific mathematician was
deeply depressed by Hitler’s
seizing of power. He regularly
came to his office, but did
not write any single sheet of
paper.

Let us imagine an infinite
sequence of functions (i.e., vectors)
f1, f2, f3, . . . in a unitary space
(Fig. B.1). The sequence will be
called a Cauchy sequence if for a
given ε > 0, a natural number N
can be found, such that for i > N ,
we will have ‖ fi+1 − fi‖ < ε.
In other words, in a Cauchy
sequence, the distances between
the consecutive vectors (functions)
decrease, when we go to suffi-
ciently large indices; i.e., the func-
tions become more and more simi-
lar to each other. If the converging
Cauchy sequences have their limits
.(functions) that belong to the unitary space, then such a space is called the Hilbert space

A basis in the Hilbert space is a set of the linearly independent functions (vectors) such that
any function belonging to the space can be expressed as a linear combination of the basis set

4 At the same time, 〈x |αy〉 = α 〈x |y〉.
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f1
f2

f3 f4
f

Fig. B.1. A pictorial representation of the Hilbert space. We have a vector space (each vector represents a wave function) and
a series of unit vectors fi , that differ less and less (Cauchy series). If any convergent Cauchy series has its limit belonging to the
vector space, then the space represents the Hilbert space.

Fig. B.2. A pictorial representation of something that surely cannot be represented. Using poetic license, an orthonormal basis
in the Hilbert space looks like a “hedgehog” of the unit vectors (their number equal to∞), each pair of them orthogonal. This is in
analogy to a 2-D or 3-D basis set, where the “hedgehog” has two or three orthogonal unit vectors.

functions. Because of the infinite number of dimensions, the number of the basis set functions
is infinite. This is difficult to imagine. In analogy with a 3-D Euclidean space, we may imagine
an orthonormal basis as the unit vectors protruding from the origin toward an infinite number
of directions (like a “hedgehog”; Fig. B.2).

Each vector (function) can be represented as a linear combination of the “hedgehog” func-
tions. It is seen, that we may rotate the “hedgehog” (i.e., the basis set)5 and the completeness of
the basis will be preserved; i.e., any vector of the Hilbert space can be represented as a linear
combination of the new basis set vectors.

5 The new orthonormal basis set is obtained by a unitary transformation of the old one.
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Linear Operator

Operator Â transforms any vector φ from the operator’s domain into vector ψ (both vectors

φ,ψ belong to the unitary space): Â(φ) = ψ , what is written as Âφ = ψ . A linear operator
satisfies Â(c1φ1 + c2φ2) = c1 Âφ1 + c2 Âφ2, where c1 and c2 stand for complex numbers.

We define the following:

• Sum of operators: Â + B̂ = Ĉ as Ĉφ = Âφ + B̂φ.

• Product of operators: Â B̂ = Ĉ as Ĉφ = Â(B̂(φ)).

If for two operators we have Â B̂ = B̂ Â, then we say they commute, or their commutator[
Â, B̂

]
≡ Â B̂ − B̂ Â = 0. In general, Â B̂ 
= B̂ Â; i.e., the operators do not commute.

• Inverse operator (if exists): Â−1( Âφ) = φ.

Adjoint Operator

If for an operator Â we can find a new operator Â† , such that for any two vectors φ and ψ of
the unitary space6, we have7 〈

φ| Âψ
〉
=
〈
Â†φ|ψ

〉
, (B.3)

then we say that Â† is the adjoint operator to Â.

Hermitian Operator

If Â† = Â, then the operator Â will be called by us self-adjoint or Hermitian operator8:〈
φ| Âψ

〉
=
〈
Âφ|ψ

〉
. (B.4)

Unitary Operator

A unitary operator Û transforms a vector φ into ψ = Ûφ, both belonging to the unitary space
(the domain is the unitary space), and the inner product is preserved:〈

Ûφ|Ûψ
〉
= 〈φ|ψ〉 .

6 The formal definition is less restrictive, and the domains of the operators Â† and Â do not need to extend over the
whole unitary space.

7 Sometimes in the Dirac notation, we make a useful modification:
〈
φ| Âψ

〉
≡
〈
φ| Â|ψ

〉
.

8 The self-adjoint and Hermitian operators differ in mathematics (the matter of domains), but we will ignore this
difference in this book.
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This means that any unitary transformation preserves the angle between the vectors φ andψ ;
i.e., the angle betweenφ andψ is the same as the angle between Ûφ and Ûψ . The transformation

also preserves the length of the vector because
〈
Ûφ|Ûφ

〉
= 〈φ|φ〉. This is why the operator Û

can be thought of as a transformation related to a motion in the unitary space (rotation, reflection,

etc.). For a unitary operator, we have Û †Û = 1, because
〈
Ûφ|Ûψ

〉
=
〈
φ|Û †Ûψ

〉
= 〈φ|ψ〉.

Eigenvalue Equation

If for a particular vector φ, we have

Âφ = aφ, (B.5)

where a is a complex number and φ 
= 0, then φ is called an eigenvector9 of the operator
Â corresponding to the eigenvalue a. The operator Â may have an infinite number or a finite
number (including number zero) of the eigenvalues, labeled by the subscript i :

Âφi = aiφi .

Hermitian operators have the following important properties10:

If Â represents a Hermitian operator, its eigenvalues ai are real numbers, and its eigenvec-
tors φi that correspond to different eigenvalues are orthogonal.

9 In quantum mechanics, the eigenvector φ will correspond to a function (a vector in the Hilbert space) and therefore
is called also the eigenfunction.

10 We have the eigenvalue problem Âφ = aφ. Finding the complex conjugate of both sides, we obtain ( Âφ)∗ = a∗φ∗.
Multiplying the first equation by φ∗ and integrating, and then using φ and doing the same with the second equation,

we get
〈
φ| Âφ

〉
= a 〈φ|φ〉 and

〈
Âφ|φ

〉
= a∗ 〈φ|φ〉. But Â is Hermitian, and therefore the left sides of both equations

are equal. Subtracting them, we have (a − a∗) 〈φ|φ〉 = 0. Since 〈φ|φ〉 
= 0, because φ 
= 0, then a = a∗. This is
what we wanted to show.

The orthogonality of the eigenfunctions of a Hermitian operator (corresponding to different eigenvalues) may

be proved as follows. We have Âφ1 = a1φ1, Âφ2 = a2φ2, with a1 
= a2. Multiplying the first equation by φ∗2 and

integrating, one obtains
〈
φ2| Âφ1

〉
= a1 〈φ2|φ1〉. Then, let us make the complex conjugate of the second equation:

( Âφ2)
∗ = a2φ

∗
2 , where we have used that a2 = a∗2 (this was proved above). Then, let us multiply it by φ1 and

integrate:
〈
Âφ2|φ1

〉
= a2 〈φ2|φ1〉. Subtracting the two equations, we have 0 = (a1−a2) 〈φ2|φ1〉, and taking into

account that a1 − a2 
= 0, this gives 〈φ2|φ1〉 = 0.
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The number of the linear independent eigenvectors that correspond to a given eigenvalue a
is called the degree of degeneracy of the eigenvalue. Such vectors form a basis of the invariant
space of the operator Â; i.e., any linear combination of the vectors represents a vector that is
also an eigenvector (with the same eigenvalue a). If the eigenvectors corresponded to different
eigenvalues, then their linear combination is not an eigenvector of Â. Both things need a few
seconds to appear.

One can show that the eigenvectors of a Hermitian operator form the complete basis set11 in
the Hilbert space; i.e., any function of class12 Q can be expanded in a linear combination of the
basis set.

Sometimes an eigenvectorφ of the operator Â (with the eigenvalue a) is subject to an operator
f ( Â), where f is an analytic function. Then13

f ( Â)φ = f (a)φ. (B.6)

Commutation and Eigenvalues

At times, we will use a theorem that if two linear and Hermitian operators Â and B̂ commute,
then they have a common set of the eigenfunctions, and vice versa.

We will prove this theorem in the case of no degeneracy (i.e., there is only one linearly
independent vector). We have an eigenvalue equation B̂ψn = bnψn . Applying to both sides of

the operator Â and using the commutation relation Â B̂ = B̂ Â, we get B̂
(

Âψn

)
= bn

(
Âψn

)
.

This means that Âψn is an eigenvector of B̂ corresponding to the eigenvalue bn . But we know
already such a vector–this is ψn . But this can happen only if the two vectors are proportional:
Âψn = anψn , which means that ψn is an eigenvector of Â.

Now, let us look at the inverse theorem. We have two operators and any eigenvector of Â is
also an eigenvector of B̂. We want to show that the two operators commute. Let us write the
two eigenvalue equations: Âψn = anψn and B̂ψn = bnψn . Let us take a vector φ. Since the
eigenvectors {ψn} form the complete set, then

φ = �ncnψn.

11 This basis set may be assumed to be orthonormal because the eigenfunctions are as follows:

• As square-integrable, they can be normalized.
• If they correspond to different eigenvalues, they are automatically orthogonal.
• If they correspond to the same eigenvalue, they can be orthogonalized (still remaining eigenfunctions) by a

method described in Appendix J available at booksite.elsevier.com/978-0-444-59436-5.

12 That is, continuous, single-valued and square integrable, see Fig. 2.6.
13 The operator f ( Â) is defined through the Taylor expansion of the function f : f ( Â) = c0 + c1 Â + c2 Â2 + · · ·.

If now the operator f ( Â) acts on an eigenfunction of Â, then, because Ân x = an x , we obtain the result.

http://booksite.elsevier.com/978-0-444-59436-5
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Applying the commutator [ Â, B̂] = Â B̂ − B̂ Â, we have
[ Â, B̂]φ = Â B̂φ − B̂ Âφ = Â B̂�ncnψn − B̂ Â�ncnψn = Â�ncn B̂ψn − B̂�ncn Âψn =

Â�ncnbnψn− B̂�ncnanψn = �ncnbn Âψn−�ncnan B̂ψn = �ncnbnanψn−�ncnanbnψn = 0.
This means that the two operators commute.





APPENDIX C

Group Theory in Spectroscopy

The group theory in this textbook will be treated in a practical way, as one of many useful tools
rather than as a field of abstract mathematics.1

Quite a lot of what we will be discussing in this appendix was
invented by Evariste Galois. He was only 21, when he died in a
duel. Galois spent his last night writing down his group theory.

Evariste Galois (1811–1832), a French mathematician,
created also many fundamental ideas in the theory of algebraic
equations

Our goal will be to predict the selection rules in the ultraviolet (UV), visual (VIS), and
infrared (IR) molecular spectra.

We will try to be concise, but examples need explanations, and there are few amateurs of dry
formulas.

Group

Imagine a set of elements R̂i , i = 1, 2, . . . g. We say that they form a group G of the order2 g,
if the following four conditions are satisfied:

1 Symmetry may be viewed either as beautiful or primitive. It seems that from the psychological point of view, the
symmetry stresses people’s longing for simplicity, order, and understanding. On the other hand, symmetry means
less information and hence often a kind of wearingly dull stimuli. Possibly an interplay of these two opposite
features leads us to consider as beautiful what has a broken symmetry. The trees and the leaves exhibit broken
symmetry and look beautiful. Ancient architects knew the secrets of creating beautiful buildings, which relied on
symmetry breaking, which is substantial but almost invisible from distance.

2 g may be finite or infinite. In practical applications in this Appendix, g will be always finite.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00023-4
© 2014 Elsevier B.V. All rights reserved. e17
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1. There exists an operation called multiplication, R̂i · R̂ j , which associates with every pair of

the elements of G another element of G; i.e., R̂i · R̂ j = R̂k . Hereafter, the multiplication
R̂i · R̂ j will be denoted simply as R̂i R̂ j . Thus, the elements can be multiplied by each other,
and the result always belongs to the group.

2. The multiplication is associative3; i.e., for any three elements of G, we have R̂i (R̂ j R̂k) =
(R̂i R̂ j )R̂k .

3. Among R̂i ∈ G, there exists an identity element, denoted by Ê , which has a handy property:

R̂i Ê = R̂i and Ê R̂i = R̂i for any i .
4. To each R̂i we can find such an element of G (denoted as R̂−1

i , called the inverse element

with respect to R̂i ), that R̂i R̂−1
i = Ê ; also R̂−1

i R̂i = Ê .

Example 1. A Four-Element Group
The elements 1,−1, i,−i , with the operation chosen as the ordinary multiplication of num-

bers, form a group of order 4. Indeed, any product of these numbers gives one of them. Here is
the corresponding multiplication table

Second in the product
1 −1 i −i

First in the product 1 1 −1 i −i
−1 −1 1 −i i

i i −i −1 1
−i −i i 1 −1

Note the following:

Abelian Group:
The table is symmetric with respect to the diagonal. A group with symmetric multiplication
table is called Abelian.

The associativity requirement is, of course, satisfied. The unit element is 1. You can always
find an inverse element. Indeed, for 1, it is 1; for −1, it is −1; for i , it is −i ; and for −i , it is i .
Thus, all conditions are fulfilled, and g = 4.

Example 2. Group of Integers
Let us take G as the set of integers with the “multiplication” being the regular addition of

numbers. Let us check. The sum of two integers is an integer, so the requirement 1 is satisfied.
The operation is associative, because the addition is. The unit element is, of course, 0. The
inverse element to an integer means the opposite number. Thus, G is a group of order g = ∞.

3 Thanks to that, the expressions similar to R̂i R̂ j R̂k have an unambiguous meaning.
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Example 3. Group of Non-singular Matrices
All non-singular n × n matrices4 with matrix multiplication as the operation form a group.

Let us look at this now. Multiplication of a non-singular matrix A (i.e., det A �= 0) by a non-
singular matrix B gives a non-singular matrix C = AB, because det C = det A det B �= 0.
The unit element is the unit matrix 1, and the inverse element exists (this is why we needed
the non-singularity) and is equal to A−1. Also, from the matrix multiplication rule, we have(
AB
)

C = A
(
BC
)
. This is a group of the order∞.

Example 4. Group of Unitary Matrices U(n)
In particular, all the unitary n × n matrices form a group with matrix multiplication as the

group multiplication operation. Let us take a look at this. Any such multiplication is feasible, and
the product represents a unitary matrix (if matrices U1 and U2 are unitary–i.e., U†

1 = U−1
1 and

U†
2 = U−1

2 –then U = U1U2 is also unitary because U−1 = U−1
2 U−1

1 = U†
2U†

1 =
(
U1U2
)† =

U†), matrix multiplication is associative, the identity element means the n× n unit matrix, and
the inverse matrix is U−1 = U† ≡ (UT

)∗
always exists. In physics, this group is called U(n).

Example 5. SU(n) Group
The group SU(n) for n ≥ 2, which is famous in physics, is defined as the subset of U(n)

of such matrices U that det U = 1 with the same multiplication operation.5 Indeed, since
det
(
U1U2
) = det U1 det U2, then multiplication of any two elements of the SU(n) gives an

element of SU(n). Also of great importance in physics is the SO(n) group, which is the SU(n)
group with real (i.e., orthogonal) matrices.

Unitary Versus Symmetry Operation

Let us take the so-called SO(3) group of all rotations of the coordinate system in 3-D (the Carte-
sian 3-D Euclidean space; see Appendix B available atbooksite.elsevier.com/978-0-444-59436-5,
p. e7). The rotation operators acting in this space will be denoted by R̂ and defined as follows:
the operator R̂ acting on a vector r produces the vector R̂r :

R̂r = Rr , (C.1)

where6 R represents an orthogonal matrix of dimension 3. The orthogonality guarantees that the
transformation preserves the vector dot (or scalar) products (and therefore their lengths as well).

4 See Appendix A available at booksite.elsevier.com/978-0-444-59436-5.
5 Recall (see Appendix A available at booksite.elsevier.com/978-0-444-59436-5) that for a unitary matrix U, one

has det U = exp
(
iφ
)
. For orthogonal matrices (i.e., the unitary ones with all the elements real), det U = ±1. This

does not mean that the SU(n) is composed of the orthogonal matrices only. For instance, all the four 2×2 matrices:{
1 0
0 1

}
,

{−1 0
0 −1

}
,

{
0 i
i 0

}
,

{
0 −i
−i 0

}

have determinants that are equal to 1 and belong to SU(2), while only the first two belong to SO(2).

6 The point in 3-D space is indicated by the vector r =
⎛
⎝ x

y
z

⎞
⎠.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Let us take an arbitrary function f (r) of the position r. Now, for each of the operators R̂, let us
construct the corresponding operator R̂ that moves in space the function without its deformation.
Generally, we obtain another function, which means that R̂ operates in the Hilbert space. The
construction of the operator R̂ is based on the following prescription:

R̂ f (r) = f (R̂−1r). (C.2)

This means that displacement in space of the function f (r) is equivalent simply to leaving
the function intact, but performing instead the inverse displacement of the coordinate system.7

The operators R̂ rotate functions without their deformation; therefore, they preserve the
scalar products in the Hilbert space and are unitary. They form a group isomorphic with the
group of operators R̂, because they have the same multiplication table as the operators R̂: if
R̂ = R̂1 R̂2. Then R̂ = R̂1R̂2, where R̂1 f (r) = f (R̂−1

1 r) and R̂2 f (r) = f (R̂−1
2 r). Indeed,8

R̂ f = (R̂1R̂2) f (r) = f (R̂−1
2 R̂−1

1 r) = f (R̂−1r).

Unitary Versus Symmetry Operation
A unitary operation is a symmetry operation of the function f (r), when R̂ f (r) = f (r).

Example 6. Rotation of a Point
The operator R̂

(
α; z) of rotation of the point with the coordinates x, y, z by angle α about

the axis z gives the point with the coordinates x ′, y′, z′ (Fig. C.1a):

x ′ = r cos
(
φ + α) = r cosφ cosα − r sin φ sin α = x cosα − y sin α,

y′ = r sin
(
φ + α) = r sin φ cosα + r cosφ sin α = x sin α + y cosα,

z′ = z,

7 Motion is relative. Let us concentrate on a rotation by angleα. The result is the same if either of the following is true:

• The coordinate system stays still, but the point rotates by angle α.
• The point does not move, while the coordinate system rotates by angle −α.

What if function f (r1, r2, . . .rN ) is to be rotated? Then we will do the following: R̂ f (r1, r2, . . .rN ) =
f (R̂−1r1, R̂−1r2, . . .R̂

−1rN ).
8 This result is correct, but the routine of notation works here in a misleading way when suggesting that (R̂1R̂2) f (r)

and f (R̂−1
1 R̂−1

2 r)means the same. The correct result is derived in the following way. First, from the definition, we

have R̂2 f (r) = f
(

R−1
2 r
)
≡ g2(r). Then, we get (R̂1R̂2) f (r) = R̂1[R̂2 f (r)] = R̂1g2(r) = g2

(
R−1

1 r
)
=

R̂2 f
(

R−1
1 r
)
= f
(

R−1
2 R−1

1 r
)

.



Group Theory in Spectroscopy e21

(a) (b)

(c) (d)

Fig. C.1. Examples of an isometric operation. (a) Unitary operation: rotation of a point by angle α about the axis z . The old
position of the point is indicated by the vector r, the new position by r′ (of the same length). (b) Unitary operation: rotation of
the function f (r− r0) by the angle α about the axis z. As a result, we have the function f (r− Ur0), which in general represents
a function that differs from f (r − r0). (c) The unitary operation that represents a symmetry operation: rotation by the angle

α = 120◦ of the function f (r) = exp
[
− |r− rA|2

]
+ exp
[
− |r− rB |2

]
+ exp
[
− |r− rC |2

]
, where the vectors rA, rB , rC are of

the same length and form the mercedes trademark (the angle 120◦). The new function is identical to the old one. (d) Translational

operator by the vector r1 : R̂
(
r1
)

applied to the Gaussian function f (r) = exp
[
− |r− r0|2

]
gives R̂ (r1

)
f (r) = f (R̂−1r) =

exp

[
−
∣∣∣R̂−1r− r0

∣∣∣2] = exp
[
− |r− r1 − r0|2

]
= exp
[
− |r− (r1 + r0)|2

]
= f
(
r− r1
)
; i.e., the function shifted in space by

the vector r1 with respect to the original function.

the corresponding transformation matrix of the old to the new coordinates, therefore, is

U =
⎡
⎣ cosα − sin α 0

sin α cosα 0
0 0 1

⎤
⎦ .
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We obtain the same new coordinates, if the point stays still, while the coordinate system
rotates in the opposite direction (i.e., by the angle −α).

Example 7. Rotation of an Atomic Orbital
Let us construct a single spherically symmetric Gaussian orbital f (r) = exp

[− |r− r0|2
]

in
the Hilbert space for one electron. Let the atomic orbital be centered in the point indicated by
the vector r0. The operator R̂ (α; z) has to carry out rotation of a function9 by the angle α about
the axis z (Fig. C.1b), which corresponds to a rotation in the Hilbert space.10 According to the

definition of a rotation, what we need is R̂ f (r) = f
(

R̂−1r
)

. Since the operator R̂ corresponds

to the matrix U, then R̂−1 corresponds to U−1. The last matrix is simply

U−1 = UT =
⎡
⎣ cosα sin α 0
− sin α cosα 0

0 0 1

⎤
⎦ .

We obtain the following chain of transformations

f (R̂−1r) = exp

[
−
∣∣∣R̂−1r− r0

∣∣∣2]

= exp

[
−
∣∣∣R̂−1r− R̂−1 R̂r0

∣∣∣2]

= exp
[
−
〈
R̂−1r− R̂−1 R̂r0|R̂−1r− R̂−1 R̂r0

〉]
= exp
[
−
〈
R̂ R̂−1r− R̂ R̂−1 R̂r0|r− R̂r0

〉]
= exp
[
−
〈
r− R̂r0|r− R̂r0

〉]
= exp

[
−
∣∣∣r− R̂r0

∣∣∣2] .
Thus, the center of the orbital underwent the rotation and therefore R̂ f (r) represents indeed

the spherically symmetric orbital11 displaced by angle α.

9 This orbital represents our object to rotate by α. The coordinate system rests unchanged, while the object moves.
The job will be done by the operator R̂ (α; z).

10 We will obtain another function because it is centered differently.
11 The definition R̂ f (r) = f (R̂−1r) can transform anything: from the spherically symmetric Gaussian orbital

through a molecular orbital (recall that it can be represented by the LCAO expansion) until the Statue of Liberty!
Indeed, do you want to rotate the Statue of Liberty? Then leave the Statue in peace, but transform (in the opposite
way) your Cartesian coordinate system!
More general transformations, allowing deformation of objects, also could be described by the formula R̂ f (r) =
f (R̂−1r), but the operator R̂ would be non-unitary.
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Since in general for any value of angle α, function exp
[− |r− Ur0|2

]
is not equal to

exp
[− |r− r0|2

]
, unitary operation R̂ is not a symmetry operation of the object.

If, however, α = 2πn, n = 0,±1,±2, . . ., then R̂ f (r) = f (r) and R̂ (2πn; z) is12 a
symmetry operation.

Example 8. Rotation of a Particular Sum of Atomic Orbitals
Let us take an example of a sum of three spherically symmetric Gaussian orbitals:

f (r) = exp
[− |r− rA|2

]+ exp
[− |r− rB |2

]+ exp
[− |r− rC |2

]
,

where vectors rA, rB, rC are of the same length and form the mercedes sign (angles equal to
120◦); see Fig. C.1c. Let us take operator R̂ (α = 120◦; z) corresponding to the matrix U of

rotation by 120◦. Application of R̂ to function f (r) is equivalent to13

f (R̂−1r) = exp

[
−
∣∣∣R̂−1r− rA

∣∣∣2]+ exp

[
−
∣∣∣R̂−1r− rB

∣∣∣2]+ exp

[
−
∣∣∣R̂−1r− rC

∣∣∣2]

= exp

[
−
∣∣∣r− R̂rA

∣∣∣2]+ exp

[
−
∣∣∣r− R̂rB

∣∣∣2]+ exp

[
−
∣∣∣r− R̂rC

∣∣∣2] .
From the figure (or from the matrix), we have R̂rA = rB; R̂rB = rC ; R̂rC = rA. This gives

R̂ f (r) = exp
[− |r− rB |2

]+ exp
[− |r− rC |2

]+ exp
[− |r− rA|2

] = f (r).

We have obtained our old function. R̂ (α = 120◦; z) is therefore the symmetry operation14

f (r).

R̂ (α = 120◦; z) represents a symmetry operation, not only for the function f , but also for
other objects, that would have the symmetry of the equilateral triangle.

Example 9. Rotation of a Many-Electron Wave Function
If in the last example we took a three-electronic function as a product of the Gaussian orbitals

f (r1, r2, r3) = exp
[− |r1 − rA|2

] · exp
[− |r2 − rB |2

] · exp
[− |r3 − rC |2

]
, then after applying

R̂ (α = 120◦; z) to f , we would obtain using an almost identical procedure

12 The transformed and non-transformed orbitals coincide.
13 We use the result from the last example.
14 Note, that e.g., if one of the 1s orbitals had the opposite sign, then the function f (r)would not have the symmetry of

the equilateral triangle, although it would be invariant too with respect to some of the operations of the equilateral
triangle.
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R̂ f (r1, r2, r3) = f (R̂−1r1, R̂−1r2, R̂−1r3) = exp
[− |r1 − rB |2

] · exp
[− |r2 − rC |2

] ·
exp
[− |r3 − rA|2

]
, which represents a completely different function than the original one

f (r1, r2, r3). Thus, R̂ does not represent any symmetry operation for f (r1, r2, r3). If, however,
we took a symmetrized function [e.g., f̃ (r1, r2, r3) = ∑P P̂ f (r1, r2, r3), where P̂ permutes
the centers A, B, C, and the summation goes over all permutations] we would obtain f̃ , which
would turn out to be symmetric with respect to R̂ (α = 120◦; z).
Example 10. Translation

Translation cannot be represented as a matrix transformation (C.1). It is however an isometric
operation; i.e., it preserves the distances among the points of the transformed object. This is
sufficient for us. Let us enlarge the set of the allowed operations in the 3-D Euclidean space by
isometry. Similarly, as in the case of rotations, let us define a shift of the function f (r). A shift of
the function f (r) by vector r1 is such a transformation R̂ (r1

)
(in the Hilbert space), that the new

function f̃ (r) = f (r−r1). As an example, let us take the function f (r) = exp
[− |r− r0|2

]
and

shift it by the vector r1. Translations obey the known relation (C.2): R̂ (r1
)

f (r) = f (R̂−1r) =
exp

[
−
∣∣∣R̂−1r− r0

∣∣∣2] = exp
[− |r− r1 − r0|2

] = exp
[− |r− (r1 + r0)|2

] = f
(
r− r1
)
. The

function f (r) had been concentrated around the point r0, while the new function R̂ (r1
)

f (r) is
concentrated around the point indicated by the vector r1+ r0, i.e., the function has been shifted
by r1 (Fig. C.1d). This transformation is (similar to the case of rotations) a unitary one because
the scalar product between two functions f1 and f2 shifted by the same operation is preserved:
〈 f1(r)| f2(r)〉 =

〈
f1
(
r− r1
) | f2
(
r− r1
)〉

.

Symmetry Group of the Ammonia Molecule

Imagine a model of the NH3 molecule (trigonal pyramide), as shown in Fig. C.2. A student
sitting at the table plays with the model. We look at the model, then close our eyes for a second,
and open them again. We see that the coordinate system, the model, and its position with respect
to the coordinate system look exactly the same as before. Could the student change the model
position? Yes, he could. He could, for example, rotate the model about the z-axis (perpendicular
to the table) by 120◦, he might exchange two NH bonds in the model, he may also do nothing.
Whatever the student could do is called a symmetry operation.

Let us make a list of all the symmetry operations allowed for the ammonia molecule. To
this end, let us label the vortices of the triangle by a, b, c and locate it in such a way as to
coincide the triangle center with the origin of the coordinate system, and the y axis indicated the
vortex a.

Now, let us check whether the operations given in Table C.1 form a group. Four conditions
have to be satisfied. The first condition requires the existence of a “multiplication” in the group,
and that the product of any two elements gives an element of the group: R̂i R̂ j = R̂k . The
elements will be the symmetry operations of the equilateral triangle. The product R̂i R̂ j = R̂k
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Fig. C.2. The equilateral triangle and the coordinate system. Positions a, b, and c are occupied by hydrogen atoms, and the
nitrogen atom is (symmetrically) above the plane.

Table C.1. Symmetry operations of the ammonia molecule (the reflections pertain to the mirror planes perpendic-
ular to the triangle shown in Fig. C.2, and going through the center of the triangle).

Symbol Description Symbolic Explanation

Ê Do nothing Ê

[
a

c b

]
=
[

a
c b

]

Â Reflection in the plane going through point a shown in Fig. C.2 Â

[
a

c b

]
=
[

a
b c

]

B̂ Reflection in the plane going through point b shown in Fig. C.2 B̂

[
a

c b

]
=
[

c
a b

]

Ĉ Reflection in the plane going through point c shown in Fig. C.2 Ĉ

[
a

c b

]
=
[

b
c a

]

D̂ Rotation by 120◦ clockwise D̂

[
a

c b

]
=
[

c
b a

]

F̂ Rotation by −120◦ counterclockwise F̂

[
a

c b

]
=
[

b
a c

]

means that the operation R̂k gives the same result as applying the operation R̂ j to the triangle
first, and then the result is subject to the operation R̂i . In this way, the “multiplication table”
shown in Table C.2 can be obtained.
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Table C.2. Group multiplication table.

R̂j Ê Â B̂ Ĉ D̂ F̂

R̂i

Ê Ê Â B̂ Ĉ D̂ F̂

Â Â Ê D̂ F̂ B̂ Ĉ

B̂ B̂ F̂ Ê D̂ Ĉ Â

Ĉ Ĉ D̂ F̂ Ê Â B̂

D̂ D̂ Ĉ Â B̂ F̂ Ê

F̂ F̂ B̂ Ĉ Â Ê D̂

First in the product

Second in the product

Further, using Table C.2, we may check whether the operation is associative. E.g., we check
whether Â(B̂Ĉ) = ( Â B̂)Ĉ . The left side gives Â(B̂Ĉ) = ÂD̂ = B̂. The right-hand side gives
( Â B̂)Ĉ = D̂Ĉ = B̂. It agrees, and it will agree for all the other entries in the table.

The unit operation is Ê , as it is seen from the table, because multiplying by Ê does not change
anything: Ê R̂i = R̂i Ê = R̂i . Also, using the table again, we can find the inverse element of
any of the elements. Indeed, Ê−1 = Ê , because Ê times just Ê equals Ê . Further, Â−1 = Â
because Â times Â equals Ê , etc., B̂−1 = B̂, Ĉ−1 = Ĉ, D̂−1 = F̂, and F̂−1 = D̂.

Thus, all the requirements are fulfilled and all these operations form a group of order g = 6.
Note that in this group, the operations do not necessarily commute; e.g., Ĉ D̂ = Â, but D̂Ĉ = B̂
(the group is not Abelian).

Classes

The group elements can be all divided into disjoint sets called classes. A class (to put it first in
a simple way) represents a set of the operations that are similar in a common sense; e.g., three
reflection operations Â, B̂ and Ĉ constitute one class, the rotations D̂ and F̂ form the second
class, and the third class is simply the element Ê . Now, let us look at the precise definition.

Class
A class is the set of elements that are conjugate one to another. An element R̂i is conjugate
with R̂ j , if we can find in the group G such an element (let us denote it by X̂ ), that
X̂−1 R̂ j X̂ = R̂i .

Then, of course, the element R̂ j is a conjugate to R̂i as well. We check that by multiplying R̂i

from the left by X̂ = Ŷ−1, and from the right by X̂−1 = Ŷ (what yields Ŷ−1 R̂i Ŷ = X̂ R̂i X̂−1 =
X̂ X̂−1 R̂ j X̂ X̂−1 = Ê R̂ j Ê = R̂ j ).
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Let us make a little exercise using our Table C.2. We have X̂−1 Ê X̂ = X̂−1 X̂ Ê = Ê Ê = Ê
for each X̂ ∈ G; i.e., Ê represents only a class. Further, making X̂−1 Â X̂ for all possible X̂
gives:

Ê−1 ÂÊ = Ê ÂÊ = ÂÊ = Â

Â−1 Â Â = Â Â Â = Ê Â = Â

B̂−1 Â B̂ = B̂ Â B̂ = F̂ B̂ = Ĉ

Ĉ−1 ÂĈ = Ĉ ÂĈ = D̂Ĉ = B̂

D̂−1 ÂD̂ = F̂ ÂD̂ = B̂ D̂ = Ĉ

F̂−1 ÂF̂ = D̂ ÂF̂ = B̂ F̂ = Ĉ .

This means that Â belongs to the same class together with B̂ and Ĉ . Now, we will create
some conjugate elements to D̂ and F̂ :

Â−1 D̂ Â = ÂD̂ Â = B̂ Â = F̂

B̂−1 D̂ B̂ = B̂ D̂ B̂ = Ĉ B̂ = F̂

Ĉ−1 D̂Ĉ = Ĉ D̂Ĉ = ÂĈ = F̂

etc. Thus, D̂ and F̂ make a class. Therefore, the group under consideration consists of the
following classes: {Ê}{ Â, B̂, Ĉ}{D̂, F̂}.

It is always so: the group is a sum of the disjoint classes.

Representations

A representation of the group is a g–element sequence of the square matrices (of the same
dimension; each element of the group is associated to a matrix), such that the matrices have
the multiplication table consistent with the multiplication table of the group.

By “consistency,” we mean the following. To each element of the group, one assigns a square
matrix (of the same dimension for all elements). If the multiplication table for the group says
that R̂i R̂ j = R̂k , then the matrix corresponding to R̂i times the matrix that corresponds to R̂ j

is the matrix that corresponds to R̂k . If this agrees for all R̂, then we say that the matrices form
a representation.15

We may create many group representations; see Table C.3.

15 More formally, a representation is a homomorphism of the group into the above set of matrices.
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The easiest thing is to see that�1 satisfies the criterion of being a representation (the matrices
have dimension 1; i.e., they are numbers). After looking at �2 for a while, we will say the same.
Multiplying the corresponding matrices, we will prove that for �3 and �4. For example, for �3,
the product of the matrices B̂ and Ĉ gives the matrix corresponding to the operation D̂:

[
1
2 −

√
3

2

−
√

3
2 −1

2

][
1
2

√
3

2√
3

2 −1
2

]
=
[
−1

2

√
3

2

−
√

3
2 −1

2

]
;

i.e., the same as for the operations themselves. If we had more patience, we would show that
equally easily for the whole multiplication table of the group. Note that

there are many representations of a group.

There is also another interesting thing to note. Let us take a point with the coordinates (x, y, 0)
and see what will happen to it when the symmetry operations are applied (the coordinate
system rests, while the point itself moves). The identity operation Ê leads to the following
transformation matrix: [

x ′
y′
]
=
[

1 0
0 1

] [
x
y

]
.

The results of the other operations are characterized by the following transformation matrices
(you may check that step by step):

Â :
[−1 0

0 1

]
B̂ :
⎡
⎢⎣

1
2 −

√
3

2

−
√

3
2 −1

2

⎤
⎥⎦ Ĉ :
[

1
2

√
3

2√
3

2 −1
2

]

D̂ :
[
−1

2

√
3

2

−
√

3
2 −1

2

]
F̂ :
[
−1

2 −
√

3
2√

3
2 −1

2

]
.

Note, that the matrices obtained are identical to those of the representation �3. Thus, by
transforming the coordinates of a point, we have generated a representation of the symmetry.

By transforming anything (coordinates of a point, vectors, functions) using the symmetry
operations and collecting the results in the form of matrices, we always obtain a represen-
tation of the group.
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Characters of Representation

For any representation �, we may define the vector χ (�) of dimension g, having as elements
the traces of the representation matrices �(R̂i ):

Tr� =
∑

i

�i i (C.3)

χ (�) ≡

⎡
⎢⎢⎢⎢⎢⎣

Tr�
(

R̂1

)
Tr�
(

R̂2

)
. . .

Tr�
(

R̂g

)

⎤
⎥⎥⎥⎥⎥⎦ ≡
⎡
⎢⎢⎢⎢⎢⎣

χ(�)
(

R̂1

)
χ(�)
(

R̂2

)
. . .

χ(�)
(

R̂g

)

⎤
⎥⎥⎥⎥⎥⎦ . (C.4)

The number χ(�)
(

R̂i

)
is called the character of the representation � that corresponds to

the operation R̂i . The characters of representations will play the most important role in
application of the group theory to spectroscopy.

Irreducible Representations

To tell what an irreducible representation is, let us define first what are called reducible repre-
sentations.

A representation is called reducible if its matrices can be transformed into the so-called
block form by using the transformation P−1�(R̂i )P for every matrix �(R̂i ), where P is a
non-singular matrix.

In a block form, the nonzero elements can be only in the square blocks located on the diagonal
(see Fig. C.3).

If using the same P, we can transform each of the matrices �(R̂i ) and obtain the same block
form, then the representation is called reducible.

If we do not find such a matrix (because it does not exist), then the representation is
irreducible. If we carry out the transformation P−1�(R̂i )P (similarity transformation) for
i = 1, 2, . . ., g of a representation, the new matrices also form a representation �′ called
equivalent to �.



Group Theory in Spectroscopy e31

Fig. C.3. Reducible representation, block form, and irreducible representation. In the first row, the matrices �(R̂i ) are displayed
that form a reducible representation (each matrix corresponds to the symmetry operation R̂i ); the matrix elements are in general
nonzero. The central row shows a representation�′ equivalent to the first one; i.e., related by a similarity transformation (with matrix
P). The new representation exhibits a block form; i.e., in this particular case each matrix has two blocks of zeros that are identical
in all matrices. The last row shows an equivalent representation �′′ that corresponds to the smallest square blocks (of nonzeros);
i.e., the maximum number of the blocks, of the form identical in all the matrices. Not only �,�′, and �′′ are representations of
the group, but also any sequence of individual blocks (as that shadowed) is a representation. Thus, �′′ is decomposed into the four
irreducible representations.

This is easy to show. Indeed, the group operations R̂i and R̂ j correspond to the matrices
�(R̂i ) and �(R̂ j ) in the original representation and to �′(R̂i ) = P−1�(R̂i )P and �′(R̂ j ) =
P−1�(R̂ j )P in the equivalent representation (we will check in a moment whether this is indeed a
representation). The product �′(R̂i )�

′(R̂ j ) equals P−1�(R̂i )PP−1�(R̂ j )P = P−1�(R̂i )�(R̂ j )

P; i.e., the matrix �(R̂i )�(R̂ j ) transformed by a similarity transformation, so everything goes
with the same multiplication table. Thus, the matrices �′(R̂i ) form also a representation (�′).
This means that we can create as many representations as we wish, it is sufficient to change the
matrix P, and this is easy (since what we want is its singularity, i.e., the P−1 matrix has to exist).

The blocks are square matrices. It turns out the set of the first blocks �1(R̂1), �1(R̂2), . . .

�1(R̂g) (each block for one operation) is a representation, the set of the second blocks
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�2(R̂1), �2(R̂2), . . . �2(R̂g) forms a representation as well, etc. So it is sufficient to see what
happens when we multiply two matrices in the same block form. The matrix product has the
same block form and a particular block results from multiplication of the corresponding blocks
of the matrices that are being multiplied. This is sufficient to treat each set of the blocks as a
representation.16

In particular, the maximum decomposition into blocks leads, of course, to the blocks that
are not decomposable anymore, and represent therefore the irreducible representations.

Properties of the Irreducible Representations

For two irreducible representations α and β, the following group orthogonality theorem is
satisfied17: ∑

i

[�(α)(R̂i )]mn[�(β)(R̂i )]∗m′n′ =
g

nα
δαβδmm′δnn′, (C.5)

where �(α)(R̂) and �(β)(R̂) denote the matrices that correspond to the group element R̂(m, n
and m′, n′ determine the elements of the matrices), the summation goes over all the group
elements, and nα is the dimension of the irreducible representation α; i.e., the dimension of
the matrices that form the representation. The symbol ∗means the complex conjugation18. The

16 Let us explain this with an example. We have two square matrices of dimension 4: A and B, both having the block
form:

A =
[

A1 0
0 A2

]
, B =

[
B1 0
0 B2

]
with

A1 =
[

3 1
1 2

]
, A2 =

[
2 2
2 3

]
, B1 =

[
1 3
3 2

]
, B2 =

[
2 1
1 2

]
.

Let us check that C = AB has the same block form:

C =
[

C1 0
0 C2

]

and that (what is particularly important for us) C1 = A1B1 and C2 = A2B2. Indeed, multiplying AB, we have

C =

⎡
⎢⎢⎣

6 11 0 0
7 7 0 0
0 0 6 6
0 0 7 8

⎤
⎥⎥⎦ i.e.,

[
6 11
7 7

]
= C1,

[
6 6
7 8

]
= C2.

Hence, indeed C1 = A1B1 and C2 = A2B2
17 For the proof, see H. Eyring, J. Walter, and G.E. Kimball, Quantum Chemistry, (New York, Wiley: 1944).
18 This is important only for the complex representations �.
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symbols δ denote the Kronecker deltas; i.e., δαβ = 1, if α = β and δαβ = 0 , if α �= β. The word
orthogonality in the name of the theorem is related to the following observation. We create two
g –dimensional vectors: one composed of the components [�(α)(R̂i )]mn , the other vector from
[�(β)(R̂i )]∗m′n′, i = 1, 2, . . ., g. The group orthogonality theorem says the following:

• If α �= β, then the vectors are orthogonal.
• If m �= m′ or n �= n′, the two vectors are orthogonal as well. The formula kills every-

thing, except the two irreducible representations are identical and we choose as the vector
components the same elements.

Characters of Irreducible Representations

The most important consequence of the group orthogonality theorem is the equation∑
i

χ(α)(R̂i )χ
(β)(R̂i )

∗ = gδαβ, (C.6)

where χ(α)(R̂i ) is a character of the irreducible representation α corresponding to the symmetry
operation R̂i . Equation (C.6) in view of Eq. (C.3) may be rewritten as a scalar product in a unitary
space (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5)

〈
χ (β)|χ (α)

〉
= gδαβ. (C.7)

Equation (C.7) can be obtained from the group orthogonality theorem after setting m = n
and m′ = n′, and then summing up over m and m′:

〈
χ (β)|χ (α)

〉
=
∑

i

∑
m

∑
m′
[�(α)(R̂i )]mm[�(β)(R̂i )]∗m′m′

= g

nα
δαβ
∑

m

∑
m′
(δmm′)

2 = g

nα
δαβnα = gδαβ.

Decomposing Reducible Representation into Irreducible Ones

It is important that

equivalent representations have identical characters

http://booksite.elsevier.com/978-0-444-59436-5
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because the trace of a matrix is invariant with respect to any similarity transformation. Indeed,
for two equivalent representations � and �′ for any R̂i , we have �′(R̂i ) = P−1�(R̂i )P, which
gives

χ(�
′)(R̂i ) =

∑
m

(P−1�(R̂i )P)mm =
∑
mkl

P−1
mk �kl Plm =

∑
kl

�kl

∑
m

Plm P−1
mk

=
∑

kl

�kl(PP−1)lk =
∑

kl

�klδlk =
∑

k

�kk = χ(�)(R̂i ).

In particular, the character of a representation is the same as its block form (with the maximum
number of blocks that correspond to the irreducible representations):

χ(R̂i ) =
∑
α

a(α)χ(α)(R̂i ), (C.8)

or, in other words,
χ =
∑
α

a(α)χ (α), (C.9)

where a(α) is a natural number telling us how many times the irreducible representation α
appears in the block form. The above formula comes from the very definition of the trace (a
sum of the diagonal elements).

We will need another property of the characters. Namely,

the characters corresponding to the elements of a class are equal.

Indeed, two elements of the group R̂i and R̂ j that belong to the same class are related to
one another by the relation R̂i = X−1 R̂ j X , where X is an element of the group. The same
multiplication table is valid for the representations (from the definition of the representation);
thus

�(R̂i ) = �(X−1)�(R̂ j )�(X) = [�(X)]−1�(R̂ j )�(X). (C.10)

This concludes the proof because in such a case, the matrices �(R̂i ) and �(R̂ j ) are related
by a similarity transformation and therefore have identical characters. From now on, we can
write χ(C) instead of χ(R̂), where C denotes a class to which operation R̂i belongs.

Equation (C.8) can be now modified appropriately. It can be rewritten as〈
χ (β)|χ (α)

〉
=
∑

C

nCχ
α(C)χβ(C)∗ =

∑
C

[√nCχ
(α)(C)][√nCχ

(β)(C)∗] = gδαβ, (C.11)

where C stands for the class, and nC tells us how many operations belong to the class. Such a
notation reminds us that the numbers [√nCχ

(α)(C)] for a fixed α and changing class C may
be treated as the components of a vector (its dimension is equal to the number of classes) and,
that the vectors that correspond to different irreducible representations are orthogonal. The
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dimension of the vectors is equal to the number of classes – say, k. Since the number of the
orthogonal vectors, each of dimension k, cannot exceed k, then the number of the different
irreducible representations is equal to the number of the classes.

In future applications, it will be of key importance to find a natural number a(α) that
tells us how many times the irreducible representation α is encountered in a reducible
representation. The formula for a(α) is the following:

a(α) = 1

g

∑
C

nCχ(C)χ
(α)(C)∗. (C.12)

The proof is simple. From the scalar product of both sides of Eq. (C.9) with the vector χ (β)

after using Eq. (C.7), one obtains
〈
χ (β)|χ 〉 = ∑α a(α)

〈
χ (β)|χ (α)〉 = ∑α a(α)gδαβ = a(β)g

or a(α) = 1
g

〈
χ (α)|χ 〉. This is the formula sought because the characters are the same for all

operations of the same class.
Note that

to find a(α), it is sufficient to know the characters of the representations, the representations
themselves are not necessary.

Tables of Characters of the Irreducible Representations

Any textbook on application of group theory in molecular spectroscopy contains tables of
characters of irreducible representations, which correspond to various symmetry groups of
molecules.19

Before we can apply the group theory to a particular molecule, we have to find the above
mentioned table of characters. To this end, note the following:

• The Born–Oppenheimer approximation is used, so the positions of the nuclei are fixed in
space (geometry).

• Looking at the geometry, we make a list of all the symmetry operations that transform it
into itself.

• We identify the corresponding symmetry group.20

19 The tables have been constructed by considering possible symmetries (symmetry groups), creating suitable matrix
representations, using similarity transformations to find the irreducible representations, summing up the diagonal
elements we end up with the character tables in question.

20 This may be done by using a flowchart; e.g., what is given in P.W. Atkins, Physical Chemistry, 6th ed., Oxford
University Press, Oxford (1998).
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Table C.4. Examples of the symmetry
group for a few molecules in their ground-
state optimum geometry.

Molecule Group

H2O C2v
NH3 C3v
CH4 Td
Benzene D6h
Naphthalene D2h

In order to find the proper table, we may use Schoenflies notation for the symmetry21 (there
are also some other notations):

Ê Means a symbol of the identity operation (i.e., do nothing).
Ĉn Rotation by angle 2π

n about the n - fold symmetry axis.
Ĉm

n Rotation by 2πm
n about the n-fold symmetry axis

σ̂v Reflection in the plane going through the axis of the highest symmetry
σ̂h Reflection in the plane perpendicular to the axis of the highest symmetry
ı̂ Inversion with respect to the center of symmetry
Ŝn Rotation by angle 2π

n about the n-fold symmetry axis with subsequent reflection in
the plane perpendicular to it

Ŝm
n Rotation by angle 2πm

n about the n-fold symmetry axis with subsequent reflection in
the plane perpendicular to it.

