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Basis sets CI CC MBPT Summary

Hartree–Fock equations I

We have introduced basis sets in solving the Hartree–Fock
equations, but what exactly are they?
Brief summary of Hartree–Fock theory:

Born–Oppenheimer approximation: fixed nuclei.

Ground-state N-electron wavefunction: single Slater
determinant:

Ψ0(x1, x2, · · · , xN) = |χ1χ2 · · ·χN〉 (1)

Variational Principle:

E0 ≤ EHF = min〈Ψ0|H|Ψ0〉 (2)

subject to the conditions that the spin-orbitals are
orthonormal.
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Hartree–Fock equations II

Fock equations:

f (i)χ(xi ) = εχ(xi ) (3)

where f (i) is an effective operator called the Fock operator

f (i) = −1

2
∇2

i −
∑
α

Zα
riα

+ vHF(i) (4)

where vHF(i) is the Hartree–Fock effective potential.

Self-consistent solution (iterations needed).

Infinity of solutions to the Fock equations.

Introduce a basis for the spatial part of spin-orbitals:

χi (r) =
∑
m

Cimφm(r) (5)
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Hartree–Fock equations III

Leads to linear equations:

FC = εSC (6)

Q: How do we choose the basis?
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Slater-type orbitals I

A reasonable choice for basis sets for finite systems would be what
are called Slater-type orbitals: these are very like solutions of the
1-electron Hamiltonian. They differ in two ways: (1) the radial
part is simpler and (2) the exponent is not integral but can be
varied to account for screening effects.

φ = Rnl(r)Ylm(θ, φ) (7)

where Ylm is a (real) spherical harmonic and the radial part is
given by

Rnl(r) =
(2ζ)n+1/2

[(2n)!]1/2
rn−1e−ζr (8)
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Slater-type orbitals II
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Slater-type orbitals III

Comments on Slater-type orbitals:

GOOD Nuclear cusp condition satisfied.

∂

∂r
〈ρ(r)〉sph

∣∣∣∣
r=0

= −2Z 〈ρ(0)〉sph

GOOD Exact wavefunction has the long-range form of a
Slater orbital.
If we pull one electron out of an N-electron molecule the
wavefunction behaves like

Ψ(N)→ Ψ(N − 1)× e−
√

2∗I r

where I is the first (vertical) ionization energy.

BAD Integrals very difficult for multi-atom systems.
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Gaussian-type orbitals (GTOs) I

In 1950 S. F. Boys pointed out that the problem of computing
integrals could be resolved by using not Slater-type orbitals, but
rather Gaussian-type orbitals (GTOs):

Rnl ∼ rne−α(r−A)2
(9)

where A is the centre of the GTO. The main reason for the
efficacy of GTOs is that the product of two GTOs is a third GTO,
centred at a point in between:

exp(−α(r−A)2) exp(−β(r−B)2) = exp(−γ(A−B)2) exp(−µ(r−P)2)

where µ = α + β, γ = αβ/µ and P = (αA + βB)/µ.
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Gaussian-type orbitals (GTOs) II
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Gaussian-type orbitals (GTOs) III

GOOD GTOs makes the integrals that appear in the HF
energy expression much simpler.

BAD Nuclear cusp condition violated: zero derivative at origin.

BAD Wrong long-range form: dies off too fast with distance.

The two negative points can, to some extent, be remedied by using
not single GTOs, but linear combinations of GTOs. These groups
of GTOs are termed contractions.
Basis sets consist of groups of contractions together with some
un-contracted GTOs. The better the basis, the more of these there
will be and the more GTOs in a contraction.
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Gaussian-type orbitals (GTOs) IV

cc-pvDZ Dunning basis for hydrogen:

h cc−pVDZ : [ 2 s1p ]
S 4

1 13.0100000 0.0196850000
2 1.9620000 0.1379770000
3 0.4446000 0.4781480000
4 0.1220000 0.5012400000

S 1
1 0.1220000 1.0000000000

P 1
1 0.7270000 1.0000000000



Basis sets CI CC MBPT Summary

Gaussian-type orbitals (GTOs) V
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Gaussian-type orbitals (GTOs) VI

x

φ ζ = 1.0, n = 1
STO-1G
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Gaussian-type orbitals (GTOs) VII
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Gaussian-type orbitals (GTOs) VIII
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Gaussian-type orbitals (GTOs) IX

2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1

0.1

0.2

0.3

0.4

0.5 ζ = 1.0, n = 1
STO-3G



Basis sets CI CC MBPT Summary

Gaussian-type orbitals (GTOs) X

Basis set recommendations:

GOOD Complete basis set (CBS) limit

Geometry optimization: moderate size basis sets. Double-ζ.

Energies: At least triple-ζ quality.

Properties: Triple-ζ or more.

We will have another look at basis sets after discussion correlated
methods.
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Correlation I

Q: How to we improve on the complete basis set HF results? I.e.,
how do we get beyond the HF limit?

Variational Principle: More flexibility. Leads to Configuration
Interaction (CI).