The set of the symmetry operations forms the symmetry group. The symmetry groups also
have their special symbols. In Table C.4 the Schoenflies notation of the symmetry groups of
some simple molecules is given (in their geometry corresponding to the energy minimum).

A molecule may be much more complicated, but often its symmetry is identical to that of a
simple molecule (e.g., one of those reported in the table).

When we finally identify the table of characters suitable for the molecule under consideration,
it is time to look at it carefully. For example, for the ammonia molecule, we find the table of
characters shown in Table C.5.

In the upper-left corner, the name of the group is displayed (C3v). In the same row, the
symmetry operations are listed (in this case Ê , σ̂v, Ĉ3).22 The operations are collected in classes,
and the number of such operations in the class is given: the identity operation (Ê) forms the

21 Artur Moritz Schoenflies (1853–1928), German mathematician and professor at the universities in Göttingen,
Königsberg, and Frankfurt am Main. Schoenflies proved (independent of J.S. Fiodorow and W. Barlow) the
existence of the complete set of 230 space groups of crystals.

22 These are the same symmetry operations as discussed on p. e23.
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Table C.5. C3v group table of characters.

C3v Ê 3σ̂v 2Ĉ3

A1 1 1 1 z x2 + y2, z2

A2 1 −1 1 Rz
E 2 0 −1 (x, y)(Rx ,Ry ) (x2 − y2, xy)(xz, yz)

first class, the three reflection operations (hence 3σ̂v , before called Â, B̂, Ĉ) corresponding to
the planes that contain the threefold symmetry axis, two rotation operations (hence, 2Ĉ3, called
before D̂ and F̂) about the threefold symmetry axis (by 120◦ and by 240◦, or−120◦, the rotation
by 360◦ is identical to Ê).

In the second and later rows, we have information about the irreducible representations, with
one row for each representation. The number of the irreducible representations is equal to the
number of classes (three in our case); i.e., the table of characters is square. On the left side,
we have the symbol of the representation informing us about its dimension (if the symbol is
A, then the dimension is 1; if it is E, then the dimension is 2; and if T, then it is 3). Thus,
the letter E unfortunately plays a double role in the table: as the identity operation Ê , and as
E, the symbol of an irreducible representation. In a given row (irreducible representation), the
number below the symbol of class is the corresponding character. For the identity operation Ê ,
the corresponding matrices are unit matrices, the calculated character is therefore equal to the
dimension of the irreducible representation.

Of great importance is the simplest representation possible: just all the characters equal to
1 (in our case, A1). It will be called the fully symmetric representation.

Example 11. Decomposition of a Reducible Representation
Let us find how the reducible representation �4 from p. e28 may be decomposed into

the irreducible representations. First of all, we see from Eq. (C.12) that what one needs are
characters rather than the representations themselves. The characters χ

(
�4
)

are calculated
by summing up the diagonals of the matrix representations for the corresponding classes,
χ
(
�4
)
: 3 (class Ê), −1 (class σ̂v), 0 (class Ĉ3). Let us first ask how many times (aA1) the

irreducible representation A1 is encountered in �4. The characters of A1 (Table C.5) are
1, 1, 1 for the corresponding classes. The number of the operations in the classes is respec-
tively nC : 1, 3, 2. From Eq. (C.12), we find a

(
A1
) = 1

6

(
1 · 3 · 1+ 3 · (−1) · 1+ 2 · 0 · 1) =

0. Similarly, we find a
(
A2
) = 1

6

(
1 · 3 · 1+ 3 · (−1)· (−1

)+ 2 · 0 · 1) = 1 and a
(
E
) =

1
6

(
1 · 3 · 2+ 3 · (−1) · 0+ 2 · 0 · (−1

)) = 1. Thus, we may write that �4 = A2 + E. This
exercise will be of great help when the selection rules in spectroscopy will be considered.
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Projection Operator on an Irreducible Representation

Soon we will need information on whether a particular function exhibits certain symmetry prop-
erties of the system under consideration. To this end, we will need certain projection operators:

P̂(α) = nα
g

∑
i

χ(α)∗
(

R̂i

)
R̂i (C.13)

represents the projection operator that projects on the space of such functions that transform
according to the irreducible representation �(α).

This means that either P̂(α) f transforms according to the irreducible representation �(α) or
we obtain zero. In order to be a projection operator, P̂(α) has to satisfy23

P̂(α) P̂(β) = δαβ P̂(α). (C.14)

We can also prove that

∑
α

P̂(α) = 1, (C.15)

where the summation goes over all irreducible representations of the group.

23 This means that two functions that transform according to different irreducible representations are orthogonal, and
that a projection of an already projected function changes nothing. Here is the proof. After noting that R̂ Ŝ = Q̂,
or Ŝ = R̂−1 Q̂, we have

P̂(α) P̂(β) = nαnβ
g2

∑
R̂,S

χ(α)∗(R̂)χ(β)∗(Ŝ)R̂ Ŝ

= nαnβ
g2

∑
Q

Q̂
∑
R̂,

χ(α)∗(R̂)χ(β)∗
(

R̂−1 Q̂
)
.

Note, that

χ(β)∗
(

R̂−1 Q̂
)
=
∑

k

�
(β)∗
kk

(
R̂−1 Q̂
)
=
∑

k

∑
l

�
(β)∗
kl

(
R̂−1
)
�
(β)∗
lk (Q̂).

After inserting this result, we have

P̂(α) P̂(β) = nαnβ
g2

∑
Q

Q̂
∑

R̂

∑
m
�
(α)∗
mm (R̂)

∑
k

∑
l

�
(β)∗
kl

(
R̂−1
)
�
(β)∗
lk (Q̂)

= nαnβ
g2

∑
Q

Q̂
∑

R̂

∑
k,l,m

�
(α)∗
mm (R̂)�(β)lk (R̂)�(β)∗lk (Q̂)

= nαnβ
g2

∑
Q

Q̂
∑

k,l,m

�
(β)∗
lk (Q̂)

∑
R̂

[�(α)∗mm (R̂)�(β)lk (R̂)],
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Transformation of a Function According to Irreducible Representation

The right part of the character table such as Table (C.5) contains the symbols x, y, z, (x2−y2, xy)
Rx ,Ry,Rz . These symbols will be needed to establish the selection rules in spectroscopy (UV-
VIS, IR, Raman). They pertain to the coordinate system (the z-axis coincides with the axis of
the highest symmetry). Let us leave the symbols Rx ,Ry,Rz alone for the moment.

We have some polynomials in the rows of the table. The polynomials transform according
to the irreducible representation that corresponds to the row.24 If a polynomial (displayed in a
row of the table of characters) is subject to the projection P̂(α), then the following is true:

• If α does not correspond to the row, then we obtain 0.
• Ifα corresponds to the row, then we obtain either the polynomial itself (if the irreducible rep-

resentation has dimension 1), or, if the dimension of the irreducible representation is greater
than 1, a linear combination of the polynomials given in the same row (in parentheses).

If function f transforms according to a 1-D irreducible representation, the function is an
eigenfunction of all the symmetry operators R̂, with the corresponding eigenvalues χ(α)(R̂).

Let us come back to Rx ,Ry,Rz . Imagine Rx ,Ry,Rz as oriented circles perpendicular to
a rotation axis (i.e., x, y, or z) that symbolize rotations about these axes. For instance, the
operation Ê and the two rotations Ĉ3 leave the circle Rz unchanged, while the operations σ̂v
change its orientation to the opposite one; hence Rz transforms according to the irreducible
representation A2. It turns out that Rx and Ry transform under the symmetry operations into
their linear combinations and therefore correspond to a 2-D irreducible representation (E).

Group Theory and Quantum Mechanics

Representation Basis

If in a molecule we have two equivalent25 nuclei, then this always results from a molecular
symmetry; i.e., at least one symmetry operation exchanges the positions of these two nuclei.

because from the unitary character of the representation matrices�(β)
(

R̂−1
)

and�(β)(R̂), we have�(β)∗kl

(
R̂−1
)
=

�
(β)
lk (R̂). From the group theorem of orthogonality (Eq. (C.5)), we have

P̂(α) P̂(β) = nαnβ
g2

g

nα

∑
Q

Q̂
∑

k,l,m

�
(β)∗
lk (Q̂)δmlδmkδαβ

= δαβ nα
g

∑
Q

Q̂
∑
m
�
(α)∗
mm (Q̂)

= δαβ nα
g

∑
Q

χ(α)∗(Q̂)Q̂ = δαβ P̂(α),

which we wanted to show; see Eq. (C.13).
24 Recall the definition of the symmetry operation given on p. e20: R̂ f (r) = f (r), where R̂ f (r) = f (R̂−1r).
25 That is, they are equivalent with respect to physical and chemical properties.
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There is no reason at all that electrons like one of such nuclei more than the other one.26 Let us
focus on molecular orbitals calculated for a fully symmetric Fock operator.27 Therefore,

each molecular orbital has to be such that when making a square of it, the electron density
is the same on the equivalent nuclei.

What will happen, however, with the molecular orbital itself ? Squaring it removes informa-
tion about its sign. The signs at both atoms may be the same (symmetric orbital), but they may
also be opposite28 (antisymmetric orbital). For example, the bonding orbital for the hydrogen
molecule is symmetric with respect to reflection in the plane perpendicular to the internuclear
axis29 and going through its center, while the antibonding orbital is antisymmetric with respect
to the operation.

We know how to apply the symmetry operations on molecular orbitals (p. e20) and trans-
forming them to other functions.

26 This may not be true for non-stationary states. The reason is simple. Imagine a long polymer molecule with two
equivalent atoms at its ends. If one of them is touched by the tip of the tunnel microscope and one electron is
transferred to the polymer, a non-stationary asymmetric electron state is created.

27 Limiting ourselves to molecular orbitals is not essential in this case.
28 This pertains to non-degenerate orbital levels. For a degenerate level, any linear combination of the eigenfunctions

(associated to the same level) is also an eigenfunction as good as those that entered the linear combination. A
symmetry operation acting on an orbital gives another orbital corresponding to the same energy. In such a case,
the squares of both orbitals in general do not exhibit the symmetry of the molecule. However, we can find a linear
combination of both, such that its square preserves the symmetry.

29 Let us see what it really means in a very formal way (it may help us in more complicated cases). The coordinate
system is located in the middle of the internuclear distance (on the x-axis, the internuclei distance equal to 2A).
The bonding orbital ϕ1 = N1(a+ b) and the antibonding orbital ϕ2 = N2(a− b), where N are the normalization
constants, the 1s atomic orbitals have the following form:

a ≡ 1√
π

exp
[−|r− A|] = 1√

π
exp

[
−
√(

x − A
)2 + y2 + z2

]
,

b ≡ 1√
π

exp
[−|r+ A|] = 1√

π
exp

[
−
√(

x + A
)2 + y2 + z2

]
,

A = (A, 0, 0).

The operator σ̂ of the reflection in the plane x = 0 corresponds to the following unitary transformation matrix of

the coordinates U =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠. Therefore, the inverse matrix U−1 =

⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ ; i.e., the transformation

U−1r means x →−x, y → y, z→ z, what transforms a→ b and b→ a. Hence,

σ̂ (a + b) = (b + a) = (a + b)

σ̂ (a − b) = (b − a) = −(a − b).

In both cases, the molecular orbital represents an eigenfunction of the symmetry operator with the eigenvalue+1
and −1, respectively.



Group Theory in Spectroscopy e41

Under such a symmetry operation, the orbital either remains unchanged (as the abovemen-
tioned bonding one), or changes the sign (as the antibonding one),

or, if the orbital level is degenerate, we may obtain another function. This function corresponds to
the same energy because when applying any symmetry operation, we only exchange equivalent
nuclei, which otherwise are on equal footing in the Hamiltonian.

If we obtain another orbital (ϕ2), then we may begin to play with it by applying all the
symmetry operations. Some operations will lead to the same (new) orbital (sometimes with
the opposite sign) after some other operations, we obtain the old orbital ϕ1 (sometimes with the
opposite sign) and sometimes these operations will lead to the third orbital ϕ3. Then, we apply
the symmetry operations to the third orbital, etc. until a final set of orbitals is obtained, whose
orbitals transform into themselves when subjected to the symmetry operations. The set of such
linearly independent orbitals ϕi , i = 1, . . ., n we may treat as the basis set in a vector space.

All the results of applying the operation R̂i on the orbitals are collected in a transformation

matrix Ri , where ϕ =
⎡
⎣ ϕ1

. . .

ϕn

⎤
⎦:

R̂iϕ = RT
i ϕ. (C.16)

The matrices Ri , i = 1, 2, . . ., g form the n−dimensional representation (in general
reducible) of the symmetry group of the molecule.

Indeed, let us see what happens if we apply the operation T̂ = R̂1R̂2 to the function ϕi :

(R̂1R̂2)ϕi = R̂1RT
2 ϕ = RT

2 R̂1ϕ = RT
2 RT

1 ϕ = (R1R2)
Tϕ.

This means that all the matrices Ri form a representation.

Basis of a Representation
A set of the linearly independent functions ϕi , that served to create the representation forms
a basis of the representation.

The basis need not have been composed of the orbitals; it could be expressions like x, y, z
or x2, y2, z2, xy, xz, yz or any linearly independent functions, provided they transform into
themselves under symmetry operations. We may begin from an atomic orbital, and after applying
the symmetry operations soon will obtain a basis set that contains this orbital and all the other
equivalent ones.
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Decomposition of a Function into Irreducible Representation Components

Let us take a function f belonging to a Hilbert space. Since
∑
α P̂(α) = 1 [see Eq. (C.15)],

where α goes over all the irreducible representations of the group, then f can be written as a
sum of its components f (α), with each component (belonging to the corresponding subspace
of the Hilbert space) transforming according to the irreducible representation α:

f = 1 · f =
∑
α

P̂(α) f =
∑
α

f (α). (C.17)

In view of Eq. (C.14), the components f (α) and f (β) are automatically orthogonal if α �= β.

Example 12. Decomposition of a Function
Let us take three hydrogen atoms in the configuration of equilateral triangle, and assume that

we are in the simplest version of the molecular orbitals in the LCAO MO approximation; i.e.,
the atomic basis set is composed of the three 1s orbitals a, b, and c centered on the three nuclei.
Let us check whether the following functions:

u1 = a + b + c

u2 = b − c

u3 = a − c,

form a basis to a (reducible) representation. If the symmetry operations are applied to a, b, and c,
then they transform into each other (cf. Fig. C.2), and the results obtained are easily shown as
linear combinations of the functions u1, u2, and u3 (with RT

i as transformation matrices). For
example, Âu1 = a + b + c = u1, Âu2 = −b + c = −u2, Âu3 = a − b = −u2 + u3. Hence,

AT =
⎡
⎣1 0 0

0 −1 0
0 −1 1

⎤
⎦ . (C.18)

In this way [see Eq. (C.16)] we obtain Ri as

E =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ ;A =

⎡
⎣1 0 0

0 −1 −1
0 0 1

⎤
⎦ ;B =

⎡
⎣1 0 0

0 1 0
0 −1 −1

⎤
⎦ ; (C.19)

C =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ ;D =

⎡
⎣1 0 0

0 0 1
0 −1 −1

⎤
⎦ ;F =

⎡
⎣1 0 0

0 −1 −1
0 1 0

⎤
⎦ . (C.20)

Let us check that DF = E and AD = B; i.e., exactly as for the operations: D̂ F̂ = Ê, ÂD̂ = B̂,
and so on. Thus, this is a representation–moreover, this is a representation that is already in a
block form because u1 transforms always in itself, while u2 and u3 mix among themselves. It
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can be shown that this mixing cannot be avoided by any choice of u. Hence, u1 alone represents
a basis of a 1-D irreducible representation (A1, which is seen from the characters corresponding
to the first block 1 × 1), while u2 and u3 form a basis of a 2-D irreducible representation (E).
Note that from the mathematical form of the functions u, it follows that u2 and u3 have to
correspond to the same energy and this energy is different from that corresponding to u1. The
conclusion is that a, b, and c form a basis for a reducible representation, while their linear com-
binations u1 and {u2, u3} form the basis sets of two irreducible representations: A1 and E. Any
function that is a linear combination of a, b, and c can be represented as a linear combination
of u1, u2, and u3 as well.

The same symmetry orbitals can be obtained by using the projection operators of Eq. (C.13).
Let us take any one of the functions a, b, or c (the result does not depend on this choice);
e.g., function a. In view of a beautiful equilateral triangle, such a function is no doubt a really
deformed object that does not take care of making the three vortices of the triangle equiva-
lent. Let us see whether such a function has any component that transforms according to the
irreducible representation A1. To this end, let us use the projection operator P̂

(
A1
)

[Eq. (C.13)
and the table of characters on p. e37]: P̂

(
A1
)
a = 1

6

(
a + b + c + a + b + c

) = 1
3

(
a + b + c

)
.

Thus, there is a fully symmetric component30 in a. Now, let us use the same orbital a to
obtain: P̂

(
A2
)
a = 1

6

(
a + b + c − a − b − c

) = 0 . This means that a does not contain
anything that transforms according to A2. Now is the turn of the irreducible representation
E : P̂(E)a = 2

6

(
2a − b − c + 0 · a + 0 · b + 0 · c) = 1

3

[
2
(
a − c
)− (b − c

)]
. We obtain a

linear combination of u2 and u3.
If the projections were made for the function b, then we would obtain a trivial repeti-

tion31 of the irreducible representations A1 and A2 and a non-trivial result for the irreducible
representation E : P̂(E)b = 2

6

(
2b − a − c + 0 · a + 0 · b + 0 · c) = 1

3

[
2
(
b − c
)− (a − c

)]
.

This is just another linear combination of u2 and u3. These two functions are therefore insepa-
rable and form a basis for a 2-D irreducible representation.

Decomposition into Irreducible Representations
Any function that is a linear combination of the basis functions of a reducible representation
can be decomposed into a linear combination of the basis functions of those irreducible
representations that form the reducible representation.

30 This sentence carries a simple message: that by mixing symmetric objects, we may obtain an asymmetric one;
e.g., the asymmetric function a + 2b can be represented by a linear combination u1 + u2, with both functions
transforming according to irreducible representation of the symmetry group.

31 P̂
(

A1
)
b = 1

3

(
a + b + c

)
and P̂

(
A2
)
b = 0.
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The Most Important Point

The Most Important Point so Far
The wave functions corresponding to an energy level have the following characteristics:
– They form a basis of an irreducible representation of the symmetry group of the molecule,

or in other words, they transform according to this irreducible representation.
– The dimension of the representation is equal to the degeneracy of the energy level.

This is how it should be, because if a symmetry operation acts on an eigenfunction of the
Hamiltonian, we will have only two possibilities: (1) we obtain the same function to the accuracy
of the sign (which in the case of a 1-D representation is by definition irreducible); (2) another
function corresponding to the same energy (because of the same physical situation). Acting
on the function obtained and repeating the whole procedure we will arrive finally to a set of n
linearly independent functions that correspond to the same energy (a basis of a n-dimensional
irreducible representation).

This means (see Fig. C.4) that

the energy levels may be labeled by tags, each tag corresponds to a single irreducible repre-
sentation. This will be of fundamental importance when the selection rules in spectroscopy
will be considered.

We usually have plenty of the energy levels, while the number of the irreducible representation
is small. Thus, there will be in general a lot of levels with the same labels. This result was first
obtained by Eugene Wigner. The group theory will not tell us about how many levels correspond
to a particular irreducible representation, or what energy they correspond to.

Integrals Important in Spectroscopy

Direct Product of Irreducible Representations

We are approaching the application of group theory in optical transitions in spectroscopy. The
most important issue will be a decision whether an integral is zero or nonzero. If the integral
is zero, then the transition is forbidden, while if it is nonzero, then it is allowed. To make such
a decision, we have to use what is known as the direct product of irreducible representations.
Imagine basis functions {ϕi } and {ψ j } that correspond to irreducible representations α and β of
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Fig. C.4. Each energy level corresponds to an irreducible representation of the symmetry group of the Hamiltonian. Its linearly
independent eigenfunctions that correspond to a given level form a basis of the irreducible representation, or in other words,
transform according to this representation. The number of the basis functions is equal to the degeneracy of the level.

the symmetry group of a molecule. Let us make a set {ϕiψ j } of all possible products of them
(i.e., the Cartesian product).

Direct Product
The products {ϕiψ j } when subject to symmetry operations lead (as usual) to a representa-
tion, we call it the direct product �α × �β of the irreducible representations �α and �β .

The functions {ϕiψ j } form a basis set of the representation (reducible in general). We obtain
the matrices of the representations as usual by applying symmetry operations:

R̂ [ϕi (r)ψ j (r)
] = ϕi

(
R̂−1r
)
ψ j

(
R̂−1r
)
=
∑

k

U (α)
ik ϕk

∑
l

U (β)
jl ψl =

∑
kl

U (α)
ik U (β)

jl ϕkψl

=
∑

kl

Zi j,klϕkψl,
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where U (γ )

ik are the matrix elements of the irreducible representation γ, Zi j,kl = U (α)
ik U (β)

jl . Of
course,

the dimension of this representation is the product of the dimensions of the representations
α i β, because this is the number of the functions ϕkψl .

The characters of the representation can be easily obtained from the characters of the irre-
ducible ones, just we have to multiply the latter ones:

χ(α×β)(R̂) = χ(α)(R̂)χ(β)(R̂). (C.21)

Indeed, the formula is justified by

χ(R̂) =
∑

kl

Zkl,kl =
∑

kl

U (α)
kk U (β)

ll =
(∑

k

U (α)
kk

)(∑
l

U (β)
ll

)

= χ(α)(R̂)χ(β)(R̂). (C.22)

This rule can be naturally generalized for a larger number of the irreducible representations
in the direct product (just multiply the characters of the irreducible representations). We will
have a product of three irreducible representations shortly.

When Is an Integral Bound to Be Zero?

Everybody knows how to calculate the integral

∫ +1

−1
xdx =

[
x2

2

]+1

−1
= 1

2
− 1

2
= 0.

Note, however, that we can tell what the value of the integral is without calculating, just by
looking at the integrand. Indeed, the integrand is odd with respect to the transformation x →−x ;
i.e., the plot of the integral is an antisymmetric function with respect to the reflection in the
plane perpendicular to x at x = 0. The integration limits are symmetric with respect to that
point. An integral means the surface under the plot; therefore, what we gain for x > 0, we lose
for x < 0, and the integral will be exactly zero.

The force of the group theory relies on the fact that even having a complicated integrand,
we are able to tell immediately whether the integral is equal to zero. This will allow us to
predict whether an optical transition is allowed or forbidden.
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We have to stress that these conclusions will be valid independent of the approximations used
to compute the molecular wave functions. The reason is that they follow from the symmetry,
which is identical for the exact and approximate wave functions.

The previous example can be generalized. Let us take the integral∫
fα fβ fγ · · · dτ, (C.23)

where fα, fβ, fγ , . . . transform according the irreducible representations �(α), �(β), �(γ ), . . .,
respectively, of a symmetry group, and the integration is over the whole space.

When does the Integral Equal Zero?
If a representation (which in general is reducible), being the direct product of the irreducible
representations �(α), �(β), �(γ ) . . ., does not contain the fully symmetric representation
(that one with all its characters equal 1), then the integral equals zero.

We have been working so hard with symmetry groups, operations, characters, etc. This result
is precisely what we wanted to accomplish in this appendix. The essence of the theorem is very
simple. The product fα fβ fγ . . . transforms according to the (in general reducible) represen-
tation, which is the direct product of the irreducible representations �(α), �(β), �(γ ) . . .. This
means that according to Eq. (C.17), the integrand fα fβ fγ . . . can be represented as a linear
combination of the basis functions of all the irreducible representations: fα fβ fγ . . . =∑μ gμ,

where gμ transforms according to the irreducible representation �(μ) . Therefore, the integral
[Eq. (C.23)] is a sum of the integrals∫

fα fβ fγ . . .dτ =
∑
μ

∫
gμ dτ, (C.24)

each with the integrand transforming to an irreducible representation �(μ). Let us take one of
these integrals:

∫
gμ dτ . Note that the integration is over the whole space (i.e., the integration

limits are symmetric). If the integrand gμ were antisymmetric with respect to one or more
symmetry operations, the integral would automatically equal zero (the same argument as for∫

xdx). From this, it follows that all integrals in the sum would be zero except that single one
that contains the integrand transforming according to the fully symmetric representation.32

There are two special cases of this theorem that are important to this discussion.

32 Only for the fully symmetric representation are all the characters equal to 1, and therefore the corresponding
function does not change under symmetry operations.
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Two Special Cases

∫
fα fβdτ = δαβ A; i.e., in order to have the integral not vanish, we have to have

�(α) = �(β).

The proof is very simple and relies on the fact that the characters of the fully symmetric
irreducible representation equal 1. We can calculate the number of times, a(A), that the fully
symmetric representation A is present in the direct product �(α) × �(β) from the following
formula:

a(A) = 1

g

∑
i

χ(α×β)(R̂i )χ
(A)(R̂i )

∗

= 1

g

∑
i

χ(α×β)(R̂i ) = 1

g

∑
i

χ(α)(R̂i )χ
(β)(R̂i )

∗ = δαβ. (C.25)

This means that the fully symmetric representation is always present in�(α)×�(α), and therefore
the integral does not vanish.33

Let us take the integral ∫
fαfβfγ dτ, (C.26)

where fα, fβ, fγ transform according to the irreducible representations α, β, γ . In order
to have the non-vanishing integral, the direct product �(α) × �(β) must contain the repre-
sentation �(γ ).

This means that in order to have Eq. (C.26) not vanish, the function fα fβ decomposes [Eq.
(C.17)] in such a way that there is a nonzero component belonging to �(γ ). If this happens,
according to the previous case, a component of the integrand will transform according to the
fully symmetric representation, what will keep the expression (C.26) from vanishing.

Selection Rules for Electronic Transitions (UV-VIS)

The selection rules will be shown taking an example of pyrazine and its monoprotonated- and
diprotonated ions (Fig. C.5).

33 It is easy to understand. What transforms according to �(α) × �(α) is a product of two (in general different)
functions, each belonging to �(α). This means that the function behaves in a very special way (typical for �(α))
under the symmetry operations (e.g., changes sign under R̂1), while other operations leave it unchanged. If we
have a product of two such functions, then this means that the product does not change at all under R̂1 (and, of
course, the other operations); i.e., transforms according to the fully symmetric operation. This is why the fully
symmetric representation is always present in �(α) × �(α).
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(a) (b)

(c)

Fig. C.5. The pyrazine (a) and its monoprotonated- (b) and diprotonated (c) derivatives. The x-axis is perpendicular to the ring
plane, the y-axis is in the ring plane perpendicular to the NN axis, and the z-axis means the NN axis.

A glimpse on the chemical formulas is sufficient to tell, that the monocation of the pyrazine
has the same symmetry as H2O that corresponds to the symmetry group C2v (see Table C.4),
while the pyrazine and its diprotonated derivative have the symmetry identical with that of the
naphthalene; i.e., D2h . Let us focus first on the last case.

Example 13. Pyrazine and Its Diprotonated Derivative
Every book on group theory contains the table of characters of the symmetry group D2h (see

Table C.6; the x-axis perpendicular to the plane of the molecule, and z goes through the nitrogen
atoms).

From Table C.6, we see34 that what we call irreducible representations represent distinct
rhythms of pluses and minuses, which after making the square, give the fully symmetric behavior.

34 Note that all the irreducible representations of the symmetry group of the molecules under consideration are 1-D,
so their energy levels are non-degenerate.
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Table C.6. D2h group table of characters.

D2h Ê Ĉ2(z) Ĉ2(y) Ĉ2(x) ı̂ σ̂ (xy) σ̂ (xz) σ̂ (yz)

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 −1 −1 1 1 −1 −1 Rz xy
B2g 1 −1 1 −1 1 −1 1 −1 Ry xz
B3g 1 −1 −1 1 1 −1 −1 1 Rx yz
Au 1 1 1 1 −1 −1 −1 −1
B1u 1 1 −1 −1 −1 −1 1 1 z
B2u 1 −1 1 −1 −1 1 −1 1 y
B3u 1 −1 −1 1 −1 1 1 −1 x

All the electronic states of the pyrazine and its diprotonated derivative can be labeled by the
irreducible representation labels: Ag,B1g,B2g,B3g,Au,B1u,B2u,B3u .

We may ask at this point, what are the selection rules for the state-to-state optical transitions?
Are all the transitions allowed, or are some of them forbidden? From the theory of the electro-
magnetic field (cf. Chapters 2 and 12), it follows that the probability of the transition between
the states k and l is proportional to |μkl(x)|2, to |μkl(y)|2, or to |μkl(z)|2, respectively,35 with

μkl(x) =
∫
ψ∗k μ̂xψldτ

μkl(y) =
∫
ψ∗k μ̂yψldτ

μkl(z) =
∫
ψ∗k μ̂zψldτ,

(C.27)

where ψ stand for the electronic states k and l; μ̂x , μ̂y, μ̂z are the operators of the molecular
dipole moment components36 (e.g., μ̂z =∑i qi zi ); and, qi is the electric charge of the particle
(electron or nucleus) having its z component equal to zi . Since we will decide, by using group
theory, whether this integral37 vanishes or not, what will count is that μx transforms exactly the
same way that the coordinate x does. The integrand ψ∗k μ̂xψl transforms as the direct product
of the three irreducible representations: that of ψk , that of μ̂x and that of ψl .

35 Depending on the electromagnetic wave polarization along axes x or y or z axes. From the equality |μkl (x)|2 =
|μlk(x)|2, and similarly for y and z, it follows that the optical excitation and the corresponding deexcitation have
the same probability.

36 This may look alarming because the operator depends on the choice of the coordinate system (cf. see Appendix
X available at booksite.elsevier.com/978-0-444-59436-5). Do not worry, though–everything is all right. Even if
the dipole moment depends on such a choice, any two choices give the dipole moments that differ by a constant
vector. This vector, being a constant, can be shifted outside the integral and the integral itself will become zero,
because ψk and ψl are orthogonal. Thus, to our delight, light absorption does not depend on the choice of the
coordinate system.

37 The integration goes over all the electronic coordinates.

http://booksite.elsevier.com/978-0-444-59436-5
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Excitations from the Ground State

Suppose we do the following:

• Have a molecule in its ground state ψk (thus, belonging to the fully symmetric irreducible
representation Ag)

• Immobilize the molecule in space (say, in crystal),
• Introduce the coordinate system in the way described above,
• Irradiate the molecule with a light polarized along the x-axis

Then, we ask to which states the molecule can be excited. The direct product of Ag and the
irreducible representation to which x belongs decomposes into some irreducible representations.
For the allowed optical transition, we have to find among them the irreducible representation
to which ψl belongs (just recall that

∫
fα fβ dτ = δαβ A). Only then will the integrand contain

something that has a chance to be transformed according to the fully symmetric representation.
The x-coordinate belongs to the representation B3u (see the last column of Table C.6). Therefore,
let us see what represents the direct product Ag ×B3u . We have Eq. (C.12) for the integer a(α)
that is a number of the irreducible representations α in a given reducible representation. Let us
compute this number for the (in general reducible) representation being the direct product and
all the irreducible representations α. In this particular case, the direct product is38 Ag × B3u .
We have

a(Ag) = 1

8
[1× 1+ 1× (−1)+ 1× (−1)+ 1× 1+ 1× (−1)+ 1× 1

+ 1× 1+ 1× (−1)] = 0

a(B1g) = 1

8
[1× 1+ 1× (−1)+ (−1)× (−1)+ (−1)× 1

+ 1× (−1)+ 1× 1+ (−1)× 1

+ (−1)× (−1)] = 0

etc., all equaling zero, and finally

a(B3u) = 1

8
(1× 1+ (−1)× (−1)+ (−1)× (−1)+ 1× 1+ (−1)× (−1)+ 1× 1

+ 1× 1+ (−1)× (−1)] = 1,

38 The characters of Ag × B3u are as follows (in the order of the symmetry operations in the table of characters):
1 −1 −1 1 −1 1 1 −1;
i.e., they are identical to those of the (it turned out …irreducible) representation B3u . Such a product is a 100
percent banality to make. Just in the table of characters, one finger goes horizontally over the characters of Ag
(all they are equal to . . .1), while the second finger moves similarly over the characters of B3u ; and we multiply
what the first finger shows by that, which indicates the second one. The result is the character of the direct product
Ag × B3u , which in this case turns out to be exactly the character of B3u . This is why we may expect that a(α)
will all be zero except a(B3u) = 1.
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exactly as we have expected. Thus, we can write39

Ag × B3u = B3u .

Now only those ψl are allowed in optical transitions (from the ground state Ag) that are
labeled by B3u , because only the direct product B3u × B3u may contain the fully symmetric
irreducible representation Ag. Thus, the transitions Ag ⇒ B3u as well as B3u ⇒ Ag are allowed,
if the light is polarized along x ; i.e., perpendicularly to the ring of the molecule.

Now, let us take the light polarized along y; i.e., within the molecular plane, perpendicularly
to the N-N line. This time, we are interested in the irreducible representations that arise from
Ag × B2u , because y transforms according to B2u . Very similar to before [by analyzing a(α)],
we find that

Ag × B2u = B2u .

This means that now the allowed states are of the B2u type.
Similarly, for the polarization along z(z belongs to B1u), i.e., along the nitrogen-nitrogen

direction, we have
Ag × B1u = B1u .

Thus, for polarization parallel to the NN axis of the molecule, the absorption may occur from
the ground state to any state of the B1u type (and vice versa).

Nothing more can be said when basing solely on the group theory. One will not get any
information about the energies of the transitions, as well as about the corresponding intensities.
In order to get this additional (and important) information, we have to take pains and work
hard to solve the Schrödinger equation, rather than count on some easy profits obtained by
primitive multiplication of integers (as in the group theory). To obtain the intensities, we have to
calculate the transition moment integralsμkl . However, the group theory, just by excluding from
the spectrum a lot of transitions (forbidden ones), provides a lot of important information on
the symmetry of the molecule. Table C.7 collects the calculated light frequencies40 (ν̄ in wave
numbers, or cm−1, ν = cν̄, where ν is the usual frequency), the so-called oscillator strengths
fkl (in a.u.) are as follows:

fkl = 4πc

3
ν|μkl |2, (C.28)

as well as the polarization of light for excitations from the electronic ground state for the
pyrazine and the pyrazine monocation. It is seen that the left side of Table C.7 is consistent
with the selection rules derived above. Indeed, a large fkl corresponds only to those transitions
from the ground state of the pyrazine that have been predicted as allowed (B1u,B2u and B3u).
Also the predicted polarization agrees with the observed ones.

39 We may say that the fully symmetric representation plays a role of unity in the multiplication of irreducible
representations.

40 J. Koput, unpublished results.



Group Theory in Spectroscopy e53

Table C.7. Wave numbers (ν̄, in cm−1), oscillator strengths ( fkl ) and light polarization (in parentheses).

Pyrazine Pyrazine Monocation

Excited State ν̄ fkl Excited State ν̄ fkl

B3u 28960 0.015(x) B1 27440 0.007(x)
B2u 36890 0.194(y) B2 34130 0.280(y)
B2g 38890 0.0 A2 45100 0.0
Au 41710 0.0 A1 49720 0.126(z)
B1u 49800 0.183(z) B1 57380 0.012(x)
B1g 57070 0.0 A2 57710 0.0
B1u 57420 0.426(z) A1 58210 0.625(z)
Au 60170 0.0 A2 59830 0.0
B2g 60970 0.0 B2 60370 0.010(y)

Excitations from an Excited State

Calculations for the absorption from the ground state were particularly simple. Now, let us see
whether anything will be more complicated for the transitions from an excited state of the B2g

type of symmetry. We are going to calculate a(α) (for every α) for the following representations:

for polarization along x : B2g × B3u

for polarization along y: B2g × B2u

for polarization along z: B2g × B1u .

The characters of the representation B2g × B3u are the following (Table C.6, the first finger
goes along B2g, the second – along B3u , etc.)

1 −1 −1 −1 −1 1 1

and are identical with the characters of B1u . Hence, even without any calculation of a(α), we
have B2g×B3u = B1u . Thus, the transitions (for the polarization along x) are allowed only to the
states labeled by B1u , because otherwise there is no chance to obtain a fully symmetric integrand.
Similarly, by multiplying B2g and B2u , we obtain the following characters of B2g × B2u :

1 1 1 1 −1 −1 −1 −1

and this is identical to the characters of Au , so B2g × B2u = Au . If the polarization of the light
is along y, then the only excitations (or deexcitations) possible are to the states belonging to Au .
Finally, for the polarization along z, we find the characters of B2g × B1u :

1 −1 −1 1 −1 1 1 −1

that turn out to be those of B3u . This means that B2g × B1u = B3u and that the transitions are
possible only to the states belonging to B3u .
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Table C.8. C2v group characters.

C2v E C2 σv(xz) σv(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 x, Ry xz
B2 1 −1 −1 1 y, Rx yz

Example 14. Pyrazine Monocation
As to the selection rules, nothing was said so far about the pyrazine monocation. We will

be interested in excitations from the electronic ground state (as in TableC.7). The pyrazine
monocation corresponds to the symmetry group C2v (shown in Table C.8).

The ground state belongs to the fully symmetric irreducible representation A1. Since (as
before) we begin by excitations from the ground state, then let us see which irreducible rep-
resentations arise from A1 × B1 (for the x polarization of light, see Table C.8; x transforms
according to B1), A1 × B2 (for the y polarization) and A1 × A1 (for the z polarization). We
calculate the characters of A1 × B1 by multiplying 1 by

1 −1 1 −1,

and checking in Table C.8 that these correspond to B1 (it has to be like that because the characters
of A1 all equal 1); i.e., A1 × B1 = B1. Similarly, even without immediate checking, we see
that A1 × B2 = B2 and A1 ×A1 = A1. In this way, the following allowed transitions from the
ground state (A1) have been predicted:

for polarization along x : A1 → B1;
for polarization along y: A1 → B2;
for polarization along z: A1 → A1.

Now we are able to compare the spectrum for the pyrazine and for its monocation, as shown
in Table C.7. Attaching a proton to the pyrazine (creating its monocation) does not look like
something that would ruin the UV-VIS spectrum. We might expect that the frequencies of the
bands, and even their intensities, should be somehow similar in both molecules. As we can
see from the Table C.7, the frequencies are similar indeed, although in the middle of the table,
the deviations are quite significant. For both molecules, there are forbidden ( fkl = 0) and
allowed ( fkl �= 0) transitions. Note that what is allowed for the pyrazine is also allowed for
its cation; the light polarization coincides; and even the values of fkl are similar (we took into
account that the transition to B1u in pyrazine with the frequency 49800 cm−1 corresponds to the
transition to A1 in the monocation with the frequency 49720 cm−1). In the monocation, there
are some additional transitions allowed: to B1 and to B2g. This is quite understandable because
the number of symmetry operations for the monocation is smaller, and forbidding results from
molecular symmetry. If a molecule had no symmetry operations at all (except of course the
identity symmetry), all transitions would be allowed.
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Thus, with practically no effort, we find the selection rules in UV-VIS for any molecule we
want.

Selection Rules in IR and Raman Spectra

The selection rules derived above pertained to electronic transitions, where the positions of
the nuclei were fixed in space. Now a change of the vibrational states of the molecule will be
considered, while the electronic state is assumed to be unchanged. The vibrations of a molecule
are related to its vibrational levels (each of them corresponding to an irreducible representation)
and the corresponding vibrational wave functions, and the IR spectrum results from transitions
between such levels. Fig. C.6 shows the energy levels of three normal modes.

In the harmonic approximation, the problem of small amplitude vibrations (discussed in
Chapters 6 and 7) reduces to the 3N − 6 normal modes (N is the number of atoms in the
molecule). Each of the normal modes may be treated as an independent harmonic oscillator. A
normal mode moves all the atoms with a certain frequency about their equilibrium positions

Fig. C.6. Small amplitude harmonic vibrations of a molecule (N atoms) are described by 3N−6 independent harmonic oscillators
(normal modes). Each normal mode is characterized by an irreducible representation. A scheme of the vibrational energy levels
of three normal modes corresponding to the irreducible representations �1, �2, �3. The modes have different frequencies, so the
interlevel separations are different for all of them (but equal for a given mode due to the harmonic potential). On the right side, all
these levels are shown together.
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in a concerted motion (the same phase). The relative deviations (i.e., the ratios of the ampli-
tudes) of the vibrating atoms from the equilibrium are characteristic for the mode, while the
deviation itself is obtained from them by multiplication by the corresponding normal mode
coordinate Q ∈ (−∞,∞). The value Q = 0 corresponds to the equilibrium positions of all
the atoms, Q and −Q correspond to two opposite deviations of any atom from its equilibrium
position.

Each normal mode belongs to an irreducible representation of the symmetry group of the
molecule. What does it really mean? In any mode, the displacements of the equivalent atoms
from the equilibrium have the same absolute value, although they may differ by sign.

We assume that small atomic deviations satisfy the symmetry requirements of the sym-
metry group the molecule (valid for all atoms in the equilibrium positions) and transform
according to the irreducible representation, to which the normal mode belongs. Squaring
the deviations destroys information about their signs; i.e., the absolute values of the devi-
ations of the equivalent atoms are the same. This means that the squares of deviations
transform according to the fully symmetric representation of the group.

To establish the vibrational selection rules let us define first the vibrational states of 3N − 6
harmonic oscillators (normal modes). The ground state of the system is no doubt the state, in
which every normal mode i is in its ground state, ψi,0. The ground-state wave function of the
i th normal mode reads as (p. 186)

ψi,0 = N0 exp (−ai Q2
i ), (C.29)

where ai > 0 is a constant, and Qi is the normal mode coordinate. Whatever this normal mode
is, the wave function contains the square of Qi ; i.e., the sign of the deviations of the equivalent
atoms is irrelevant.

The squares of the deviations and therefore functionψi,0 itself transform independently of i .

Let us denote this fully symmetric irreducible representation by A1. The wave function of
the first excited state of a normal mode has the form

ψi,1 = N1 Qi exp (−ai Q2
i ), (C.30)

and we see that ψi,1 transforms exactly as the coordinate Qi does; i.e., according to that irre-
ducible representation to which the normal mode belongs (because Q2

i in the exponent and
therefore the exponent itself both belong to the fully symmetric representation). In the har-
monic approximation, the total vibrational wave function of the system of 3N − 6 normal (i.e.,
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independent) oscillators can be written as

ψosc
0 = ψ1,0ψ2,0ψ3,0 . . . ψ3N−6,0, (C.31)

the zeros in the indices mean that all the modes are in their ground states. This means that ψosc
0

transforms according to the representation being the direct product A1×A1×A1×· · ·A1 = A1

(a banality, all the characters of A1 are equal 1). Now, let us focus on the excited states of the
3N − 6 vibrational modes. The excited states may be quite complex, but the most important
(and the simplest) ones are those with all the normal modes in their ground states except a
single mode that is in its first excited state. A transition from the many-oscillator ground state
to such an excited state is called a fundamental transition. The intensities of the fundamental
transitions are at least by one order of magnitude larger than others. This is why we will focus
on the selection rules for such transitions. Let us take one of these singly excited states (with
the first mode excited):

ψosc
1 = ψ1,1ψ2,0ψ3,0 . . . ψ3N−6,0. (C.32)

The function ψ1,1 corresponding to the first excited state transforms according to the irre-
ducible representation�, to which the normal mode 1 belongs. Thus,ψosc

1 transforms according
to �×A1×A1×A1×· · ·A1 = �; i.e., it belongs to the same irreducible representation asψ1,1

does. Of course, if the only excited mode were the i th one, then the many-oscillator wavefunc-
tion would belong to the same irreducible representation as the wavefunction of the particular
oscillator does. We will need this result soon.

IR Selection Rules

Let us consider a molecule having a fixed position in a Cartesian coordinate system. To excite
the molecule, the IR light (because the separation of the vibrational levels corresponds to the
infrared region) is used that is polarized along the x-axis. The electromagnetic theory says that
what decides the intensity of the absorption is the square of the transition integral41

∫
ψosc

0 μ̂xψ
osc
1 dτ, (C.33)

where μ̂x stands for the dipole moment component x . The selection rules mean to establish
which integrals of that kind will be zero for symmetry reasons. To this end, what we need is
information about the irreducible representations to whichψosc

0 , μ̂x , ψ
osc
1 belong.42 Sinceψosc

0
transforms according to A1, the integral to survive the function ψosc

1 has to belong to the same
irreducible representation as μ̂x (and therefore x itself). It was shown that ψosc

1 belongs to the
same irreducible representation to which the normal mode 1 belongs. In other words, the rule
is as follows:
41 The integration goes over the coordinates of the nuclei.
42 We are going to analyze the direct product of these three representations. If it contains the fully symmetric

representation, then the integral is not zero.



e58 Appendix C

Selection Rule in IR
the transition from the ground state is allowed for those normal modes that transform as
x , where x is the direction of the light polarization. It also will be similar for the light
polarization along y and z.

Raman Selection Rules

The physics of the Raman spectra43 is different: rather than direct absorption, this is a light
scattering (in the UV-VIS region) on molecules. It turns out that besides the light the source is
emitting, we detect also quanta of the energy lower or higher by hν, where ν is a vibrational
frequency of the molecule. For the Raman scattering to be nonzero, at least one of the following
integrals should be nonzero: ∫

ψosc
0 α̂qq ′ψ

osc
1 dτ, (C.34)

where α̂qq ′ with q, q ′ = x, y, z is a component of the polarizability tensor, that transforms
as one of the following [cf., Eq. (12.42), p. 744]: qq ′ = x2, y2, z2, xy, xz, yz or their linear
combinations (this information is available in the tables of characters). An identical reasoning
as before leads to the conclusion that

the normal mode excited in a fundamental transition has to belong to the same irreducible
representation as the product qq ′.

It remains to be seen to which irreducible representations the normal modes belong. The
procedure consists of two stages.

Stage 1. The global Cartesian coordinate system is chosen. In this system, we draw the equilib-
rium configuration of the molecule, with the atoms numbered. On each atom, a local Cartesian
coordinate system is located with the axes parallel to those of the global one. For each atom
we draw the arrows of its displacements along x, y and z oriented toward the positive values
(3N displacements all together), assuming that the displacements of equivalent atoms have
to be the same. When symmetry operations are applied, these displacements transform into
themselves44 and therefore form a basis set of a (reducible) representation � of the symmetry

43 Chandrasekhar Venkata Raman (1888–1970), was an Indian physicist and professor at the University of Calcutta
and at the Indian Scientific Institute in Bangalore. Raman discovered in 1928 light scattering that has been
accompanied by a change of frequency (by frequency of molecular vibrations). In 1930, Raman received the
Nobel Prize “for his work on the scattering of light and for the discovery of the effect named after him.”

44 For example, a displacement of an atom along x under a symmetry operation turns out to be a displacement of
another atom.
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Fig. C.7. The carbonate anion CO2−
3 , the coordinate system used, and the versors describing the displacements of the atoms.

group of the molecule (in its equilibrium position). This representation will be decomposed
into the irreducible representations.
Stage 2. The reducible representation describes the genuine (internal) vibrations as well as
the six apparent vibrations (three translations and three rotations). The apparent vibrations
can be easily eliminated by throwing away (from the total reducible representation) those
irreducible representations that correspond to x, y, z (translations) and Rx ,Ry,Rz (rotations).
What the latter ones are, we know from the corresponding table of characters. To summarize,
the abovementioned reducible representation has to be decomposed into the irreducible ones.
The decomposition yields � = a(�1)�1+ a(�2)�2+ a(�3)�3. . . From this decomposition, we
have to subtract (in order to eliminate the apparent vibrations) all the irreducible representations
the x, y, z,Rx ,Ry and Rz belong to.

After the two stages, we are left with a number of the irreducible representations that pertain
to the genuine vibrations.45 Only after that can we establish the vibrational selection rules
according to the same procedure that has been used before. All this will be shown in a simple
example of the carbonate anion CO2−

3 that in its equilibrium configuration corresponds to the
D3h symmetry group (see Fig. C.7).

Example 15. IR and Raman Spectra of the Carbonate Anion
In order to decompose a reducible representation into the irrreducible representations, we

do not need the reducible representation be given in details. It is sufficient to know its char-
acters (p. e35). These characters are easy to deduce just by considering what happens to the
displacement vectors along xi , yi , and zi (for atom i) under all the symmetry operations. What

45 These are internal motions. Note that some of these genuine vibrations may correspond to rotations of the functional
groups in the molecule.
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will simplify greatly our task is that only the diagonal elements of the matrices of the reducible
representation contribute to the characters. This is how it looks in practice.

Class The character of the corresponding matrix

E χ(E) = 12
Justification: Each versor transforms into itself. Hence, each diagonal element equals 1, and the
number of them equals 3 times the number of atoms = 12.

2C3 χ(C3) = 0
Justification: 0 from the oxygens, because they transform into other oxygens. For the carbon:
+1(from z4)+ cos 120◦(from x4)+ cos 120◦(from y4) = 0.

3C2 χ(C2) = −2
Justification: It is sufficient to consider only one of the operations of the class; other ones will have
the same character. Let us take the rotation about the C2 axis going through O1 and C. Then the
only versors that transform into themselves (eventually changing sign, then the contribution to
the character is −1) are those related to O1 and C. We have
χ(C2) = −1(from z4)+(−1)(from z1)−1(from x1)−1(from x4)+1(from y1)+1(from y4) = −2.

σh χ(σh) = 4
Justification: The contribution from each atom will be the same; i.e., χ will be equal to 4 times the
contribution from a single atom, the latter one equals −1(from z)+ 1(from x)+ 1(from y) = 1.

2S3 χ(S3) = −2
Justification: Only C gives a contribution, which is equal to
−1(from z4)− 1

2 (from x4)− 1
2 (from y4) = −2.

3σv χ(σv) = 2
Justification: Let us take only a single operation from the class–this one, which represents the
reflection in the plane going through O1 and C4. Then the contributions to χ are the same for
both these atoms, and one of them gives −1(from x)+ 1(from z)+ 1(from y) = 1.

Thus, the characters of the reducible representation have been found. In order to decompose
the representation, we have to know the table of characters for the D3h symmetry group, shown
in Table C.9.

Let us write down (in the same order as in Table C.9) the characters of the reducible repre-
sentation just found:

12 0 − 2 4 − 2 2.

Now, let us find (p. e35), how many times [a(α)] the irreducible representation α is present
in the reducible representation (a sum over classes: the number of operations in the class × the
calculated character × the character of the irreducible representation):

a(A′1) =
1

12
[1×12×1+2×0×1+3× (−2)×1+1×4×1+2× (−2)×1+3×2×1] = 1

Similarly, we find (knowing only how to multiply such numbers as 1, 2, 3) that

a(A′2) = 1, a(E′) = 3, a(A′′1) = 0, a(A′′2) = 2, a(E′′) = 1.

This means that the reducible representation in question decomposes into

� = A′1 + A′2 + 3E′ + 2A′′2 + E′′. (C.35)
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Table C.9. Characters of the irreducible representations of the symmetry group D3h .

D3h Ê 2Ĉ3 3Ĉ2 σ̂h 2Ŝ3 3σ̂v

A′1 1 1 1 1 1 1 x2 + y2, z2

A′2 1 1 −1 1 1 −1 Rz

E′ 2 −1 0 2 −1 0 x, y x2 − y2, xy

A′′1 1 1 1 −1 −1 −1

A′′2 1 1 −1 −1 −1 1 z

E′′ 2 −1 0 −2 1 0 Rx , Ry xz, yz

From the table of characters, we see that the apparent vibrations (see the irreducible represen-
tations corresponding to x, y, z, Rx , Ry, and Rz) belong to A′′2,E′,A′2,E′′. After subtracting
them from�, we obtain the irreducible representations that correspond to the genuine vibrations:

A′1,A′′2, 2E′;

i.e., one vibration of symmetry A′1 (and a certain frequency ν1), two vibrations (each doubly
degenerate) of symmetry E′ (they differ by frequency, ν3 �= ν4), and one vibration of A′′2
symmetry (corresponding to frequency ν2).

Selection Rules for IR Spectra:
Therefore, we expect the following selection rules for the fundamental transitions in the
IR spectrum for the CO2−

3 anion:

• x and y belong to representation E′, so frequencies ν3 and ν4 are active in IR.
• z belongs to representation A′′2, so frequency ν2 is active in IR.

Selection Rules for Raman Spectra
For the Raman spectra, we expect the following selection rules. Vibrations with the fol-
lowing frequency will be active:

• ν1, because x2 + y2 and z2 belong to A′1
• ν3 and ν4, because x2 − y2 and xy belong to E′,
while the vibration of the frequency ν2 will be inactive in the Raman spectroscopy because
none of the polarizability components (symbolized by x2, y2, etc.) belongs to A′′2.

The results are collected in Table C.10 (sign “+” = active vibration, sign “–” = inactive
vibration, the polarization of the light is shown in parentheses).
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Table C.10. Transitions in CO2−
3 that are active (+) in the IR and in the Raman spectra.

Representation ν IR (Polarization) Raman

A′1 ν1 − +
A′′2 ν2 + (z) −
E′ ν3 + (circular) +
E′ ν4 + (circular) +

As seen from Table C.10, in the case of the carbonate anion, the vibration ν1 is inactive in
IR, but active in the Raman spectroscopy, while the opposite is true for ν2. The vibrations with
the frequencies ν3 and ν4 are active both in IR and Raman spectra.

Exclusion Rule
If the molecule under study has the center of symmetry, then the exclusion rule is valid;
i.e., the vibrations that are active in IR are inactive in the Raman spectrum, and vice versa.

This follows from the fact that in that case, x, y, and z belong to different irreducible
representations than x2, y2, z2, xy, xz, and yz. Indeed, the x, y, and z are antisymmetric with
respect to the inversion operation, whereas x2, y2, z2, xy, xz, yz, or their combinations are
symmetric with respect to inversion. This guarantees that they belong to different irreducible
representations for a molecule, with the center of inversion the vibrations active in IR are inactive
in Raman spectra and vice versa.

When the Selection Rules Fail?

When deriving the selection rules, the following assumptions have been made:

• The molecule is isolated.
• Elements are represented by the same isotope.
• The molecule is in a stationary state.
• The vibrations have small amplitudes.
• The vibrations are harmonic.
• The electromagnetic field interacts with the molecule only through the electric field–

molecule interaction.
• In the interaction of the molecule with the electromagnetic field, only the dipole transitions

are involved.46

46 That is, the electric field of the electromagnetic wave within the molecule is assumed to be uniform. Then, the only
term in the Hamiltonian related to the light-molecule interaction is −μ̂E , where μ̂ stands for the dipole moment
operator of the molecule and E is the electric field intensity.
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However, in practice, the molecule is never isolated. In particular, the interactions it undergoes
in liquid or solid state are sufficiently strong to deform the molecule. As a result, we have to deal
with a population of molecules (especially in a liquid), each in a different geometry, which are
usually devoid of any particular symmetry (for a single molecule, this means a non-stationary
state), although the molecule is not far from the perfect symmetry (“broken symmetry”).

Suppose that the molecule under consideration is indeed isolated. In a substance, we have
usually several isotopomers, with different distributions of the isotopes in the molecules. In
most cases, this also means a broken symmetry. A broken symmetry means that the selection
rules in principle are not applicable.

In practice, a broken symmetry means that the selection rules cause only a small intensity
of the forbidden transitions with respect to the allowed ones.

When considering electronic transitions, we assumed that the molecule stays in its equilibrium
geometry, often with high symmetry. This may be the most probable configuration,47 but the
vibrations and rotations deform it. An electronic excitation is fast and usually undergoes a
molecular geometry that differs slightly from the most probable and most symmetric one. This
will cause a transition that is forbidden for the perfectly symmetric geometry, to have a non-
negligible intensity.

Deriving the selection rules for the IR and Raman spectra, we assumed that the equivalent
atoms can differ only by the sign of the deviation from the equilibrium position, but its absolute
value is the same. This is how it would be for a harmonic oscillator. An anharmonicity introduces,
therefore, another reason why a (harmonically) forbidden transition will have a non-negligible
intensity.

The electromagnetic field has its electric and magnetic components. The selection rules
that we have derived did not take into account the presence of the magnetic field. Taking into
account the magnetic field introduces some additional selection rules. Also, the wavelength
of an electromagnetic wave in the UV-VIS region is of the order of thousands of angstroms,
whereas the length of the molecule is usually of the order of a few angstroms. This means that
the assumption that the electric field of the electromagnetic wave is uniform looks good, but the
field is not perfectly uniform. The deviations will be small but nonzero. Taking this into account
by including further terms besides −μ̂E , we obtain the interaction of the electric field gradient
with the quadrupole moment of the molecule, as well as further terms. This also weakens the
selection rules found.

47 The maximum of the ground-state probability density for the harmonic oscillator corresponds indeed just to the
equilibrium geometry. This is why the selection rules work at all (although in an approximate way).
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Despite these complications, the group theory allows for understanding the basic features of
the molecular spectra. It works sometimes even if the molecule under study has no symmetry
at all because of a substituent that breaks it. Some electronic or vibrational excitations are of
a local spatial character and pertain to a portion of the molecule that is (nearly) symmetric.
Due to that, some optical transitions that are allowed, because the molecule as a whole does
not have any symmetry,48 will still have a very low intensity.

48 But they would be forbidden if the portion in question represented a separate molecule and were symmetric.
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A Two-State Model

The Schrödinger equation Ĥψ = Eψ is usually solved1 by expanding the unknown wave
function ψ in a series of the complete basis set {φi }Ni=1 of states φi , where N in principle
equals ∞ (instead, in practice, we end up with a chosen large value of N ). The expansion

gives Ĥ
∑

j c jφ j = E
∑

j c jφ j , or
∑

j c j

(
Ĥφ j − Eφ j

)
= 0. By multiplying this equation

successively by φ∗i , i = 1, 2, . . . , N and integrating, we obtain a set of N linear equations for
the unknown coefficients2 ci : ∑

j

c j (Hi j − E Si j ) = 0,

where the Hamiltonian matrix elements Hi j ≡
〈
φi | Ĥφ j

〉
, and the overlap integrals Si j ≡〈

φi | φ j
〉
. The summation going to infinity makes impossible any simple insight into the physics

of the problem. However, in many cases, what matters most are only two states of comparable
energies, while other states being far away in the energy scale practically do not count (have
negligible c j ). If indeed only two states were involved (the two-state model), then the situa-
tion could be analyzed in detail. The conclusions drawn are of great conceptual (and smaller
numerical) importance.

For the sake of simplicity in further analysis, the functions φ j will be assumed to be normal-

ized and real.3 Then, for N = 2, we have H12 =
〈
φ1 | Ĥφ2

〉
=
〈
Ĥφ1 | φ2

〉
=
〈
φ2|Ĥφ1

〉
= H21,

where H11 and H22 are real numbers (in most practical applications H12, H11, H22 � 0). The
overlap integral will be denoted by S ≡ 〈φ1 | φ2〉 = 〈φ2 | φ1〉 and the functions φ defined such
that S > 0. After introducing the abbreviation h ≡ H12, we have

c1(H11 − E)+ c2(h − E S) = 0

c1(h − E S)+ c2(H22 − E) = 0.

A non-trivial solution of these secular equations exists only if the secular determinant satisfies∣∣∣∣H11 − E h − E S
h − E S H22 − E

∣∣∣∣ = 0.

1 As a few examples, just recall the CI, VB, and MO methods discussed in Chapter 8 (MO) and Chapter 10 (CI,
VB).

2 The same set of equations (secular equations) is obtained after using the Ritz method (covered in Chapter 5).
3 This pertains to almost all applications. For complex functions, the equations are only slightly more complicated.
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After expanding the determinant, we obtain a quadratic equation for the unknown energy E :

(
H11 − E

) (
H22 − E

)− (h − E S
)2 = 0,

with its two solutions4:

E± = 1

1− S2

⎧⎨
⎩H11 + H22

2
− hS

∓
√(

H11 − H22

2

)2

+ (h − S
√

H11 H22)2 + 2hS

(√
H11 H22 − H11 + H22

2

)⎫⎬
⎭ .

After inserting the above energies into the secular equations, we obtain the following two
sets of solutions c1 and c2:

(
c1

c2

)
±
= 1(

h − H11S
)
⎧⎨
⎩H11 − H22

2
±
√(

H11 − H22

2

)2

+ (h − H11S
) (

h − H22S
)⎫⎬⎭ .

Using the abbreviations

� = H11 − H22

2
,

and Ear = H11+H22
2 for the arithmetic mean, as well as Egeom = √H11 H22 for the geometric

mean, we get a simpler formula for the energy:

E± = 1

1− S2

{
Ear − hS ∓

√
�2 + (h − SEgeom)2 + 2hS

(
Egeom − Ear

)}
.

Now, let us consider some important special cases.
Case 1. H11 = H22 and S = 0 (φ1 and φ2 correspond to the same energy and do not overlap).
Then, � = 0, Ear = Egeom = H11 and we have

E± = H11 ± h(
c1

c2

)
±
= ±1.

4 The most practical approach is to use the Mathematica coding:

Solve[(H11-EdS)*(H22-EdS)-(h-EdS*S)ˆ2==0,EdS]
Solve[(H11-EdS)*(H22-EdS)-(h-EdS*S)ˆ2==0
&&c1*(H11-EdS)+c2*(h-EdS*S)==0
&&c1*(h-EdS*S)+c2*(H22-EdS)==0,{c1,c2},{EdS}].
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For h < 0, this means that E+ corresponds to stabilization (with respect to φ1 or φ2 states),
while E− corresponds to destabilization (by the same value of |h|). The wave functions contain
equal contributions of φ1 and φ2 and (after normalization) are

ψ+ = 1√
2

(
φ1 + φ2

)
,

ψ− = 1√
2

(
φ1 − φ2

)
.

Case 2. H11 = H22 and S 	= 0 (φ1 and φ2 correspond to the same energy, but their overlap
integral is nonzero).

Then,

E± = H11 ± h

1± S
,(

c1

c2

)
±
= ±1.

Here also, E+ corresponds to stabilization, while E− corresponds to destabilization (because
of the denominator, this time the destabilization is larger than the stabilization). The wave
functions have the same contributions of φ1 and φ2 and (after normalization) are equal to

ψ+ = 1√
2
(
1+ S

) (φ1 + φ2
)
,

ψ− = 1√
2
(
1− S

) (φ1 − φ2
)
.

Case 3. H11 	= H22 and S = 0 (φ1 and φ2 correspond to different energies and the overlap
integral is equal to zero).

This time,

E± = Ear ∓
√
�2 + h2,(

c1

c2

)
±
= 1

h

(
�±

√
�2 + h2

)
. (D.1)

Here also, the state with E+ means stabilization, while E− corresponds to destabilization
(both effects are equal).

Let us consider a limited case when the mean energy in the state φ1 is much lower than that
in φ2 (H11
H22), and in addition, �h�0. For the state with the energy E+, we have c1

c2
� 2�

h ;
i.e., c1 is very large, while c2 is very small (this means that ψ+ is very similar to φ1). In the
state ψ−, the same ratio of the coefficients is c1

c2
� 0, which means a domination of φ2.
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Thus, if two states differ significantly by their energies (or h is small, which means the
overlap integral is also small), they do not change (do not mix together) in any practical
sense.

This is why at the beginning of this appendix, we admitted only φ1 and φ2 of comparable
energies.



APPENDIX E

Dirac Delta Function

Paul Dirac introduced some useful formal tools (such as his notation for integrals and operators).
One of them is the Dirac delta function δ(x), an object then unknown to mathematicians, which
turned out to be very useful in physics. We may think of it as of a function with the following
characteristics1

• It is nonzero, but very close to x = 0, where its value is +∞.
• The surface under its plot equals 1, what is highlighted by a symbolic equation:∫ ∞

−∞
δ(x)dx = 1.

When we look at a straight thin reed protruding from a lake (with the water level= 0), then
we have to do with something similar to the Dirac delta function. The only task of the Dirac
delta function is its specific behavior, when integrating the product f (x)δ(x) and the integration
includes the point x = 0; namely:

∫ b

a
f (x)δ(x)dx = f (0). (E.1)

This result is quite understandable: the integral refers to the surface under the curve f (x)δ(x),
but since δ(x) is so concentrated at x = 0, then it pays to take seriously only those x that are
“extremely close” to x = 0. Over there, f (x) is equal to f (0). The constant f (0) can be
extracted from the integral, which itself, therefore, has the form

∫∞
−∞ δ(x)dx = 1. This is why

we get the right side of the last equation. Of course, δ(x − c) represents the same narrow peak,
but at x = c. Therefore, for a ≤ c ≤ b, we have

∫ b

a
f (x)δ

(
x − c

)
dx = f (c). (E.2)

1 More precisely, this is not a function; it is called a distribution. The theory of distributions were developed by
mathematicians only after Dirac’s work.
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Approximations to δ(x)

The Dirac delta function δ(x) can be approximated by many functions, that depend on a certain
parameter and have the following properties:

• When the parameter tends to approach a limit, then the values of the functions for x distant
from 0 become smaller and smaller, while as x gets close to zero, they are getting larger
and larger (peaking at close to x = 0).

• The integral of the function tends to be equal (or be close to) 1 when the parameter
approaches its limit value.

Here are several functions that approximate the Dirac delta function:

• A rectangular function centered at x = 0, with the rectangle surface equal to 1 (a→ 0):

f1
(
x; a) = { 1

a for − a
2 ≤ x ≤ a

2
0 for other

.

• A Gaussian function2 (a→∞) normalized to 1:

f2(x; a) =
√

a

π
e−ax2

.

• Another function is:

f3
(
x; a) = 1

π
lim

sin ax

x
when a→∞.

• The last function is (we will use it when considering the interaction of matter with
radiation)3:

f4
(
x; a) = 1

πa
lim

sin2
(
ax
)

x2 when a→∞.

2 Let us see how an approximation f2 =
√

a
π e−ax2

does the job of the Dirac delta function when a →∞. Let us

take a function f (x) = (x − 5)2 and consider the integral∫ ∞
−∞

f (x) f2(x) dx =
√

a

π

∫ ∞
−∞

(
x − 5

)2 e−ax2
dx =

√
a

π

(
1

4a

√
π

a
+ 0+ 25

√
π

a

)
= 1

4a
+ 25.

When a→∞, then the value of the integral tends to be 25 = f (0), as it must be for the Dirac delta function
that is used instead of f2.

3 The function under the limit symbol may be treated as A[sin (ax)]2, with amplitude A decaying as A = 1/x2,
when |x | → ∞. For small values of x , the sin (ax) changes to ax (as it is seen from its Taylor expansion); hence,
for small x , the function changes to a2. This means that when a → ∞, there will be a dominant peak close to
x = 0, although there will be some smaller side peaks clustering around x = 0. The surface of the dominating
peak may be approximated by a triangle of the base 2π/a and the height a2, and then we obtain its surface equal
to πa. Hence, the “approximate normalization factor” 1/(πa) in f4.
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Properties of δ(x)

Function δ(cx)

Let us see what δ(cx) is:

δ(cx) = lim
a→∞

√
a

π
exp

(−ac2x2) = lim
a→∞

√
ac2

πc2 exp
(−ac2x2)

= 1

|c| lim
ac2→∞

√
ac2

π
exp

(−ac2x2) = 1

|c|δ(x).

Therefore,

δ(cx) = 1

|c|δ(x). (E.3)

Dirac δ in 3-D

The 3-D Dirac delta function is defined in the Cartesian coordinate system as

δ(r) = δ(x)δ(y)δ(z),
where r = (x, y, z). Then, δ(r) denotes a peak of the infinite height at r = 0, δ(r− A) denotes
an identical peak at the position shown by the vector A from the origin. Each of the peaks is
normalized to 1; i.e., the integral over the whole 3-D space equals 1. This means that Eq. (E.1)
is satisfied, but this time x ∈ R3 .

An Application of the Dirac Delta Function

When may such a concept as the Dirac delta function be useful? Here is an example. Let us
imagine that we have (in the 3-D space) two molecular charge distributions: ρA(r) and ρB(r).
Each of the distributions consists of the electronic part and the nuclear part.

How can such charge distributions be represented mathematically? There is no problem
with mathematical representation of the electronic parts–they are simply some functions of the
position r in space:−ρel,A(r) and−ρel,B(r) for each molecule, respectively. The integrals of the
corresponding electronic distributions yield, of course,−NA and−NB (in a.u.), or the negative
number of the electrons (because the electrons carry a negative charge). How, then, do you write
the nuclear charge distribution as a function of r? There is no way to do this without the Dirac
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delta function. With the function, our task becomes simple:

ρnucl,A(r) =
∑
a∈A

Z A,aδ
(
r− ra

)
ρnucl,B(r) =

∑
b∈B

Z B,bδ
(
r− rb

)
.

At the nuclear positions, we put delta functions with “intensities” equal to the nuclear charges.
For neutral molecules,

∫
ρnucl,A(r)dr and

∫
ρnucl,B(r)dr have to give +NA and +NB , respec-

tively. Indeed, we have∫
ρnucl,A(r)dr =

∑
a∈A

Z A,a

∫
δ
(
r− ra

)
dr =

∑
a∈A

Z A,a = NA

∫
ρnucl,B(r)dr =

∑
b∈B

Z B,b

∫
δ
(
r− rb

)
dr =

∑
b∈B

Z B,b = NB .

Thus, the Dirac delta function enables us to write the total charge distributions and their
interactions in an elegant way:

ρA(r) = −ρel,A(r)+ ρnucl,A(r)

ρB(r) = −ρel,B(r)+ ρnucl,B(r).

To demonstrate the difference, let us write the electrostatic interaction of the two charge
distributions both without the Dirac delta functions:

Einter =
∑
a∈A

∑
b∈B

Z A Z B

|ra − rb| −
∑
a∈A

∫
ρel,B(r)

Z A

|r− ra|dr

−
∑
b∈B

∫
ρel,A(r)

Z B

|r− rb|dr+
∫∫

ρel,A(r)ρel,B(r′)
|r− r′| drdr′.

The four terms mean, respectively, the following interactions: nuclei of A with nuclei of B,
nuclei of A with electrons of B, electrons of A with nuclei of B, electrons of A with electrons
of B. With the Dirac delta function, the same expression reads:

Einter =
∫
ρA(r)ρB

(
r′
)

|r− r′| dr dr′.

The last expression comes from the definition of the Coulomb interaction and the definition
of the integral.4

No matter what the charge distributions look like, whether they are diffuse (like the electronic
ones) or pointlike (like those of the nuclei), the formula is always the same.

4 Of course, the two notations are equivalent because inserting the total charge distributions into the last integral,
as well as using the properties of the Dirac delta function, gives the first expression for Einter .
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Translation versus Momentum and
Rotation versus Angular Momentum

In Chapter 2, it was shown that the Hamiltonian Ĥ commutes with any translation (p. 68) or

rotation (p. 69) operator, denoted as Û :

[Ĥ , Û] = 0. (F.1)

The Form of the Û Operator

Below, it will be demonstrated for κ (meaning first a translation vector, and then a rotation angle

about an axis in the 3-D space,) that operator Û takes the form

Û = exp

(
− i

�
κ · K̂

)
, (F.2)

where K̂ stands for a Hermitian operator (having the x-, y-, and z- components) acting on
functions of points in the 3-D Cartesian space.

Translation and Momentum Operators

Translation of a function by a vector�r is equivalent to the function f in the coordinate system
translated in the opposite direction; i.e., f (r − �r)–see Fig. 1.3 and p. 68. If the vector �r is
infinitesimally small, then, in order to establish the relation between f (r−�r) and f (r), it is
of course sufficient to know the gradient of f (neglecting, obviously, the quadratic and higher
terms in the Taylor expansion):

f (r−�r) = f (r)−�r · ∇ f = (1−�r · ∇) f (r). (F.3)

We will compose a large translation of a function (by vector T) from a number of small
increments �r = 1

N T, where N is a large natural number. Such a tiny translation will be
repeated N times, thus recovering the translation of the function by T. In order for the gra-
dient formula to be exact, one has to ensure that N tends to infinity. Recalling the definition
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exp (ax) = limN→∞
(
1+ a

x

)N , we have

Û(T) f (r) = f (r− T) = lim
N→∞

(
1− T

N
∇
)N

f (r) = exp (−T · ∇) f

= exp

(
− i

�
T · p̂

)
f (r),

where p̂ = −i�∇ is the total momentum operator (see Chapter 1). Thus, for translations, we
have κ ≡T and K̂≡ p̂.

Rotation and Angular Momentum Operator

Imagine a function f (r) of positions in the 3-D Cartesian space (think, for example, about
a probability density distribution centered somewhere in the space). Now, suppose that the
function is to be rotated about the z-axis (the unit vector showing its direction is e) by an angle
α, so we have another function, which we will denote by Û(α; e) f (r). What is the relation
between f (r) and Û(α; e) f (r)? This is what we want to establish. This relation corresponds to
the opposite rotation (i.e., by the angle −α–see Fig. 1.1 and p. 89) of the coordinate system:

Û(α; e) f (r) = f (U−1r) = f (U(−α; e)r),

where U is a 3× 3 orthogonal matrix. The new coordinates x(α), y(α), and z(α) are expressed
by the old coordinates x , y, and z through1

r′ ≡
⎛
⎝ x(α)

y(α)
z(α)

⎞
⎠ =

⎛
⎝ cosα sin α 0
− sin α cosα 0

0 0 1

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ .

Therefore, the rotated function Û(α; e) f (r) = f (x(α), y(α), z(α)). The function can be
expanded in the Taylor series about α = 0:

Û(α; e) f (r) = f (x(α), y(α), z(α)) = f (x, y, z)+ α
(
∂ f

∂α

)
α=0

+ · · · = f (x, y, z)+ α
(
∂x(α)

∂α

∂ f

∂x
+ ∂ y(α)

∂α

∂ f

∂ y
+ ∂z(α)

∂α

∂ f

∂z

)
α=0

+ · · · = f (x, y, z)+ α
[

y
∂

∂x
− x

∂

∂ y

]
f + · · ·

1 A positive value of the rotation angle means an anticlockwise motion within the xy plane (with the x-axis
horizontal, y-axis vertical, and z-axis pointing toward us).
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Now, instead of the large rotation angle α, let us consider first an infinitesimally small rotation
by angle ε = α/N , where N is a huge natural number. In such a situation, we retain only the
first two terms in the previous equation:

Û
( α

N
; e
)

f (r) = f (x, y, z)+ α

N

[
y
∂

∂x
− x

∂

∂ y

]
f (x, y, z)

=
(

1+ α

N

i�

i�

[
y
∂

∂x
− x

∂

∂ y

])
f

=
(

1+ α

N

1

i�
[x p̂y − y p̂x ]

)
f =

(
1− α

N

i

�
Ĵz

)
f .

If such a rotation is repeated N times, then we recover the rotation of the function by a
(possibly large) angle α (the symbol of limit ensures that ε is infinitesimally small):

Û(α; e) f (r) = limN→∞
[
Û
( α

N
; e
)]N

f (r) = limN→∞
(

1− α

N

i

�
Ĵz

)N

f (r)

= exp
(
−i
α

�
Ĵz

)
f = exp

(
− i

�
αe · Ĵ

)
f .

Thus, for rotations Û(α; e) = exp
(
− i

�
αe · Ĵ

)
, we have κ ≡αe and K̂≡ Ĵ.

This means that in particular, for rotations about the x-, y-, and z-axes (with the corresponding
unit vectors x, y, and z) we have, respectively,

[Û(α; x), Ĵx ] = 0, (F.4)

[Û(α; y), Ĵy] = 0, (F.5)

[Û(α; z), Ĵz] = 0. (F.6)

Useful Relation

Eq. (F.1) means that for any translation or rotation,

Û Ĥ Û−1 = Ĥ ,

and taking into account the general form of Eq. (F.2), we have for any such transformation a
series containing nested commutators (valid for any κ):

Ĥ = Û Ĥ Û−1 = exp

(
− i

�
κ · K̂

)
Ĥ exp

(
i

�
κ · K̂

)

=
(

1− i

�
κ · K̂ + · · ·

)
Ĥ

(
1+ i

�
κ · K̂ + · · ·

)

= Ĥ − i

�
κ · [K̂, Ĥ ] − κ2

2�2 [[K̂, Ĥ ], K̂] + · · · ,
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where each term in “+ · · ·” contains [K̂, Ĥ ]. This means that to satisfy the equation, we must
have

[K̂, Ĥ ] = 0. (F.7)

Hamiltonian Commutes with the Total Momentum Operator

In particular, this means [p̂, Ĥ ] = 0; i.e.,

[ p̂μ, Ĥ ] = 0, (F.8)

for μ = x, y, z. Of course, we have also [ p̂μ, p̂ν] = 0 for μ, ν = x, y, z.
Since all these four operators mutually commute, the total wave function is simultaneously an

eigenfunction of Ĥ and p̂x , p̂y, p̂z; i.e., the energy and the momentum of the center of mass can
both be measured (without making any error) in a space-fixed coordinate system (see Appendix I
available at booksite.elsevier.com/978-0-444-59436-5). From its definition, the momentum of
the center of mass is identical with the total momentum.2

Hamiltonian, Ĵ2 and Ĵz Do Commute

Eq. (F.7) for rotations means [Ĵ, Ĥ ] = 0; i.e., in particular,

[ Ĵx , Ĥ ] = 0, (F.9)

[ Ĵy, Ĥ ] = 0, and (F.10)

[ Ĵz, Ĥ ] = 0. (F.11)

The components of the angular momentum operators satisfy the following commutation
rules3:

[ Ĵx , Ĵy] = i� Ĵz,

[ Ĵy, Ĵz] = i� Ĵx , and (F.12)

[ Ĵz, Ĵx ] = i� Ĵy .

2 Indeed, the position vector of the center of mass is defined as RC M =
∑

i mi ri∑
i mi

, and after differentiation with

respect to time,
(∑

i mi
)

ṘC M =
∑

i mi ṙi =
∑

i pi . The right side represents the momentum of all the particles
(i.e., the total momentum), whereas the left side is just the momentum of the center of mass.

3 The commutation relations can be obtained by using directly the definitions of the operators involved:
Ĵx = y p̂z − z p̂y , etc.

For instance, [ Ĵx , Ĵy] f
= [(y p̂z − z p̂y)(z p̂x − x p̂z)− (z p̂x − x p̂z)(y p̂z − z p̂y)] f
= [(y p̂z z p̂x − z p̂x y p̂z)− (y p̂z x p̂z − x p̂z y p̂z)− (z p̂y z p̂x − z p̂x z p̂y)+ (z p̂y x p̂z − x p̂z z p̂y)] f
= (y p̂z z p̂x − z p̂x y p̂z) f − (yx p̂z p̂z − yx p̂z p̂z) f − (z2 p̂y p̂x − z2 p̂x p̂y) f + (xz p̂y p̂z − x p̂z z p̂y) f

= (y p̂z z p̂x − yz p̂x p̂z) f − 0− 0+ (xz p̂y p̂z − x p̂z z p̂y) f = (−i�)2
[

y
∂ f

∂x
− x

∂ f

∂ y

]
= i� Ĵz f .

http://booksite.elsevier.com/978-0-444-59436-5
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Eqs. (F.9)–(F.11) are not independent; e.g., from Eqs. (F.9) and (F.10), Eq. (F.11) can be
derived. Indeed,

[ Ĵz, Ĥ ] = Ĵz Ĥ − Ĥ Ĵz = 1

i�
[ Ĵx , Ĵy]Ĥ − 1

i�
Ĥ [ Ĵx , Ĵy] = 1

i�
[ Ĵx , Ĵy]Ĥ − 1

i�
[ Ĵx , Ĵy]Ĥ = 0.

Also, from Eqs. (F.9), (F.10), and (F.11), it follows that

[ Ĵ 2, Ĥ ] = 0, (F.13)

because from the Pythagorean theorem, Ĵ 2 = Ĵ 2
x + Ĵ 2

y + Ĵ 2
z .

Do Ĵx , Ĵy, Ĵz commute with Ĵ 2? Let us check the commutator [ Ĵz, Ĵ 2]:
[ Ĵz, Ĵ 2] = [ Ĵz, Ĵ 2

x + Ĵ 2
y + Ĵ 2

z ] = [ Ĵz, Ĵ 2
x + Ĵ 2

y ] = Ĵz Ĵ 2
x − Ĵ 2

x Ĵz + Ĵz Ĵ 2
y − Ĵ 2

y Ĵz

= (i� Ĵy + Ĵx Ĵz) Ĵx − Ĵx (−i� Ĵy + Ĵz Ĵx )

+ (−i� Ĵx + Ĵy Ĵz) Ĵy − Ĵy(i� Ĵx + Ĵz Ĵy) = 0.

Thus,
[ Ĵz, Ĵ 2] = 0, (F.14)

and also, by the argument of symmetry (the space is isotropic),

[ Ĵx , Ĵ 2] = 0, and (F.15)

[ Ĵy, Ĵ 2] = 0, (F.16)

Now, we need to determine the set of the operators that all mutually commute. Only then can
all the physical quantities to which the operators correspond have definite values when measured.
Also, the wave function can be an eigenfunction of all of these operators and it can be labeled
by the quantum numbers, each corresponding to an eigenvalue of the operators in question. We
cannot choose as these operators the whole set of Ĥ , Ĵx , Ĵy, Ĵz, Ĵ 2, because as it was shown
earlier, Ĵx , Ĵy, Ĵz do not commute among themselves (although they do with Ĥ and Ĵ 2).

The only way is to choose as the set of the operators either Ĥ , Ĵz, Ĵ 2 or Ĥ , Ĵx , Ĵ 2 or
Ĥ , Ĵy, Ĵ 2. Traditionally, one chooses as the set of the mutually commuting operators
Ĥ , Ĵz, Ĵ 2 (z is known as the quantization axis).

Rotation and Translation Operators Do Not Commute

Now, we may think to add p̂x , p̂y, p̂z to the above set of the operators. The operators Ĥ , p̂x , p̂y,

p̂z, Ĵ 2 and Ĵz do not represent a set of mutually commuting operators. The reason for this is
that [ p̂μ, Ĵν] �= 0 for μ �= ν, which is a result of the fact that in general, rotation and translation
operators do not commute, as shown in Fig.F.1.
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(b)(a)

(c) (d)

Fig. F.1. In general, translation Û(T) and rotation Û(α; e) operators do not commute. The example shows what happens to a
point belonging to the xy plane. (a) If a rotation Û(α; z) by angle α about the z-axis takes place first, and then a translation Û(T) by
a vector T (restricted to the xy plane) is carried out, and (b) shows what happens if the operations are applied in the reverse order.
As we can see, the results are different (two points 1′′ have different positions in panels a and b); i.e., the two operators do not
commute: Û(T)Û(α; z) �= Û(α; z)Û(T). Expanding Û(T) = exp[− i

�
(Tx p̂x + Ty p̂y)] and Û(α; z) = exp (− i

�
α Ĵz) in a Taylor

series, and, taking into account that Tx , Ty , α are arbitrary numbers, leads to the conclusion that [ Ĵz , p̂x ] �= 0 and [ Ĵz , p̂y ] �= 0.

Note that some translations and rotations do commute; e.g., [ Ĵz , p̂z ] = [ Ĵx , p̂x ] = [ Ĵy , p̂y ] = 0, because we see by inspection
[as shown in panels (c) and (d)] that any translation by T = (0, 0, Tz) is independent of any rotation about the z-axis, etc.
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Conclusion

It is, therefore, impossible to make all the operators Ĥ , p̂x , p̂y, p̂z, Ĵ 2 and Ĵz commute in a
space-fixed coordinate system. What we are able to do, though, is to write down the total wave
function �pN in the space-fixed coordinate system as a product of the plane wave exp (ipC M ·
RC M), which depends on the center-of-mass variables, and the wave function �0N , which
depends on internal coordinates4 as follows:

�pN = �0N exp (ipC M · RC M), (F.17)

which is an eigenfunction of the total (i.e., center-of-mass) momentum operators: p̂x = p̂C M,x ,

p̂y = p̂C M,y, p̂z = p̂C M,z . The function �0N is the total wave function written in the center-
of-mass coordinate system (a special body-fixed coordinate system; see Appendix I available
at booksite.elsevier.com/978-0-444-59436-5), in which the total angular momentum operators
Ĵ 2 and Ĵz are now defined. The three operators Ĥ , Ĵ 2, and Ĵz commute in any space-fixed or
body-fixed coordinate system (including the center-of-mass coordinate system), and therefore,
the corresponding physical quantities (energy and angular momentum) have exact values. In
this particular coordinate system, p̂ = p̂C M = 0. We may say, therefore, that

in the center-of-mass coordinate system, Ĥ , p̂x , p̂y, p̂z, Ĵ 2 and Ĵz all do commute.

4 See Chapter 2 and see Appendix I available at booksite.elsevier.com/978-0-444-59436-5, where the total Hamil-
tonian is split into a sum of the center-of-mass and internal coordinate Hamiltonians; N is the quantum number
for the spectroscopic states.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5




APPENDIX G

Vector and Scalar Potentials

Maxwell Equations

The electromagnetic field is described by two vector fields: the electric field intensity E and the
magnetic field intensity H, which both depend on their position in space (Cartesian coordinates
x, y, and z) and time t . The vectors E and H are determined by the electric charges and
their currents. The charges are defined by the charge density function ρ(x, y, z, t), such that
ρ(x, y, z, t)dV at time t represents the charge in the infinitesimal volume dV that contains the
point (x, y, z). The velocity of the charge in position x, y, z measured at time t represents the
vector field v(x, y, z, t), while the current in point x, y, z measured at t is equal to i(x, y, z, t) =
ρ(x, y, z, t)v(x, y, z, t).

It turned out (as shown by James Maxwell), that H,E, ρ, and i are interrelated by the Maxwell
equations (c stands for the speed of light):

∇ × E + 1

c

∂H
∂t
= 0, (G.1)

∇ ×H − 1

c

∂E
∂t
= 4π

c
i, (G.2)

∇ · E = 4πρ, and (G.3)

∇ ·H = 0. (G.4)

The Maxwell equations have an alternative notation, which involves two new quantities: the
scalar potential φ and the vector potential A, which replace E and H:

E = −∇φ − 1

c

∂A
∂t

(G.5)

H = ∇ × A. (G.6)

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00027-1
© 2014 Elsevier B.V. All rights reserved. e81
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After inserting E and H from the last equation into the Maxwell equations (G.1) and (G.4),
we obtain their automatic satisfaction (for smooth vector components):

∇ × E + 1

c

∂H
∂t
= ∇ ×

(
−∇φ − 1

c

∂A
∂t

)
+ 1

c

∂H
∂t
= −∇ × ∇φ − 1

c

∂∇ × A
∂t

+ 1

c

∂H
∂t
= 0

and

∇ · (∇ × A) = ∂

∂x

(
∂Az

∂ y
− ∂Ay

∂z

)
+ ∂

∂ y

(
∂Ax

∂z
− ∂Az

∂x

)
+ ∂

∂z

(
∂Ay

∂x
− ∂Ax

∂ y

)
= 0,

because1 ∇ × ∇φ = 0 and ∇ × A = H, while Eqs. (G.2) and (G.3) transform into

∇ × (∇ × A)+ 1

c

∂∇φ
∂t
+ 1

c2

∂2A
∂t2 =

4π

c
i

−∇ · (∇φ)− 1

c

∂∇ · A
∂t
= 4πρ,

which, in view of the identity ∇ × (∇ × A) = ∇(∇ · A)−�A and ∇ · (∇φ) = �φ, gives two
additional Maxwell equations [besides Eqs. (G.5) and (G.6)]:

∇
(
∇ · A+ 1

c

∂φ

∂t

)
−�A+ 1

c2

∂2A
∂t2 =

4π

c
i (G.7)

�φ + 1

c
∇ · ∂A

∂t
= −4πρ. (G.8)

To characterize the electromagnetic field, we may use either E and H or the two potentials:
φ and A.

Arbitrariness of Potentials φ and A

Potentials φ and A are not defined uniquely; i.e., many different potentials lead to the same
intensities of the electric and magnetic fields. If we made inφ and A the following modifications:

φ′ = φ − 1

c

∂ f

∂t
(G.9)

A′ = A+ ∇ f , (G.10)

1

∇ × ∇ f =
[
∂

∂ y

(
∂ f

∂z

)
− ∂

∂z

(
∂ f

∂ y

)
,
∂

∂z

(
∂ f

∂x

)
− ∂

∂x

(
∂ f

∂z

)
,
∂

∂x

(
∂ f

∂ y

)
− ∂

∂ y

(
∂ f

∂x

)]
= [0, 0, 0] = 0.
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where f is an arbitrary differentiable function (of x, y, z, t), then φ′ and A′ lead to the same E
and H:

E ′ = −∇φ′ − 1

c

∂A′

∂t
=
(
−∇φ + 1

c
∇ ∂ f

∂t

)
− 1

c

(
∂A
∂t
+ ∂

∂t
(∇ f )

)
= E

H′ = ∇ × A′ = ∇ × A+ ∇ × ∇ f = H.

Choice of Potentials A and φ for a Uniform Magnetic Field

From the second Maxwell equation [Eq. (G.6)], one can see that if the magnetic field H is
time-independent, then we get the time-independent A. Profiting from the non-uniqueness of
A, we choose it in such a way as to satisfy (the so-called Coulombic gauge)2

∇ · A = 0, (G.11)

which diminishes the arbitrariness but does not remove it.
Let us take an example of an atom in a uniform magnetic field H. We locate the origin of the

coordinate system on the nucleus, the choice being quite natural for an atom, and construct the
vector potential at position r = (x, y, z) as

A(r) = 1

2
[H × r]. (G.12)

As has been shown above, this is not a unique choice; there is an infinity of them. All the
choices are equivalent from the mathematical and physical point of view, they differ however
the economy of computations. It appears that the choice of A is at least logical. The choice is
also consistent with the Coulombic gauge [see Eq. (G.11)], because

∇ · A = 1

2
∇ · [H × r] = 1

2
∇ · [H × r] = 1

2
∇ · [Hyz − y Hz, Hzx − zHx , Hx y − x Hy]

= 1

2

[
∂

∂x
(Hyz − y Hz)+ ∂

∂ y
(Hzx − zHx )+ ∂

∂z
(Hx y − x Hy)

]
= 0,

and also with the Maxwell equations [see Eq. (G.6)], because

∇ × A = 1

2
∇ × [H × r] = 1

2
∇ · [H × r] = 1

2
∇ × [Hyz − y Hz, Hz x − zHx , Hx y − x Hy]

= 1

2

⎡
⎢⎣
∂

∂ y
(Hx y − x Hy)− ∂

∂z
(Hz x − zHx ),

∂

∂z
(Hyz − y Hz)− ∂

∂x
(Hx y − x Hy),

∂

∂x
(Hz x − zHx )− ∂

∂ y
(Hyz − y Hz)

⎤
⎥⎦ = H.

Thus, this is the correct choice.

2 The Coulombic gauge, even if it is only one of the possibilities, is almost exclusively used in molecular physics.
The word gauge comes from the railway technology of measuring different rail widths.
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Practical Importance of this Choice

An example of possible choices of A is shown in Fig. G.1.
If we shifted the vector potential origin far from the physical system under consideration

(Fig. G.1b), then the values of |A| on all the particles of the system would be giant. A would be
practically uniform within the atom or molecule. If we calculated ∇ × A = H on a particle of
the system, we would obtain almost 0, because ∇ ×A means the differentiation of A, and for a
uniform field, this yields zero. Thus, we are going to study the system in magnetic field, but the
field disappeared. A very high accuracy would be needed in order to calculate correctly ∇ × A
as the differences of two large numbers, which numerically is always a risky business due to
the cancellation of accuracies. It is seen, therefore, that the numerical results depend critically
on the choice of the origin of A (which is arbitrary from the point of view of mathematics and
physics). It is always better to have the origin inside the system.

Vector Potential Causes the Wave Function to Change Phase

The Schrödinger equation for a particle of mass m and charge q reads as

− �
2

2m
��(r)+ V� = E�(r),

where V = qφ, with φ standing for the scalar electric potential.
The probability density of finding the particle at a given position depends on |�| rather than

� itself. This means that the wave function could be harmlessly multiplied by a phase factor
� ′(r) = �(r) exp[− iq

�cχ(r)], where χ(r) could be any (smooth3) function of the particle’s
position r. Then, we have |�| = |� ′| at any r. If � ′(r) is as good as � is, it would be nice if it
satisfied the Schrödinger equation the same way that� does, of course with the same eigenvalue:

− �
2

2m
�� ′(r)+ V� ′(r) = E� ′(r).

Let us see what profound consequences this has. The left side of the last equation can be
transformed as follows:

− �
2

2m
�� ′(r)+ V� ′(r)

= − �
2

2m

[
exp

(
− iq

�c
χ

)
�� +�� exp

(
− iq

�c
χ

)
+ 2(∇�)

(
∇ exp

(
− iq

�c
χ

))]

+ V exp

(
− iq

�c
χ

)
�

= − �
2

2m

[
exp

(
− iq

�c
χ

)
�� +�∇

[(
− iq

�c

)
exp

(
− iq

�c
χ

)
∇χ

]

3 See Fig. 2.6.
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(a) (b)

(c)

Fig. G.1. How can we understand the arbitrariness of the vector potential A? Panels (a), (b), and (c) represent schematically three
physically equivalent vector potentials A. Panel (a) shows a section by the plane z = 0 (axis z protrudes toward the reader from
the xy plane) of the vector field A = 1

2 (H × r) with H = (0, 0, H) and H > 0. It is seen that the vectors A become longer and
longer, when we are going out of the origin (where A = 0), they “rotate” counterclockwise. Such A determines that H is directed
perpendicularly to the page and oriented toward the reader. By the way, note that any shift of the obtained potential should give
the same magnetic field orthogonal to the drawing. This is what we get (b) after adding, according to Eq. (G.10), the gradient of
function f = ax + by + c to potential A, because A+∇ f = A+ (ia + jb) = A− R = A′, where R = −(ia + jb) = const. The
transformation is only one of possible transformations. If we took an arbitrary smooth function f (x, y) e.g., with many maxima,
minima and saddle points (as in the mountains), we would deform (b) by expanding or shrinking it like a pancake. In this way we
might obtain the situation shown on (c). All these situations are physically indistinguishable (if the scalar potential φ is changed
appropriately).

+ 2(∇�)
[(
− iq

�c

)
exp

(
− iq

�c
χ

)
∇χ

]]

+ V exp

(
− iq

�c
χ

)
�

= − �
2

2m

[
exp

(
− iq

�c
χ

)
�� +�

(
− iq

�c

)
[(
− iq

�c

)
exp

(
− iq

�c
χ

)
(∇χ)2 + exp

(
− iq

�c
χ

)
�χ

]]
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− �
2

2m
2(∇�)

[(
− iq

�c

)
exp

(
− iq

�c
χ

)
∇χ

]
+ V exp

(
− iq

�c
χ

)
�.

Dividing the Schrödinger equation by exp (− iq
�cχ), we obtain

− �
2

2m

[
�� +�

(
− iq

�c

)[(
− iq

�c

)
(∇χ)2 +�χ

]

+ 2(∇�)
[(
− iq

�c

)
∇χ

]]
+ V� = E�(r).

Let us define a vector field A(r) by using function χ(r):

A(r) = ∇χ(r). (G.13)

Hence, we have

− �
2

2m

[
�� +�

(
− iq

�c

)[(
− iq

�c

)
A2 + ∇A

]
+ 2(∇�)

[(
− iq

�c

)
A
]]
+ V� = E�(r),

and introducing the momentum operator p̂ = −i�∇, we obtain

1

2m

[
p̂2
� +�

[(q

c

)2
A2 −

(q

c

)
p̂A
]
− 2

(
p̂�
) (q

c

)
A
]
+ V� = E�(r),

or, finally,

1

2m

(
p̂− q

c
A
)2
� + V� = E�, (G.14)

which is the equation corresponding to the particle moving in electromagnetic field with vector
potential A; see p. 762.

Indeed, the last equation can be transformed in the following way:

1

2m
[p̂2
� +

(q

c

)2
A2� − q

c
p̂(A�)− q

c
Ap̂�] + V� = E�,

which, after using the equality4 p̂(A�) = �p̂A+ Ap̂�, gives the expected result, Eq. (G.14).

4 Remember that p̂ is proportional to the first derivative operator.
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Therefore, note the following:

• from the fact that a wave function� (with a certain phase) satisfies the Schrödinger equation,

• requiring that a change of the phase coming from the multiplication of� by exp[− iq
�cχ(r)]

does not prevent one from satisfying the Schrödinger equation by � exp[− iq
�cχ(r)] (in the

text,χ(r)will be called the phase, although in reality, the phase change is equal to− q
�cχ(r)),

one receives the Schrödinger equation for�without this additional change of the phase. This
equation contains a modified momentum (and therefore also with the modified Hamiltonian)
of the particle5 by the so-called vector potential A(r) : p̂→ (p̂− q

c A).

Hence, we have a link between the appearance of the phase (or rather its change χ ) with the
appearance of the vector potential A in the Schrödinger equation. This makes us believe that
we got a more general form of the Schrödinger equation (this with A).

A function with phase χ1(r) corresponds to the vector potential A1(r), while the function
with the phase χ1(r)+χ(r) corresponds to A2(r), where �χ ≡ A2(r)−A1(r). Therefore,
these two vector potentials differ by the gradient of a function, and this is allowed [according
to Eq. (G.10)] without having to modify any physical phenomena.

Both functions, this with the phase χ1 as well as that with the phase χ1(r) + χ(r), give, of
course, the same probability density.6 Therefore, we are free to change A1(r) to A2(r), provided
that we compensate the new choice by changing the phase χ according to �χ ≡ A2(r)−A1(r).

Note that the physically equivalent vector potentials also may contain a vector field component
A (the same in both cases), which is not a gradient (of any function). For example, it contains a
vortexlike field, which is not equivalent to any gradient field. The curl of such a field is nonzero,
while the curl of a gradient of any function does equal zero. Thus, the A itself may contain
an unknown admixture of the gradient of a function. Hence, any experimental observation is
determined solely by the non-gradient component of the field. For example, the magnetic field
H2 for the vector potential A2 is

H2 = curlA2 ≡ ∇×A2 = ∇×(A1+�χ) = ∇×A1+∇×�χ = ∇×A1+0 = curlA1 = H1,

where both vector potentials (A1 and A2) correspond to the same physical situation because
H1 = H2. This result is obtained, because curl(gradχ) ≡ ∇ × �χ = 0.

5 Note that if we put c = ∞ (non-relativistic approximation), no modification occurs.
6 For any real χ1 and χ,

∣∣∣exp[− iq
�cχ(r)]

∣∣∣ = 1 and
∣∣∣exp[− iq

�c (χ1(r)+ χ(r)]
∣∣∣ = 1.
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If a particle moves in a vector potential field A from r0 to r, then its wave function changes
the phase by δ:

δ = − q

�c

∫ r

r0

A(r)dr.

Putting it in a different way, if the wave function undergoes a phase change, then the particle
moves in a vector potential of an electromagnetic field.

The Incredible Aharonov-Bohm Effect

In a small domain (say, in the center of the Brussels marketplace, where we like to locate the
origin of the coordinate system), there is a magnetic field flux corresponding to the field intensity
H directed along the z-axis (perpendicular to the marketplace surface). Now, let us imagine a
particle of the electric charge q enclosed in a 3-D box (say, a cube) of small dimensions located
at a very large distance from the origin, and therefore from the magnetic flux–say, in Lisbon.
Therefore, the magnetic field in the box equals zero. Now, we decide to travel with the box:
from Lisbon to Cairo, Ankara, St. Petersburg, Stockholm, Paris, and then back to Lisbon. Did
the wave function of the particle in the box change during the journey?

Let us see. The magnetic field H is related to the vector potential A through the relation
∇ × A = H. This means that the particle was all the time subject to a huge vector potential
field (see Fig. G.1), although the magnetic field was practically zero. Since the box has gone
back to Lisbon, then the phase acquired by the particle in the box7 is an integral over the closed
trajectory (loop):

δ = − q

�c

∮
A(r)dr.

However, from the Stokes equation, we can replace the integral by an integral over surface
enclosed by the loop ∫∫

n · curlA dS,

where n is a unit vector normal to the surface, and dS is an infinitesimal element of the surface
that is enclosed in the contour. We can also write this as

δ = − q

�c

∫∫
n ·H dS = − q

�c

,

where 
 represents the magnetic flux (of the magnetic field H) intersecting the loop surface,
which contains in particular the famous marketplace of Brussels. Thus, despite the fact that

7 A nonzero δ requires a more general A than the one satisfying Eq. (G.13).
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the particle could not feel the magnetic field H (because it was zero in the box), its wave
function underwent a change of phase, which is detectable experimentally (in interference
experiments).

Does the pair of potentials A and φ contain the same information as E and H do? The
Aharonov-Bohm effect (see also p. 901) suggests that the most important elements are A and
φ!





APPENDIX H

Optimal Wave Function for the
Hydrogen-Like Atom

In several instances, we encounter the problem of the mean value of the Hamiltonian for the
hydrogen-like atom (atomic units are used throughout):

Ĥ = −1

2
�− Z

r
,

with the normalized function

�(r , θ, φ; c) =
√

c3

π
exp (−cr),

where r , θ, φ are the spherical coordinates of the electron (and the position of the nucleus is
fixed in the origin).

Calculation of the mean value of the Hamiltonian (i.e., the mean value of the energy),

ε(�) =
〈
�

∣∣∣Ĥ ∣∣∣�〉 ,
requires calculation of the mean value of the kinetic energy:

T̄ =
〈
�

∣∣∣∣−1

2
�

∣∣∣∣�
〉

and the mean value of the potential energy (Coulombic attraction of the electron by the nucleus
of charge Z )

V̄ = −Z

〈
�

∣∣∣∣1r
∣∣∣∣�
〉
.

Therefore,
ε = T̄ + V̄ .

First, the Laplacian � = ∂2

∂x2 + ∂2

∂ y2 + ∂2

∂z2 may be expressed in the spherical coordinates

� = 1

r2

∂

∂r
r2 ∂

∂r
+ 1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

r2 sin2 θ

∂2

∂φ2 , (H.1)
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and in view of the fact that � is spherically symmetric (it depends on r only),〈
�

∣∣∣∣−1

2
�

∣∣∣∣�
〉
= −1

2

〈
�

∣∣∣∣ 1

r2

∂

∂r
r2 ∂

∂r

∣∣∣∣�
〉

= −1

2

c3

π

(−c
) [∫ ∞

0
r2
[

2

r
− c

]
exp

(−2cr
)

dr
∫ π

0
sin θdθ

∫ 2π

0
dφ

]

= 1

2
c44

[∫ ∞
0

[
2r − cr2] exp

(−2cr
)

dr

]

= 2c4
[

2
∫ ∞

0
r exp

(−2cr
)

dr − c
∫ ∞

0
r2 exp

(−2cr
)

dr

]

= 4c4 (2c
)−2 − 2c52

(
2c
)−3 = c2 − 1

2
c2 = 1

2
c2,

where we have used the following (this formula is often exploited throughout the book):∫ ∞
0

rn exp
(−βr

)
dr = n!β−

(
n+1

)
. (H.2)

Quite similarly, the second integral gives

−Z

〈
�

∣∣∣∣1r
∣∣∣∣�
〉
= −Z

c3

π

[∫ ∞
0

r exp
(−2cr

)
dr
∫ π

0
sin θdθ

∫ 2π

0
dφ

]

= −4Zc3 (2c
)−2 = −Zc.

Therefore, finally,

ε = 1

2
c2 − Zc. (H.3)

We may want to use the variational method of finding the ground-state wave function. In
this method, we minimize the mean value of the Hamiltonian with respect to parameters in the
variational function �. We may treat c as such a parameter. Hence, minimizing ε, we force
∂ε
∂c = 0 , and therefore, copt = Z . Note that in this particular case, the following is true:

• Such value of c makes from the variational function the exact ground state of the hydrogen-
like atom.

• The ground-state energy computed with copt = Z gives ε = 1
2 Z2 − Z Z = −1

2 Z2, which
is the exact ground-state energy.

• The quantity − V̄
T̄
= Zc

1
2 c2 = 2 Z

c . For c = copt = Z , we have

− V̄

T̄
= 2, (H.4)

which is called the virial theorem.
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Space- and Body-Fixed Coordinate Systems

Space-Fixed Coordinate System (SFCS)

A planetoid (or molecule) moves through empty space, and we are observing it from our (iner-
tial1) spaceship. In order to carry out observations of the planetoid (molecule), we have to
install some gear on our spaceship and install a Cartesian coordinate system that will enable
us to describe the planetoid whatever happens to it. This is the space-fixed coordinate system
(SFCS), whose orientation with respect to distant stars does not change with time.

If the molecule does not interact with anything, then with respect to the SFCS (see Chapter 2),
note the following:

• Its total energy remains invariant (because of the homogeneity of time).
• Its total momentum remains invariant (because of the homogeneity of space).
• Its total angular momentum vector remains invariant (because of the isotropy of space).

An observer on another spaceship (inertial as well) will see the same phenomena in exactly
the same way2: the energy, momentum, and angular momentum also will be invariant, but in
general, it will be different from what was measured in the first spaceship.

Let us introduce in the SFCS the vectors ri =
(
xi , yi , zi

)
showing from the origin the particles

from which our molecule is composed (i.e., the electrons and the nuclei), i = 1, 2, . . . N .
Then, using the SFCS, we write down the Hamiltonian of the system and the operators of the
mechanical quantities we are interested in, we calculate all the wave functions we need, we
compare them with spectra measured in the SFCS, etc.

1 That is, it is not rotating. We will convince ourselves that our SFCS is inertial by measuring how a pointlike
mass (assumed to not be interacting with the rest of the spaceship) moves. If it moves along a straight line with
a constant velocity, then the SFCS is inertial. In a non-inertial coordinate system, the description of the physical
phenomena in the molecule will be different.

2 That is, in the non-relativistic approximation. The Doppler effect, with the change of the electromagnetic wave
frequency due to the motion (even uniform) of the emitting object, is seen in the experiment. The effect is of the
relativistic character; i.e., it vanishes if we assume the infinite velocity of light.
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Body-Fixed Coordinate System (BFCS)

One day, however, we may feel that we do not like the SFCS because it has too many variables.
Of course, this is not a sin, but it does waste our forces. Indeed, since in all inertial systems
we have the same physics, we can separate the motion of the center of mass3 (the total mass
M =∑i mi ). The center of mass with position

RC M =
∑

i mi ri

M

moves in the SFCS with a constant velocity along a straight line, which can be easily taken into
account after the solution is obtained, and which in most cases is irrelevant. This is why we
decide to introduce the Cartesian coordinates

(
XC M , YC M , ZC M

) = RC M in the hope that in
the future, we will be able to get rid of them. Now, we need to introduce a coordinate system
(of the lacking 3N − 3 variables) located in the molecule, the so-called body-fixed coordinate
system (BFCS). How should this be defined? Well, it should be a coordinate system that will
define unambiguously any configuration of the particles in the molecule. There are many such
coordinate systems. Here, you have some of the possibilities for the BFCS (in all of them, their
axes are parallel to the corresponding axes of the SFCS4). We may choose one of the following
sets5 of position vectors:

• With RC M , we locate the BFCS on any of the particles (this is indicated by vector r1), and
the BFCS positions of the other particles are shown by r′i = ri − r1 for i = 2, 3, . . . N .

• With RC M , the vector R = r2 − r1 indicates particle 2 from particle 1, and the remaining
particles are shown by the vectors that begin in the center of the section linking particles 1

and 2: r′i = ri −
(
r1+r2

)
2 for i = 3, 4, . . . N .

• With RC M , all the vectors show the particles from the center of mass (except particle 1):
r′i = ri − RC M for i = 2, 3, . . . N . The position vector of the particle 1 can be calculated
from the coordinates already given.

Center-of-Mass Separation

After writing the Hamiltonian Ĥ in the SFCS, and then introducing any of the above choices

of the coordinate system, we obtain Ĥ = ĤC M + Ĥ ,
where

3 The exact separation of the center of mass motion in SFCS, as well as the exact separation of rotation of the
molecule (which is not shown in this appendix) have been shown for the first time in R.T. Pack and J.O. Hirschfelder,
J.Chem.Phys., 49, 4009 (1968).

4 Only after introducing the axes of the coordinate system associated to the particles, and not with the SFCS, is
separation of rotation possible.

5 Other are other choices are possible.
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with any of the choices, the operator Ĥ is identical but the mathematical formula for Ĥ will be
different because different coordinates are used.

Thus, the total Hamiltonian in the SFCS is

Ĥ = ĤC M(XC M , YC M , ZC M)+ Ĥ(r),

where r symbolizes6 all the other variables. The key result is that the two operators on the right
side depend on different variables.

The goal of the above changes of the coordinate system was to show that the Schrödinger
equation written in the SFCS; i.e., Ĥ� = E� splits into two Schrödinger equations (“separation
of variables’’) as follows:

• ĤC MψC M = EC MψC M describes the motion of a free “particle” of mass M and the
coordinates XC M , YC M , ZC M (the “center-of-mass motion”), with ψC M = exp (ipC M ·
RC M), where pC M stands for the total momentum of the system.

• Ĥψ = Eψ ,

where

E = E + EC M

�(RC M , r) = ψC M(RC M) · ψ(r).
The proof is simple. Let us check that the product wave function satisfies the Schrödinger

equation. The left side is

Ĥ[ψC M(RC M) · ψ(r)]
= ĤC M [ψC M(RC M) · ψ(r)] + Ĥ [ψC M(RC M) · ψ(r)]
= ψ(r) · ĤC MψC M(RC M)+ ψC M(RC M) · Ĥψ(r)
= ψ(r) · EC MψC M(RC M)+ ψC M(RC M) · Eψ(r)
= (E + EC M

) [ψC M(RC M) · ψ(r)]
and this equals the right side E�.

Example 1. Center-of-Mass Separation for the First Choice of the Coordinates
We use the first choice of the coordinates for the system of two particles. In the SFCS,

Ĥ = − �
2

2m1
�1 − �

2

2m2
�2 + V . The new coordinates are

XC M =
∑

i mi xi

M
, YC M =

∑
i mi yi

M
, ZC M =

∑
i mi zi

M
,

x = x2 − x1,

y = y2 − y1,

z = z2 − z1.

6 For the sake of brevity.
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Then7

∂

∂x1
= ∂XC M

∂x1

∂

∂XC M
+ ∂YC M

∂x1

∂

∂YC M
+ ∂ZC M

∂x1

∂

∂ZC M
+ ∂x

∂x1

∂

∂x
+ ∂ y

∂x1

∂

∂ y
+ ∂z

∂x1

∂

∂z

= m1

M

∂

∂XC M
+ 0+ 0− ∂

∂x
+ 0+ 0 = m1

M

∂

∂XC M
− ∂

∂x
,

and similarly for y1 and z1. Further,

∂

∂x2
= ∂XC M

∂x2

∂

∂XC M
+ ∂YC M

∂x2

∂

∂YC M
+ ∂ZC M

∂x2

∂

∂ZC M
+ ∂x

∂x2

∂

∂x
+ ∂ y

∂x2

∂

∂ y
+ ∂z

∂x2

∂

∂z

= m2

M

∂

∂XC M
+ 0+ 0+ ∂

∂x
+ 0+ 0 = m2

M

∂

∂XC M
+ ∂

∂x
,

and similarly for y2 and z2.

Hence, the kinetic energy operator (after constructing the proper Laplacians from the above
operators) is

T̂ = − �
2

2m1
�1 − �

2

2m2
�2 = − �

2

2m1

[(m1

M

)2 ∂2

∂X2
C M

+ ∂2

∂x2 − 2
m1

M

∂2

∂XC M∂x

]

+ (similarly for y and z)+

− �
2

2m2

[(m2

M

)2 ∂2

∂X2
C M

+ ∂2

∂x2 + 2
m2

M

∂2

∂XC M∂x

]

+ (similarly for y and z) = − �
2

2M
�C M − �

2

2μ
�,

where the reduced mass μ of the two particles: 1
μ
= 1

m1
+ 1

m2
, and � = ∂2

∂x2 + ∂2

∂ y2 + ∂2

∂z2 .

7 According to the mathematical analysis, we have to write down the contributions of all the differential operators
∂
∂u of the new coordinates u multiplied by their “coupling constants” ∂u

∂x1
with the coordinate x1.
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Our derivation is now over. The operator Ĥ has been found. It turned out to take the following
form8 (note, that the new coordinates have to be introduced also in the potential energy V ) of
the form:

Ĥ = − �
2

2μ
�+ V .

Example 2. Center-of-Mass Separation for the Third Choice of the Coordinates
Let us take again the same two particles, but this time use the third choice of the coordinate

system:

XC M =
∑

i mi xi

M
, YC M =

∑
i mi yi

M
, ZC M =

∑
i mi zi

M
,

x = x2 − XC M ,

y = y2 − YC M ,

z = z2 − YC M .

Then,

∂

∂x1
= ∂XC M

∂x1

∂

∂XC M
+ ∂YC M

∂x1

∂

∂YC M
+ ∂ZC M

∂x1

∂

∂ZC M
+ ∂x

∂x1

∂

∂x
+ ∂ y

∂x1

∂

∂ y
+ ∂z

∂x1

∂

∂z

= m1

M

∂

∂XC M
+ 0+ 0− m1

M

∂

∂x
+ 0+ 0 = m1

M

(
∂

∂XC M
− ∂

∂x

)
,

and similarly for y1 and z1. Further,

∂

∂x2
= ∂XC M

∂x2

∂

∂XC M
+ ∂YC M

∂x2

∂

∂YC M
+ ∂ZC M

∂x2

∂

∂ZC M
+ ∂x

∂x2

∂

∂x
+ ∂ y

∂x2

∂

∂ y
+ ∂z

∂x2

∂

∂z

8 The kinetic energy operator has a very interesting form. Particle 1 rests right in the origin of the BFCS (x =
0, y = 0, z = 0), and therefore its kinetic energy operator is absent in Ĥ . There is the kinetic energy of particle
2, but its mass is equal to μ, not to m2. The coordinates x, y, and z (measured from the origin of the BFCS)
correspond to particle 2. For example, for the hydrogen-like atom, if someone takes the nucleus as particle 1, and
the electron as particle 2, then x, y, and z show the electron from the Cartesian coordinate system BFCS located on

the nucleus. The potential energy operator V = − Ze2√(
x2−x1

)2+(y2−y1
)2+(z2−z1

)2 = − Ze2√
x2+y2+z2

corresponds

to the Coulombic interaction of the electron of charge−e and the nucleus of the charge Ze. After separation of the
center of mass, we are left with equation Ĥψ = Eψ . The electron of mass μ is described by the wave function

ψ . In the ground state, ψ = 1√
π

e−
√

x2+y2+z2
. This is the description of the hydrogen-like atom according to an

observer sitting at the nucleus.
If another observer puts his armchair (with the axes of the BFCS carved on it) at the electron, then he would

see the hydrogen-like atom “according to the electron.” Since in V there are squares of x, y, and z, and in the
kinetic energy operator, there are the second derivatives with respect to x, y, and z, then we would obtain the same

wave function as before: ψ = 1√
π

e−
√

x2+y2+z2
, where the particle moving with respect to the electron is the

nucleus, but with the mass equal to μ (i.e., the same as before). By the way, this μ is almost equal to the mass of
the electron.

Thus, the two descriptions mean the same thing.
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= m2

M

∂

∂XC M
+ 0+ 0+

(
1− m2

M

) ∂

∂x
+ 0+ 0

= m2

M

∂

∂XC M
+
(

1− m2

M

) ∂

∂x
= m2

M

∂

∂XC M
+ m1

M

∂

∂x
,

and similarly for y2 and z2.

Thus, the kinetic energy operator takes the following form (after inserting the squares of the
corresponding operators):

T̂ = − �
2

2m1
�1 − �

2

2m2
�2 = − �

2

2m1

[(m1

M

)2
(

∂2

∂X2
C M

+ ∂2

∂x2 − 2
∂2

∂XC M∂x

)]

+ (similarly for y and z)

+− �
2

2m2

[(m2

M

)2 ∂2

∂X2
C M

+
(m1

M

)2 ∂2

∂x2 + 2
m1m2

M2

∂2

∂XC M∂x

]
+ (similarly for y and z)

= − �
2

2M
�C M − �

2

2m1

(m1

M

)2
�xyz − �

2

2m2

(m1

M

)2
�xyz − �

2

2m1

(m1

M

)2
(
−2

∂2

∂XC M∂x

)

+ · · · − �
2

2m2
2

m1m2

M2

∂2

∂XC M∂x
+ . . . = − �

2

2M
�C M − �

2

2m1

(m1

M

)2
�xyz

− �
2

2m2

(m1

M

)2
�xyz = − �

2

2M
�C M − �

2

2

(
m1

m2 M

)
�xyz.

It is seen that once again, we have reached the situation that allows us to separate the motion
of the center of mass in the Schrödinger equation. This time, however, the form of the operator
Ĥ is different (e.g., �xyz formally takes the same form as �), only because the variables are
different (the operator remains the same). Once again, this is the kinetic energy of a pointlike
particle9 with the coordinates x, y, and z (defined in this example) and the mass is equal to m2 M

m1
.

9 Let us first denote the nucleus as particle 1 and the electron as particle 2. Then RC M shows almost the position

of the nucleus, and x, y, and z are nearly the coordinates of the electron measured from the nucleus, while m2 M
m1

is almost equal to the mass of the electron. Thus, we have a situation that resembles Example 1.
If the particles are chosen in the other way (the electron is particle 1 and the nucleus is particle 2), then the

same physical situation looks completely different. The values of x, y, and z are very close to 0, while the mass
of the effective pointlike particle becomes very large.

Note that the new coordinates describe the potential energy in a more complex way. We need the differences
of the kind x2 − x1, in order to insert them into the Pythagorean formula for the distance. We have x1 =
XC M

m1+m2
m1

− m2
m1

x2 = XC M
m1+m2

m1
− m2

m1

(
x + XC M

) = XC M − m2
m1

x ,

x1 − x2 = XC M − m2
m1

x − x − XC M = −x
(

1+ m2
m1

)
.

This gives immediately (r stands for the electron-center of mass distance): V
(
new

) = − Ze2(
1+m2

m1

)
r

.
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Orthogonalization

Schmidt Orthogonalization

Two Vectors

Imagine two vectors u and v, each of length 1 (i.e., normalized), having the scalar product
〈u|v〉 = a. If a = 0, then the two vectors are orthogonal. We are interested in the case a �= 0. Can
one make such linear combinations of u and v, that the new vectors u′ and v′ will be orthogonal?
We can do that in many ways; two of them are called the Schmidt orthogonalization:
Case I:

u′ = u,

v′ = v− u 〈u|v〉 ,
Case II:

u′ = u− v 〈v|u〉
v′ = v.

It is seen that the Schmidt orthogonalization is based on a very simple idea. In Case I, the
first vector is left unchanged, while, one cuts out its component along the first one (Fig. J.1). In
this way, the two vectors are treated differently (hence, the two cases above).

In this book, the vectors to orthogonalize will be the Hilbert space vectors (see Appendix
B available at booksite.elsevier.com/978-0-444-59436-5); i.e., the normalized wave functions.
In the case of two such vectors φ1 and φ2 having the scalar product 〈φ1|φ2〉, we construct the
new orthogonal wave functions ψ1 = φ1, ψ2 = φ2 − φ1 〈φ1|φ2〉, or ψ1 = φ1 − φ2 〈φ2|φ1〉,
ψ2 = φ2, analogous to the previous formulas.

More Vectors

In the case of many vectors, the procedure is similar. First, we decide about the order of the
vectors to be orthogonalized. Then, we begin the procedure by leaving the first vector unchanged.
Then, we continue, remembering that from a new vector, we have to cut out all its components
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© 2014 Elsevier B.V. All rights reserved. e99

http://booksite.elsevier.com/978-0-444-59436-5
http://dx.doi.org/10.1016/B978-0-444-59436-5.00030-1


e100 Appendix J

Fig. J.1. The Schmidt orthogonalization of the unit (i.e., normalized) vectors uuu and vvv. The new vectors are uuu′ and vvv′. Vector
uuu′ ≡ uuu, while from vector vvv, we subtract its component along uuu. The new vectors are orthogonal.

along the new vectors already found. Of course, the final set of vectors depends on the order
chosen.

Löwdin Symmetric Orthogonalization

Imagine the normalized but non-orthogonal basis set wave functions collected as the components
of the vector φ. By making proper linear combinations of the wave functions, we will get
the orthogonal wave functions. The symmetric orthogonalization (as opposed to the Schmidt
orthogonalization) treats all the wave functions on an equal footing. Instead of the old non-

orthogonal basis set φ, we construct a new basis set φ′ by a linear transformation φ′ = S− 1
2φ,

where S is the overlap matrix with the elements Si j =
〈
φi |φ j

〉
, and the square matrix S− 1

2 and

its cousin S
1
2 are defined in the following way. First, we diagonalize S using a unitary matrix

U; i.e., U†U = UU † = 1 (for real S the matrix U is orthogonal, UT U = UU T = 1):

Sdiag = U†SU .

The eigenvalues of S are always positive, so the diagonal elements of Sdiag can be replaced

by their square roots, thus producing the matrix denoted by symbol S
1
2
diag. Using this matrix,

we define the matrices S
1
2 = US

1
2
diagU† and S− 1

2 =
(

S
1
2

)−1 = US
− 1

2
diagU†. Their symbols
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correspond to their properties: S
1
2 S

1
2 = US

1
2
diagU†US

1
2
diagU† = US

1
2
diagS

1
2
diagU† = USdiagU† =

S; similarly, S− 1
2 S− 1

2 = S−1. Also, a straightforward calculation gives1 S− 1
2 S

1
2 = 1.

An important feature of the symmetric orthogonalization is2 that among all possible orthog-
onalizations, the symmetric orthogonalization ensures∑

i

∣∣∣∣φi − φ′i
∣∣∣∣2 = minimum,

where
∣∣∣∣φi − φ′i

∣∣∣∣2 ≡ 〈φi − φ′i |φi − φ′i
〉
. This means that

the symmetrically orthogonalized functions φ′i are the least distant in the Hilbert space
from the original functions φi . Thus, a symmetric orthogonalization indicates the gentlest
pushing of the directions of the vectors in order to get them orthogonal.

Example

The symmetric orthogonalization will be shown taking an example of two non-orthogonal
vectors u and v (instead of functions φ1 and φ2), each of length 1 with the scalar product3

〈u|v〉 = a �= 0. We decide to consider the vectors with real components; hence a ∈ R.

First, we have to construct matrix S− 1
2 . Here is how we arrive at this. Matrix S is equal

S =
(

1 a
a 1

)
, and as we see it is symmetric. First, let us diagonalize S. To achieve that,

we apply the orthogonal transformation U†SU (thus, in this case U† = UT ), where (to assure

the orthogonality of the transformation matrix) we choose U =
(

cos θ sin θ
− sin θ cos θ

)
, and there-

fore U† =
(

cos θ − sin θ
sin θ cos θ

)
, with angle θ to be specified. After the transformation, we have:

U†SU =
(

1− a sin 2θ a cos 2θ
a cos 2θ 1+ a sin 2θ

)
.

1 The matrix S− 1
2 is not just a symbol anymore. Let us check whether the transformation φ′ = S− 1

2 φ gives
orthonormal wave functions (vectors). Remembering that φ represents a vertical vector with the components φi

(being functions):
∫
φφT dτ = S, while

∫
φ′φ′T dτ = ∫ S− 1

2 φφT S− 1
2 dτ = S−1 ∫ φφT dτ = S−1S = 1. This

is what we wanted to show.
2 G.W. Pratt and S.P. Neustadter, Phys.Rev., 101, 1248 (1956).
3 −1 ≤ a ≤ 1.
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It is seen that if we chose θ = 45o, then the matrix U†SU would be diagonal4 (that

is what we would like to have): Sdiag =
(

1− a 0
0 1+ a

)
. We construct, then, S

1
2
diag =(√

1− a 0
0

√
1+ a

)
.

Next, we form S
1
2 = US

1
2
diagU† = 1

2

(√
1− a +√1+ a

√
1+ a −√1− a√

1+ a −√1− a
√

1− a +√1+ a

)
and the

matrix S− 1
2 needed5 for the transformation is equal to

S−
1
2 = US

− 1
2

diagU† = U

(
1√
1−a

0

0 1√
1+a

)
U† = 1

2

(
1√
1−a
+ 1√

1+a
1√
1+a
− 1√

1−a
1√
1+a
− 1√

1−a
1√
1−a
+ 1√

1+a

)
.

Now we are ready to construct the orthogonalized vectors6:(
u′
v′
)
= 1

2

(
1√
1−a
+ 1√

1+a
1√
1+a
− 1√

1−a
1√
1+a
− 1√

1−a
1√
1−a
+ 1√

1+a

)(
u
v

)
.

u′ = Cu+ cv

v′ = cu+ Cv,

where the “large” coefficient C = 1
2

(
1√
1−a
+ 1√

1+a

)
, and a “small” admixture c =

1
2

(
1√
1+a
− 1√

1−a

)
. As we can see, the new (orthogonal) vectors are formed from the old ones

(non-orthogonal) by an identical (hence the name symmetric orthogonalization) admixture of
the old vectors; i.e., the contribution of u and v in u′ is the same as that of v and u in v′.

The new vectors are obtained by correcting the directions of the old ones, each by the same
angle.

This is illustrated in Fig. J.2.
The new vectors automatically have a length of 1, the same as the starting vectors.

4 In such a case, the transformation matrix is

U =
⎛
⎝ 1√

2
1√
2

− 1√
2

1√
2

⎞
⎠ = 1√

2

(
1 1
−1 1

)

5 They are symmetric matrices. For example,
(

S
1
2

)
i j
=

(
US

1
2
diagU†

)
i j
= ∑

k
∑

l Uik

(
S

1
2
diag

)
kl

U jl =
∑

k
∑

l Uik

(
S

1
2
diag

)
kl
δklU jl =

∑
k Uik

(
S

1
2
diag

)
kk

U jk =
(

S
1
2

)
j i

.

6 It is seen that if the vectors u and v were already orthogonal (i.e., a = 0), then u′ = u and v′ = v. Of course, we
like this result.
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Fig. J.2. The symmetric (or Löwdin’s) orthogonalization of the normalized vectors uuu and vvv. The vectors are pushed off by the
same angle in such a way as to assure uuu′ and vvv′ to become orthogonal.
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Diagonalization of a Matrix

In quantum chemistry, we often encounter the following mathematical problem.
We have a Hermitian1 matrix A of dimension n, and we are interested in all numbers λ (called

“eigenvalues”2) and the corresponding column vectors (“eigenvectors” of dimension n) L, that
satisfy the following equation:

(A− λ 1)L = 0, (K.1)

where 1 is the unit matrix (of dimension n). There is n solutions to the last equation: n eigenvalues
of λ and n eigenvectors L. Some eigenvalues λ may be equal (degeneracy); i.e., two or more
linearly independent eigenvectors L correspond to a single eigenvalue λ. From Eq. (K.1), it is
shown that any vector L is determined only to the accuracy of a multiplicative factor.3 This is
why in the future, it will be justified to normalize them to unity.

In quantum chemistry, the eigenvalue problem is solved in two ways: one is easy for n ≤ 2,
but more and more difficult for larger n, while the second way (with computers) treats all cases
uniformly.

• The first way sees the eigenvalue equation as a set of linear homogeneous equations for the
unknown components of the vector L. Then, the condition for the non-trivial solution4 to
exist is det (A − λ 1) = 0. This condition can be fulfilled only for some particular values
of λ, which are to be found by expanding the determinant and solving the resulting nth
degree polynomial equation for λ. Then, each solution λ is inserted into Eq. (K.1) and the
components of the corresponding vector L are found by using any method applicable to
linear equations. Thus, we end up with λk and Lk for k = 1, 2, 3, ...n.

• The second way is based on diagonalization of A.

First, let us show that the same λ satisfy the eigenvalue Eq. (K.1), but with a much simpler
matrix. To this end, let us multiply Eq. (K.1) by (at the moment) arbitrary non-singular5 square

1 In practice, matrix A is usually real, and therefore it satisfies (AT )∗ = AT = A; i.e., A is symmetric.
2 They are real.
3 In other words, a unnormalized wave function still satisfies the Schrödinger equation, or to any normal mode can

be assigned an arbitrary amplitude.
4 The trivial one is obviously L = 0, which is inacceptable, since the wave function cannot vanish everywhere, or

atoms have to vibrate, etc.
5 That is, its inverse matrix exists.
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matrix6 B. We obtain the following chain of transformations: B−1(A−λ 1) L = B−1(ABB−1−
λ 1) L = (B−1AB−λ 1) B−1L = (Ã−λ 1)L̃ = 0, where7 Ã = B−1AB, and L̃ = B−1L. Thus,
another matrix and other eigenvectors, but the same λ! Now, let us choose such a special B that
the resulting equation is as simple as possible (i.e., with a diagonal Ã). Then, we will know
(just by looking at) what the λ values have to be in order to satisfy the equation (Ã−λ 1)L̃ = 0.

Indeed, if Ã were diagonal, then det (Ã − λ 1) = �n
k=1( Ãkk − λ) = 0, which gives the

solutions λk = Ãkk . Then it is easy to find the corresponding vector L̃k . For example, L̃1 we
find from equation (Ã− λ1 1)L̃1 = 0 in the following way8:⎛

⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
0 Ã22 − λ1 0 . . . 0
0 0 Ã33 − λ1 . . . 0
...

...
...

. . .
...

0 0 0 . . . Ãnn − λ1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

L̃1,1

L̃1,2

L̃1,3
...

L̃1,n

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎠ ,

which means, that in order to get 0 on the right side, one has to have an arbitrary L̃1,1, while
the other L̃1, j = 0 for j = 2, 3, ...n.

In order to have the length of L̃1 equal to 1, it is sufficient to put L̃1,1 = 1. Similarly, we find
easily that the vectors L̃k corresponding to λk represent nothing else but the column vectors
with all components equal to 0 except the component k, that equals to 1. We are interested in
vectors L, rather than L̃. We get these vectors from L = BL̃, and when taking into account the
form of L̃, this means that Lk is nothing else but the kth column of the matrix B. Since B is
known, because precisely this matrix led to the diagonalization, there is no problem with L:

The columns of B represent the eigenvectors L of the equation (A− λ 1)L = 0.

Our task is over!

6 This matrix is to be found.
7 Then, such a unitary matrix B (i.e., satisfying (BT )∗ = B−1) can be found, that B−1AB is real and diagonal.

When (as it is the case in most applications) we are dealing with real matrices, then instead of unitary and Hermitian
matrices, we are dealing with orthogonal and symmetric matrices, respectively.

8 The λ has been replaced by λ1 because one is interested by getting L̃1.
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Secular Equation (H − εS) c = 0

A typical approach to solve an eigenvalue problem is its “algebraization”; i.e., a representation
of the wave function as a linear combination of the known basis functions with the unknown
coefficients. Then, instead of searching for a function, we try to find the expansion coefficients c
from the secular equation (see Chapter 5)

(
H − εS) c = 0. Our goal is to reduce this task to the

eigenvalue problem of a matrix. If the basis set used were orthonormal, then the goal would be
immediately achieved because the secular equation would be reduced to

(
H − ε1) c = 0 (i.e.,

the eigenvalue problem). However, in most cases, the basis set used is not orthonormal. We may
however orthonormalize the basis. We will achieve this by using the symmetric orthogonalization
(see Appendix J available at booksite.elsevier.com/978-0-444-59436-5, p. e99).

Instead of the old basis set (collected in the vector φ), in which the matrices H and S were

calculated as Hi j =
〈
φi |Ĥφ j

〉
, Si j =

〈
φi |φ j

〉
, we will use the orthogonal basis set φ′ = S− 1

2φ,

where S− 1
2 is computed as described in Appendix J available at booksite.elsevier.com/

978-0-444-59436-5. Then, we multiply the secular equation
(
H−εS) c = 0 from the left side

by S− 1
2 and make the following transformations:(

S−
1
2 H − εS− 1

2 S
)

c = 0(
S−

1
2 H1− εS− 1

2 S
)

c = 0(
S−

1
2 HS−

1
2 S

1
2 − εS− 1

2 S
)

c = 0(
S−

1
2 HS−

1
2 S

1
2 − εS 1

2

)
c = 0(

S−
1
2 HS−

1
2 − ε1

)
S

1
2 c = 0(

H̃ − ε1
)

c̃ = 0

with H̃ = S− 1
2 HS− 1

2 and c̃ = S
1
2 c.

The new equation represents the eigenvalue problem, which we solve by diagonalization of
H̃ (see Appendix K available at booksite.elsevier.com/978-0-444-59436-5, p. e105). Thus,
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the equation (H − εS)c = 0 is equivalent to the eigenvalue problem
(

H̃ − ε1
)

c̃ = 0. In

order to obtain H̃, we have to diagonalize S to compute S
1
2 and S− 1

2 .

Secular Equation and Normalization

If in the Ritz method we used non-normalized basis functions, then this would not change the
eigenvalues obtained from the secular equation. The only thing that would change are eigen-
vectors. Indeed, imagine that we have solved the secular equation for the normalized basis set
functions:

(
H − εS) c = 0. The eigenvalues ε have been obtained from the secular determinant

det
(
H − εS) = 0. Now, one wishes to destroy the normalization and takes new basis functions,

which are the old basis set functions multiplied by some numbers, the i th function by ai . Then
a new overlap integral and the corresponding matrix element of the Hamiltonian Ĥ would be
S′i j = ai a j Si j , H ′i j = ai a j Hi j . The new secular determinant det

(
H′ − εS′) may be expressed

by the old secular determinant times a number.1 This number is irrelevant since what matters is
that the determinant is equal to 0. Thus, whether or not we use the normalized basis set in the
secular equation the eigenvalues do not change. The eigenfunctions are also identical, although
the eigenvectors c are different–they need to be because they multiply different functions (that
are proportional to each other).

If we asked whether the eigenvalues of the matrices H are H′ identical, the answer would
be no.2 However, in quantum chemistry, we do not calculate the eigenvalues3 of H, but rather
solve the secular equation

(
H′ − εS′) c = 0. If H′ changes with respect to H, then there is a

corresponding change of S′ when compared to S. This guarantees that the εs do not change.

1 We divide the new determinant by a1, what means dividing the elements of the first row by a1, and in this way,
we remove from them a1, both in H′ and in S′. Doing the same with a2 and the second and subsequent rows and
then repeating the procedure for columns (instead of rows), we get finally the old determinant times a number.

2 This is evident–just think of diagonal matrices.
3 Although we often say that way.
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Slater-Condon Rules

The Slater determinants represent something like the “daily bread” of quantum chemists. Our
goal is to learn how to use the Slater determinants when they are involved in calculation of
the mean values or the matrix elements of some important operators. We will need that in the
Hartree-Fock method, as well as in other important methods of quantum chemistry.

Most important are only the final results of the derivations presented in this appendix
(p. e119).

Antisymmetrization Operator

The antisymmetrization operator is defined as

Â = 1

N !
∑

P

(−1)p P̂, (M.1)

where P̂ represents a permutation operator of N objects (electrons, in our case), while (−1)p

stands for the parity of the permutation P , “even” (“odd”), if a given permutation P can be
created from an even (odd) number p of the transpositions (i.e., exchanges) of two elements.

The operator Â has some nice features. The most important one is that when applied to any
function, it produces either a function that is antisymmetric with respect to the permutations of
N elements, or zero.1 This means that Â represents a sort of magic wand: whatever it touches
becomes antisymmetric or disappears! The antisymmetrizer is also idempotent; i.e., it does not
change any function that is already antisymmetric, which means Â2 = Â.

Let us check that Â is indeed idempotent. First, we obtain

Â2 = (N !)−1
∑

P

(−1)p P̂(N !)−1
∑

P

(−1)p P̂ = (N !)−2
∑
P P ′

(−1)p+p′ P̂ P̂ ′. (M.2)

Of course, P̂ P̂ ′ represents a permutation operator,2 which is then multiplied by its own parity
(−1)p+p′ , and there is a sum over such permutations at a given fixed P̂ ′. Independent of what

1 In the near future, these elements will be identified with the electronic coordinates (one element will be represented
by the space and spin coordinates of a single electron: x, y, z, σ ).

2 The permutations form the permutation group.
Note this excerpt from “Solid State and Molecular Theory, Wiley, London (1975) by John Slater on the

permutation group: “(...) It was at this point that Wigner, Hund, Heitler, and Weyl entered the picture, with their
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P̂ ′ is, we obtain the same result3 N ! times, and therefore Â2 = (N !)−2 N !∑P (−1)p P̂ = Â.
This is what we wanted to show.

The operator Â is Hermitian. Since P̂ represents a (permutational) symmetry operator, it
conserves the scalar product. This means that for the two vectors ψ1 and ψ2 of the Hilbert
space, we obtain4

〈
ψ1(1, 2, . . . , N )| Âψ2(1, 2, . . . , N )

〉
= (N !)−1

∑
P

(−1)p
〈
P̂−1ψ1(1, 2, . . . , N )|ψ2(1, 2, . . . , N )

〉
.

The summation over P̂ can be replaced by the summation over P̂−1:

(N !)−1
∑
P−1

(−1)p
〈
P̂−1ψ1(1, 2, . . . , N )|ψ2(1, 2, . . . , N )

〉
.

Since the parity p of the permutation P̂−1 is the same as that of P̂ , hence (N !)−1∑
P−1 (−1)p

P̂−1 = Â, what shows that Â is Hermitian:
〈
ψ1| Âψ2

〉
=
〈
Âψ1|ψ2

〉
, or 5

Â† = Â. (M.3)

‘Gruppenpest’: the pest of the group theory, as certain disgruntled individuals who had never studied group
theory in school described it. (...) The authors of the ‘Gruppenpest’ wrote papers, which were incomprehensible
to those like me who had not studied group theory (...). The practical consequences appeared to be negligible, but
everyone felt that to be in the mainstream of quantum mechanics, we had to learn about it. (...) It was a frustrating
experience, worthy of the name of a pest.”

3 Of course, P̂ P̂ ′ = P̂ ′′ has the parity (−1)p+p′ , because this is how such a permutation parity is to be calculated:

first, we make p transpositions in order to get P̂ , and next, making p′ transpositions, we obtain the permutation
P̂ P̂ ′. Note, that when keeping P̂ ′ fixed and taking P̂ from all possible permutations, we are running with P̂ P̂ ′
over all possible permutations as well. This is because the complete set of permutations is obtained independently
of what the starting permutation looks like (i.e., independent of P̂ ′).

4 The conservation of the scalar product 〈ψ1|ψ2〉 =
〈
P̂ψ1|P̂ψ2

〉
means that the lengths of the vectors ψ1 and

P̂ψ1 are the same (similarly with ψ2), and that the angle between the vectors is also conserved. If P̂ is acting

on ψ2 alone and ψ1 does not change, the angle resulting from the scalar product
〈
ψ1|P̂ψ2

〉
is of course different

because only one of the vectors (ψ2) has been transformed (which means a rotation of a unit vector in the Hilbert
space). The same angle would be obtained if its partner ψ1 were transformed in the opposite direction; i.e.,

when the operation P̂−1ψ1 had been performed. Hence, from the equality of the angles, we have
〈
ψ1|P̂ψ2

〉
=〈

P̂−1ψ1|ψ2

〉
.

5 Â† stands for the adjoint operator with respect to Â; i.e., for arbitrary functions belonging to its domain, we have〈
ψ1| Âψ2

〉
=
〈
Â†ψ1|ψ2

〉
. There is a subtle difference (ignored in this book) among the self-adjoint ( Â† = Â)

and Hermitian operators in mathematical physics (they differ by definition of their domains).
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Slater-Condon Rules

The Slater-Condon rules serve for expressing the matrix elements involving the Slater determi-
nants (they are many-electron wave functions):

� = 1√
N !

∣∣∣∣∣∣∣∣
φ1(1) φ1(2) · · · φ1(N )
φ2(1) φ2(2) · · · φ2(N )
· · · · · · · · · · · · · · · · · · · · · · · ·
φN (1) φN (2) · · · φN (N )

∣∣∣∣∣∣∣∣
. (M.4)

The normalized Slater determinant has the form: � = √N ! Â(φ1φ2 · · ·φN ), where
φ1φ2 · · ·φN represents a product φ1(1)φ2(2) · · ·φN (N ), and therefore, the normalization
constant before the determinant itself det[φ1(1)φ2(2) · · ·φN (N )] is equal to (N !)−1/2.

Quantum chemists love the Slater determinants because they are built of the one-electron
“bricks” φi called spinorbitals (we assume them to be orthonormal) and because any Slater
determinant is automatically antisymmetric with respect to exchange of the coordinates of any
two electrons (shown as arguments of φi ), the factor 1√

N ! ensures the normalization. At the
same time, any Slater determinant automatically satisfies the Pauli exclusion principle, because
any attempt to use the same spinorbitals results in two rows being equal, and as a consequence,
in having � = 0 everywhere.6

Using the Slater determinants give quantum chemists some comfort since all the integrals
that appear when calculating the matrix elements of the Hamiltonian are relatively simple. The
most complicated ones contain the coordinates of two electrons.

What Kind of Operators we will be Dealing with?

1. The sum of one-electron operators F̂ =∑i ĥ(i)

2. The sum of two-electron operators Ĝ =∑i< j ĝ(i, j)

In both cases, the summation goes over all the electrons. Note that ĥ has the identical form
independent of the particular electron; and the same pertains to ĝ.

The future meaning of the F̂ and Ĝ operators is obvious; the first pertains to the non-
interacting electrons (electronic kinetic energy with ĥ(i) = −1

2�i or the interaction of the elec-
trons with the nuclei), the second operator deals with the electronic repulsion, with ĝ(i, j) = 1

ri j
.

6 This is a kind of catastrophe in theory: because our system is somewhere and can be found there with a certain
nonzero probability.
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What the Slater-Condon Rules are all About?
The Slater-Condon rules show how to express the matrix elements of many-electron oper-
ators F̂ and Ĝ with the Slater determinants by the matrix elements of the operators ĥ and
ĝ computed with the orthonormal spinorbitals φi .

The operators F̂ and Ĝ are invariant with respect to any permutation of the electrons
(Chapter 2). In other words, the formulas for F̂ and Ĝ do not change before and after any
relabeling of the electrons. This means that any permutation operator commutes with F̂ and
Ĝ. Since Â is a linear combination of such commuting operators, then ÂF̂ = F̂ Â and
ÂĜ = Ĝ Â.

A Simple Trick Used in the Proofs

All the proofs given here are based on the same simple trick. First, the integral under consider-
ation is transformed into a sum of the terms

〈φ1(1)φ2(2) · · ·φN (N )| Â X̂ |φ1(1)φ2(2) · · ·φN (N )〉,

where X̂ = ĥ(i) or ĝ(i, j). Then, we recall that Â is a linear combination of the permutation
operators, and that in the integral 〈φ1(1)φ2(2) · · ·φN (N )|X̂ |φn1(1)φn2(2) · · ·φnN (N )〉, only a
few terms will survive.

• In case X̂ = ĥ(i), we obtain a product of one-electron integrals:

〈φ1(1)φ2(2) · · ·φN (N )|X̂ |φn1(1)φn2(2) · · ·φnN (N )〉
= 〈φ1(1)|φn1(1)

〉 〈
φ2(2)|φn2(2)

〉 · · · 〈φi (i)|ĥ(i)|φni (i)
〉
· · · 〈φN (N )|φnN (N )

〉
.

Since the spinorbitals are orthonormal, then only one term will survive, the one that has
(n1, n2, . . . , ni−1, ni+1, . . . nN ) = (1, 2, . . . , i − 1, i + 1, . . . N ). All the overlap integrals
that appear there are equal to 1. Only one of the one-electron integrals will give something else:〈
φi (i)|ĥ(i)|φni (i)

〉
, but also in this integral, we have to have ni = i because of the abovemen-

tioned overlap integrals that force the matching of the indices.

• If X̂ = ĝ(i, j), we make the same transformations, but the rule for survival of the integrals
pertains to the two-electron integral that involve the coordinates of the electrons i and j (not
one-electron as before). Note that this time we will have some pairs of the integrals that are
going to survive, because the exchange of the indices i j → j i also makes an integral that
survives.
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I Slater-Condon Rule

If ψ represents a normalized Slater determinant, then

F = 〈ψ |F̂ |ψ〉 =
N∑

i=1

〈i |ĥ|i〉, (M.5)

G = 〈ψ |Ĝ|ψ〉 = 1

2

∑
i, j

(〈i j |i j〉 − 〈i j | j i〉), (M.6)

where

〈i |ĥ|r〉 ≡
∑
σ1

∫
φ∗i (1)ĥ(1)φr (1)dV1 (M.7)

〈i j |kl〉 ≡
∑
σ1

∑
σ2

∫∫
φ∗i (1)φ∗j (2)g(1, 2)φk(1)φl(2)dV1dV2, (M.8)

where the summation pertains to two spin coordinates (for electrons 1 and 2).

Proo f :
Operator F̂

F = 〈ψ |F̂ |ψ〉 = N !〈 Â(φ1φ2 · · ·φN )|F̂ | Â(φ1φ2 · · ·φN )〉
Using ÂF̂ = F̂ Â, Â† = Â and Â2 = Â, one gets

F = N !〈φ1φ2 · · ·φN | Â[(ĥ(1)φ1φ2 · · ·φN )+ · · · (φ1φ2 · · · ĥ(N )φN )]〉
= N !

N ! 〈φ1φ2 · · ·φN |1̂[(ĥ(1)φ1φ2 · · ·φN )+ · · · (φ1φ2 · · · ĥ(N )φN )]〉,

because what gives a nonzero contribution from the antisymmetrizer Â = (N !)−1 (1+other
permutations) is only the first term with the operator of multiplication by 1. Other terms disappear
after any attempt of integration. As a result, we have

F = 〈φ1|ĥ|φ1〉 + 〈φ2|ĥ|φ2〉 + · · · 〈φN |ĥ|φN 〉 =
∑

i

hii , (M.9)

which we wanted to show.

Operator Ĝ
Now let us consider the expression for G:

G = N !〈 Â(φ1φ2 · · ·φN )|Ĝ Â|φ1φ2 · · ·φN )〉,
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where once again N ! comes from the normalization of ψ . Taking (similarly as above) into
account that Â† = Â, Â2 = Â, Ĝ Â = ÂĜ, we get

G = N !〈(φ1φ2 · · ·φN )| Â|[ĝ(1, 2)φ1φ2 · · ·φN + ĝ(1, 3)φ1φ2 · · ·φN + · · · ]〉
= 〈φ1(1)φ2(2)|ĝ(1, 2)|φ1(1)φ2(2)〉 − 〈φ1(1)φ2(2)|ĝ(1, 2)|φ2(1)φ1(2)〉
+ 〈φ1(1)φ3(3)|ĝ(1, 3)|φ1(1)φ3(3)〉
− 〈φ1(1)φ3(3)|ĝ(1, 3)|φ3(1)φ1(3)〉 + · · · (M.10)

This transformation needs some explanation. The factor N ! before the integral is annihilated
by 1/N ! coming from the antisymmetrizer. The remainder of the antisymmetrizer permutes the
electrons in the ket |[ĝ(1, 2)φ1φ2 · · ·φN + ĝ(1, 3)φ1φ2 · · ·φN + · · · ]〉. In the first term [with
ĝ(1, 2)], the integrals with only those permutations of the electrons 3, 4, . . . , N will survive that
perfectly match the permutation φ1(1)φ2(2) · · ·φN (N ), because otherwise the overlap integrals
of the spinorbitals (over the coordinates of the electrons 2, 3, . . . N ) will make them zero. This
is why the first term will give rise to only two permutations that result in nonzero integrals:
we will have on the first two positions φ1(1)φ2(2), and the other one will have φ1(2)φ2(1). Of
course, they will differ by sign, which is why we have the minus sign in the second surviving
integral. A similar reasoning may be done for the term with ĝ(1, 3), as well as other terms.

Thus, we have shown that

G =
∑
i< j

(〈i j |i j〉 − 〈i j | j i〉) = 1

2

∑
i, j

(〈i j |i j〉 − 〈i j | j i〉), (M.11)

where the factor 1
2 takes care of the fact that there is only N (N−1)

2 interelectronic interactions
g(i, j) (the upper triangle of the table N × N ). There is no restriction in the summation over
i, j = 1, 2, . . . N , because any attempt of taking the “illegal” self-interaction (corresponding to
i = j) gives zero due to the identity of the Coulomb (〈i j |i j〉) and exchange (〈i j | j i〉) integrals.
This is the formula that we wanted to prove.

Special Case: Double Occupation

The integrals in the expressions for F and G contain spinorbitals, and the integration goes over
the electronic space-and-spin coordinates. When the spinorbitals are expressed by the orbitals
and the spin functions, we may perform the summation over spin coordinates. The most popular
and the most important is the double occupation case, when every orbital is used to form two
spinorbitals7:

φ1(1) = ϕ1(1)α(1)

7 The functions here are written as if they were dependent on the coordinates of electron 1. The reason is that we
want to stress that they all are one-electron functions. The electron 1 serves here as an example (and when needed
may be replaced by other electron). The symbol “1” means (x1, y1, z1, σ1) if it is an argument of a spinorbital,
(x1, y1, z1) if it corresponds to an orbital, and σ1 if it corresponds to a spin function.
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φ2(1) = ϕ1(1)β(1)

φ3(1) = ϕ2(1)α(1)

φ4(1) = ϕ2(1)β(1) (M.12)

. . . (M.13)

or

φ2i−1(1) = ϕi (1)α(1)

φ2i (1) = ϕi (1)β(1), (M.14)

where i = 1, 2, . . . , N/2.
Thus, the one electron spinorbitals that represent the building blocks of the Slater determinant

are products of a spatial function (orbital ϕ) and one of the two simple functions of the spin
coordinate σ (α or β functions, cf. p. 400).

The first Slater-Condon rule [Eq. (M.9)] may be transformed as follows (for the definition of
the integrals, see p. 399):

F =
N∑

i=1

〈i |ĥ|i〉 =
M O∑
i=1

∑
σ

〈iσ |ĥ|iσ 〉 = 2
M O∑

i

(i |ĥ|i) ≡ 2
M O∑

i

hii , (M.15)

where the summations denoted by MO go over the occupied orbitals (their number being N/2),
the factor 2 results from the summation over σ , which gives the same result for the two values
of σ (because of the double occupation of the orbitals).

Let us make a similar operation with G. The formula for G is composed of two parts:

G = I− II. (M.16)

The first part reads as

I = 1

2

MO∑
i

∑
σi

MO∑
j

∑
σ j

〈i σi , j σ j |i σi , j σ j 〉,

where i σi , . . . etc. stands for the spinorbital composed of the orbital ϕi and a spin function that
depends on σi . For any pair of the values of σi , σ j , the integral yields the same value (at a given
pair of i, j) and therefore (cf., p. 399)

I = 1

2

MO∑
i

MO∑
j

4(i j |i j) = 2
MO∑

i

MO∑
j

(i j |i j).

The fate of part II will be a little different:

II = 1

2

MO∑
i

∑
σi

MO∑
j

∑
σ j

〈i σi , j σ j | j σ j , i σi 〉 = 1

2

MO∑
i

MO∑
j

2(i j | j i) =
MO∑

i

MO∑
j

(i j | j i),
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because this time the summation over σi and σ j gives the nonzero result in half of the cases
when compared to the previous case. The pairs (σi , σ j ) =

(1
2 ,

1
2

)
,
(−1

2 ,−1
2

)
give a nonzero

(and the same) result, while
(1

2 ,−1
2

)
,
(−1

2 ,
1
2

)
end up with zero (recall that by convention in

the integral, the electrons have the order 1 2 1 2). Finally, the double occupation leads to

G =
MO∑
i, j

[2(i j |i j)− (i j | j i)]. (M.17)

II Slater-Condon Rule

Suppose that we are interested in two matrix elements: F12 ≡ 〈ψ1|F̂ |ψ2〉 and G12 ≡ 〈ψ1|Ĝ|ψ2〉
and the two Slater determinants ψ1 and ψ2 differ only by that spinorbital φi in ψ1 has been
replaced by φ′i (orthogonal to all other spinorbitals) in ψ2. Then the Slater-Condon rule states
that

F12 = 〈i |ĥ|i ′〉 (M.18)

G12 =
∑
j=1

(〈i j |i ′ j〉 − 〈i j | j i ′〉) (M.19)

Proo f :
Operator F̂
Using F̂ Â = ÂF̂, Â† = Â, and Â2 = Â, we obtain Â† F̂ Â = ÂF̂ Â = Â ÂF̂ = ÂF̂ , and
therefore

F12 = N !〈φ1 · · ·φi · · · | ÂF̂ |φ1, . . . φ
′
i . . . φN 〉.

F12 = N !〈φ1φ2 · · ·φi · · ·φN | Â
|[ĥ(1)φ1, . . . φ

′
i · · ·φN + φ1ĥ(2)φ2 · · ·φ′i · · ·φN + · · ·φ1, . . . φ

′
i · · · ĥ(N )φN ]〉

=
∑

P

(−1)p〈φ1φ2 · · ·φi · · ·φN |

P̂[ĥ(1)φ1, . . . φ
′
i · · ·φN + φ1ĥ(2)φ2 · · ·φ′i · · ·φN + · · ·φ1, . . . φ

′
i · · · ĥ(N )φN ]〉.

Note first that the only integral to survive should involve φi and φ′i in such a way that it leads
to the one-electron integral 〈φi |ĥ|φ′i 〉. This however happens only if the i th term in the square
bracket intervenes [that with ĥ(i)]. Indeed, let us take an integral that is not like that (i 	= 1):
〈φ1φ2 · · ·φi · · ·φN |P̂ ĥ(1)φ1φ2 · · ·φ′i · · ·φN 〉. Whatever permutation P̂ is, ĥ will always go with
φ1, while φ′i will be therefore without ĥ. When integrating over the electronic coordinates, we
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obtain a product of one-electron integrals (for subsequent electrons), and in this product, one
always pinpoints the overlap integral of φ′i multiplied by one of the spinorbitals φ1, φ2, .., .φN .
This integral (and therefore the whole product) is equal to 0 because φ′i is orthogonal to all the
spinorbitals. An identical reasoning can be given for ĥ(2), ĥ(3), . . ., but not for ĥ(i), and we
obtain: F12 =∑P (−1)p〈φ1φ2 · · ·φi · · ·φN |P̂[φ1φ2 · · · ĥ(i)φ′i · · ·φN ]〉.

The only integral to survive is that which corresponds to P̂ = 1, because in other cases, the
orthogonality of the spinorbitals will make the product of the one-electron integrals equal zero.
Thus, finally, we prove that

F12 = 〈i |h|i ′〉. (M.20)

Operator Ĝ
From Â† = Â, ÂĜ Â = Â ÂĜ = ÂĜ, we obtain the following transformation:

G12 = N !〈 Â(φ1φ2 · · ·φN )| ÂĜ|φ1, . . . φ
′
i · · ·φN 〉〉

= N !〈 Â(φ1φ2 · · ·φN )|{[ĝ(1, 2)|φ1, . . . φ
′
i · · ·φN 〉] + [ĝ(1, 3)|φ1, . . . φ

′
i · · ·φN 〉] + · · · }〉

= 1

2

′∑
k,l

∑
P

(−1)p〈P̂ (φ1 · · ·φi · · ·φN
) |ĝ(k, l)|φ1, . . . φ

′
i · · ·φN 〉.

The number of g terms is equal to the number of the interelectronic interactions. The prime
in the summation k, l = 1, 2, . . . , N over interactions ĝ(k, l) means that k 	= l (we count the
interactions twice, but the factor 1

2 takes care of that). Note that, due to the orthogonality of the
spinorbitals, for a given ĝ(k, l), the integrals are all zero if k 	= i and l 	= i . Thus, the integrals
to survive have to have k = i or l = i . Therefore (prime in the summation means the summation
index i to be excluded),

G12 = 1

2

′∑
l

∑
P

(−1)p〈P̂ (φ1 · · ·φi · · ·φN
) |ĝ(i, l)|φ1, . . . φ

′
i · · ·φN 〉

+1

2

′∑
k

∑
P

(−1)p〈P̂ (φ1 · · ·φi · · ·φN
) |ĝ(k, i)|φ1, . . . φ

′
i · · ·φN 〉

= 1

2

′∑
l

[〈φiφl |φ′iφl〉 − 〈φiφl |φlφ
′
i 〉
]+ 1

2

′∑
k

[〈φiφk |φ′iφk〉 − 〈φiφk |φkφ
′
i 〉
]

=
′∑
j

[〈φiφ j |φ′iφ j 〉 − 〈φiφ j |φ jφ
′
i 〉
]
,

because only those two-electron integrals will survive that involve both φi and φ′i , and two other
spinorbitals involved are bound to be identical (and have either the index k or l depending on
whether l = i or k = i). The difference in the square brackets results from two successful
permutations P̂ in which we have the order i, j or j, i (in the last term). Finally, leaving for the
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sake of simplicity only the indices for the spinorbitals, we obtain

G12 =
∑
j(	=i)

[〈i j |i ′ j〉 − 〈i j | j i ′〉], (M.21)

and after adding 0 = 〈i i |i ′i〉 − 〈i i |i i ′〉, we have8

G12 =
∑

j

{〈i j |i ′ j〉 − 〈i j | j i ′〉}. (M.22)

This is what had to be demonstrated.

III Slater-Condon Rule

If ψ1 and ψ2 differ by two spinorbitals, say, in ψ1 are φi and φs , and in ψ2, we have φ′i and
φ′s (normalized and orthogonal to themselves and to all other spinorbitals)–i.e., φ′i replaces φi

while φ′s replaces φs (all other spinorbitals are in the same order)–then

F12 = 0 (M.23)

G12 = 〈is|i ′s′〉 − 〈is|s′i ′〉 (M.24)

Proo f :
Operator F̂

F12 = N !〈(φ1φ2 · · ·φN )| ÂF̂(φ′1φ′2 · · ·φ′N )〉
= N !〈(φ1φ2 · · ·φN )| Â{(ĥ(1)φ′1φ′2 · · ·φ′N )+ (φ′1ĥ(2)φ′2 · · ·φ′N )
+ · · · (φ′1φ′2 · · · ĥ(N )φ′N )}〉
= 0,

where the spinorbitals in ψ2 have been labeled additionally by primes (to stress they may differ
from those of ψ1). In each term, there will be N − 1 overlap integrals between spinorbitals
and one integral involving the ĥ. Therefore, there always will be at least one overlap integral
involving different spinorbitals. This will produce zero.

8 With this formula, we may forget that the integration has been carried out over the coordinates of the electrons i
and j . It does not matter what is the symbol of the coordinate over which an integration is performed in a definite
integral. When in the future we will have to declare which coordinates we are going to integrate over in 〈i j |i ′ j〉,
then absolutely safely we can put any electrons, in the present book it will be electron 1 and electron 2.
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Fig. M.1. Four Slater-Condon rules (I,II,III,IV) for easy reference. On the left side, we see pictorial representations of matrix
elements of the total Hamiltonian Ĥ . The squares inside the brackets represent the Slater determinants. Vertical lines in bra stand
for those spinorbitals, which are different in bra and in ket functions. On the right side, we have two square matrices collecting the
hi j and 〈i j |i j〉 − 〈i j | j i 〉 for i, j = 1, . . . , N . The gray circles in the matrices symbolize nonzero elements.
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Operator Ĝ
Something will survive in G12. Using the previous arguments, we have

G12 = N !〈(φ1φ2 · · ·φN )| Â(g(1, 2)φ′1φ′2 · · ·φ′N )+ (g(1, 3)φ′1φ′2 · · ·φ′N )+ · · · 〉
= 〈φ1φ2|g(1, 2)|φ′1φ′2〉 − 〈φ1φ2|g(1, 2)|φ′2φ′1〉
+ 〈φ1φ3|g(1, 3)|φ′1φ′3〉 − 〈φ1φ3|g(1, 3)|φ′3φ′1〉 + · · ·
= 〈φ1φ2|φ′1φ′2〉 − 〈φ1φ2|φ′2φ′1〉
+ 〈φ1φ3|φ′1φ′3〉 − 〈φ1φ3|φ′3φ′1〉
+ · · ·

Note that N ! cancels 1/N ! from the antisymmetrizer, and in the ket we have all possible per-
mutations. The only term to survive has to engage all four spinorbitals: i, i ′, s, s′; otherwise,
the overlap integrals will kill it. Therefore, only two terms will survive and give

G12 = 〈is|i ′s′〉 − 〈is|s′i ′〉. (M.25)

IV Slater-Condon Rule

Using the above technique, it is easy to show that if the Slater determinants ψ1 and ψ2 differ
by more than two (orthogonal) spinorbitals, then F12 = 0 and G12 = 0. This happens because
the operators F̂ and Ĝ represent a sum of at most two-electron operators, which will involve
at most four spinorbitals and there will be always an extra overlap integral over orthogonal
spinorbitals.9

The Slater-Condon rules are schematically depicted in Fig. M.1.

9 If the operators were more than two-particle ones, then the result would be different.
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Lagrange Multipliers Method

Imagine a Cartesian coordinate system of n + m dimension with the axes labeled
x1, x2, . . ., xn+m and a function1 E(x), where x = (x1, x2, . . ., xn+m). Suppose that we are
interested in finding the lowest value of E , but only among such x that satisfy m conditions
(conditional extremum):

Wi (x) = 0 (N.1)

for i = 1, 2, . . .,m. The constraints cause the number of the independent variables to be n.
If we calculated the differential dE in point x0 that corresponds to an extremum of E , then

we obtain 0:

0 =
n+m∑
j=1

(
∂E

∂x j

)
0

dx j , (N.2)

where the derivatives are computed at the point of the extremum. The quantities dx j stand for the

infinitesimally small increments. From Eq. (N.2), we cannot draw the conclusion that
(
∂E
∂x j

)
0

equals 0. This would be true if the increments dx j were independent, but they are not. Indeed,
one finds the relations between them by making the differentials of the conditions Wi :

n+m∑
j=1

(
∂Wi

∂x j

)
0

dx j = 0 (N.3)

for i = 1, 2, . . .,m (the derivatives
are computed for the extremum).

This means that the number of
the truly independent increments is
only n. Let us try to exploit that. To
this end, let us multiply Eq. (N.3) by
a number εi (Lagrange multiplier),

Joseph Louis de Lagrange
(1736–1813), French mathe-
matician of Italian origin, self-
taught, and professor at the
Artillery School of Torino, then
at École Normale Supérieure
in Paris. His main achieve-
ments are in variational cal-
culus, mechanics, number
theory, algebra, and mathe-
matical analysis.

1 Symbol E is chosen to suggest that in our applications, the quantity will have the meaning of energy.
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© 2014 Elsevier B.V. All rights reserved. e121
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which will be fixed in a moment. Then, let us add together all the conditions [Eq. (N.3)], and
subtract the result from Eq. (N.2). One gets

n+m∑
j=1

[(
∂E

∂x j

)
0
−
∑

i

εi

(
∂Wi

∂x j

)
0

]
dx j = 0,

where the summation extends over n + m terms. The summation may be carried out in two
steps. First, let us sum up the first n terms, and afterward add together the other terms:

n∑
j=1

[(
∂E

∂x j

)
0
−
∑

i

εi

(
∂Wi

∂x j

)
0

]
dx j +

n+m∑
j=n+1

[(
∂E

∂x j

)
0
−
∑

i

εi

(
∂Wi

∂x j

)
0

]
dx j = 0.

The multipliers εi had been treated until now as undetermined. Well, we may force them to
make each of the terms in the second summation to equal zero:2

(
∂E

∂x j

)
0
−
∑

i

εi

(
∂Wi

∂x j

)
0
= 0 (N.4)

for j = n + 1, . . ., n + m.
Hence, the first summation alone is 0:

n∑
j=1

[(
∂E

∂x j

)
0
−
∑

i

εi

(
∂Wi

∂x j

)
0

]
dx j = 0,

which means that now we have only n increments dx j and therefore they are independent.
Since for any (small) dx j the sum is always 0, then the only reason for that could be that each
parenthesis [] equals zero individually:

(
∂E

∂x j

)
0
−
∑

i

εi

(
∂Wi

∂x j

)
0
= 0 for j = 1, . . ., n.

This set of n equations (the so-called Euler equation), together with the m conditions
Eq. (N.1) and m Eq. (N.4) gives a set of n + 2m equations with n + 2m unknowns (m epsilons
and n + m components xi of the vector x0).

2 This is possible if the determinant build of coefficients
(
∂Wi
∂x j

)
0

is nonzero (this is what we have to assume). For

example, if several conditions were identical, then the determinant would be zero.
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For a conditional extremum, the constraint Wi (x) = 0 has to be satisfied for i = 1, 2, . . .,m

and
(
∂E
∂x j

)
0
−∑i εi

(
∂Wi
∂x j

)
0
= 0 for j = 1, . . ., n+m. The xi found from these equations

determine the position x0 of the conditional extremum E .

Whether it is a minimum, a maximum, or a saddle point determines the analysis of the matrix
of the second derivatives (Hessian). If its eigenvalues computed at x0 are all positive (negative),
then it is a minimum3 (maximum); otherwise, it is a saddle point.

Example 1. Minimizing a Paraboloid Going Along a Straight Line Off Center
Let us take a paraboloid

E(x, y) = x2 + y2.

This function has, of course, a minimum at (0, 0), but the minimum is of no interest to us.
What we want to find is a minimum of E , but only when x and y satisfy some conditions. In
our case, there will be only one of them:

W = 1

2
x − 3

2
− y = 0. (N.5)

This means that we are interested in a minimum of E when going along a straight line
y = 1

2 x − 3
2 .

The Lagrange multipliers method works as follows:

• We differentiate W and multiply by an unknown (Lagrange) multiplier ε, thus getting:
ε(1

2 dx − dy) = 0.
• This result (i.e., 0) is subtracted4 from d E = 2xdx + 2ydy = 0, and we obtain d E =

2xdx + 2ydy − 1
2εdx + εdy = 0.

• In the last expression, the coefficients at dx and at dy have to equal zero.5 In this way, we
obtain two equations: 2x − 1

2ε = 0 and 2y + ε = 0.
• The third equation needed is the constraint y = 1

2 x − 3
2 .

• The solution to this three equations gives a set of x, y, ε that corresponds to an extremum.
We obtain x = 3

5 , y = −6
5 , ε = 12

5 . Thus, we have obtained not only the position of the
minimum: x = 3

5 , y = −6
5 , but also the Lagrange multiplier ε. The minimum value of E ,

which has been encountered when going along the straight line y = 1
2 x − 3

2 , is equal to

E
(3

5 ,−6
5

) = (3
5

)2 + (−6
5

)2 = 9+36
25 = 9

5 .

3 In this way, we find a minimum; no information is available, whether it is global or local.
4 It also can be added–that does not matter (in such a case, we get another value of ε).
5 Only now is this possible.
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Example 2. Minimizing a Paraboloid Going Along a Circle (Off Center)
Let us take the same paraboloid [Eq. (N.5)], but put in another constraint:

W = (x − 1)2 + y2 − 1 = 0. (N.6)

This condition means that we want to go around a circle of radius 1 centered at (1, 0) and
watch for which point (x, y)we will have the lowest value6 of E . The example is chosen in such
a way as to answer the question first without any calculations. Indeed, the circle goes through
(0, 0), so this point has to be found as a minimum. Besides that, we should find a maximum at
(2, 0) because this is the point of the circle that is most distant from (0, 0).

Well, let us see whether the Lagrange multipliers method will give the same result.
After differentiation of W , multiplying it by the multiplier ε, subtracting the result from d E

and rearranging the terms, we obtain

d E = [2x − ε(2x − 2)]dx + 2y(1− ε)dy = 0,

which (after forcing the coefficients at dx and dy to be zero) gives the set of three equations:

2x − ε(2x − 2) = 0,

2y(1− ε) = 0,

(x − 1)2 + y2 = 1.

Check that this set has the following solutions: (x, y, ε) = (0, 0, 0) and (x, y, ε) = (2, 0, 2).
The solution (x, y) = (0, 0) corresponds to the minimum, while the solution (x, y) = (2, 0)
corresponds to the maximum.7 This is what we expected to get.

Example 3. Minimizing the Mean Value of the Harmonic Oscillator Hamiltonian
This example is different: it will pertain to the extremum of a functional.8 This is what we are

often going to encounter in the methods of quantum chemistry. Let us take the energy functional

E[φ] =
∫ ∞
−∞

dxφ∗ Ĥφ ≡ 〈φ|Ĥφ〉,

where Ĥ stands for the harmonic oscillator Hamiltonian: Ĥ = − �
2

2m
d2

dx2 + 1
2 kx2. If we were

asked about what function φ ensures the minimum value of E[φ], then such a function could be
found right away–it is φ = 0. This happens because the kinetic energy integral, as well as the
potential energy integral, are positive numbers, except the situation whenφ = 0, where the result
is zero. But this is not what we have thought. We want that φ has a probabilistic interpretation,
as any wave function, and therefore 〈φ|φ〉 = 1, and not zero. Well, in such a case, we want

6 Or, in other words, we intersect the paraboloid by the cylinder surface of radius 1 and the cylinder axis (parallel
to the symmetry axis of the paraboloid) shifted to (1, 0).

7 The method does not give us information about the kind of extremum found.
8 The argument of a functional is a function that produces the value of the functional (a number).
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to minimize E
[
φ
]
, but forcing the normalization condition is always satisfied. Therefore, we

search for the extremum of E
[
φ
]

with the condition W = 〈φ|φ〉 − 1 = 0. It is easy to foresee
that what the method has to produce (if it is of any value) is the normalized ground-state wave
function for the harmonic oscillator. How will the Lagrange multipliers method get this result?

The answer is on p. 234.





APPENDIX O

Penalty Function Method

Very often we are interested in minimizing a (“target”) function1; i.e., in finding values of
the variables that ensure a minimum of the function when some constraints are satisfied. Just
imagine a strange Smoky Mountains hiking trip: we want to find the point of the lowest ground
elevation provided that we hike along a straight line from town A to B.

Suppose that the target function for minimization (that corresponds to the elevation of the
ground in the Smoky Mountains region) is the function f (x1, x2, . . . , xn+m), but the variables
xi have to fulfill m equations (“constraints”):

φi (x1, x2, . . . , xn+m) = 0, for i = 1, 2, . . . ,m.

With such tasks, we have at least three possibilities. The first is to eliminate m variables (by
using the conditions) and expressing them by the other ones. In this way, the target function f
takes into account all the constraints and depends only on n independent variables. Then, the
target function is to be minimized. The second possibility is to use the Lagrange multipliers
method (see Appendix N available at booksite.elsevier.com/978-0-444-59436-5). In both cases,
however, there is a complication that the conditions to be satisfied might be quite complex and
therefore the solution of the corresponding equations may be difficult to achieve. An easier
solution may be to choose a penalty method. The idea behind the penalty method is quite
simple. Why to take pains and try to satisfy the conditions φi = 0, while one could propose the
following: instead of the function f , let us minimize its modification

F = f +
m∑

i=1

Kiφ
2
i ,

where the penalty coefficients Ki > 0 are chosen to be large.2 When minimizing F , we admit
that the conditions φi = 0 could go unsatisfied, but any attempt to violate them introduces to F
a positive contribution

∑m
i=1 Kiφ

2
i . This means that to minimize F , it would be always better

to explore the points in space (Fig. O.1) for which
∑m

i=1 Kiφ
2
i = 0. If K is large enough, the

procedure will have to choose φ2
i = 0, or φi = 0 for i = 1, 2, . . . ,m, and this is what has to be

satisfied during minimization.

1 If we change the sign of the target function, then the task is equivalent to maximization.
2 This means a large penalty.
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Fig. O.1. How does the penalty method work? We have to minimize f (x, y), but under the condition that x and y satisfy the
equation φ1

(
x, y

) = 0 (black line at the bottom). Function f (x, y) exhibits a single minimum at point B, but this minimum is of

no interest to us because we are looking for a conditional minimum. To find it, we minimize the sum f (x, y) + Kφ2
1 , with the

penalty function Kφ2
1 ≥ 0 allowing any deviation from the black line φ1

(
x, y

) = 0. However, going off this line does not pay
because this is precisely what switches the penalty on. As a result, when K is sufficiently large, we obtain the conditional minimum
W. This is what this was all about.

Note that the task would be much more difficult if φ2
i had more than one minimum that

corresponds to φi = 0. This penalty method is worth being in our toolbox, because it is general
and easily applicable. The method to work has to have a sufficiently large K . However, if K
were too large, then the numerical results might be of poor quality, since the procedure would
take care of all of the penalty first, paying little attention to f . It is recommended to take a few
values of K and check whether the results depend on that.

As an example of the penalty function method, let us take the docking of two molecules.
Our goal is to give values of the atomic coordinates of both molecules that assure the contacts
of some particular atoms of both molecules within some precise distance limits for the con-
tacting atoms. The task sounds trivial until we try to accomplish it in practice (especially for
large molecules). The goal can be rather easily achieved when the penalty function method is
used. We do the following. To the existing force field (i.e., an approximate electronic energy,
Chapter 7), we add a penalty for not satisfying the desired contacts. For a single pair of the
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atoms (a contact), the penalty could be set as

K
(
r − r0

)2
,

where r stands for the distance of the atoms, r0 is the optimum (desired) contact distance. At a
chosen starting geometry, the atoms are far from achieving the optimum distance, and therefore
the force field energy is supplemented by a large distance-dependent penalty. The energy is so
high that the minimization procedure tries to remove the penalty and relax the system. Often this
can be done in only one way: to dock the molecules in a way that achieves the proper contact
distance.





APPENDIX P

Molecular Integrals with Gaussian Type
Orbitals 1s

The normalized 1s spherically symmetric Gaussian Type Orbital (GTO) centered in the point
shown by the vector Rp reads as

χp ≡
(

2αp

π

) 3
4

exp (−αp|r− Rp|2).

The molecular integrals usually involve at most four such orbitals: χp, χq , χr , χs , with the
corresponding centers Rp,Rq ,Rr ,Rs , and the exponents αp, αq , αr , αs , respectively. Since any
product of the 1s GTOs represents a non-normalized 1s GTO centered between the centers of
the individual GTOs (see p. 426), let us denote the center of χpχq by Rk = αpRp+αq Rq

αp+αq
, and the

center of χrχs by Rl = αr Rr+αsRs
αr+αs

. Then all the integrals needed are as follows1:

Overlap integral:

Spq =
〈
χp|χq

〉 = ( 4αpαq

(αp + αq)2

) 3
4

exp

( −αpαq

αp + αq
|Rp − Rq |2

)
. (P.1)

Kinetic energy integral:

Tpq =
〈
χp

∣∣∣∣−1

2
�

∣∣∣∣χq

〉
= αpαq

αp + αq

(
3− 2αpαq

αp + αq
|Rp − Rq |2

)
Spq . (P.2)

Nuclear attraction integral2:

V α
pq =

〈
χp

∣∣∣∣ 1

|r− Rα|
∣∣∣∣χq

〉
= 2

√
αp + αq

π
F0
(
(αp + αq)|Rα − Rk |2

)
Spq . (P.3)

1 S.F. Boys, Proc. Roy. Soc. (London), A200, 542 (1950).
2 In order to interpret this integral (in atomic units) as the Coulombic attraction of the electronic charge χ∗p(1)χq (1)

by the nucleus (of charge Z , located at Rα), we have to multiply the integral by −Z .

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00036-2
© 2014 Elsevier B.V. All rights reserved. e131

http://dx.doi.org/10.1016/B978-0-444-59436-5.00036-2


e132 Appendix P

Electron repulsion integral:

(
pr |qs

) = (χpχr |χqχs
) = ∫ χp(1)

∗χq(1)
1

r12
χ∗r (2)χs(2)dv1dv2

= 2√
π

√
αp + αq

√
αr + αs√

αp + αq + αr + αs
F0

(
(αp + αq)(αr + αs)

αp + αq + αr + αs
|Rk − Rl |2

)
Spq Srs, (P.4)

with F0 defined as3

F0(t) = 1√
t

∫ √t

0
exp (−u2)du. (P.5)

Note that for an atom (all the centers coincide), we have t = 0 and F0(0) = 1.

Do These Formulas Work?

The formulas look quite complex. If they are correct, they have to work in several simple
situations. For example, if the electronic distribution χ∗p(1)χq(1) centered at Rk was far away
from the nucleus, then as a matter of fact, we had to obtain the Coulombic interaction of the
charge of χ∗p(1)χq(1) and the nucleus. The total charge of the electron cloud χ∗p(1)χq(1) is

obviously equal to Spq , and therefore Spq
|Rα−Rk | should be a very good estimation of the nuclear

attraction integral, right?
What we need is the asymptotic form of F0(t), if t →∞. This can be deduced from our for-

mula for F0(t). The integrand is concentrated close to t = 0. For t →∞, the contributions to the
integral become negligible and the integral itself can be replaced by

∫∞
0 exp (−u2)du = √π/2.

This gives
[
F0(t)

]
asympt . =

√
π

2
√

t
and

(
V α

pq

)
asympt .

= 2
√
αp+αq
π

F0
(
(αp + αq)|Rα − Rk |2

)
Spq = 2

√
αp+αq
π

√
π

2
√
(αp+αq )|Rα−Rk |2

Spq = Spq
|Rα−Rk | , exactly what we have expected. If χp = χq ,

then Spq = 1 and we get simply the Coulombic law for the unit charges. It works!
Similarly, if in the electronic repulsion integral χp = χq , χr = χs , and the distance
|Rk − Rl | = R is large, then what we should get is the Coulombic law for the two pointlike unit
charges at distance R. Let us see. Asymptotically,

(
pr |qs

)
asympt . =

2√
π

√
αp + αq

√
αr + αs√

αp + αq + αr + αs
F0

(
(αp + αq)(αr + αs)

αp + αq + αr + αs
|Rk − Rl |2

)

= 2√
π

√
αp + αq

√
αr + αs√

αp + αq + αr + αs

√
π

2
√
(αp+αq )(αr+αs)

αp+αq+αr+αs
|Rk − Rl |2

= 1

R
,

which is exactly what we should obtain.

3 The values of F0(t) are reported in L.J. Schaad, G.O. Morrell, J. Chem. Phys., 54, 1965 (1971).



APPENDIX Q

Singlet and Triplet States for Two Electrons

An angular momentum is a vector, which also pertains to spin angular momenta (see
Chapter 1). The spin angular momentum of a certain number of elementary particles is a sum
of their spin vectors. To obtain the total spin vector, therefore, we have to add the x-, y-, and
z-components of the spins of the particles, and to construct from them the total vector. Then we
might be interested in the corresponding spin operators. These operators will be created using
the Pauli matrices.1

Using them, we immediately find that for a single particle, the following identity holds:

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z = Ŝ2

z + Ŝ+ Ŝ− − �Ŝz, (Q.1)

where Ŝ+ and Ŝ− are the lowering and raising operators, respectively:

Ŝ+ = Ŝx + i Ŝy (Q.2)

Ŝ− = Ŝx − i Ŝy, (Q.3)

that satisfy the useful relations justifying their names:

Ŝ+α = 0,

Ŝ+β = �α,

Ŝ−α = �β,

Ŝ−β = 0.

For any stationary state, the wave function is an eigenfunction of the square of the total spin
operator and of the z-component of the total spin operator. The one- and two-electron cases are
the only ones for which the total wave function is a product of a space and of a spin parts.

The maximum projection of the electron spin on the z-axis is equal to 1
2 a.u. Hence, the

maximum projection for the total spin of two electrons is equal to 1. This means that in this
case, only two spin states are possible: the singlet state, corresponding to S = 0, and the triplet
state, with S = 1 (see Postulate V). In the singlet state, the two electronic spins are opposite
(“pairing of electrons”), while in the triplet state, the spin vectors are “parallel” (cf., Fig. 1.11

1 See Postulate VI in Chapter 1.
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in Chapter 1). As always, the possible projection of the total spin takes one of the values:
MS = −S,−S + 1, . . .,+S; i.e., MS = 0 for the singlet state and MS = −1, 0,+1 for the
triplet state.

Now it will be shown that the two-electron spin function α(1)β(2) − α(2)β(1) ensures the
singlet state. First, let us construct the square of the total spin of the two electrons:

S2 = (s1 + s2)
2 = s2

1 + s2
2 + 2s1s2.

Thus, to create the operator Ŝ
2
, we need the operators ŝ2

1 and ŝ2
2 , which will be expressed by

the lowering and raising operators according to Eq. (Q.1), and the scalar product ŝ1ŝ2 expressed
as a sum of products of the corresponding components x, y and z (we know, how they act, see
Postulate V in Chapter 1). If Ŝ2 acts on α(1)β(2), then after five lines of derivation, we obtain

Ŝ2 [α(1)β(2)] = �
2[α(1)β(2)+ α(2)β(1)];

similarly,

Ŝ2 [α(2)β(1)] = �
2[α(1)β(2)+ α(2)β(1)].

Now we will use this result to calculate Ŝ2[α(1)β(2) − α(2)β(1)] and Ŝ2[α(1)β(2) +
α(2)β(1)]. We have

Ŝ2[α(1)β(2)−α(2)β(1)] = 0×[α(1)β(2)−α(2)β(1)] ≡ S(S+1)�2[α(1)β(2)−α(2)β(1)],

where S = 0 (singlet); and

Ŝ2[α(1)β(2)+ α(2)β(1)] = 2

�
2[α(1)β(2)+ α(2)β(1)] ≡ S(S + 1)�2[α(1)β(2)+ α(2)β(1)],

where S = 1 (triplet).
If the operator Ŝz = ŝ1z+ ŝ2z acts on [α(1)β(2)−α(2)β(1)], then we obtain 0×[α(1)β(2)−

α(2)β(1)]. This means that in the singlet state, the projection of the spin on the z axis is equal
to 0. This is what we expect from a singlet state function.

On the other hand, if Ŝz = ŝ1z + ŝ2z acts on [α(1)β(2) + α(2)β(1)], then we have 0 ×
[α(1)β(2) + α(2)β(1)]; i.e., the function [α(1)β(2) + α(2)β(1)] is such a triplet function,
which corresponds to the zero projection of the total spin. A similarly simple calculation for the
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spin functions α(1)α(2) and β(1)β(2) gives the eigenvalue Sz = � and Sz = −�, respectively.
Therefore, after normalization,2

1√
2
[α(1)β(2)−α(2)β(1)] is a singlet function, while 1√

2
[α(1)β(2)+α(2)β(1)], α(1)α(2),

and β(1)β(2) represent three triplet functions.

2 For example, let us check the normalization of the singlet function 1√
2
[α(1)β(2)− α(2)β(1)]:

∑
σ1

∑
σ2

{
1√
2
[α(1)β(2)− α(2)β(1)]

}2

=
∑
σ1

∑
σ2

1

2
{[α(1)]2[β(2)]2 + [α(2)]2[β(1)]2 − 2[α(2)β(2)][α(1)β(1)]}

= 1

2

{∑
σ1

[α(1)]2
∑
σ2

[β(2)]2 +
∑
σ2

[α(2)]2
∑
σ1

[β(1)]2 − 2
∑
σ2

[α(2)β(2)]
∑
σ1

[α(1)β(1)]
}

= 1

2
{1 · 1+ 1 · 1− 2 · 0 · 0} = 1.





APPENDIX R

The Hydrogen Molecular Ion in the Simplest
Atomic Basis Set

Consider a quantum mechanical description of the hydrogen molecular ion in its simplest
version. Let us use the molecular orbital theory with the atomic basis set composed of only
two Slater Type Orbitals (STOs): 1sa and 1sb centered on the nuclei a and b. The mean value
of the Hamiltonian computed with the bonding (+) and antibonding (−) orbital (see p. 439 and
Appendix D available at booksite.elsevier.com/978-0-444-59436-5) reads as

E± = Haa ± Hab

1± S
,

where the Hamiltonian (in atomic units)1 Ĥ = −1
2�− 1

ra
− 1

rb
+ 1

R and S stands for the overlap
integral of the two atomic orbitals. Thus, we have

E± = 1

R
+ Haa ± Hab

1± S
= 1

R
+
(
−1

2�− 1
ra
− 1

rb

)
aa
±
(
−1

2�− 1
ra
− 1

rb

)
ab

1± S

= 1

R
+ EH + Vaa,b ± EH S ± Vab,b

1± S
= EH + 1

R
+ Vaa,b ± Vab,b

1± S
,

where EH means the energy of the hydrogen atom, while the nuclear attraction integrals are as
follows:

Vaa,b = −
(

a

∣∣∣∣ 1

rb

∣∣∣∣ a

)
,

Vab,b = −
(

a

∣∣∣∣ 1

rb

∣∣∣∣ b

)
.

The energy E± is a function of the internuclear distance R, which is hidden in the dependence
of the integrals on R. We want to have this function explicitly. To this end, we have to compute
the integrals S, Vaa,b and Vab,b. We use the elliptic coordinates (Fig.R.1):

μ = ra + rb

R
,

1 See Fig. R.1 for explanations of the symbols.
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electron

Fig. R.1. The elliptic coordinatesμ = ra+rb
R , ν = ra−rb

R are built using the distances ra and rb from the two foci (the location of
the nuclei, and their distance is R) of the ellipse. The angle φ measures the rotation of the plane defined by ab and the corresponding
electron about the ab axis.

ν = ra − rb

R
,

φ = arctan
( y

x

)
.

The volume element in the elliptic coordinates is dV = R3/8(μ2 − ν2)dμdνdφ, where
1 ≤ μ <∞,−1 ≤ ν ≤ 1, 0 ≤ φ ≤ 2π .

We will need two auxiliary integrals:

An
(
σ, α

) = ∫ ∞
σ

xn exp
(−αx

)
dx = exp

(−ασ ) n∑
k=0

n!(
n − k

)! σ
n−k

αk+1 ,

Bn
(
α
) = ∫ +1

−1
xn exp

(−αx
)

dx = An
(−1, α

)− An
(
1, α

)
.

The integrals An
(
σ, α

)
satisfy the following recurrence relation:

An
(
σ, α

) = σ n A0
(
σ, α

)+ n

α
An−1

(
σ, α

)
A0
(
σ, α

) = 1

α
exp

(−σα) .
These are some simplest auxiliary integrals (which we will need in a moment):

A1
(
σ, α

) = σ 1

α
exp

(−σα)+ 1

α

1

α
exp

(−σα) = 1

α

(
σ + 1

α

)
exp

(−σα)
A2
(
σ, α

) = σ 2 1

α
exp

(−σα)+ 2

α

(
1

α

(
σ + 1

α

)
exp

(−σα))

= 1

α
exp

(−σα) [σ 2 + 2

α

(
σ + 1

α

)]

B0
(
α
) = 1

α
exp

(
α
)− 1

α
exp

(−α) = 1

α

[
exp

(
α
)− exp

(−α)]
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B1
(
α
) = 1

α

(
−1+ 1

α

)
exp

(
α
)− 1

α

(
1+ 1

α

)
exp

(−α)
= 1

α

[(
1

α
− 1

)
exp

(
α
)− ( 1

α
+ 1

)
exp

(−α)] .
Thus, the overlap integral S is calculated in the following way:

S = R3

8π

∫ ∞
1

dμ exp
(−Rμ

) ∫ +1

−1
dν(μ2 − ν2)

∫ 2π

0
dφ

= R3

2

[∫ ∞
1

dμμ2 exp
(−Rμ

)− 1

3

∫ ∞
1

dμ exp
(−Rμ

)]

= R3

2

[
A2
(
1, α

)− 1

3
A0
(
1, α

)]

= R3

2

[
1

R
exp

(−R
) (

1+ 2

R
+ 2

R2

)
− 1

3

1

R
exp

(−R
)] = exp

(−R
) ( R2

3
+ R + 1

)
.

Thus we have the explicit dependence on R. The formula for S satisfies correctly the following
limiting cases: limR→∞S(R) = 0 and limR→0S(R) = 1 (normalization of the 1s orbital). In
addition, d S

d R = − exp
(−R

)( R2

3 + R + 1
) + exp

(−R
)(2

3 R + 1
) = − exp

(−R
)( R2+R

3

)
< 0;

i.e., the overlap integral of the 1s functions decreases from 1 to 0, if R→∞ (see Fig. R.2a).
It is seen that for small R, the function S decreases gently, while for larger R, its decreasing

happens more quickly.2

Using the elliptic coordinates and the formulas for the integrals An
(
σ, α

)
and Bn

(
α
)
, we

obtain

−Vaa,b =
(

a

∣∣∣∣ 1

rb

∣∣∣∣ a

)
= 1

π

∫
exp

(−2ra
) 1

rb
dτ

= R3

8π

2

R

∫ ∞
1

dμ exp
[−R

(
μ+ ν)] ∫ +1

−1
dν
(μ2 − ν2)

μ− ν
∫ 2π

0
dφ

= R2

4π
2π
∫ ∞

1
dμ

∫ +1

−1
dν exp

(−Rμ
)

exp
(−Rν

) (
μ+ ν)

= R2

2

[∫ ∞
1

dμμ exp
(−Rμ

) ∫ +1

−1
dν exp

(−Rν
)

+
∫ ∞

1
dμ exp

(−Rμ
) ∫ +1

−1
dνν exp

(−Rν
)]

= R2

2

[
A1
(
1, R

)
B0
(
R
)+ A0

(
1, R

)
B1
(
R
)] = 1

R
− exp

(−2R
) (

1+ 1

R

)
.

2 Just to get an idea: at R = 5 a.u. (quite typical for van der Waals complexes), the value of the overlap integral is
of the order of 0.1.
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(a)

(b)

(c)

Fig. R.2. The hydrogen molecule in the simplest basis set of two 1s STOs. (a) The overlap integral S as a function of the
internuclear distance R; (b) the penetration energy represents the difference between the electron-proton interaction calculated
assuming the electronic charge distribution and the same energy calculated assuming the point charges (the electron is located on
the nucleus a); (c) the energies E+ and E− of the bonding (lower curve) and of the antibonding (upper curve) orbitals, respectively.

This is an interesting result. The integral −Vaa,b means (a| 1
rb
|a), where at large R should

give the Coulombic interaction of the two unit point charges; i.e., 1
R . This is the first term. The

second term, Epenetr = − exp (−2R)
(
1+ 1

R

)
, represents what is known as penetration energy

resulting from the non-pointlike character of one of the interacting charges.3

From Fig.R.2b, it is seen that the penetration energy vanishes much faster than the overlap
integral. This is not a surprise because it vanishes as exp (−2R), while the overlap integral
vanishes only as exp (−R).

3 The electron cloud with the electronic density distribution a2.



The Hydrogen Molecular Ion in the Simplest Atomic Basis Set e141

It is seen that

the diffuse charges interact more weakly.

On the one hand, diffuse charges offer a chance to be close together in space (this increases the
interaction). On the other hand, some charges become more distant. The second effect prevails,
and therefore the penetration energy makes the Coulombic interaction weaker.

What will happen if R→ 0?
Let us expand the exponential function in the Taylor series. We obtain

lim
R→0

[
Vaa,b

(
R
)] = − lim

R→0

[
1

R
−
[

1− 2R + 1

2
R2 + · · ·

](
1+ 1

R

)]

= − lim
R→0

(
1

R
− 1+ 2R − 1

2
R2 − 1

R
+ 2+ 1

2
R + · · ·

)
= −1.

This is exactly what we get for the hydrogen atom when computing: Vaa,a = −
∫

dv 1
r

(
1s
)2 =

− 1
π

∫
exp

(−2r
) 1

r r2 sin θdrdθdφ = −4
∫∞

0 r exp
(−2r

)
dr = −4× 2−2 = −1. Thus, every-

thing is all right.
Similarly, we compute

−Vab,b =
(

a

∣∣∣∣ 1

rb

∣∣∣∣ b

)
= 1

π

∫
exp

(− (ra + rb
)) 1

rb
dv

= 1

π

2

R

∫
exp

(−Rμ
) 1(
μ− ν) R3

8

(
μ2 − ν2) dμdνdφ

= R2

2

∫ ∞
1

∫ +1

−1
dμdν

[
μ exp (−Rμ)+ ν exp

(−Rμ
)]

= R2

2
2A1

(
1, R

)+ 0 = (1+ R
)

exp (−R).

If R →∞, and then −Vab,b → 0, which is the correct behavior. Do we get Vaa,a = −1, if
R→ 0? Again, let us expand the exponential function:

Vaa,a = − lim
R→0

(
1+ R

)
exp

(−R
) = − lim

R→0

(
1+ R

) (
1− R + R2

2
+ · · ·

)

= − lim
R→0

[
1+ R − R − R2 + R2

2
+ · · ·

]
= −1.

This is what we have expected.



e142 Appendix R

Bonding and Antibonding Orbital Energy

If we insert the results obtained into the formula for the energy of the bonding and antibonding
orbitals, then we obtain the most important formulas for the problem under consideration:

E± = EH + 1

R
+ Vaa,b ± Vab,b

1± S

= EH + 1

R
+ −

1
R + exp

(−2R
) (

1+ 1
R

)± (−1− R
)

exp
(−R

)
1±

[
exp

(−R
) ( R2

3 + R + 1
)] .

The plots of E± are shown in Fig.R.2c. It is seen that in the quite primitive LCAO MO
approximation, the bonding energy is lower than the energy of the hydrogen atom EH for all
sufficiently large R (a single minimum), while the energy of the antibonding orbital is higher
than EH for all R (no minimum). This simple theory predicts the position of the energy minimum
for the ground state as Re = 2.5 a.u., while the experimental value is equal4 to ca. 2.0 a.u.

4 These two quantities are not directly comparable because the experimental value does not correspond exactly to
the position of the minimum (because of anharmonicity).
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Population Analysis

On p. 665, electronic density ρ is defined. If the wave function is a Slater determinant (p. 397)
and assuming the double occupancy of orbitals ϕi , we have (see 11.7)

ρ
(
r
) = 2

[∣∣ϕ1
(
r
)∣∣2 + ∣∣ϕ2

(
r
)∣∣2 + . . . ∣∣∣ϕ N

2

(
r
)∣∣∣2] . (S.1)

The density distribution ρ may be viewed as a cloud carrying a charge −Ne, and Eq. (S.1)
says that the cloud is composed of the individual clouds of the molecular orbitals, each carry-
ing two electrons. On the other hand, in the LCAO (Linear Combination of Atomic Orbitals)
approximation, any molecular orbital is represented by a sum of atomic orbitals. If we insert
the LCAO expansion into ρ, then ρ becomes a sum of the contributions, each being a product
of two atomic orbitals. There is a temptation to go even further and to divide ρ somehow into
contributions of particular atoms, calculate the charge corresponding to such contribution, and
locate the (point) charge right on the nucleus.1 We might ask, therefore, what the “electron
population” residing on the particular atoms are (hence the name population analysis).

Mulliken Population Analysis

Such tricks are possible, of course, and one of them is the so-called Mulliken population
analysis. From Eq. (S.1), after using the LCAO expansion ϕi =∑r criχr , we have (Srs stand
for the overlap integrals between the atomic orbitals r and s, c are the corresponding LCAO
coefficients)

N =
∫
ρ
(
r
)

dV = 2
N/2∑
i=1

∫ ∣∣ϕi
(
r
)∣∣2 dV =

∑
i

∑
rs

2c∗ri csi Srs =
∑
rs

Prs Srs = Tr(PS),

(S.2)
where P is the so-called charge and bond-order matrix

Psr =
∑

i

2c∗ri csi . (S.3)

1 This number need not be an integer.
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The summation r and s may be carried out with highlighting from which atom A the particular
atomic orbital comes (we assume that the AO are centered on the nuclei). We get an equivalent
formula (A ad B denote atoms):

N =
∑

A

∑
r∈A

∑
B

∑
s∈B

Prs Srs .

Afterward we may choose the partitionings described next.

Atomic Partitioning

N =
∑

A

qA

qA =
∑
r∈A

(∑
B

∑
s∈B

Prs Srs

)
,

where q are the so-called Mulliken charges. They are often computed in practical applications
and serve to provide information on how much of the electronic density ρ is concentrated on
atom A. Such a quantity is of interest because it may be directly linked to the reactivity of atom
A, which is often identified with its ability to be attacked by a nucleophilic or an electrophilic
agent.2 Also, if somebody measures the dipole moments, then he would like to know why this
moment in a molecule is particularly large. Performing Mulliken analysis, we are able to identify
those atoms that are responsible for that. This might be of value when interpreting experimental
data.

Atomic and Bond Partitioning

The same summation may be performed in a slightly different way:

N =
∑

A

∑
r ,s∈A

Prs Srs +
∑
A<B

2
∑
r∈A

∑
s∈B

Prs Srs =
∑

A

q̄A +
∑
A<B

q̄AB .

The first term represents the contributions q̄A of the atoms, and the second term pertains to
the atomic pairs q̄AB .

The last populations are large and positive for those pairs of atoms for which chemists
assign chemical bonds.

2 We have to remember that besides electrons, this atom has the nucleus. This has to be taken into account when
calculating the atomic net charge.



Population Analysis e145

The bond population q̄AB may be treated as a measure of whether the bonding or antibonding
character prevails in the A − B atomic interaction.3 If for two atoms, q̄AB < 0, then we may
say that they are not bound by any chemical bond. If q̄AB is large, then we may treat it as an
indication that these two atoms are bound by a chemical bond or bonds.

Example 1. Hydrogen Molecule
Let us take the simplest example. First, let us consider the electronic ground state in the simplest
molecular orbital approximation; i.e., the two electrons are described by the normalized orbital
in the following form (a, b denote the 1s atomic orbitals centered on the corresponding nuclei;
note that what we take is the famous bonding orbital):

ϕ1 = N1
(
a + b

)
,

where N1 =
(
2+ 2S

)− 1
2 , and S ≡ (a|b). Then, Psr = ∑

i 2c∗ri csi = 2c∗r1cs1 =
(
1+ S

)−1,

independent of the indices r and s. Of course, S =
(

1 S
S 1

)
, and therefore PS =

(
1 1
1 1

)
. Thus,

Tr
(
PS
) = 2 = the number of electrons = P11S11+ P22S22+2P12S12 = qA+qB +qAB , with

qA = qB =
(
1+ S

)−1, and qAB = 2S
1+S > 0. Thus, we immediately see that the HH bond has

the electronic population greater than zero; i.e., the atom-atom interaction is bonding.
Let us now consider H2 with the two electrons occupying the normalized orbital of different

character4 ϕ2 = N2(a − b), with N2 = (2 − 2S)− 1
2 , then Psr = ∑

i 2c∗ri csi = 2c∗r2cs2 =
(1 − S)−1 for (r , s) = (1, 1) and (r , s) = (2, 2) while Prs = −(1 − S)−1 for (r , s) = (1, 2)
and (r , s) = (2, 1).

Now let us calculate PS =
(

1 −1
−1 1

)
and Tr(PS) = 2 = the number of electrons =

P11S11 + P22S22 + 2P12S12 = qA + qB + qAB , but now qA = qB = (1 − S)−1, and qAB =
− 2S

1−S < 0. Thus, qAB tells us that this time, the atoms are interacting in the antibonding way.

A similar analysis for polyatomic molecules gives more subtle and more interesting results.

Other Population Analyses

Partitioning of the electron cloud of N electrons according to Mulliken population analysis
represents only one of possible choices. For a positively definite matrix5 S (and the overlap

3 Prs is a sum (over the occupied orbitals) of products of the LCAO coefficients of two atoms in each of the
occupied molecular orbitals. Equal signs of these coefficients (with Srs > 0) means a bonding interaction (recall
p. 439 and Appendix R available at booksite.elsevier.com/978-0-444-59436-5 on p. e135) and such a contribution
increases Prs . The opposite signs of the coefficients (with Srs > 0) correspond to the antibonding interactions,
and in such a case, the corresponding contribution decreases Prs . If Srs < 0, then the words “bonding” and
“antibonding” have to be exchanged, but the effect remains the same. This means that the product Prs Srs in all
cases controls correctly the bonding

(
Prs Srs > 0

)
or antibonding

(
Prs Srs < 0

)
effects.

4 The orbital is notorious for its antibonding character.
5 That is, all the eigenvalues are positive.

http://booksite.elsevier.com/978-0-444-59436-5
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matrix is always positively definite), we may introduce the powers of the matrix6 Sx , where x is
an arbitrary real number (in a way shown in see Appendix J available at booksite.elsevier.com/
978-0-444-59436-5 on p. e98), and we have S1−x Sx = S. Then, we may write7

N = Tr(PS) = Tr(Sx PS1−x ). (S.4)

Now we may take any x , and for this value, construct the corresponding partition of N
electronic charges into atoms. If x = 0 or 1, then one has the Mulliken population analysis, if
x = 1

2 then we have the so-called Löwdin population analysis, etc.

Multipole Representation

Imagine a charge distribution ρ(r). Let us choose a Cartesian coordinate system. We may
compute the Cartesian moments of the distribution as follows:

∫
ρ(r)dV (i.e., the total charge);∫

xρ(r)dV ,
∫

yρ(r)dV ,
∫

zρ(r)dV (i.e., the components of the dipole moment);
∫

x2ρ(r)dV ,∫
y2ρ(r)dV ,

∫
z2ρ(r)dV ,

∫
xyρ(r)dV ,

∫
xzρ(r)dV ,

∫
yzρ(r)dV - (the components of the

quadrupole moment), etc. The moments mean a complete description of ρ(r) as it concerns its
interaction with another (distant) charge distribution. The higher the powers of x, y, z (i.e., the
higher the moment), the more important are the distant parts of ρ(r). If ρ(r) extends to infinity
(and for atoms and molecules, it does), higher-order moments tend to infinity. This means
trouble when the consecutive interactions of the multipole moments are computed (multipole
expansion, see Appendix X available at booksite.elsevier.com/978-0-444-59436-5) and indeed,
the multipole expansion “explodes” (i.e., diverges).8 This would not happen if the interacting
charge distributions did not overlap.

There is also another problem: where should one locate the origin of the coordinate system,
with respect to which the moments are calculated? The answer is: anywhere. Wherever such
origin is located, it is all right from the point of view of mathematics. However, such choices
may differ enormously from the practical point of view. For instance, let us imagine a spherically
symmetric charge distribution. If the origin is located in its center (as “most people would do”),
then one has a very simple description of ρ(r) by using the moments–namely, the only nonzero
moment is the charge; i.e.,

∫
ρ(r)dV . If, however, the origin was located off center, then all the

moments would be nonzero. All they are needed to calculate accurately the interaction (with
something) of such simple object as a sphere. As we can see, it is definitely better to locate the
origin in the center of ρ(r).

But what if the charge distribution ρ(r) were divided into segments and each segment rep-
resented by a set of the multipoles? It would be better, though, in view of the above example,
to locate the corresponding origins in the centers of the segments. It is clear that in particular,

6 They are symmetric matrices as well.
7 We easily check that Tr(ABC) = Tr(CAB). Indeed, Tr(ABC) = ∑

i,k,l Aik BklCli , while Tr(CAB) =∑
i,k,l Cik Akl Bli . Changing summation indices k → i, l → k, i → l in the last formula, we obtain Tr(ABC).

8 Note, however, that the first terms (i.e., before the “explosion”) may give accurate results.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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it would be all right if the segments were very small; e.g., the cloud is cut into tiny cubes and
one considers every cube’s content as a separate cloud.9 But, then, what are the multipoles for?
Indeed, it would be sufficient to take the charges of the cubes only, because they approximate the
original charge distribution. In this situation, higher multipoles would certainly be irrelevant.
Thus, we now discuss two extreme cases:

• A single origin and an infinite number of multipoles
• An infinite number of centers and the monopoles (charges) only

It is seen that when the origins are located on atoms, we have an intermediary situation,
and it might be sufficient to have a few multipoles per atom.10 This is what the concept of the
so-called cumulative atomic multipole moments is all about (CAMM11). Besides the isotropic

atomic charges qa = M
(
000

)
a computed in an arbitrary population analysis, we also have higher

multipoles M
(
klm

)
a (atomic dipoles, quadrupoles, octupoles, etc.) representing the anisotropy of

the atomic charge distribution (i.e., they describe the deviations of the atomic charge distributions
from spherical ones):

M
(
klm

)
a = Zaxk

a yl
azm

a −
∑
r∈a

∑
s

Dsr

(
r |xk yl zm |s

)

−
∑
k′≤k

∑
l ′≤l

∑
m′≤m,

(
k
k′
)(

l
l ′
)(

m
m′
)

(k′l ′m′) �= (klm)

× xk−k′
a yl−l ′

a zm−m′
a · Mk′l ′m′

a ,

where M
(
klm

)
a is the multipole moment of the klm order with respect to the Cartesian coordi-

nates x, y, and z located on atom a (M
(
000

)
a standing for atomic charge; e.g., from the Mulliken

population analysis); Za denotes the nuclear charge of the atom a; (r |xk yl zm |s) stands for the
one-electron integral of the corresponding multipole moment; and Dsrχ

∗
r χs represents the elec-

tronic density contribution related to AOs: χs and χr and calculated by any method (LCAO MO
SCF, CI, MP2, DFT, etc.). We may also use the multipole moments expressed by the spherical
harmonic functions as proposed by Stone.12

9 The clouds might eventually overlap.
10 If the clouds overlap, the description of each center by an infinite number of multipoles would lead to a redundancy

(“overcompleteness”). I do not know about any trouble of that kind, but in my opinion, there would be difficulties
if the numbers of the origins were large. This is fully analogous to the overcompleteness of the LCAO expansion.
These two examples differ by a secondary feature: in the LCAO instead of moments, we have the s,p,d,… orbitals;
i.e., some moments multiplied by exponential functions.

11 W.A. Sokalski and R. Poirier, Chem. Phys. Lett., 98, 86 (1983); W.A. Sokalski and A. Sawaryn, J. Chem. Phys.,
87, 526 (1987).

12 A.J. Stone, Chem. Phys. Lett., 83, 233 (1981); A.J. Stone and M. Alderton, Mol. Phys., 56, 1047 (1985).
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Dipole Moment of a Lone Pair

Electronic lone pairs play an important role in intermolecular interactions. In particular, a
lone pair protruding in space toward its partner has a large dipole moment,1 which may inter-
act electrostatically with partner’s multipole moments (see Appendix X available at book-
site.elsevier.com/978-0-444-59436-5, p. e169). Let us see how the dipole moment depends on
the atom to which it belongs and on the type of hybridization.

Suppose the electronic lone pair is described by the normalized hybrid:

h = 1√
1+ λ2

[(2s)+ λ(2px )],

with the normalized 2s and 2px atomic orbitals. The coefficient λ may change from −∞ to
+∞, giving a different degree of hybridization. Figure T.1 shows two series of the hybrids as
a comparison: for the carbon and for the fluorine atoms. If λ = 0, then we have the pure 2s
orbital, if λ = ±∞, we obtain the pure ±2px orbital.

The dipole moment of a single electron described by h is calculated2 as
(

with N = 1√
1+λ2

)
μx = 〈h| − x |h〉 = −N 2 [〈2s|x |2s〉 + λ2 〈2px |x |2px 〉+2λ 〈2s|x |2px 〉

]
,

μy = μz = 0,

where x stands for the x coordinate of the electron.
The first two integrals equal zero because the integrand represents an odd function3 with

respect to the reflection in the plane x = 0. As a result,

μx = −N 22λ 〈2s|x |2px 〉 .
We will limit ourselves to λ ≥ 0, which means that we are considering the hybrids protruding

to the right side,4 as in Fig. T.1, and since 〈2s|x |2px 〉 > 0, then μx ≤ 0. The negative sign
stresses the fact that a negative electron is displaced to the right side (positive coordinates x).

1 This is calculated with respect to the nucleus; the term large dipole moment means here that the dipole moment
vector is very long.

2 Atomic units have been used throughout, so μ is expressed in atomic units.
3 Please recall that the orbital 2px represents a spherically symmetric factor multiplied by x .
4 The hybrids with λ < 0 differ only by protruding to the left-hand side.
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Fig. T.1. The length of the dipole moment vector (in a.u.) as a function of the mixing parameter λ for the carbon (upper-curve)
and fluorine (lower-curve) atoms. The figure shows the shape of different hybrids h = 1√

1+λ2
[(2s) + λ(2px )] that correspond

to various combinations of the 2s and 2px carbon Slater orbitals (with the exponential factor ζ = 1.625) and the fluorine orbitals
(ζ = 2.60); from the left: λ = 0, λ = 1 (sp), λ = 1.41 (sp2), λ = 1.73 (sp3), λ = 1000. All the hybrids are shown in the square
windows of the size of 10 a.u. The fluorine orbitals are more compact due to the larger charge of the nucleus. A hybrid orbital that
corresponds to λ < 0 looks exactly as that with λ, except it is reflected with respect to the yz plane. The maximum dipole moment
corresponds to the sp hybridization.

To calculate 〈2s|x |2px 〉, we need to specify the atomic orbitals 2s and 2p. For the 2s and 2p
atomic orbitals, let us take the Slater Type Orbitals (STOs):

2s = N ′r exp (−ζr),

2px = N ′′x exp (−ζr),

where the exponential factor ζ (the same for both orbitals) is calculated using simple rules for
building the Slater orbitals; see p. 451.

Using the integral
∫∞

0 xn exp (−αx)dx = n!α−
(
n+1

)
, in a four-minute calculation, we obtain

the normalization constants N ′ = ζ 2
√

ζ
3π and N ′′ = ζ 2

√
ζ
π

. The contribution of two electrons
(“electron pair”) to the dipole moment is, therefore, equal to

μlone = 2μx = −N 2 |λ| (2s|xpx
) = −2N 2 N ′N ′′(2λ)

∫
r x2 exp (−2ζr)dV
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= −2N 2 N ′N ′′2λ
∫

r3x2 exp (−2ζr) sin θdr dθ dφ

= −2N 2 N ′N ′′2λ
∫ ∞

0
drr5 exp (−2ζr)

∫ π

0
sin3 θdθ

∫ 2π

0
cos2 φdφ

= −2N 2 N ′N ′′2λ 5!(
2ζ
)6 4

3
π

= − 4λ

(1+ λ2)
ζ 2

√
ζ

3π
ζ 2

√
ζ

π

5!(
2ζ
)6 4

3
π = − λ

(1+ λ2)

10

ζ
√

3
.

Dipole Moment of a Lone Pair: μlone = − λ(
1+λ2

) 10
ζ
√

3
.

The dipole moment at λ = 0; i.e., for the pure 2s orbital is equal to 0, for λ = ∞ i.e., for the
pure 2px orbital is also equal 0. It is interesting for which hybridization the length of the dipole

moment is at its maximum, see Fig. T.1. We easily find ∂|μlone|
∂λ
= 10

ζ
√

3

(
1+λ2

)−2λ2(
1+λ2

) = 0, which

gives λ = ±1, independent of ζ .
Thus,

the maximum of the dipole moment is at the 1 : 1 mixing of 2s and 2p [i.e., for the digonal
hybridization (for any element); see Table T.1].

The table shows that the dipole moment of a lone pair strongly depends on the chemical
element,5 and to a lesser extent on hybridization.

Table T.1. The length of dipole moments (a.u.) corresponding to doubly occupied hybrid atomic orbitals.

Atom Digonal λ = 1 Trigonal λ = √2 Tetrahedral λ = √3

C 1.776 1.675 1.538
N 1.480 1.396 1.282
O 1.269 1.196 1.099
F 1.110 1.047 0.962

The orbital exponents of 2s and 2p STO’s are identical and computed using the rules given by Slater:
ζC = 1.625, ζN = 1.95, ζO = 2.275, ζF = 2.60.

5 From the practical point of view probably the most important is to compare the nitrogen and the oxygen lone
pairs. Thus, a coordination of a cation by amines should correspond to a stronger interaction than that by hydroxyl
groups.
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Second Quantization

When we work with a basis set composed of the Slater determinants, we are usually con-
fronted with a large number of matrix elements involving one- and two-electron operators. The
Slater-Condon rules (see Appendix M available at booksite.elsevier.com/978-0-444-59436-5)
are expressing these matrix elements by the one and two-electron integrals. However, we may
introduce an even easier tool called the second quantization, which is equivalent to the Slater-
Condon rules.

Vacuum State

In the second quantization formalism, we introduce for the system under study a reference
state that is a Slater determinant (usually the Hartree-Fock wave function) composed of N
orthonormal spinorbitals, with N being the number of electrons. This function will be denoted
by�0 or, in a more detailed way, as�N

(
n1, n2, . . . , n∞

)
. The last notation means that we are

dealing with a normalized N electron Slater determinant, and in the parentheses we give the
occupancy list (ni = 0, 1) for the infinite number of the orthonormal spinorbitals considered in
the basis set and listed one by one in the parentheses. This simply means that some spinorbitals
are present in the determinant (they have ni = 1), while others are absent1 (ni = 0). Hence,∑

i ni = N . The reference state is often called the vacuum state. The subscript 0 in �0 means
that we are going to consider a single-determinant approximation to the ground state. Besides
the reference state, some normalized Slater determinants of the excited states will be considered,
along with other occupancies, including those corresponding to the number of electrons that
differs from N .

Creation and Annihilation of Electron

Let us make a strange move and consider operators that change the number of electrons in the
system. To this end, let us define the creation operator 2 k̂† of the electron going to occupy the

1 For example, the symbol �2(001000100000 . . . ) means a normalized Slater determinant of dimension 2, con-
taining the spinorbitals 3 and 7. The symbol �2(001000 . . . ) does not make sense because the number of digits
“1” has to equal 2, etc.

2 The domain of the operators represents the space spanned by the Slater determinant’s build of spinorbitals.
Richard Feynman in one of his books says jokingly that he could not understand the very sense of the operators.
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spinorbital k and the annihilation operator k̂ of an electron leaving the spinorbital k (just disap-
pearing):

Creation and Annihilation Operators

k̂†�N ( . . . nk . . . ) = θk(1− nk)�
N+1( . . . 1k, . . . )

k̂�N ( . . . nk . . . ) = θknk�
N−1( . . . 0k, . . . ),

where
θk = (−1)� j<kn j

The symbol 1k means that the spinorbital k is present in the Slater determinant, while 0k

means that this spinorbital is empty; i.e., it is not present in the Slater determinant. The factors(
1− nk

)
and nk ensure an important property of these operators; namely, that

any attempt of creation of the electron on an already occupied spinorbital gives zero, and
similarly, any attempt of annihilation of an empty spinorbital also gives zero.

It can be easily shown3 that (as the symbol suggests) k̂† is simply the adjoint operator with
respect to k̂.

The above operators have the following properties that make them equivalent to the Slater-
Condon rules:

Anticommutation Rules

[k̂, l̂]+ = 0,

[k̂†, l̂†]+ = 0,

[k̂†, l̂]+ = δkl,

If we annihilate or create an electron, then what about the system’s electroneutrality? Happily enough, these
operators will always act in pairs: creator-annihilator.

3 Proof. Let us take two Slater determinants �a = �N+1 (. . . 1k . . .
)

and �b = �N (. . . 0k . . .
)
, in both of

which the occupancies of all other spinorbitals are identical. Let us write the normalization condition for

�b in the following way: 1 =
〈
�b|θk k̂�a

〉
= θk

〈
�b|k̂�a

〉
= θk

〈
k̂#�b|�a

〉
, where k̂# has been denoted

the operator adjoint to k̂, and θk appeared in order to compensate
(
θ2

k = 1
)

the θk produced by the annihila-

tor. On the other hand, from the normalization condition of�a , we see that 1 = 〈�a |�a〉 = θk

〈
k̂†�b|�a

〉
. Hence,

θk

〈
k̂#�b|�a

〉
= θk

〈
k̂†�b|�a

〉
or k̂# = k̂†,
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where the symbol [ Â, B̂]+ = Â B̂ + B̂ Â is called the anticommutator.4 It is simpler than the
Slater-Condon rules, isn’t it? Let us check the rule [k̂†, l̂]+ = δkl . We have to check how it works
for all possible occupancies of the spinorbitals k and l, (nk, nl) : (0, 0), (0, 1), (1, 0) and (1, 1).

Case: (k, l) = (0, 0)
[k̂†, l̂]+�N ( . . . 0k . . . 0l . . . ) = [k̂†l̂ + l̂ k̂†]�N ( . . . 0k . . . 0l . . . ) = k̂†l̂�N ( . . . 0k . . . 0l . . . )+
l̂ k̂†�N ( . . . 0k . . . 0l . . . ) = 0 + l̂θk�

N+1( . . . 1k . . . 0l . . . ) = θkl̂�N+1( . . . 1k . . . 0l . . . ) =
θkδklθk�

N ( . . . 0k . . . ) = δkl�
N ( . . . 0k . . . ). So far, so good.

Case: (k, l) = (0, 1)
[k̂†, l̂]+�N ( . . . 0k . . . 1l . . . ) = [k̂†l̂ + l̂ k̂†]�N ( . . . 0k . . . 1l . . . ) = k̂†l̂�N ( . . . 0k . . . 1l . . . )+
l̂ k̂†�N ( . . . 0k . . . 1l . . . ) = θkθl�

N ( . . . 1k . . . 0l . . . ) − θkθl�
N ( . . . 1k . . . 0l . . . ) = δkl�

N

( . . . 0k . . . 1l . . . ). This is what we have expected.5

Case: (k, l) = (1, 0)
[k̂†, l̂]+�N ( . . . 1k . . . 0l . . . ) = [k̂†l̂ + l̂ k̂†]�N ( . . . 1k . . . 0l . . . ) = k̂†l̂�N ( . . . 1k . . . 0l . . . )+
l̂ k̂†�N ( . . . 1k . . . 0l . . . ) =

(
0+ 0

)
�N ( . . . 1k . . . 0l . . . ) = δkl�

N ( . . . 1k . . . 0l . . . ).

Case: (k, l) = (1, 1)
[k̂†, l̂]+�N ( . . . 1k . . . 1l . . . ) = [k̂†l̂ + l̂ k̂†]�N ( . . . 1k . . . 1l . . . ) = k̂†l̂�N ( . . . 1k . . . 1l . . . )+
l̂ k̂†�N ( . . . 1k . . . 1l . . . ) = k̂†l̂�N ( . . . 1k . . . 1l . . . )+0 = θ2

k δkl�
N ( . . . 1k . . . 1l . . . ) = δkl�

N

( . . . 1k . . . 1l . . . ).

Operators in the Second Quantization

The creation and annihilation operators may be used to represent the one- and two-electron
operators. The resulting matrix elements with Slater determinants6 correspond exactly to the
Slater-Condon rules (see Appendix M available at booksite.elsevier.com/978-0-444-59436-5,
p. e107).

One-Electron Operators

The operator F̂ =∑i ĥ(i) is a sum of the one-electron operators7 ĥ
(
i
)

acting on the functions
of the coordinates of electron i .

4 The above formulas are valid under the common assumption that the spinorbitals are orthonormal. If this assump-
tion is not true, then only the last anticommutator changes to the form [k̂†, l̂]+ = Skl , where Skl stands for the
overlap integral of spinorbitals k and l.

5 What decided is the change of sign (due to θk ) when the order of the operators has changed.
6 The original operator and its representation in the language of the second quantization are not identical, though.

The second ones can act only on the Slater determinants or their combinations, while the first ones have a larger
domain. Since we are only going to work with the creation and annihilation operators in those methods that use
Slater determinants (CI, MC SCF, etc.), then the difference is irrelevant.

7 Most often, this will be the kinetic energy operator, the nuclear attraction operator, the interaction with the external
field, or the multipole moment.

http://booksite.elsevier.com/978-0-444-59436-5
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I Slater-Condon rule says (see Appendix M available at booksite.elsevier.com/978-0-444-
59436-5), that for the Slater determinant ψ build of the spinorbitals φi , the matrix element〈
ψ |F̂ψ

〉
=∑i hii , where hi j =

〈
φi |ĥφ j

〉
.

In the second quantization,
F̂ =∑∞i j hi j î† ĵ .

Interestingly, the summation extends to infinity, and, therefore, the operator is independent
of the number of electrons in the system.

Let us check whether the formula is correct. Let us insert F̂ = ∑
i j hi j ı̂†ĵ into

〈
ψ |F̂ψ

〉
.

We have

〈
ψ |F̂ψ

〉
=
〈
ψ |
∑

i j

hi j ı̂
†ĵψ

〉
=
∑

i j

hi j
〈
ψ |ı̂†ĵψ

〉 =∑
i j

hi jδi j =
∑

i

hii .

This is a correct result.
What about the II Slater-Condon rule (the Slater determinants ψ1 and ψ2 differ by a single

spinorbital: the spinorbital i in ψ1 is replaced by the spinorbital i ′ in ψ2)? We have〈
ψ1|F̂ψ2

〉
=
∑

i j

hi j
〈
ψ1|ı̂†ĵψ2

〉
.

The Slater determinants that differ by one spinorbital produce the overlap integral equal to zero8;

therefore
〈
ψ1|F̂ψ2

〉
= hii ′ . Thus, the operator in the form F̂ =∑i j hi j ı̂†ĵ ensures equivalence

with all the Slater-Condon rules.

Two-Electron Operators

Similarly, we may use the creation and annihilation operators to represent the two-electron
operators Ĝ = 1

2

∑′
i j ĝ

(
i, j

)
. In most cases, ĝ

(
i, j

) = 1
ri j

and Ĝ takes the following form:

Ĝ = 1

2

∑
i j

′ 1

ri j
= 1

2

∞∑
i jkl

〈i j |kl〉 ĵ†î†k̂l̂.

Here also, the summation extends to infinity and the operator is independent of the number
of electrons in the system.

8 It is evident that if in this situation the Slater determinants ψ1 and ψ2 differed by more than a single spinorbital,
then we would get zero (by the III and IV Slater-Condon rules).

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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The proof of the I Slater-Condon rule relies on the following chain of equalities:〈
ψ |Ĝψ

〉
= 1

2

∑
i jkl

〈i j |kl〉
〈
ψ |ĵ†ı̂†k̂l̂ψ

〉
= 1

2

∑
i jkl

〈i j |kl〉
〈
ı̂ ĵψ |k̂l̂ψ

〉

= 1

2

∑
i jkl

〈i j |kl〉 (δikδ jl − δilδ jk
) = 1

2

∑
i j

(〈i j |i j〉 − 〈i j | j i〉) ,
because the overlap integral

〈
ı̂ ĵψ |k̂l̂ψ

〉
of the two Slater determinants ı̂ ĵψ and k̂l̂ψ is nonzero

in the two cases only: either if i = k, j = l, or i = l, j = k (then the sign has to change). This
is what we get from the Slater-Condon rules.

For the II Slater-Condon rule, we have (instead of the spinorbital i in ψ1 we have the spinor-
bital i ′ in ψ2)〈

ψ1|Ĝψ2

〉
= 1

2

∑
I jkl

〈I j |kl〉
〈
ψ1|ĵ† Î †k̂l̂ψ2

〉
= 1

2

∑
I jkl

〈I j |kl〉
〈
Î ĵψ1|k̂l̂ψ2

〉
, (U.1)

where the summation index I has been introduced in order so it doesn’t get mixed up with

the spinorbital i . In the overlap integral
〈
Î ĵψ1|k̂l̂ψ2

〉
, the sets of the spinorbitals in the Slater

determinant Î ĵψ1 and in the Slater determinant k̂l̂ψ2 have to be identical; otherwise, the integral
will equal zero. However, already in ψ1 and ψ2, we have a difference of one spinorbital. Thus,
first of all, we have to get rid of just these spinorbitals (i and i ′)! For the integral to survive,9

we have to satisfy at least one of the following conditions:

• I = i and k = i ′(and then j = l)
• j = i and k = i ′(and then I = l)
• I = i and l = i ′(and then j = k)
• j = i and l = i ′(and then I = k).

This means that when taking into account the above cases in Eq. (U.1), we obtain〈
ψ1|Ĝψ2

〉
= 1

2

∑
j

〈
i j |i ′ j 〉 〈ı̂ ĵψ1|ı̂ ′ĵψ2

〉+ 1

2

∑
l

〈
li |i ′l〉 〈l̂ ı̂ψ1|ı̂ ′l̂ψ2

〉

+ 1

2

∑
j

〈
i j | j i ′〉 〈ı̂ ĵψ1|ĵ ı̂ ′ψ2

〉+ 1

2

∑
k

〈
ki |ki ′

〉 〈
k̂ı̂ψ1|k̂ı̂ ′ψ2

〉

= 1

2

∑
j

〈
i j |i ′ j 〉− 1

2

∑
l

〈
li |i ′l〉− 1

2

∑
j

〈
i j | j i ′〉+ 1

2

∑
k

〈
ki |ki ′

〉

= 1

2

∑
j

〈
i j |i ′ j 〉− 1

2

∑
j

〈
j i |i ′ j 〉− 1

2

∑
j

〈
i j | j i ′〉+ 1

2

∑
j

〈
j i | j i ′〉

9 This is a necessary, but not a sufficient condition.
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= 1

2

∑
j

〈
i j |i ′ j 〉− 1

2

∑
j

〈
i j | j i ′〉− 1

2

∑
j

〈
i j | j i ′〉+ 1

2

∑
j

〈
i j |i ′ j 〉

=
∑

j

〈
i j |i ′ j 〉−∑

j

〈
i j | j i ′〉 ,

where in the two sums the coordinates of the electrons 1 and 2 have been exchanged, and as it

has been noticed that the overlap integrals
〈
ı̂ ĵψ1|ı̂ ′ĵψ2

〉 = 〈k̂ı̂ψ1|k̂ı̂ ′ψ2

〉
= 1, because the Slater

determinants îψ1 and î ′ψ2 are identical. Also, from the anticommutation rules
〈
l̂ ı̂ψ1|ı̂ ′l̂ψ2

〉
=〈

ı̂ ĵψ1|ĵ ı̂ ′ψ2
〉 = −1. Thus, the II Slater-Condon rule has been correctly reproduced:〈

ψ1|Ĝψ2

〉
=
∑

j

[〈
i j |i ′ j 〉− 〈i j | j i ′〉] .

We may conclude that the definition of the creation and annihilation operators and the simple
anticommutation relations are equivalent to the Slater-Condon rules. This opens up for us the
space spanned by the Slater determinants; i.e., all the integrals involving Slater determinants
can be easily transformed into the one- and two-electron integrals involving spinorbitals.
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Hydrogen Atom in Electric Field–The
Variational Approach

Polarization of an atom or molecule can be calculated by using the finite field (FF) method
described on p. 746. Let us apply this method to the hydrogen atom. Its polarizability was
already calculated by using a simple version of the perturbation theory (p. 743). This time we
will use the variational method.

The Hamiltonian for the isolated hydrogen atom (within the Born-Oppenheimer approxima-
tion) reads as

Ĥ
(
0
)
= −1

2
�e − 1

r
,

where the first term is the electronic kinetic energy operator, and the second is its Coulomb
interaction energy with the nucleus (with proton-electron distance is denoted by r ). The atom
is in the uniform electric field E = (0, 0, E), with E > 0, and similarly, as it was in the
perturbation theory (p. 744), the total Hamiltonian has the form

Ĥ = Ĥ
(
0
)
+ V

with V = zE , where z denotes the coordinate of the electron and the proton is in the origin (the
derivation of the formula is given on p. 743, and the exchange of z to x does not matter).

The variational wave function ψ is proposed in the form

ψ = χ1 + cχ2, (V.1)

where χ1 = 1√
π

exp (−r) is the 1s orbital of the hydrogen atom (ground state) and χ2 is the

normalized 1 p-type orbital
χ2 = N z exp (−ζr).

There are two variational parameters c and ζ . Let us assume for a while that we have fixed
the value of ζ so that the only variational parameter is c. The wave function ψ is a linear
combination of two expansion functions (“two-state model”): χ1 and χ2. Therefore, the optimal

1 N can be easily calculated from the normalization condition 1 = N2 ∫ [z exp(−ζr)]2dV = N 2 ∫∞
0 drr4

exp(−2ζr)
∫ π

0 dθ sin θ cos2 θ
∫ 2π

0 dφ = N 24! (2ζ )−5 2
3 2π = N 2 π

ζ 5 . This gives N =
√
ζ 5

π .

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00042-8
© 2014 Elsevier B.V. All rights reserved. e159
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energy follows from the Ritz method according to case III of see Appendix D available at
booksite.elsevier.com/978-0-444-59436-5 on p. e63:

E = Ear ±
√
�2 + h2, (V.2)

where arithmetic mean energy Ear ≡ H11+H22
2 , while � ≡ H11−H22

2 and h ≡ H12 = H21, with

Hi j ≡
〈
χi |Ĥχ j

〉
=
〈
χi |Ĥ

(
0
)
χ j

〉
+ 〈χi |Vχ j

〉
.

Let is compute all the ingredients of the energy given by Eq. (V.2).
First, let us note that H11 ≡

〈
χ1|Ĥ

(
0
)
χ1
〉 = −1

2 a.u., since χ1 is the ground state of the
isolated hydrogen atom (p. 203), and 〈χ1|Vχ1〉 = 0 because the integrand is antisymmetric
with respect to z→−z.

Now, let us compute H22 = H
(
0
)

22 + V22. Note that V22 = 0 for the same reason as V11. We
have

H
(
0
)

22 = −
1

2
〈χ2|�eχ2〉 −

〈
χ2|1

r
χ2

〉
.

The second integral is
〈
χ2|1r χ2

〉 = N 2
∫∞

0 drr3 exp (−2ζr)
∫ π

0 dθ sin θ cos2 θ
∫ 2π

0 dφ = ζ 5

π
·

3! (2ζ )−4 · 2
3 · 2π = 1

2ζ , where the dots separate the values of the corresponding integrals.2

In Appendix R available at booksite.elsevier.com/978-0-444-59436-5, the reader will find the
main ingredients needed to compute the first integral of H (0)

22 :

〈χ2|�eχ2〉 = N 2
〈
r cos θ exp (−ζr)|

[
1

r2

∂

∂r
r2 ∂

∂r
+ 1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ

+ 1

r2 sin2 θ

∂2

∂φ2

]
r cos θ exp (−ζr)

〉

= N 2

⎡
⎣
〈
r cos θ exp (−ζr)| cos θ 1

r2
∂
∂r [r2 exp

(−ζr
)− ζr3 exp

(−ζr
)]〉

+
〈
r cos θ exp (−ζr)|

(−2 cos θ
)

r2 r exp (−ζr)
〉
+ 0

⎤
⎦

= N 2
[〈

r cos θ exp (−ζr)| cos θ

[
2

r
− ζ − 3ζ + ζ 2r

]
exp

(−ζr
)〉

+
〈

r cos θ exp (−ζr)|
(−2 cos θ

)
r

exp (−ζr)

〉]

= ζ 5

π

(
2

3
· 2π

)[
2 · 2 · (2ζ )−3 − 4ζ · 3! · (2ζ )−4

+ ζ 2 · 4! · (2ζ )−5 − 2 · 2! · (2ζ )−3
]
= −ζ 2.

2 Note that in the spherical coordinates, the volume element dV = r2 sin θdrdθdφ. We have used the equality∫∞
0 drrn exp (−αr) = n!α−(n+1).

http://booksite.elsevier.com/978-0-444-59436-5
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Thus, we obtain H22 = 1
2ζ

2 − 1
2ζ . This formula looks good, since for χ2 = 2pz; i.e., for

ζ = 1
2 , we get (see p. 203) H22 = E2p = −1

8 a.u., the energy of orbital 2p.

Let us turn to the non-diagonal matrix element of the Hamiltonian: H12 = H (0)
12 + V12.

Note that H (0)
12 = 0 because χ1 is an eigenfunction of Ĥ (0) and 〈χ1|χ2〉 = 0. Thus,

h = NE 〈r cos θ exp (−ζr)|r cos θ 1√
π

exp (−r)
〉 = NE 1√

π

∫∞
0 drr4 exp[−(ζ + 1)r ] ∫ π0 dθ

sin θ cos2 θ
∫ 2π

0 dφ = E
√
ζ 5

π
· 4!(ζ + 1)−5 · 2

3 · 2π = 32
√
ζ 5

(ζ+1)5
E .

Now we can write Eq. (V.2) as a function of ζ :

E = 1

4
(ζ 2 − ζ − 1)−

√
1

16
(ζ 2 − ζ + 1)2 + ζ 5

(
2

ζ + 1

)10

E2. (V.3)

We would like to expand this expression in a power series of E in order to highlight the
coefficient at E2 because this coefficient is related to the polarizability. The expansion gives (in
atomic units)

E ≈ 1

4
(ζ 2 − ζ − 1)− 1

4
(ζ 2 − ζ + 1)− 1

2
αzzE2 + · · · = −1

2
− 1

2
αzzE2 + · · ·,

where according to Eq. (12.24) the polarizability (in atomic units) reads as

αzz = 4 · ζ 5

|ζ 2 − ζ + 1|
(

2

ζ + 1

)10

. (V.4)

Several numerical values of αzz computed by using Eqs. (V.3) and (V.4) are given on p. 746.
They are compared with the exact result αzz = 4.5 a.u.





APPENDIX W

NMR Shielding and Coupling
Constants–Derivation

This appendix is designed for those who want to double-check whether the final formulas for
the shielding and coupling constants in the nuclear magnetic resonance (NMR) are indeed valid
(Chapter 12).

Shielding Constants

Let us begin from Eq. (12.88).

Applying Vector Identities

We are going to apply some vector identities1 in the operators B̂3, B̂4, B̂5. The first identity is
u·(v× w

) = v·(w× u
) = w·(u× v

)
, which simply means three equivalent ways of calculating

the volume of a parallelepiped (cf., p. 515). This identity, applied to B̂3 and B̂4, gives

B̂3 = e

mc

∑
A

∑
j

γA
I A · L̂Aj

r3
Aj

, (W.1)

B̂4 = e

2mc

∑
j

H · L̂0 j . (W.2)

Let us transform the term B̂5 by using the following identity
(
u× v

) · (w× s
) =(

u ·w) (v · s)− (v ·w) (u · s):
B̂5 = e2

2mc2

∑
A

∑
j

γA
(
H × r0 j

) · I A × rAj

r3
Aj

= e2

2mc2

∑
A

∑
j

γA
[(

H · IA)(r0 j · rAj
)− (r0 j · IA)(H · rAj

)] · 1

r3
Aj

.

1 The reader may easily check each of these identities.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00043-X
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Putting Things Together

We are now ready to put all this baroque furniture into its destination; i.e., into Eq. (12.88)
for �E :

�E =
∑

A

�E A, (W.3)

where �E A stands for the contribution of nucleus A:

�E A = −γA

〈
ψ
(0)
0 |

(
I A ·H

)
ψ
(0)
0

〉

+ e2

2mc2 γA

〈
ψ
(0)
0 |

∑
j

[
(H · IA)(r0 j · rAj )−

(
r0 j · IA)(H · rAj

)] · 1

r3
Aj

ψ
(0)
0

〉

+ e2

2m2c2 γA

⎡
⎣〈ψ(0)0 |

⎛
⎝∑

j

I A · L̂Aj

r3
Aj

⎞
⎠ R̂0

⎛
⎝∑

j

H · L̂0 j

⎞
⎠ψ(0)0

〉

+
〈
ψ
(0)
0 |

⎛
⎝∑

j

H · L̂0 j

⎞
⎠ R̂0

⎛
⎝∑

j

I A · L̂Aj

r3
Aj

⎞
⎠ψ(0)0

〉⎤⎦ ,

Averaging over Rotations

The expression for �E A represents a bilinear form with respect to the components of vectors
IA and H:

�E A = IT
AC AH,

where C A stands for a square matrix2 of dimension 3, and I A and H are vertical three-component
vectors.

A contribution to the energy such as�E A cannot depend on our choice of coordinate system
axes x, y, z; i.e., on the components of I A and H. We will obtain the same energy if we rotate the
axes (orthogonal transformation) in such a way as to diagonalize C A. The resulting diagonalized
matrix C A,diag has three eigenvalues (composing the diagonal) corresponding to the new axes
x ′, y′, z′. The very essence of averaging is that none of these axes are to be privileged in any
sense. This is achieved by constructing the averaged matrix

1

3

[(
C A,diag

)
x ′x ′ +

(
C A,diag

)
y′y′ +

(
C A,diag

)
z′z′
]

= (C̄ A,diag
)

x ′x ′ =
(
C̄ A,diag

)
y′y′ =

(
C̄ A,diag

)
z′z′ ≡ CA,

2 We could write its elements from the equation for �E A, but their general form will turn out to be unnecessary.
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where
(
C̄ A,diag

)
qq ′ = δqq ′CA for q, q ′ = x ′, y′, z′. Note that since the transformation was

orthogonal (i.e., the trace of the matrix is preserved), the number CA may also be obtained from
the original matrix C A:

CA = 1

3

[(
C A,diag

)
x ′x ′ +

(
C A,diag

)
y′y′ +

(
C A,diag

)
z′z′
]

= 1

3

[
C A,xx + C A,yy + C A,zz

]
. (W.4)

Then the averaged energy �E becomes

�Ē =
∑

A

IT
AC̄ A,diag H =

∑
A

CA
(
I A ·H

)
.

Thus, we obtain the sum of energy contributions over the nuclei, each one with its own
coefficient averaged over rotations3:

�Ē = −
∑

A

γAI A ·H
{

1− e2

2mc2

〈
ψ
(0)
0 |

∑
j

2

3
(r0 j · rAj )

1

r3
Aj

ψ
(0)
0

〉

− e2

2m2c2

1

3

〈
ψ
(0)
0 |

⎡
⎣
⎛
⎝∑

j

L̂Aj

r3
Aj

⎞
⎠ R̂0

⎛
⎝∑

j

L̂0 j

⎞
⎠

+
⎛
⎝∑

j

L̂0 j

⎞
⎠ R̂0

⎛
⎝∑

j

L̂Aj

r3
Aj

⎞
⎠
⎤
⎦ψ(0)0

〉⎫⎬
⎭ , (W.5)

3 Indeed, making CA = 1
3

[
C A,xx + C A,yy + C A,zz

]
for the terms of Eq. (W.3), we have the following contributions

(term by term):

• −γA
1
3

[
1+ 1+ 1

] = −γA

• e2

2mc2 γA
1
3

[〈
ψ
(0)
0 |

∑
j r0 j · rAj

1
r3

Aj
ψ
(0)
0

〉
+
〈
ψ
(0)
0 |

∑
j r0 j · rAj

1
r3

Aj
ψ
(0)
0

〉
+
〈
ψ
(0)
0 |

∑
j r0 j · rAj

1
r3

Aj
ψ
(0)
0

〉]

= e2

2mc2 γA

〈
ψ
(0)
0 |

∑
j r0 j · rAj

1
r3

Aj
ψ
(0)
0

〉

• − e2

2mc2 γA

〈
ψ
(0)
0 |

∑
j

1
3

[
x0 j xA j + y0 j yA j + z0 j z A j

] 1
r3

Aj
ψ
(0)
0

〉
= − e2

2mc2 γA

〈
ψ
(0)
0 |

∑
j

1
3 r0 j · rAj

1
r3

Aj
ψ
(0)
0

〉

• + 1
3

e2

2m2c2 γA
∑

k
′ 1

E (0)0 −E (0)k

×
[〈
ψ
(0)
0

∣∣∣∣
(∑

j
L̂ A j x

r3
Aj

)
ψ
(0)
k

〉 〈
ψ
(0)
k

∣∣∣∑ j L̂0 j xψ
(0)
0

〉
+ similarly y, z + cc

]

= 1
3

e2

2m2c2 γA
∑

k
′ 1

E (0)0 −E (0)k

× 1
3

[〈
ψ
(0)
0

∣∣∣∣
(∑

j
L̂Aj

r3
Aj

)
ψ
(0)
k

〉 〈
ψ
(0)
k

∣∣∣∑ j L̂0 jψ
(0)
0

〉
+ cc

]
,

where cc means the “complex conjugate” counterpart. This reproduces Eq. (W.5).
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with the matrix elements
(

Û
)

kl
=

〈
ψ
(0)
k |Ûψ(0)l

〉
of the corresponding operators Û =

(Ûx , Ûy, Ûz).

Finally, after comparing the formula with Eq. (12.81), we obtain the shielding constant for
nucleus A (the change of sign in the second part of the formula comes from the change in the
denominator) given in Eq. (12.89).

Coupling Constants

Averaging over Rotations

In each contribution on pp. 781 and 782, there is a double summation over the nuclear spins,
which, after averaging over rotations (similarly as for the shielding constant), gives rise to
an energy dependence of the kind

∑
A<B γAγB K AB(Î A · ÎB), which is required in the NMR

Hamiltonian. Now, let us take the terms EDSO, EPSO, ESD, EFC and average them over rotations
producing ĒDSO, ĒPSO, ĒSD, ĒFC:

• ĒDSO = e2

2mc2

∑
A,B

∑
j

γAγBI A · IB

〈
ψ
(0)
0 |

rAj · rB j

r3
Ajr

3
B j

ψ
(0)
0

〉

− e2

2mc2

∑
A,B

∑
j

γAγB
1

3
I A · IB

{〈
ψ
(0)
0 |

xAj xB j

r3
Ajr

3
B j

ψ
(0)
0

〉

+
〈
ψ
(0)
0 |

yAj yB j

r3
Ajr

3
B j

ψ
(0)
0

〉
+
〈
ψ
(0)
0 |

z Aj zB j

r3
Ajr

3
B j

ψ
(0)
0

〉}
,

because the first part of the formula does not need any averaging (it is already in the appropriate
form), the second part is averaged according to Eq. (W.4). Therefore,

ĒDSO = e2

3mc2

∑
A,B

∑
j

γAγBI A · IB

〈
ψ
(0)
0 |

rAj · rB j

r3
Ajr

3
B j

ψ
(0)
0

〉
.

• ĒPSO =
〈
ψ
(0)
0 |B̂3 R̂0 B̂3ψ

(0)
0

〉
aver

=
(

i�e

mc

)2∑
A,B

∑
j,l

γAγB

〈
ψ
(0)
0 |∇ j · I A × rAj

r3
Aj

R̂0∇l · IB × rBl

r3
Bl

ψ
(0)
0

〉
aver

=
(

i�e

mc

)2∑
A,B

∑
j,l

γAγB

〈
ψ
(0)
0 |∇ j · rAj × I A

r3
Aj

R̂0∇l · rBl × IB

rBl
ψ
(0)
0

〉
aver

= −
(

�e

mc

)2∑
A,B

∑
j,l

γAγB

〈
ψ
(0)
0 |I A ·

(
∇ j × rAj

r3
Aj

)
R̂0IB ·

(
∇l × rBl

rBl

)
ψ
(0)
0

〉
aver

,
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where the subscript aver means the averaging of Eq. (W.4) and the identity A · (B× C
) =(

A× B
) ·C has been used. We have the following chain of equalities (involving4 the electronic

momenta p̂ j and angular momenta LAj with respect to the nucleus A, where j means electron
number j):

(
i�e

mc

)2∑
A,B

∑
j,l

γAγB

〈
ψ
(0)
0 |I A · 1

i�

(
rAj × p̂ j

)
R̂0IB · 1

i�

(
rBl × p̂l

)
ψ
(0)
0

〉
aver

=
( e

mc

)2∑
A,B

∑
j,l

γAγB

〈
ψ
(0)
0 |I A ·

(
rAj × p̂ j

)
R̂0IB ·

(
rBl × p̂l

)
ψ
(0)
0

〉
aver

=
( e

mc

)2∑
A,B

∑
j,l

γAγB

〈
ψ
(0)
0 |I A · L̂Aj R̂0IB · L̂Blψ

(0)
0

〉
aver

=
( e

mc

)2∑
A,B

∑
j,l

γAγBI A · IB
1

3

{〈
ψ
(0)
0 |L̂Aj,x R̂0L̂Bl,xψ

(0)
0

〉
+
〈
ψ
(0)
0 |L̂Aj,y R̂0L̂Bl,yψ

(0)
0

〉

+
〈
ψ
(0)
0 |L̂Aj,z R̂0L̂Bl,zψ

(0)
0

〉}
.

Thus, finally,

ĒPSO = 1

3

( e

mc

)2∑
A,B

∑
j,l

γAγBI A · IB

〈
ψ
(0)
0 |L̂Aj R̂0L̂Blψ

(0)
0

〉
.

4 Let us take a closer look at the operator

(
∇ j × rAj

r3
Aj

)
acting on a function f (it is necessary to remember that ∇ j

in ∇ j × rAj

r3
Aj

is not acting on the components of
rAj

r3
Aj

alone, but in fact on
rAj

r3
Aj

times a wave function). Let us see:

(
∇ j ×

rAj

r3
Aj

)
f = i

(
∇ j ×

rAj

r3
Aj

)
x

f + j

(
∇ j ×

rAj

r3
Aj

)
y

f + k

(
∇ j ×

rAj

r3
Aj

)
z

f

= i

(
∂

∂ y j

z A j

r3
Aj

− ∂

∂z j

yA j

r3
Aj

)
x

f + similarly with y and z

= i

(
−3

yAj z A j

r4
Aj

+ z A j

r3
Aj

∂

∂ y j
+ 3

yAj z A j

r4
Aj

− yAj

r3
Aj

∂

∂z j

)
x

f + similarly with y and z

= i

(
z A j

r3
Aj

∂

∂ y j
− yAj

r3
Aj

∂

∂z j

)
x

f + similarly with y and z = i

(
z A j

r3
Aj

∂

∂ y j
− yAj

r3
Aj

∂

∂z j

)
x

f

+ similarly with y and z = − 1

i�

(
−rAj × p̂ j

)
f = 1

i�

(
rAj × p̂ j

)
f .

.
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• ĒSD =
〈
ψ
(0)
0 |B̂6 R̂0 B̂6ψ

(0)
0

〉
aver

= γ 2
el

N∑
j,l=1

∑
A,B

γAγB

〈
ψ
(0)
0 |

[
ŝ j · I A

r3
Aj

− 3

(
ŝ j · rAj

) (
I A · rAj

)
r5

Aj

]

× R̂0

[
ŝl · IB

r3
Bl

− 3

(
ŝl · rBl

) (
IB · rBl

)
r5

Bl

]
ψ
(0)
0

〉
aver

= γ 2
el

N∑
j,l=1

∑
A,B

γAγBI A · IB
1

3

{〈
ψ
(0)
0 |

[
ŝ j,x

r3
Aj

− 3

(
ŝ j · rAj

)
xAj

r5
Aj

]

× R̂0

[
ŝl,x

r3
Bl

− 3

(
ŝl · rBl

) (
xBl
)

r5
Bl

]
ψ
(0)
0

〉

+
〈
ψ
(0)
0 |

[
ŝ j,y

r3
Aj

− 3

(
ŝ j · rAj

)
yAj

r5
Aj

]
R̂0

[
ŝl,y

r3
Bl

− 3

(
ŝl · rBl

) (
yBl
)

r5
Bl

]
ψ
(0)
0

〉

+
〈
ψ
(0)
0 |

[
ŝ j,z

r3
Aj

− 3

(
ŝ j · rAj

)
z Aj

r5
Aj

]
R̂0

[
ŝl,z

r3
Bl

− 3

(
ŝl · rBl

) (
zBl
)

r5
Bl

]
ψ
(0)
0

〉}
.

Therefore,

ĒSD = 1

3
γ 2

el

N∑
j,l=1

∑
A,B

γAγBI A · IB

〈
ψ
(0)
0 |

[
ŝ j

r3
Aj

− 3

(
ŝ j · rAj

)
rAj

r5
Aj

]

× R̂0

[
ŝl

r3
Bl

− 3

(
ŝl · rBl

) (
rBl
)

r5
Bl

]
ψ
(0)
0

〉
.

• ĒFC =
〈
ψ
(0)
0 |B̂7 R̂0 B̂7ψ

(0)
0

〉
= γ 2

el

∑
j,l=1

∑
A,B

γAγB

〈
ψ
(0)
0 |δ

(
rAj

)
ŝ j · I A R̂0δ

(
rBl
)

ŝl · IBψ
(0)
0

〉
aver

= γ 2
el

∑
j,l=1

∑
A,B

γAγBI A · IB
1

3

{〈
ψ
(0)
0 |δ

(
rAj

)
ŝ j,x R̂0δ

(
rBl
)

ŝl,xψ
(0)
0

〉

+
〈
ψ
(0)
0 |δ

(
rAj

)
ŝ j,y R̂0δ

(
rBl
)

ŝl,yψ
(0)
0

〉
+
〈
ψ
(0)
0 |δ

(
rAj

)
ŝ j,z R̂0δ

(
rBl
)

ŝl,zψ
(0)
0

〉}
.

Hence,

ĒFC = 1

3

(
8π

3

)2

γ 2
el

∑
j,l=1

∑
A,B

γAγBI A · IB

〈
ψ
(0)
0 |δ

(
rAj

)
ŝ j R̂0δ

(
rBl
)

ŝlψ
(0)
0

〉
.

The results mean that the coupling constants J are as reported on p. 783.
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Multipole Expansion

What Is the Multipole Expansion For?

In the perturbational theory of intermolecular interactions (see Chapter 13), the perturbation
operator (V ) plays an important role. The operator contains all the Coulombic charge-charge
interactions, where one of the point charges belongs to the subsystem A, the second to B.
Therefore, according to the assumption behind the perturbational approach (large intermolecular
distance), there is a guarantee that both charges are distant in space. For example, for two
interacting hydrogen atoms (the electron 1 at the nucleus a, the electron 2 at the nucleus b,
atomic units are used),

V = − 1

ra2
+ 1

r12
− 1

rb1
+ 1

R
, (X.1)

where R stands for the internuclear distance. A short inspection convinces us that the mean value
of the operator − 1

ra2
+ 1

r12
, with the wave function1 ψA,n1(1)ψB,n2(2), would give something

close to zero, because both distances in the denominators are almost equal to each other (see Fig.
X.1a). The same can be said about the two other terms of V . This is why the situation is similar
(see Chapter 13) to weighing the captain’s hat, criticized so harshly by us in the supermolecular
approach to the supermolecular forces (see Fig. 13.4).

What could we do to keep from losing the accuracy? This is precisely the goal of the
multipole expansion for each of the operators 1

ri j
.

1 ψA,n1 (1)means an excited state (n1 is the corresponding quantum number) of the atom A and similarly,ψB,n2 (2)
for the atom B. Note, that electron 1 is always close to nucleus a, and electron 2 close to nucleus b, while A and
B are far away.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00044-1
© 2014 Elsevier B.V. All rights reserved. e169
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(a)

(b)

Fig. X.1. The coordinate system used in the multipole expansion. (a) The interparticle distances. The large gray
dots denote the origins of the two Cartesian coordinate systems, labeled by a and b, respectively. One assumes
particle 1 always resides close to a, and particle 2 is always close to b. The figure gives the notation related
to the distances considered. (b) Two Cartesian coordinate systems (and their polar counterparts): one associ-
ated with the center a, the second one with the center b (the x- and y-axes are parallel in both systems,
the z-axes are colinear). Note that the two coordinate systems are not on the same footing: the z-axis of a points to b, while
the coordinate system b does not point to a. Sometimes in the literature one introduces an alternative coordinate system with
the “equal footing” by changing zb → −zb (then the two coordinate systems point to each other), but this leads to different
“handedness” (“right-” or “left-handed”) of the systems and subsequently to complications for chiral molecules. Let us stick to the
non-equivalent choice.

Coordinate System

What is the multipole expansion really? We will explain this in a moment. Let us begin quietly
by introduction of two Cartesian coordinate systems: one on the molecule A, the second on the
molecule B (Fig. X.1).

This can be done in several ways. Let us begin by choosing the origins of the coordinate
systems. How do we choose them? Is it irrelevant? It turns out that the choice is important. Let
us stop here and come back to this problem later on. Just for signaling, let me communicate the
conclusion: the origins should be chosen in the neighborhood of the centers of mass (charges)
of the interacting molecules. Let us introduce the axes by taking the z-axes (za and zb) colinear
pointing in the same direction, and axes xa and xb as well as ya and yb pairwise parallel.
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Multipole Series and the Multipole Operators of a Particle

With such a coordinate system, the Coulomb interaction of particles 1 and 2 (with charges q1

and q2) can be expanded using the following approximation2:

q1q2

r12

∼=
nk∑

k=0

nl∑
l=0

m=+s∑
m=−s

Akl|m|R−(k+l+1)M̂ (k,m)
a (1)∗M̂ (l,m)

b (2), (X.2)

where the coefficient

Akl|m| = (−1)l+m (k + l)!
(k + |m|)!(l + |m|)! , (X.3)

whereas

Multipole Moment Operators

M̂ (k,m)
a (1) and M̂ (l,m)

b (2) represent, respectively, the mth components of the 2k–pole and
2l–pole of particle 1 in the coordinate system on a and of particle 2 in the coordinate
system on b:

M̂ (k,m)
a (1) = q1rk

a1 P |m|k ( cos θa1) exp (imφa1), (X.4)

M̂ (l,m)
b (2) = q2rl

b2 P |m|l ( cos θb2) exp (imφb2), (X.5)

with r , θ, φ standing for the spherical coordinates of a particle (in the coordinate system a or b;
see Fig. X.1), the associated Legendre polynomials P |m|k with |m| ≤ k are defined as (cf. p. 200)

P |m|k (x) = 1

2kk!(1− x2)|m|/2 dk+|m|

dxk+|m| (x
2 − 1)k, (X.6)

where nk and nl in principle have to be equal to ∞, but in practice, they take finite integer
values, and s is the lower of the summation indices k, l. That’s it!

Maybe an additional remark concerning the nomenclature is called for here any multipole
may be called a 2k–pole (however strange this name looks), because “multi” means the number
2k . If we know how to make powers of 2, and in addition, we got some contact with the world
of ancient Greeks and Romans, then we will know how to compose the names of the successive
multipoles: 20 = 1; hence monopole; 21 = 2, hence dipole, 22 = 4, hence, quadrupole, etc. The
names, however, are of no importance. The formulas for the multipoles are what is important.

Multipole Moment Operators for Many Particles

Above, a definition of the multipole moments of a single point-like charged particle has been
introduced. However, the multipole moments will almost always be calculated in the future for
a molecule. Then,
2 It represents an approximation because it is not valid for R < |r1 − r2|, and this may happen in real systems (the

electron clouds extend to infinity), also because nk , nl are finite instead of∞.
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The Total Multipole Moment Operator

The total multipole moment operator represents a sum of the same operators for the indi-
vidual particles (of course, they all have to be computed in the same coordinate system):
M̂ (k,m)

a (A) =∑i∈A M̂ (k,m)
a (i).

The first thing that we have to stress about multipole moments is that in principle, they depend
on the choice of the coordinate system (Fig. X.2).

This will be seen in a while when inspecting the formulas for the multipole moments.

Examples

Let us take a few examples for particle 1 in the coordinate system a (for the sake of simplicity,
we skip the indices). The case with k = 0 is obviously the simplest one, and we should always

begin with the simplest examples. If k = 0, then
(

because of P |m|k

)
m = 0, and the monopole,

therefore, has a single component M (00):

M̂ (0,0) = qr0 P0
0 ( cos θ) exp (i0φ) = q. (X.7)

Hence,

Monopole

The monopole for a particle is simply its charge.

Let us go to k = 1 (i.e., to the dipole moment). Since m = −1, 0,+1, then the dipole moment
has three components. First, let us consider M̂(1,0):

M̂ (1,0) = qr1 P0
1 ( cos θ) exp (i0φ) = qr cos θ = qz. (X.8)

Dipole Moment Operator

Thus, the z-component of the dipole moment operator of a single particle is equal to qz.
The other components are:

M(1,1) = qr1 P1
1 ( cos θ) exp (iφ) = qr sin θ( cosφ + i sin φ)

= q(x + iy)

M (1,−1) = qr1 P1
1 ( cos θ) exp (−iφ) = qr sin θ( cosφ − i sin φ)

= q(x − iy).
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(a)

(c)

(b)

Fig. X.2. The multipole moments (or simply multipoles) in general depend on the choice of the coordinate system. (a) The dipole
moment of a pointlike particle with charge q1 is equal to µ1. (b) The dipole moment of the same particle in the coordinate system
with the origin on the particle. In such a case, we obtain µ′1 = 0. (c) The dipole moment of two particles represents a sum of the
dipole moments of the individual particles (in a common coordinate system).

After a careful (but a little boring) derivation, we arrive at the table of multipoles up to the
octupole, see below. Just to make the table simpler, every multipole moment of the particle has
been divided by q.

Thus, the operator of the 2k–pole moment of a charged particle represents a kth-degree
polynomial of x, y, and z.

The Multipoles Depend on the Coordinate System Chosen

Evidently any multipole moment value (except monopole) depends on the whim of the par-
ticipant, because I am free to choose any coordinate system I want, and the z-coordinate of



e174 Appendix X

m 0 ±1 ±2 ±3

k

0 1 — — —
charge

1 z x + iy — —
dipole

x − iy

2 1
2 (3z2 − r2) 3z(x + iy) 3(x + iy)2 —

quadrupole
3z(x − iy) 3(x − iy)2 —

3 1
2 (5z3 − 3zr2) 3

2 (x + iy)(5z2 − r2) 15z(x + iy)2 15(x + iy)3

octupole
3
2 (x − iy)(5z2 − r2) 15z(x − iy)2 15(x − iy)3

the particle in such a system will depend on me. It turns out that if we calculate the multipole
moments, then

the lowest non-vanishing multipole moment does not depend on the coordinate system
translation, but the other moments in general do depend on it.

This is not peculiar for the moments defined by Eq. (X.4) or (X.5), but it represents a property
of every term of the form xn yl zm . Indeed, k = n + l + m tells us that we are dealing with
a 2k–pole. Let us shift the origin of the coordinate system by the vector L. Then, the xn yl zm

moment computed in the new coordinate system (i.e., x ′n y′l z′m) is equal to

(x ′)n(y′)l(z′)m = (x + Lx )
n(y + L y)

l(z + Lz)
m = xn yl zm

+ a linear combination of lower multipole moments: (X.9)

If, for some reason, all the lower moments were equal to zero, then this would indicate the
invariance of the moment of the choice of the coordinate system.

Let us take the system ZnCl+ as an example. In the first approximation, the system may be
approximated by two pointlike charges Zn++ and Cl−. Let us locate these charges on the z-axis
in such a way that Zn++ has the coordinate z = 0 and Cl− z = 5. Now we would like to compute
the z-component of the dipole moment3: M (1,0) = μz = q1z1+q2z2 = (+2)0+ (−1)5 = −5.
What if we had chosen another coordinate system? Let us check what would happen if the origin
of the coordinate system were shifted toward positive z by 10 units. In such a case, the ions
have the coordinates z′1 = −10, and z′2 = −5, and as the z component of the dipole moment,

3 Since we are dealing with point charges, the computation of the multipole moments are reduced to inserting into
the multipole operator the values of the coordinates of the corresponding charges.
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Fig. X.3. An interaction of the non-pointlike dipoles contains interactions of higher multipoles.

we obtain
M (1,0)′ = μ′z = q1z′1 + q2z′2 = (+2)(−10)+ (−1)(−5) = −15. (X.10)

Thus, the dipole moment depends on the choice of the coordinate system. However, the monopole
of the system is equal to (+2) + (−1) = +1, and this number will not change at any shift of
the coordinate system. Therefore,

the dipole moment of a molecular ion depends on our arbitrary choice of the coordinate
system.

Interaction Energy of Non-pointlike Multipoles

In chemical reasoning about intermolecular interactions, the multipole-multipole (mainly dipole-
dipole, like for interactions in water, to cite one example), interaction plays an important role.
The dipolar molecules have nonzero dimensions and therefore they represent something else
than just pointlike dipoles. Let us clarify that taking a simple example of two dipolar systems
located on the z-axis (Fig. X.3): the system a consists of the two charges +1 at z = 0 and −1
at z = 1, while the system b also has two charges +1, with z = 10 and −1 with z = 11

+− +−
A first idea is that we are dealing with the interaction of two dipoles and nothing else. Let us

check whether everything is OK, then. Doing this is very easy because what really interacts are
the charges, not dipoles. Thus, the exact interaction of the systems a and b is (+1)(+1)/10 +
(+1)(−1)/11 + (−1)(+1)/9 + (−1)(−1)/10 = 2/10 − 1/11 − 1/9 = −0.0020202. What
would give the dipole-dipole interaction? Such a task immediately poses the question of how
such an interaction is to be calculated.

The first advantage of the multipole expansion is that it produces the formulas for the
multipole-multipole interactions.
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We have the dipole-dipole term in the form R−3(μaxμbx + μayμby − 2μazμbz) =
−2R−3μazμbz , because the x- and y-components of our dipole moments equal zero. Since
A and B are neutral, then it is irrelevant which coordinate system is chosen to compute the
dipole moment components. Therefore, let us use the global coordinate system, in which the
positions of the charges have been specified. Thus, μaz = (+1) · 0 + (−1) · 1 = −1 and
μbz = (+1) · 10+ (−1) · 11 = −1.

What Is R?

Now we are confronting a serious problem (which we always encounter in the multipole expan-
sion): what is R? We are forced to choose the two local coordinate systems in A and B. We
arbitrarily decide here to locate these origins in the middle of each dipolar system, and therefore
R = 10. It looks like a reasonable choice, and as will be shown later on, it really is. We are
all set to compute the dipole-dipole interaction: −2 · 10−3(−1)(−1) = −0.0020000. Close!
The computed exact interaction energy is −0.0020202. Where is the rest? Is there any error in
our dipole-dipole interaction formula? We simply forgot that our dipolar systems represent not
only the dipole moments, but also have nonzero octupole moments (the quadrupoles equal zero)
and nonzero higher odd-order multipoles, and we did not take them into account. If somebody
computed all the interactions of such multipoles, then we would recover the correct interac-
tion energy with any desired accuracy. But why does such a simple dipolar system also have a
nonzero octupole moment? The answer is simple: it is because the dipole is not pointlike.4 The
conclusion from this story is that the reader has to pay attention whether we are dealing with
pointlike or non-pointlike multipole moments.

The table here reports which multipole moments (in the center-of-mass coordinate system)
are zero and which are nonzero for a few simple chemical systems. All of this follows from the
symmetry of their nuclear framework in the electronic ground state.

Li+ HCl H2 CH4 HCl+

Monopole
k = 0 q 0 0 0 q

Dipole
k = 1 0 μ 0 0 μ

Quadrupole
k = 2 0 Q Q 0 Q

Octupole
k = 3 0 Oct 0 Oct Oct

4 Just think about a multipole component of the form qzn computed with respect to the center of each subsystem.
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Properties of the Multipole Expansion

In practicing the multipole expansion, at least three simple questions arise:

a. How do we truncate the expansion–i.e., how do we choose the values of nk and nl?
b. Since the multipole moments depend in general on the coordinate system chosen, what

sort of miracle makes the multipole expansion of the energy independent of the coordinate
system?

c. When does the multipole expansion makes sense (i.e., when does it converge)?

Truncating the Multipole Expansion and Its Coordinate System Dependence

It turns out that questions (a) and (b) are closely related to each other. When nk and nl are
finite and nonzero,5 then, however horrifying it might be, the result of the multipole expansion
is in general coordinate-dependent. If, however, the nk and nl satisfy nk + nl = const, then
we may shift both coordinate systems (the same translation for both) however we like and the
interaction energy computed stays invariant.6 Such a recipe for nk and nl corresponds to taking
all the terms with a given power of R−1.

In other words, if we take all the terms with a given R−m dependence, then the result does
not depend on the same translations of both coordinate systems.

This means that in order to maintain the invariance of the energy with respect to equal
translations of both coordinate systems, we have to compute in the multipole expansion all terms
satisfying nk + nl = nmax. If, e.g., nmax = 2, then we have to compute the term proportional
to R−1 or charge-charge interaction (it will be invariant), proportional to R−2 or charge-dipole
and dipole-charge terms (their sum is also invariant), proportional to R−3 or charge-quadrupole,
quadrupole-charge, and dipole-dipole (their sum is invariant as well).

Imagine a scientist calculating the interaction energy of two molecules. As it will be shown
later, in his multipole expansion he will have the charges of both interacting molecules, their
dipole moments, their quadrupole moments, etc. Our scientist is a systematic fellow, so he likely
will begin by calculating the multipole moments for each molecule, up to a certain maximum
multipole moment (say, the quadrupole; the calculations become more and more involved, and
that makes his decision easier). Then, he will be ready to compute all the individual multipole-
multipole interaction contributions. He will make a table of such interactions (rows: the multipole
moments of A, columns: the multipole moments of B) and compute all the entries in his table.
Then, many of his colleagues would sum up all the entries of the table so as not to waste their
effort. This will be an error. The scientists might not suspect that due to this procedure, their
result depends on the choice of the coordinate system, which is always embarrassing. However,

5 Zero would introduce large errors in most applications.
6 L.Z.Stolarczyk and L.Piela, Int.J.Quantum Chem., 15, 701 (1979).
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our fellow will make something else. He will sum up the entries corresponding to charge-charge,
charge-dipole, dipole-charge, charge-quadrupole, quadrupole-charge, and dipole-dipole, and he
will discard the other computed entries. This decision made by the scientist will gain a lot: his
interaction energy will not depend on how he translated the a and b coordinate systems.

Now, we will illustrate this by simple formulas and see how it works in practice. We have
said before that the complete set of terms with a given dependence on R−1 has to be taken.
Otherwise, bad things happen. Let us take such a complete set of terms with k+ l = 2. We will
see how well they behave upon translation of the coordinate system, and how nasty the behavior
of the individual terms is. Let us begin with the charge-dipole term. The term in the multipole
expansion corresponds to k = 0 and l = 2:

(−1)2
2!

2!R3 M̂ (00)(1)∗M̂
(
20
)
(2) = q1q2 R−3 1

2
(3z2

2 − r2
2 ).

The next term (k = 1, l = 1) has three contributions coming from the summation over m:

(−1)
2!

1!1!R3 M̂ (10)(1)∗M̂ (10)(2)+ (−1)2
2!

2!2!R3 M̂ (11)(1)∗M̂ (11)(2)

+ (−1)0
2!

2!2!R3 M̂ (1−1)(1)∗M̂ (1−1)(2) = q1q2 R−3[(x1x2 + y1y2)− 2z1z2].
The third term (k = 2, l = 0) is

(−1)2
2!

2!R3 M̂ (20)(1)∗M̂ (00)(2) = q1q2 R−3 1

2

(
3z2

1 − r2
1

)
Note that each of the computed terms separately depends on the translation along the z-axis of
the origins of the interacting objects. Indeed, by taking z + T instead of z, we obtain for the
first term,

q1q2 R−3
[

1

2
(3(z2 + T )2 − x2

2 − y2
2 − (z2 + T )2)

]

= q1q2 R−3
[

1

2
(3z2

2 − r2
2 )+

1

2
(6T z2 + 3T 2 − 2T z2 − T 2)

]
,

for the second term,

q1q2 R−3[(x1x2 + y1y2)− 2(z1 + T )(z2 + T )]
= q1q2 R−3[(x1x2 + y1y2)− 2z1z2] + R−3[−2T z1 − 2T z2 − 2T 2],

and for the third term,

q1q2 R−3 1

2
(3(z1 + T )2 − x2

1 − y2
1 − (z1 + T )2)

= q1q2 R−3
[

1/2(3z2
1 − r2

1 )+
1

2
(6T z1 + 3T 2 − 2T z1 − T 2)

]
.
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If somebody still had illusions that the coordinate system dependence is negligible, then this is
the time to change this opinion. Evidently, each term depends on what we chose as T , and T
can be anything! If I were really malicious, then I would get monstrous dependence on T .

Now, let us add all the individual terms together to form the complete set for k + l = 2:

q1q2

{
R−3

[
1

2
(3z2 − r2

2 )+ (2T z2 + T 2)

]
+ R−3[(x1x2 + y1y2)− 2z1z2]

+ R−3[−2T z1 − 2T z2 − 2T 2] + R−3[1/2(3z1 − r2
1 )+ (2T z1 + T 2)]}

= q1q2 R−3{1/2(3z2 − r2
2 )+ [(x1x2 + y1y2)− 2z1z2] + 1/2(3z1 − r2

1 )}.

The dependence on T disappeared as if by magic.7 The complete set does not depend on T .
This is what I wanted to show.

Convergence of the Multipole Expansion

At this point, I owe the reader the explanation about the convergence of the multipole expansion
(point c, Fig. X.4). Well,

we may demonstrate that the multipole expansion convergence depends on how the
molecules are located in space with respect to one another. The convergence criterion
reads

|r2 − r1| < |R|, (X.11)

where r1 denotes the vector pointing the particle 1 from its coordinate system origin,
similarly the vector r2.

The reader will convince himself easily if he draws two spheres that are tangent (this is the
most dangerous situation) and then considers possible r1 and r2 vectors. Whatever the r1 and
r2 vectors are, our criterion will be fulfilled. The criterion is, however, even more general than
allowing two non-overlapping spheres. It is easy to find such locations of the two particles
that are outside the spheres, and yet the convergence criterion is fulfilled. For instance, let us
take two intersecting spheres (Fig. X.4c) with the radii ρ1and ρ2 (their centers are on the x-
axis), as well as the vectors r1 = (0, ρ1, 0) and r2 = (0, u, 0), where u = ρ1 + R/10. Then,
|r2 − r1| = R/10 < R; i.e., the convergence criterion is satisfied despite the fact that particle 2
is outside its sphere.

For our purposes, it is sufficient to remember that

7 We may prove that is also equal, but arbitrary rotations of both coordinate systems about the z-axis lead to a
similar invariance of the interaction energy.
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(a)

(b)

(c)

(d)

Fig. X.4. Convergence of the multipole expansion. The expansion converges in situations (a–c), and diverges in (d).

when the two particles are in their non-overlapping spheres, then the multipole expansion
converges.

Our goal is application of the multipole expansion in the case of the intermolecular interac-
tions. Are we able to enclose both molecules in two non-overlapping spheres? Sometimes we
certainly are not; e.g., if a small molecule A is to be docked in a cavity of a large molecule B.
This is a very interesting case (Fig. X.4d), but what we have most often in quantum chemistry
are two distant molecules. So, is everything all right? Apparently the molecules can be enclosed
in the spheres, but if we recall that the electronic density extends to infinity (although it decays
very fast), then we feel a little scared. Almost the whole density distribution could be enclosed
inside such spheres, but some of it also exists outside the spheres. It turns out that this very fact
causes
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the multipole expansion for the interaction energy of such diffused charge distributions
diverges; i.e., if we go to very high terms, we will get infinity.

However strange it could look, in mathematics we are able to extract very useful information
also from divergent series, if they converge asymptotically; see p. 249. This is precisely the
situation with the multipole expansion applied to the diffuse charge distributions as molecules
have. This is why the multipole expansion is useful.8 It has also an important advantage to be
physically appealing, because thanks to this, we may interpret the interaction energy in terms
of properties of the individual interacting molecules (their charges, dipole, quadrupole, etc.
moments).

8 If the computation were feasible with very high accuracy, then the multipole expansion might be of little
importance.
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Pauli Deformation

Two molecules, when isolated (say at infinite distance), are independent and the wave function of
the total system might be taken as a product of the wave functions for the individual molecules.
When the same two molecules are at a finite distance, then any product-like function represents
only an approximation (sometimes a very poor one1), because according to a postulate of
quantum mechanics, the wave function has to be antisymmetric with respect to the exchange
of electronic labels, while the product does not fulfill that. More exactly, the approximate wave
function has to belong to the irreducible representation of the symmetry group of the Hamiltonian
(see Appendix C available at booksite.elsevier.com/978-0-444-59436-5, p. e17), to which the
ground-state wave function belongs. This means, first of all, that the Pauli exclusion principle
is to be satisfied.

Pauli Deformation
The product-like wave function has to be antisymmetrized. This makes some changes
in the electronic charge distribution (electronic density), which will be called the Pauli
deformation.

The Pauli deformation may be viewed as a mechanical distortion of both interacting molecules
due to their mutual pushing. The reason why two gumballs deform when pushed against each
other is the same: the electrons of one ball cannot occupy the same space as the electrons (with
the same spin coordinates) of the second ball. The most dramatic deformation takes place close
to the contact area of these balls.

The norm of the difference of ϕ(0) and ψ(0) represents a very stringent measure of difference
between two functions: any deviation gives a contribution to the measure. We would like to
know how the electronic density changes, where the electrons flows from, and where they go.
The electron density ρ (a function of the position in space) is defined as a sum of densities ρi

of the particular electrons:

ρ
(
x, y, z

) = N∑
i=1

ρi
(
x, y, z

)
1 For instance, when the intermolecular distance is short, then the molecules push one another and deform (maybe

strongly), and the product-like function is certainly inadequate.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00045-3
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ρi
(
xi , yi , zi

) = + 1
2∑

σi=− 1
2

∫
dτ

dτi
|ψ |2 , (Y.1)

where dτ = dτ1dτ2 · · · dτN , and so the integration goes over the coordinates (space and spin) of
all the electrons except the electron i . In addition, there is a summation over the spin coordinate
of the electron i because we are not interested in its value. As is seen, the integral of ρ(x, y, z)
over x, y, and z is equal to N ; therefore, ρ(x, y, z) represents an electron cloud carrying N
electrons, the same as defined in Eq. (11.3) on p. 666. We make the two molecules approach
each other without changing their charge distribution (the system is described by the electron
density corresponding to the wave function ψ = ϕ(0)), and then we allow the Pauli exclusion
principle to operate in order to ensure the proper symmetry of the wave function (the system,
therefore, is described by a new wave function ψ = ψ(0)) by applying a suitable projection
operator. What happens to the electronic density? Will it change or not?

Let us see what happens when we make such an approach of two hydrogen atoms and then
of two helium atoms.

H2 Case

In the case of two hydrogen atoms2 ϕ(0) = 1sa(1)α(1)1sb(2)β(2) ≡ a(1)α(1)b(2)β(2), where
we have used the abbreviation 1sa(1) ≡ a and 1sb(1) ≡ b. After inserting ψ = ϕ(0) into
Eq. (Y.1), and then integrating over space and summation over spin coordinates, we obtain

ρ(0) = ρ1
(
x, y, z

)+ ρ2
(
x, y, z

)
, where ρ1

(
x, y, z

) =∑+ 1
2

σ1=− 1
2

∫ dτ
dτ1
|a(1)α(1)b(2)β(2)|2 =∑+ 1

2

σ1=− 1
2

∫
dτ2 |a(1)α(1)b(2)β(2)|2 = a2.

Similarly, ρ2
(
x, y, z

) = ∑+ 1
2

σ2=− 1
2

∫ dτ
dτ2
|a(1)α(1)b(2)β(2)|2 = ∑+ 1

2

σ2=− 1
2

∫
dτ1|a(1)α(1)

b(2)β(2)|2 = b2. Thus, finally, ρ(0) = a2 + b2. This density is normalized to 2, as it must,
because the electron cloud ρ

(
x, y, z

)
carries two electrons. Now, let us do the same for the

wave function ψ(0) = NÂϕ(0), where Â stands for the idempotent projection operator 13.26,
and the normalization constant N = 2√

1+S2 with S = (a|b), all quantities described in Chapter
13 about the symmetry-adapted perturbation theory (SAPT):

ρ
(
x, y, z

) = ρ1
(
x, y, z

)+ ρ2
(
x, y, z

)
,

ρ1
(
x, y, z

) = ∑
σ1=± 1

2

∫
dτ2

∣∣∣ψ(0)∣∣∣2

2 We assign arbitrarily the spin function α to electron 1 and the spin function β to electron 2. We might have done
in the opposite way; it does not change anything.
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= N 2 1

8

∫
dV2

[
a(1)b(2)+ a(2)b(1)

]2∑
σ1

∑
σ2

1

2

[
α(1)β(2)− α(2)β(1)]2

= N 2 1

8

∫
dV2

[
a(1)b(2)+ a(2)b(1)

]2
= N 2 1

8

(
a2 + b2 + 2abS

) = 1

2
(
1+ S2

) (a2 + b2 + 2abS
)
,

ρ2
(
x, y, z

) = ρ1
(
x, y, z

)
.

As is shown here, the density ρ1
(
x, y, z

)
is normalized to 1, which is what we would get

after integration over dV1. A similar calculation for ρ2 would give the same result because∣∣ψ(0)∣∣2 is symmetric with respect to the exchange of electrons3 1 and 2. Therefore, the change
of the electron density due to the proper symmetry projection (including the Pauli exclusion
principle):

ρ − ρ(0) = a2 + b2 + 2abS

1+ S2 − (a2 + b2) = 2S

1+ S2 ab − S2

1+ S2 a2 − S2

1+ S2 b2. (Y.2)

Thus, it turns out that as a result of the Pauli exclusion principle (i.e., of the antisymmetrization
of the wave function), an electron density a2S2/(1 + S2) flows from atom a, and a similar
thing happens to atom b, where the electronic density decreases by b2S2/(1+ S2). Both these
electronic clouds go to the bond region–we find them as an electron cloud 2abS/(1+ S2) with
a maximum in the bond, and of course, the integral of ρ − ρ(0) equals zero (Fig.     Y.1a).

Thus,

in the hydrogen molecule, the Pauli exclusion principle caused the two atoms to stick
together (the two electrons increase the probability that they are in the region between the
two nuclei).

This is what the Pauli exclusion principle dictates. Besides that, of course, we have all the
physical interactions (i.e., electron repulsion, attraction with the nuclei) and the kinetic energy,
but none of these effects have been taken into account.4 Fig.    Y.1a shows the deformation that
results only from forcing the proper symmetry in the wave function.

3 This was not the case for ϕ(0).
4 Indeed, all these effects have been ignored because we neither calculated the energy nor used the Hamiltonian.

However, the very fact that we write ϕ(0) = a(1)α(1)b(2)β(2), where a and b stand for the properly cen-
tered 1s orbitals, means that the electron-nucleus interaction has been implicitly taken into account (this is why
the 1s orbital appears). Similarly, when we project the product like function and obtain ψ(0) proportional to[
a(1)b(2)+ a(2)b(1)

] [
α(1)β(2)− α(2)β(1)], then in addition to the abovementioned electron-nucleus interac-

tions (manifested by the 1s orbitals), we obtain an interesting effect: when one electron is on nucleus a, then
the second electron runs to nucleus b. It looks as if they repelled each other. This is, however, at the level of the
mathematical formula of the function (function design), as if the function already has been quite well designed
for the future, taking into account the physical interactions.
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(a) (b)

Fig. Y.1. Comparison of the Pauli deformation for two hydrogen atoms and for two helium atoms. (a) Two hydrogen atoms.
Visualization of ρ − ρ(0) calculated in the plane containing the nuclei (the net result is zero). One of the protons is located at the
origin, and the other has the coordinates (0, R, 0), with R = 1.4 a.u. (the distance close to the equilibrium). For this distance, the

overlap integral (see Appendix R available at booksite.elsevier.com/978-0-444-59436-5, p. e137) S = (1 + R + R2

3 )exp(−R)
amounts to 0.752943. As we can see, the electronic density has flown from the nuclei to the bond. (b) Two helium atoms. The only
difference with respect to (a) is that two electrons have been added. But the visualization of ρ − ρ(0) reveals a completely different
pattern. This time, the electronic density has been removed from the bond region and increased in the region of the nuclei.

He2 Case

Let us see what happens if we make similar calculations for the two helium atoms. In order to
compare the future result with the H2 case, let us keep everything the same (the internuclear
distance R, the atomic orbitals, the overlap integral S, etc.), except that the number of electrons
changes from two to four. This time, the calculation will be a little more tedious because four-
electron wave functions are more complicated than two-electron functions. For instance, the
function ϕ(0) can be approximated as the product of the two Slater determinants–one for atom
a, and the other for atom b:

ϕ(0) = N

∣∣∣∣aα(1) aα(2)
aβ(1) aβ(2)

∣∣∣∣
∣∣∣∣bα(3) bα(4)
bβ(3) bβ(4)

∣∣∣∣
= N ′a(1)a(2)b(3)b(4)

[
1√
2

[
α(1)β(2)− α(2)β(1)]]

×
[

1√
2

[
α(3)β(4)− α(4)β(3)]] , (Y.3)

where the normalization constant N ′ = 1 (which is easy to verify: just square the function and
integrate – all that by heart). Then we obtain directly from the definition5

ρ(0) = ρ1 + ρ2 + ρ3 + ρ4 = 2a2 + 2b2,

which after integration gives four electrons, as it should be. The functionϕ(0) is “illegal” because
it does not fulfill the Pauli exclusion principle; e.g., the exchange of electrons 1 and 3 does not
lead to a change of sign of the wave function.

5 This also may be calculated in one’s head (note that the spin functions in the square brackets are normalized).

http://booksite.elsevier.com/978-0-444-59436-5
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Now let us focus on ψ(0). Note that ϕ(0) of Eq. (Y.3) may be written alternatively as:

ϕ(0) = N

∣∣∣∣∣∣∣∣
aα(1) aα(2) 0 0
aβ(1) aβ(2) 0 0

0 0 bα(3) bα(4)
0 0 bβ(3) bβ(4)

∣∣∣∣∣∣∣∣
,

where N is a normalization constant.
Antisymmetrization of ϕ(0), in which electrons 1 and 2 occupy orbital a and electrons 3 and

4 occupy orbital b, is equivalent to completing the Slater determinant6 in a way that allows the
exchange of electrons between the subsystems:

ψ(0) = N
1

2

(
1+ I

)
Âϕ(0) = N

1

2

(
1+ I

)
∣∣∣∣∣∣∣∣
aα(1) aα(2) aα(3) aα(4)
aβ(1) aβ(2) aβ(3) aβ(4)
bα(1) bα(2) bα(3) bα(4)
bβ(1) bβ(2) bβ(3) bβ(4)

∣∣∣∣∣∣∣∣

= N

∣∣∣∣∣∣∣∣
aα(1) aα(2) aα(3) aα(4)
aβ(1) aβ(2) aβ(3) aβ(4)
bα(1) bα(2) bα(3) bα(4)
bβ(1) bβ(2) bβ(3) bβ(4)

∣∣∣∣∣∣∣∣
,

where according to 13.26, Â stands for the idempotent antisymmetrization operator and 1
2 (1+ I )

represents an idempotent symmetrization operator acting on the nuclear coordinates. What
follows from that last equality is that this particular Slater determinant is already symmetric
with respect to the exchange of the nuclei,7 which is equivalent to a ↔ b.

Any determinant is invariant with respect to the addition of any linear combination of its
rows (columns) to a given row (column). For reasons that soon will become clear, let us create
a series of such operations. First, let us add the third row to the first one, then multiply the
third row by 2 (any multiplication is harmless for the determinant, because at the end it will be
normalized), and then subtract the first row from the third one. Next, let us perform a similar
series of operations applied to rows 2 and 4 (instead of 1 and 3), and finally, let us multiply rows
1 and 2 by 1√

2
(
1+S

) , and rows 3 and 4 by 1√
2
(
1−S

) . The result of these operations is the Slater

determinant with the doubly occupied bonding molecular orbital σ = 1√
2
(
1+S

)(a + b) and the

6 The Slater determinant containing linearly independent spin orbitals guarantees the antisymmetry.
7 This corresponds to the exchange of rows in the determinant: the first with the third, and the second with the fourth.

A single exchange changes the sign of the determinant, so the two exchanges leave the determinant invariant.
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doubly occupied antibonding molecular orbital σ ∗ = 1√
2
(
1−S

)(a − b):

ψ(0) = 1√
4!

∣∣∣∣∣∣∣∣
σα(1) σα(2) σα(3) σα(4)
σβ(1) σβ(2) σβ(3) σβ(4)
σ ∗α(1) σ ∗α(2) σ ∗α(3) σ ∗α(4)
σ ∗β(1) σ ∗β(2) σ ∗β(3) σ ∗β(4)

∣∣∣∣∣∣∣∣

All the spin orbitals involved are orthonormal (in contrast to what was in the original deter-
minant) and the corresponding electronic density is easy to write–it is the sum of squares of the
molecular orbitals multiplied by their occupancies (cf., p. e142):

ρ(x, y, z) = 2σ 2 + 2
(
σ ∗
)2
.

Now let us compute the Pauli deformation:

ρ − ρ(0) = a2 + b2 + 2ab

1+ S
+ a2 + b2 − 2ab

1− S
− 2(a2 + b2)

= − 4S

1− S2 ab + 2S2

1− S2 a2 + 2S2

1− S2 b2. (Y.4)

Integration of the difference gives zero, as it should. Note that the formula is similar to what
we have obtained for the hydrogen molecule, but this time, the electron flow is completely
different (Fig.                               Y.1b).

In the case of He2, the Pauli exclusion principle makes the electron density decrease in
the region between the nuclei and increase close to the nuclei. In the case of the hydrogen
molecule, the two atoms stuck together, while the two helium atoms deform as if they were
gumballs squeezed together (i.e., the Pauli deformation).
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(a)

(b)

(c)

(d)

Fig. Y.2. The locality of the Pauli deformation (scheme). (a) Two polymeric chains A and B (with the electronic densities in the
form of the elongated rectangles corresponding to the isolated molecules A and B) approach one another. (b) The Pauli deformation
consists of the two density gains (the rectangles with +) and a single electron loss (the rectangles with −). Let us assume that
the surfaces of the rectangles are equal to the corresponding integrals of the charge distributions −4S/(1 − S2)ab in the contact
region, 2S2/(1 − S2)a2 on the molecule A and 2S2/(1 − S2)b2 on the polymer B. This is why the electron density loss has the
rectangle twice as large as any of the electron density gains. (c) A partial Pauli deformation: the density gain 2S2/(1− S2)a2 for
the molecule A has been added to the initial density distribution, similarly for the molecule B (the rectangles became larger, but
locally the corresponding increase is small). (d) In order to represent the total Pauli deformation from the result obtained in point
c, we subtracted the density distribution 4S/(1 − S2)ab that is located in the contact region. As a result, the Pauli deformation,
when viewed locally, is large only in the contact region.

The only thing that has been changed with respect to the hydrogen molecule is the increase
of the number of electrons from two to four (we have kept unchanged the orbital exponents
equal to 1, as well as the internuclear distance, which is equal to 4 a.u.). This change resulted
in a qualitative difference in the Pauli deformation.

Two Large Molecules

For two helium atoms, the Pauli deformation means a decrease in the electron density in the
region between the nuclei and the corresponding increase of the density on the nuclei. This looks
dangerous! What if instead of the two helium atoms, we had two closed-shell long molecules
A and B, which touch each other by their terminal parts? Would the Pauli deformation be local,
or would it extend over the whole system? Would the distant parts of the molecules deform as
much as the contact regions?

The answer may be deduced from Eq. (Y.4), see Fig.Y.2. The formula suggests that the
electronic density change pertains to the whole system. When the formula has been derived,



e190 Appendix Y

we have concentrated on two helium atoms. However, nothing would change in the derivation
if we had in mind a doubly occupied molecular orbital a that extends over the whole polymer
A and a similar orbital b that extends over B. In such a case, Eq. (Y.4) would be identical.
The formula says that the three deformation contributions cancel if we integrate them over the
total space.8 The first deformation means a density deficiency (minus sign), and the two others
mean the density gains (plus sign). The first of these contributions is certainly located close to
the contact region of A and B. The two others (of the same magnitude) have the spatial form,
such as a2 and b2 (i.e., extend over the whole polymer chains A and B!), but are scaled by
the factor 2S2/(1− S2). Since the contributions cancel in space (when integrated), this means
that the density gain extends over the polymeric molecules and, therefore, locally is very small;
the larger the interacting molecules, the smaller the local change. The situation, therefore, is
similar to an inflatable balloon being pressed by your finger. We have a large deformation at
the contact region that corresponds to − 4S

1−S2 ab, but in fact the whole balloon deforms. Just
because this deformation has to extend over the whole balloon, the local deformation on the other
side of the toy is extremely small. Therefore, common sense has gotten a quantum mechanical
explanation.9

This means that the Pauli deformation has a local character: it takes place almost exclu-
sively in the region of the contact of both molecules.

Two Final Remarks

• The Pauli deformation treated as a spatial charge density distribution has a region with the
positive charge (some electron density flowed off there) and the negative charge (where
the electron density increased). The Pauli charge distribution participates in the Coulombic
interactions within the system. If such an interaction were to be represented by a multipole-
multipole interaction, then the Pauli deformation has no monopole, or charge. In general,
the other multipole moments of the Pauli deformation are nonzero. In particular, the Pauli
deformation multipoles resulting from the exchange interaction of the molecules A and
B may interact with the electric multipoles of the molecule C, thus contributing to the
three-body effect.

• If the two systems A and B approach each other in such a way that S = 0, then the Pauli
deformation is zero. S = 0 might occur; e.g., if the two molecules would approach along
the nodal surfaces of the frontier molecular orbitals.

8 But of course, at a given point they do not cancel in general.
9 This development is good for both of them.
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Acceptor-Donor Structure Contributions
in the MO Configuration

In Chapter 14, the Slater determinants have been constructed in three different ways using the
following:

• Molecular orbitals (MO picture)
• Acceptor and donor orbitals (AD picture)
• Atomic orbitals (VB picture).

Then, a problem appeared: how do you express one picture by another? In particular, this has
been important for expressing the MO picture in the AD one. More specifically, we are interested
in calculating the contribution of an acceptor-donor structure1 in the Slater determinant written
in the MO formalism, where the MOs are expressed by the donor (n) and acceptor (χ and χ∗)
orbitals in the following way:

ϕ1 = a1n + b1χ − c1χ
∗

ϕ2 = a2n − b2χ − c2χ
∗

ϕ3 = −a3n + b3χ − c3χ
∗.

(Z.1)

We assume that {ϕi } form an orthonormal set. For simplicity, it is also assumed that in the first
approximation, the orbitals {n, χ, χ∗} are also orthonormal. Then we may write that a Slater
determinant in the MO picture (denoted by Xi ) represents a linear combination of the Slater
determinants (Y j ) that contains exclusively the donor and the acceptor orbitals:

Xi =
∑

j

Ci
(
Y j
)

Y j ,

where the coefficient Ci
(
Yk
) = 〈Yk |Xi 〉 at the Slater determinant Yk is the contribution of the

acceptor-donor structure Yk in Xi .
In Chapter 14, three particular cases are highlighted, and they will be derived below. We will

use the antisymmetrizer Â = 1
N !
∑

P

(−1
)p

P̂ introduced in Chapter 10 (P̂ is the permutation
operator, and p is its parity).

1 That is, of a Slater determinant built of the acceptor and of the donor orbitals.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00046-5
© 2014 Elsevier B.V. All rights reserved. e191
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Case C0
(
DA

)

The C0
(
D A

)
coefficient means a contribution of the structure n2χ2; i.e.,

�
(
D A

) = (4!)− 1
2 det

[
nn̄χχ̄

] = (4!) 1
2 Â

[
nn̄χχ̄

]
in the ground-state Slater determinant

�0 =
(
4!)− 1

2 det
[
ϕ1ϕ̄1ϕ2ϕ̄2

] = (4!) 1
2 Â

[
ϕ1ϕ̄1ϕ2ϕ̄2

]
. We have to calculate

C0
(
D A

) = 〈Yk |Xi 〉 =
〈
�
(
D A

) |�0
〉 = 4!

〈
Â
[
nn̄χχ̄

] | Â [ϕ1ϕ̄1ϕ2ϕ̄2
]〉

= 4!
〈[

nn̄χχ̄
] | Â2 [ϕ1ϕ̄1ϕ2ϕ̄2

]〉 = 4!
〈[

nn̄χχ̄
] | Â [ϕ1ϕ̄1ϕ2ϕ̄2

]〉
= 4!

〈[
n(1)n̄(2)χ(3)χ̄(4)

] | Â [ϕ1(1)ϕ̄1(2)ϕ2(3)ϕ̄2(4)
]〉
,

where we have used that Â is Hermitian and idempotent. Next, one has to write down all 24
permutations

[
ϕ1 (1) ϕ̄1 (2) ϕ2 (3) ϕ̄2 (4)

]
(taking into account their parity) and then perform

integration over the coordinates of all four electrons (together with summation over spin vari-
ables):

C0
(
D A

) = ∫ dτ1dτ2dτ3dτ4
[
n(1)n̄(2)χ(3)χ̄(4)

]∗∑
P

(−1
)p

P
[
ϕ1(1)ϕ̄1(2)ϕ2(3)ϕ̄2(4)

]
.

For the integral to survive, it has to have perfect matching of the spin functions between[
n(1)n̄(2)χ(3)χ̄(4)

]
and P̂

[
ϕ1(1)ϕ̄1(2)ϕ2(3)ϕ̄2(4)

]
. This makes 20 of those permutations

vanish! Only 4 integrals will survive:

C0
(
D A

) = ∫
dτ1dτ2dτ3dτ4

[
n(1)n̄(2)χ(3)χ̄(4)

]∗ [
ϕ1(1)ϕ̄1(2)ϕ2(3)ϕ̄2(4)

]
−
∫

dτ1dτ2dτ3dτ4
[
n(1)n̄(2)χ(3)χ̄(4)

]∗ [
ϕ1(1)ϕ̄1(4)ϕ2(3)ϕ̄2(2)

]
−
∫

dτ1dτ2dτ3dτ4
[
n(1)n̄(2)χ(3)χ̄(4)

]∗ [
ϕ1(3)ϕ̄1(2)ϕ2(1)ϕ̄2(4)

]
+
∫

dτ1dτ2dτ3dτ4
[
n(1)n̄(2)χ(3)χ̄(4)

]∗ [
ϕ1(3)ϕ̄1(4)ϕ2(1)ϕ̄2(2)

]
=
∫

dτ1n(1)∗ϕ1(1)
∫

dτ2n̄(2)∗ϕ̄1(2)
∫

dτ3χ(3)
∗ϕ2(3)

∫
dτ4χ̄ (4)

∗ϕ̄2(4)

−
∫

dτ1n(1)∗ϕ1(1)
∫

dτ2n̄(2)∗ϕ̄2(2)
∫

dτ3χ(3)
∗ϕ2(3)

∫
dτ4χ̄(4)

∗ϕ̄1(4)

−
∫

dτ1n(1)∗ϕ2(1)
∫

dτ2n̄(2)∗ϕ̄1(2)
∫

dτ3χ(3)
∗ϕ1(3)

∫
dτ4χ̄ (4)

∗ϕ̄2(4)

+
∫

dτ1n(1)∗ϕ2(1)
∫

dτ2n̄(2)∗ϕ̄2(2)
∫

dτ3χ(3)
∗ϕ1(3)

∫
dτ4χ̄(4)

∗ϕ̄1(4)
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= (a1
)2 (−b2

)2 − a1a2
(−b2

)
b1 − a2a1b1

(−b2
)+ (a2

)2 (
b1
)2

= (a1
)2 (

b2
)2 + a1a2b2b1 + a2a1b1b2 +

(
a2
)2 (

b1
)2 = a1b2

(
a1b2 + a2b1

)
+ a2b1

(
a1b2 + a2b1

)
= (a1b2 + a2b1

)2 = ∣∣∣∣a1 a2

b1 −b2

∣∣∣∣
2

.

Hence,

C0
(
D A

) = ∣∣∣∣a1 a2

b1 −b2

∣∣∣∣
2

,

which agrees with the formula on p. 925.

Case C2
(
DA

)

The C2
(
D A

)
represents the contribution of the structure �

(
D A

) = (
4!) 1

2 Â
[
nn̄χχ̄

]
in the

Slater determinant corresponding to the double excitation �2d = (4!) 1
2 Â
[
ϕ1ϕ̄1ϕ3ϕ̄3

]
. We are

interested in the integral

C2
(
D A

) = 〈� (D A
) |�2d

〉 = 4!
〈[

n(1)n̄(2)χ(3)χ̄(4)
] | Â [ϕ1(1)ϕ̄1(2)ϕ3(3)ϕ̄3(4)

]〉
.

This case is very similar to the previous one. The only difference is the substitution ϕ2 → ϕ3.
Therefore, everything goes the same way as before, but this time, we obtain

C2
(
D A

) = ∫
dτ1n(1)∗ϕ1(1)

∫
dτ2n̄(2)∗ϕ̄1(2)

∫
dτ3χ(3)

∗ϕ3(3)
∫

dτ4χ̄(4)
∗ϕ̄3(4)

−
∫

dτ1n(1)∗ϕ1(1)
∫

dτ2n̄(2)∗ϕ̄3(2)
∫

dτ3χ(3)
∗ϕ3(3)

∫
dτ4χ̄ (4)

∗ϕ̄1(4)

−
∫

dτ1n(1)∗ϕ3(1)
∫

dτ2n̄(2)∗ϕ̄1(2)
∫

dτ3χ(3)
∗ϕ1(3)

∫
dτ4χ̄ (4)

∗ϕ̄3(4)

+
∫

dτ1n(1)∗ϕ3(1)
∫

dτ2n̄(2)∗ϕ̄3(2)
∫

dτ3χ(3)
∗ϕ1(3)

∫
dτ4χ̄ (4)

∗ϕ̄1(4)

or

C2
(
D A

) = (a1
)2 (

b3
)2 − a1

(−a3
)

b3b1 −
(−a3

)
a1b1b3 +

(−a3
)2 (

b1
)2

= (a1
)2 (

b3
)2 + a1a3b3b1 + a3a1b1b3 +

(
a3
)2 (

b1
)2

= (a1b3 + a3b1
)2 = ∣∣∣∣ a1 b1

−a3 b3

∣∣∣∣
2

.

We have

C2
(
D A

) = ∣∣∣∣ a1 b1

−a3 b3

∣∣∣∣
2

,

which also agrees with the result used on p. 925.
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Case C3
(
DA

)

In this case, we have to compute the contribution of �
(
D A

) = (4!) 1
2 Â

[
nn̄χχ̄

]
in the Slater

determinant �3d =
(
4!) 1

2 Â
[
ϕ2ϕ̄2ϕ3ϕ̄3

]
; therefore

C2
(
D A

) = 〈� (D A
) |�3d

〉 = 4!
〈[

n(1)n̄(2)χ(3)χ̄(4)
] | Â [ϕ2(1)ϕ̄2(2)ϕ3(3)ϕ̄3(4)

]〉
.

This case is similar to the previous one, but we have to exchange ϕ1 → ϕ2. We obtain

C3
(
D A

) = ∫
dτ1n(1)∗ϕ2(1)

∫
dτ2n̄(2)∗ϕ̄2(2)

∫
dτ3χ(3)

∗ϕ3(3)
∫

dτ4χ̄ (4)
∗ϕ̄3(4)

−
∫

dτ1n(1)∗ϕ2(1)
∫

dτ2n̄(2)∗ϕ̄3(2)
∫

dτ3χ(3)
∗ϕ3(3)

∫
dτ4χ̄ (4)

∗ϕ̄2(4)

−
∫

dτ1n(1)∗ϕ3(1)
∫

dτ2n̄(2)∗ϕ̄2(2)
∫

dτ3χ(3)
∗ϕ2(3)

∫
dτ4χ̄ (4)

∗ϕ̄3(4)

+
∫

dτ1n(1)∗ϕ3(1)
∫

dτ2n̄(2)∗ϕ̄3(2)
∫

dτ3χ(3)
∗ϕ2(3)

∫
dτ4χ̄ (4)

∗ϕ̄2(4)

or

C3
(
D A

) = (a2
)2 (

b3
)2 − a2

(−a3
)

b3
(−b2

)− (−a3
)

a2
(−b2

)
b3 +

(−a3
)2 (−b2

)2
= (a2

)2 (
b3
)2 − a2a3b3b2 − a3a2b2b3 +

(
a3
)2 (

b2
)2

= a2b3
[
a2b3 − a3b2

]− a3b2
[
a2b3 − a3b2

]
= (a2b3 − a3b2

)2 = ∣∣∣∣ a2 −b2

−a3 b3

∣∣∣∣
2

.

Finally,

C3
(
D A

) = ∣∣∣∣ a2 −b2

−a3 b3

∣∣∣∣
2

,

and again, the agreement with the formula on p. 925 is obtained.
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AD acceptor-donor method: A theoretical description of a chemical reaction in
terms of acceptor molecular orbitals (MOs) and donor MOs.

AIM atoms in molecules: An analysis of the critical points of the molecular elec-
tron density distribution that leads to its unique partition into atomic contri-
butions.

AMO Alternant Molecular Orbitals: A version of the unrestricted Hartree-Fock
(UHF) method, in which the occupied orbitals are modified by admixtures
of virtual orbitals.

AO Atomic Orbital: A function of an electron’s position in space, centered in a
point and decaying exponentially, like Slater-type orbitals (STOs) or Gaus-
sian type orbitals (GTOs), at large distances from the center.

BFCS Body-fixed coordinate system: The coordinate system fixed on the moving
molecule.

BO Born-Oppenheimer approximation: An approximation assuming that the
electrons move in the field of the clamped nuclei, while the nuclei move
in the potential energy being the electronic energy.

BOAS Bond-Order Alternating Solution: The electronic density distribution that
breaks the translational symmetry of the nuclear framework by doubling the
period.

BSSE Basis Set Superposition Error: An error in the calculation of intermolecular
interaction energy stemming from using an incomplete basis set of atomic
orbitals (AOs) and calculation of the energies of isolated molecules by using
only their own basis sets of AOs.

B3LYP Becke-Lee-Young-Parr Density Functional Theory: A semiempirical density
functional theory (DFT) method of hybrid type; i.e., with the exchange-
correlation potential composed of several empirical contributions.

CAS SCF Complete Active Space Self-Consistent Field: An iterative and variational
method of solving the Schrödinger equation with the variational wave func-
tion in the form of a linear combination of all the Slater determinants (coef-
ficients and spinorbitals are determined variationally) that can be built from
a limited set of the spinorbitals (forming the active space).

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00051-9
© 2014 Elsevier B.V. All rights reserved. 1013
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CC Coupled Cluster: A non-variational method of solving the Schrödinger equa-
tion with the wave function in the form of an exponential operator (to be
determined) acting on the Hartree-Fock wave function.

CCSD Coupled Cluster Singles and Doubles: A non-variational method of solving
the Schrödinger equation with the wave function in the form of an exponential
operator (with the explicit presence of the single and double excitations, their
contribution to be determined in the method) acting on the Hartree-Fock wave
function.

CCSD(T) Coupled Cluster Singles and Doubles with Triples: A non-variational method
of solving the Schrödinger equation with the wave function in the form of
an exponential operator (with the explicit presence of the single and double
excitations, their contribution to be determined in the method, and approxi-
mate contribution from the triple excitation) acting on the Hartree-Fock wave
function.

CI Configuration Interaction: A variational method with the trial wave
function in the form of a linear combination of the given set of the Slater
determinants.

CIS Configuration Interaction Singles: A variational method with the trial wave
function in the form of a linear combination of the given set of the singly
excited Slater determinants.

CISD Configuration Interaction Singles and Doubles: A variational method with
the trial wave function in the form of a linear combination of the given set
of the singly and doubly excited Slater determinants.

CISDT Configuration Interaction Singles, Doubles, and Triples: A variational
method with the trial wave function in the form of a linear combination
of the given set of the singly, doubly, and triply excited Slater determinants.

CP Counter-poise: A method of elimination of the basis set superposition error
(BSSE) in the intermolecular interaction energy by calculating all quantities
using the basis set of atomic orbitals (AOs) of the whole system.

CSB Charge-Shift Bonding: Two maxima of the electron localization function
(ELF) in a chemical bond, interpreted as the manifestation of resonance of
two ionic structures.

CSF Configuration State Function: An expansion function in the configuration
interaction (CI) method that has the same symmetry and spin state as those
of the exact wave function.

CT Charge Transfer: The intermolecular transfer of an electric charge being a
difference between the electric charge distribution in the isolated molecules
and in their complex.
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DC Dirac-Coulomb: An approximate and many-electron quasi-relativistic the-
ory, in which the one-electron Hamiltonians are the Dirac relativistic Hamil-
tonians, whereas the electron-electron interaction operators are represented
uniquely by the (non-relativistic) Coulomb interactions.

DFT Density Functional Theory: A theory in which the total energy of a
molecule depends on its electron density distribution.

DODS Different Orbitals for Different Spins: Another name for the UHF method.
See UHF.

DRC Distinguished Reaction Coordinate: A selected distance changing from the
value of the reactants to the value of the products of an elementary chemical
reaction.

ELF Electron Localization Function: A measure, defined in the density functional
theory (DFT), of the tendency to occupy a point of space by an electron pair.

EOM-CC Equation-of-Motion Coupled Cluster: A non-variational method of solving
the Schrödinger equation for excited states (related to the equation of motion,
EOM), with the wave function calculated in the coupled cluster (CC) method.

FBZ First Brillouin Zone: The set of vectors of the inverse space in a periodic
system, which correspond to all possible distinct Bloch functions.

FCI Full Configuration Interaction: A configuration interaction (CI) method with
all possible excitations from a given finite set of molecular orbitals (MOs).

FEMO Free Electron Molecular Orbitals: π – electrons in a molecule treated as free
electrons in a box.

FF Force Field: A simple mathematical expression mimicking the electronic
energy as a function of the positions of the nuclei.

FF Finite Field: Method of solving the Schrödinger equation for a molecule
in an external field with the molecule-field interaction term included in the
Hamiltonian.

FVAO Field-Variant Atomic Orbital: An atomic orbital (AO) that depends on the
external electric field intensity.

GEA Gradient Expansion Approximation: A class of the DFT functionals that take
into account a nonlocal character of the exchange-correlation energy through
a gradient correction.

GHF General Hartree-Fock: A Hartree-Fock method with spinorbitals of the most
general form.

GIAO Gauge-Including Atomic Orbital: A method of calculating a molecule in the
magnetic field that ensures the invariance of the results with respect to the
choice of the origin of the vector potential describing the magnetic field.
Formerly, the spellout was gauge-invariant atomic orbital.
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GTO Gaussian Type Orbital: An atomic orbital (AO) with an exponential decaying
exp (−ζr2), where r stands for the distance from a given point in space
(“center”), and ζ > 0.

HF Hartree-Fock: A variational method with the trial wave function in the form
of a single Slater determinant.

HOMO Highest Occupied Molecular Orbital: The highest (in terms of energy scale)
occupied molecular orbital (MO).

HTS High-Temperature Superconductor: A crystalline substance exhibiting
superconductivity with an unusually high critical temperature.

IRC Intrinsic Reaction Coordinate: The steepest descent curve in the space of the
nuclear configurations (with the mass-weighted coordinates) that connects
two electronic energy minima through the first-order saddle point (transition
state).

KS Kohn-Sham: The density functional theory (DFT) method, in which the elec-
tronic density distribution results from a single Slater determinant (the Kohn-
Sham determinant).

LCAO CO Linear Combination of Atomic Orbitals Crystal Orbitals: The expression of
crystal orbitals (COs) as a linear combination of atomic orbitals (LCAOs).

LCAO MO Linear Combination of Atomic Orbitals Molecular Orbitals: The expres-
sion of molecular orbitals (MO) as a linear combination of atomic orbitals
(LCAO).

LDA Local Density Approximation: A density functional theory (DFT) method
that estimates the exchange-correlation energy from the energy in homoge-
neous electron gas.

LUMO Lowest Unoccupied Molecular Orbital: The lowest (in terms of energy scale)
unoccupied molecular orbital (MO).

MBPT Many-Body Perturbation Theory: An iterative perturbation-based method of
solving the Schrödinger equation.

MCD Monte Carlo Dynamics: A dynamic with a stochastic choice of configurations
of the nuclei and a criterion for accepting or rejecting this choice.

MC SCF Multi-Configurational Self-Consistent Field: A variational iterative solution
of the Schrödinger equation with the trial function in the form of linear
combination of variable Slater determinants.

MD Molecular Dynamics: The solution of the Newton equation of motion for the
nuclei.

MEP Molecular Electrostatic Potential: The electrostatic potential created by a
molecule as a function of position in space.

MM Molecular Mechanics: Minimization of the molecular electronic energy,
approximated by the force field (FF), as a function of positions of the nuclei.
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MO Molecular Orbital: A one-electron function that is a solution of the Fock
equation for a molecule.

MP, MP2, MP4 Møller-Plesset Perturbation Theory: A perturbational method [up to the sec-
ond (MP2) or fourth (MP4) order] of the solution of the Schrödinger equation
with the Hartree-Fock function as the zeroth approximation.

NLDA Non-Local Density Approximation: A density functional theory (DFT)
method with the exchange-correlation energy correction containing the elec-
tron density gradient.

NMR Nuclear Magnetic Resonance: A spectroscopic method in which transitions
between the energy levels of the nuclear magnetic moments result from their
interaction with the local magnetic field and among themselves.

NO Natural Orbital: A molecular orbital corresponding to the diagonal form of
the one-electron density matrix.

PES Potential Energy Surface: The electronic energy as a function of configura-
tion of the nuclei.

PW Plane Wave: The function Ak(r) = exp (ik · r) used in descriptions of
periodic systems with vector k belonging to the first Brillouin zone (FBZ).

PW91 Perdew-Wang 91: A semi-empirical method of finding the ground-state elec-
tronic density distribution within the density functional theory (DFT).

QED Quantum ElectroDynamics: A quantum theory of charged particles interact-
ing with the electromagnetic field which goes beyond the Dirac theory.

RHF Restricted Hartree-Fock: A variational method with a single Slater determi-
nant with doubly occupied molecular orbitals (MOs) as a trial function.

ROHF Restricted Open-Shell Hartree-Fock: A variational method with Slater deter-
minant(s) with doubly occupied core molecular orbitals (MOs), but different
valence MOs for different spins.

SAPT Symmetry-Adapted Perturbation Theory: A perturbational method of calcu-
lating intermolecular interaction energy while taking into account the Pauli
exclusion principle.

SCF Self-Consistent Field: An iterative method of solving the Fock equation.
SCF LCAO CO Self-Consistent Field Linear Combination of Atomic Orbitals - Crystal

Orbitals: An iterative method of solving the Fock equation for crystals (in
the LCAO CO approximation).

SCF LCAO MO Self-Consistent Field Linear Combination of Atomic Orbitals - Molecular
Orbitals: Iterative method of solving the Fock equation for molecule (in the
LCAO MO approximation).

SDP Steepest Descent Path: The steepest descent trajectory (of lowering the elec-
tronic energy as a function of configuration of the nuclei) that connects a
first-order saddle point with two adjacent energy minima corresponding to
the stable configurations of the reactants and products.
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SFCS Space-fixed coordinate system: The coordinate system of the laboratory in
which the molecule is observed and measured.

SE Single-Exchange: A contribution to the exchange interaction (valence repul-
sion of molecules) non-additivity effect coming from the interaction of the
Pauli deformation of the electron cloud due to two interacting molecules
with the electric field created by the third molecule.

SHG Second Harmonic Generation: A frequency doubling of light in materials
with nonlinear electric properties.

SOS Sum-Over-States: Perturbational corrections with summation over unper-
turbed states.

STO Slater Type Orbital: An atomic orbital (AO) with the asymptotic exponential
decay exp (−ζr), where r means the distance from a certain point in space,
and ζ > 0.

SUSY SUperSYmmetry: A symmetry-like relation between two dissimilar systems
that comes from a symmetry of mathematical expressions that describe them.

TE Triple-Exchange: A contribution to the exchange interaction (valence repul-
sion of molecules) non-additivity effect coming from a single electron-
exchange between two molecules by mediation of a third one.

THG Third Harmonic Generation: A frequency tripling of light in materials with
nonlinear electric properties.

UHF Unrestricted Hartree-Fock: The variational method with a single Slater deter-
minant as a trial function [without a molecular orbital (MO) double occu-
pancy restriction].

VB Valence Bond: A variational method with the wave function in the form of a
linear combination of the Slater determinants built of atomic spinorbitals.

VSEPR Valence Shell Electron Pair Repulsion: An algorithm of predicting the spatial
structure of a molecule by counting the electronic pairs in the valence shell
of a central atom with substituents.

ZDO Zero-Differential Overlap: Neglecting any product of two atomic orbitals
(AOs), that describe the same electron, but with different centers.



Tables

Table 1. Units of physical quantities.

Quantity Unit Symbol Value

Light velocity c 299792.458 km
s

Planck constant h 6.6260755 · 10−34 J · s

Mass Electron rest mass m0 9.1093897 · 10−31 kg

Charge Element.charge = a.u. of charge e 1.60217733 · 10−19 C

Action h
2π � 1.05457266 · 10−34 J · s

Length bohr = j.at d“lugo”sci a0 5.29177249 · 10−11 m

Energy hartree = a.u. of energy Eh 4.3597482 · 10−18 J

Time a.u. of time �

Eh
2.418884 · 10−17 s

Velocity a.u. of velocity a0 Eh
�

2.187691 · 106 m
s

Momentum a.u. of momentum �

a0
1.992853 · 10−24 kg m

s

Electr.dipole moment a.u. of electr.dipole ea0 8.478358 · 10−30 Cm

(2.5415 D)

Magn.dipole Bohr magneton e�

2m0c 0.92731 · 10−20 erg
gauss

Polarizabil.
e2a2

0
Eh

1.648778 · 10−41 C2 m2

J

Electric field Eh
ea0

5.142208 · 1011 V
m

Boltzm.constant kB 1.380658 · 10−23 J
K

Avogadro constant NA 6.0221367 · 1023 mol−1
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629, 633, 638
coupling constant, 272,

781, 783
coupling, Coriolis, 906, 913
coupling, curvature,

906, 913
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enantiomers, 73, 74
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Coupled Cluster
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exchange-correlation
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reactions, 909
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function, Heitler-London,
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function,
Kołos-Wolniewicz,
590, 592

function, molecular, 989,
1002, 1009

function, variational,
235–236, 247

function with adapted
symmetry, 852, 878

functional, energy, 162,
167, 211

functional,
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327–328
fusion, nuclear, 327–328

G
Galilean transformation,

110–113, 120
gap of band, 523, 527
Gauge Invariant Atomic

Orbitals (GIAO),
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Hamiltonian, clamped
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harpooning effect,
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Hartree-Fock method,

general, 407–408
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Hartree-Fock method,
restricted (RHF),
408–409, 411

Hartree-Fock method,
Unrestricted (UHF),
441–445

Hartree-Fock-Roothaan
method, 548, 552

Heisenberg uncertainty
principle, 12, 35–36

Heitler-London function,
611–614
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661

Hermite polynomials, 191
Hohenberg-Kohn

functional, 665, 680
hole, correlation, 695–697
hole, Coulomb, 595, 597
hole, exchange, 597–598,
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hole, exchange-correlation,

695–697
HOMO, 861, 927
Hund’s rule, 461
hybrid approximations,

NLDA, 688
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trigonal, digonal,
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hybrids, 480–484
hydrogen bond, 768, 778,
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hydrogen-like atom, e91,
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hydrophobic effect, 373,
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Hylleraas equation, 247
Hylleraas function, 247
Hylleraas functional, 247
Hylleraas variational

principle, 246–247
hypercycles, 988
hyperpolarizability,

multipole, 732–735
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induction energy, 820–821
inertial system, 108
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interaction energy,
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invariance of theory, 98
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interference of particles,
44, 45
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intermediate spin-spin
coupling, 768

intersection, conical, 261,
310

intrinsic reaction coordinate
(IRC), 902, 904

intrinsic semi-conductor,
537–538

inverse lattice, 513–516
inverse Marcus region, 954
inversion, 72–74
ionic structure, 611–614
isotope effect, 285–286, e62

J
Jabłoński diagram, 460–461
Jacobi coordinate system,

897–898
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James-Coolidge function,
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Jeziorski-Kołos

perturbation theory,
796

K
“key-lock” interaction, 971,

973
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Kohn-Sham system, 591,
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Koopmans theorem, 465
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Lagrange multipliers, 406,
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associated, 201
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Legendre polynomials, 200
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localization of orbitals, 573
logical gate, 54, 995
logistic equation, 980–981
London orbitals, 786–787
Lorentz transformation,

113, 115–117
LUMO, 410–412

M
magnetic dipole, 755, 760
magnetic moment, 761–765
magneton, Bohr, 757
magneton, nuclear, 757, 789
many-body expansion,

848–849
many body perturbation

theory (MBPT),
641, 643

mass-weighted coordinates,
903–905

mathematical solution, 84
Maxwell equations,

e81–e83
MC SCF unitary method,

624–629
mean field, 414–416
mean force potential, 957
mean value of an operator,

25
measurement, 301
measurement, wave

function, 282, 301
mechanics, molecular,

349–352
Mendeleev Periodic Table,

446–448
metals, 533–534

metastable states,
non-bound, 298

method, direct, 621
method, Equation-of-

Motion Coupled
Cluster (EOM-CC),
638–640

method, General
Hartree-Fock
(GHF), 407–408

method, finite field,
746–747

method, Hartree-Fock-
Roothaan, 431,
433

method, MC SCF unitary,
624–629

method, SCF multiconfigu-
rational,
626

method, Restricted
Hartree-Fock
(RHF), 408–409

method, perturbational, 641
method, Ritz, 238, 344
method, sum over states,

743, 788
method, Unrestricted

Hartree-Fock
(UHF), 408

method, Valence Bond
(VB), 484, 490

Metropolis algorithm, 374
Michelson-Morley

experiment,
111–112

minimal model of a
molecule, 489–490

minimum, global, 237, 338,
353

minimum, kinetic, 354
minimum, thermodynamic,

353–354
Minkowski space-time,

104, 117
MO and AD pictures, 923
model, minimal of a

molecule, 489
mode, donating, 914
modes, normal, e58, e105
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molecular dynamics,
364–365

molecular electrostatic
potential, 922

molecular evolution, 1010
molecular function, 1009
molecular libraries, 976
molecular mechanics, 349
molecular orbital, 475, 480
molecular spinorbital, 615,

625
moment, dipole, 740–743
Monte Carlo dynamics, 371
Morse oscillator, 192
motif, 509
Møller–Plesset perturbation

theory, 648
multiconfigurational SCF

methods, 624
multipliers, Lagrange, 658
multipole expansion,

810–815
multipole

hyperpolarizability,
738

multipole moments,
Cartesian, 729–730

multipoles, permanent, 815,
826

multipole polarizability,
738

multireference methods,
623

muon catalyzed fusion,
327–328

Murrell-Shaw and
Musher-Amos
(MS-MA)
perturbation theory,
833–835

N
nanostructures, 867
natural coordinates, 906
natural division, 798
natural orbitals, 621–622
NMR, 768
NMR shielding constants,

e163
nodes (stable and unstable),

987

non-additivity, interaction,
1008

non-adiabatic theory, 265
non-bound metastable

states, 297
non-bound states, 280
non-crossing rule, 305
non-linear response,

732–733
non-nuclear attractor,

670–671, 712
non-radiative transitions,

316–317
normal modes, 217, 321,

338
NP-hard problem, 1009
nuclear fusion, 258,

327–328
Nuclear Magnetic

Resonance, 339,
456, 512

nuclear magneton, 757
nucleophilic attack, 884,

921, 936

O
occupied orbital, 409, e115,

e145
octupole moments, 728
one-particle density matrix,

698, 715
operator, cluster, 655, 661
operator, Coulombic, 202,

264
operator, exchange, 403,

412, 415
operator of a quantity, 18
operator, wave, 416, 418
optimization, global, 354
orbital, antibonding, 439,

e145
orbital, atomic, 451, 482
orbital, bonding, 612, 739
orbital centering,

422, 426
orbitals, crystal,

511, 528
orbital, frozen, 624
orbital, Gaussian-type,

423–424 (GTO)
orbital, hybrid, 479–480

orbital localization, 490,
500

orbital, London, 723, 786,
789

orbital, molecular,
865, 923

orbital, natural, 621–622
orbital, occupied, 410, 928,

e115
orbitals σ, π, δ, 474–475,

482
orbital, Slater, 501,

603, 613
orbital, Slater-type, 390,

423, 481
orbital, virtual, 410, 499,

501
oscillator, harmonic, 5, 748,

1067
oscillator, Morse, 160, 162,

192

P
Padé approximants, 795,

843, 847
pair distribution, 664, 673,

690, 713
paramagnetic effect, 780
paramagnetic resonance,

721
paramagnetic spin-orbit

effect, 782, 784
parameters, variational,

131, 747, e159
particle-antiparticle

creation, 148
particle in a box, 165, 180,

e194
Pauli blockade, 842, 858,

948
Pauli matrices, 29, 142,

e133
Peierls transition,

534–535, 573
penetration energy, 454,

794, 814
periodic perturbation, 62,

97, 101
Periodic Table, Mendeleev,

446, 448, 538
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permanent multipoles, 815,
826–827

perturbation, 585, 641–642,
647

perturbational method 231,
240, 253–256

perturbation theory,
Brillouin-Wigner,
580, 647, 656

perturbation theory,
first-order, 692, 713,
836

perturbation theory,
Jeziorski-Kołos,
796, 836

perturbation theory,
Møller–Plesset, 648,
653

perturbation theory,
Murrell-Shaw and
Musher-Amos
(MS-MA), 833

perturbation theory,
polarization, 833,
835, 841

perturbation theory,
Rayleigh-
Schrödinger, 232,
240, 580

perturbation,
time-independent,
91, 95, 580

perturbation, periodic, 97
perturbed system, 240,

248–249, 253
phase, Berry, 314, 884, 901
photochemical reaction,

316, 317, 332, 945
photons, virtual, 148
physical solutions, 62,

83–84
polarizability, multipole,

706, 734
polarization amplifier, 829,

831
polarization approximation,

symmetrized, 831,
838

polarization catastrophe,
858

polarization collapse, 835
polarization of spin, 878
polarization of vacuum, 151
polarization perturbation

theory, 814, 833
polymer chain reaction

(PCR), 1006, 1007
polynomials, Hermite, 191,

226, e39
polynomials, Laguerre,

201, 202
polynomials, associated

Laguerre, 201, 202
polynomials, Legendre,

200, e171
polynomials, associated

Legendre, 200, e171
positron, 126, 128, 208
potential, electrostatic, 884,

878, 921
potential energy curve, 581,

950, 956
potential, exchange-

correlation, 664,
694–697

potential energy
(hyper)surface, 153,
276

potential, Lennard-Jones,
347, 348, 610

potential of mean
force, 957

potential, torsional, 349
primitive lattice, 506, 509
protocol, cooling, 370, 383

Q
quadrupole moments, 787
qubit, 52, 54–55

R
radius, van der Waals, 347,

796, 860
Ramsey theory, 720, 778,

781
rate of reaction, 240, 647,

805
Rayleigh-Schrödinger

perturbation theory,
833, 836, 847

reaction, photochemical,
316–317, 332

reaction center, 877, 948,
1009

reaction channels, 890, 958
reaction coordinate, 884,

902, 913
reaction cross section 210,

213, 901
reaction, cycloaddition,

884, 944
reaction “drain-pipe”, 884,

893
reaction, exo- and

endothermic, 909
reaction path Hamiltonian,

884, 914
reaction rate, 889, 914, 953
reaction spectator, 917, 920
reaction stages, 884, 927,

933
reactive and non-reactive

trajectories, 892
reduced resolvent, 580,

644, 795
relativistic mass, 105, 120
relativistic mass effect, 105
relativity principle, 152
renormalization, 117
reorganization energy 962,

963–964
repellers, 1009
resonance state, 146, 181,

299–300
resonance theory, 579, 610,

612
Restricted Hartree-Fock

method (RHF),
408–409, 499

retarded potential,
145–146

RHF, Restricted
Hartree-Fock
method, 416, 427

rigid rotator, 160,
259, 341

Ritz method, 238, 344
rotational symmetry, 73, 98
rotator, rigid, 277, 341, 721
rotaxans, 801
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rovibrational
spectrum, 340

rule, Franck-Condon, 302,
316–317, 960

rule, Hund’s, 461–464, 499
rules, Woodward-

Hoffmann, 884,
926, 942

S
saddle point, 889–890, 904
saddle point of reaction,

1009
Sadlej relation, 748–750,

788
SCF multiconfigurational

methods, 432, 417
Schrödinger equation, 633,

658, 676
second/third harmonic

generation, 754
secular determinant, 139,

240
secular equation, 239, 249,

1120
self-interaction energy, 415,

708
self-organization, 970, 989,

1003
semi-conductor, intrinsic,

n–type, p–type,
537, 538, 572

shells, electronic
shielding constants
σ, π, δ-molecular

orbitals, 475, 485
simulated annealing, 370,

384
single-exchange (SE)

mechanism,
853–855

size consistency, 579, 582,
637

skew coordinate system,
893

Slater determinant,
924–927, e5

Slater orbital, 397,
501, 613

Slater-type orbital (STO),
390, 423, 481

soliton, 535, 574
space-time of Minkowski,

119, 104
spatial correlation, 366
spectator of reaction, 917,

920
spectroscopic state, 99
spectroscopy , electronic-

vibrational-
rotational, 258, 278,
871

spectroscopy, femtosecond,
795, 886

spectrum, rovibrational,
303, 340

spherical harmonics, 209,
339

spin, 26–31
spin angular momentum,

26–27, 464
spin coordinate, 55,

394–397
spin-dipole contribution,

782, 784
spin magnetic moment,

100, 153, 768
spin-orbit coupling,147,

463
spin-orbit effect,

paramagnetic, 782,
784

spinorbital, molecular, 782
spinors, 128, 129–131
spin polarization, 687
spin-spin coupling, 772,

777
split nucleus effect, 329,

330
state, non-bound, 280, 297
state, underground, 84, 995
stationary (critical) points,

670, 987
stationary state, 74, 164
steepest descent trajectory

(SDP), 891, 964
stellar nodes (stable and

unstable), 1009
steric effect, 921
structure, band, 536, 542
structure, covalent, 303, 611

structure, ionic, 612, 705
sum of states, 339, 957
sum over states method,

720, 791
supermolecular method,

796, 804
supramolecular

architecture, 989
supramolecular chemistry,

976, 1003
surface, potential energy,

889, 910
symmetric function, 84, 207
symmetrized polarization

approximation, 836,
842

Symmetry Adapted
Perturbation Theory
(SAPT), 878, e184

symmetry C, 99
symmetry forcing, 794,

796, 835
symmetry of division into

subsystems 570
symmetry of Hamiltonian,

99
symmetry orbital, 513, 517
symmetry P, 99
symmetry, rotational,

73, 99
symmetry, translational, 98,

571
symmetry of wave function,

63, 508
synthon, 870, 873, 1005
system, unperturbed, 248,

641
system, perturbed, 240, 641

T
teleportation,

51–53, 59
tetrahedral hybridization,

501
theorem of Brillouin, 516,

579, 617
theorem of Koopmans, 390,

465, 466
theory of resonance, 612,

614
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thermalization, 367–368,
383

thermodynamic minimum,
353–354

three-body polarization
amplifier,
857, 859

time correlation, 366
time dilation, 118, 152
time evolution equation, 21,

55, 84
time-evolution operator, 99
time-independent

perturbation, 96, 99,
101

torsional potential, 349
trajectories, reactive and

non-reactive, 892,
911

“trajectory-in-molasses”,
904

trajectory, steepest descent
(SDP), 891, 964

transformation, Galilean,
110–111

transformation, Lorentz,
104, 106, 111

transition, non-radiative,
317, 968

transition, Peierls,
535–536

translational symmetry, 68,
98, 173

transmission coefficient,
176, 180, 182

travelling salesman problem
1004, 1006

trial function, 237, 252
trigonal hybridization, 483,

501
triple-exchange (TE)

mechanism,
854

tunnelling effect, 161, 278,
909

Turing machine, 1003, 1009
two-state model, 101, 608,

e65

U
uncertainty principle, 36, 58
underground states, 84, 236
unitary MC SCF method,

579, 626
unitary transformation,

invariance, 406,
408, 667

unit cell, 507, 509, 516
unperturbed system, 240,

248, 253, 641
Unrestricted Hartree-Fock

method (UHF), 408,
687

V
vacuum polarization, 148,

150
valence band, 533–534
Valence Bond (VB)

method, 610
valence repulsion, 838,

840–841, 862
Valence Shell Electron Pair

Repulsion
(VSEPR), 491

van der Waals interaction
energy, 347, 796

van der Waals radius, 849
variable, Boolean, 382
variational function, 399
variational method, 838,

940
variational parameters, 236
variational principle, 232

variational principle for
excited states, 235

variational principle,
Hylleraas, 246

variation of a spinorbital
440

velocity addition law, 116
vibrationally adiabatic

approximation,
273

vibrationally adiabatic
potential, 273

virtual orbital, 410, 466
virtual photons, 148
v-representability, 677
VSEPR, Valence Shell

Electron Pair
Repulsion, 491

W
wave function, 615, 641,

645
wave function

evolution, 85
wave function “matching”,

85, 615, 645
wave function

“measurement”, 85,
615, 645

wave operator, 631, 634
wave vector,

510, 520, 526
width of band, 542
Wigner-Seitz cell, 516, 571
Woodward-Hoffmann rules,

945, 947

Z
Zero Differential Overlap

(ZDO), 743
Zone, Brillouin, 516
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