Perturbation Theory

Coupled-cluster methods

Density functional theory
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Configuration Interaction I

CI: Increase the flexibility in the wavefunction by including in
addition the the HF ground state, excited states.
Q: What are excited states and how to we form them?
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Configuration Interaction II

1

2

n

n + 1

n + m

Figure : Left: HF ground state configuration. Right: An example of an
excited state configuration. If there are n occupied levels (2 electrons
each, so N = 2n) and m virtual (un-occupied) levels, in how many ways
can we form excited states? Each of these states will correspond to a
Slater determinant.
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Configuration Interaction III

The Full CI (FCI) wavefunction:

|Ψ〉 = |Ψ0〉+
∑
ar

c ra |Ψr
a〉+

∑
abrs

c rsab |Ψrs
ab〉+ · · ·

= |Ψ0〉+ cS |S〉+ cD |D〉+ · · ·

where electrons are excited from the occupied orbitals a, b, c , · · ·
to the virtual orbitals r , s, t, · · · .

GOOD This expansion will lead to the exact energy within the
basis set used.

BAD There are too many determinants!

(2(n + m))!

(2n)!(2m)!
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Configuration Interaction IV

One solution to the problem is to use only some of the many
determinants. For example we could use only double excitations.
This leads to the CID method.∣∣ΨCID

〉
= |Ψ0〉+

∑
abrs

c rsab |Ψrs
ab〉

= |Ψ0〉+ cD |D〉

BAD This theory, like all truncated CI methods, is not size
extensive.
Size-extensivity: If E (N) is the energy of N non-interacting
identical systems then a method is size-extensive if
E (N) = N × E (1).
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Configuration Interaction V

Q: Is CID size-extensive?
If T̂2 is an operator that creates all double excitations, then we can
write the CID wavefunction as∣∣ΨCID

〉
= |Ψ0〉+

∑
abrs

c rsab |Ψrs
ab〉

= |Ψ0〉+ cD |D〉
= (1 + T̂2) |Ψ0〉
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Configuration Interaction VI

The CID wavefunction for each of two identical non-interacting
systems will be of that form, so the combined wavefunction will be∣∣ΨCID

A

〉 ∣∣ΨCID
B

〉
= (1 + T̂2(A))

∣∣∣ΨA
0

〉
(1 + T̂2(B))

∣∣∣ΨB
0

〉
=(1 + T̂2(A) + T̂2(B) + T̂2(A)T̂2(B))

∣∣∣ΨA
0

〉 ∣∣∣ΨB
0

〉
The last excitation term is a quadruple excitation so it will not be
present in the CID wavefunction for the combined A and B
systems. Therefore

ECID(AB) 6= ECID(A) + ECID(B).
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Configuration Interaction VII

CI is not size-extensive: H2

σg

σu

Figure : An energy level diagram for H2 with a minimal basis. The two
MOs are as shown. We can form three determinants from them. Left is
the ground state. Middle is a singly excited determinant. Right is a
doubly excited determinant. For reasons of symmetry the middle
configuration does not contribute to the CI expansion.
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CISD: Examples I

All figures from: Molecular Electronic Structure Theory by Helgaker et al..
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CISD: Examples II
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CISD: Examples III
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Coupled-cluster Theory I

The problem of truncated CI methods is severe enough that using
them is very problematic. A resolution to the problem is the class
of coupled-cluster theories. In these the wavefunction is defined as:∣∣ΨCC

〉
= exp(T̂) |Ψ0〉

where T̂ is an appropriate excitation operator.
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Coupled-cluster Theory II

For example, in CCD theory we use T̂2 as the excitation operator.
This gives: ∣∣ΨCCD

〉
= exp(T̂2) |Ψ0〉

= (1 + T̂2 +
1

2!
T̂2T̂2 + · · · ) |Ψ0〉

The first two terms give us CID theory. The rest are needed to
make CCD size-extensive:

exp(T̂2(A))
∣∣∣ΨA

0

〉
× exp(T̂2(B))

∣∣∣ΨB
0

〉
= exp(T̂2(A) + T̂2(B))

∣∣∣ΨA
0

〉 ∣∣∣ΨB
0

〉
≡ exp(T̂2(AB))

∣∣∣ΨA
0

〉 ∣∣∣ΨB
0

〉
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Coupled-cluster Theory III

GOOD CC theories can be systematically improved.

GOOD CCSD(T) is a very accurate theory. Here single and
double excitations are included as described above and triple
excitations are included through a perturbative treatment.

GOOD Size-extensive.

BAD Computationally very expensive: CCSD(T) scales as
O(N7). So double the system size and the calculation costs
128 times more.

BAD (kind of!) These are single-determinant theories as
described. If the system is multi-configurational (more than
one state contributing dominantly) the standard CC methods
are not appropriate.
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CCSD: Examples I

All figures from: Molecular Electronic Structure Theory by Helgaker et al..
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Møller–Plesset Perturbation Theory I

Brief recap of Raleigh–Schrödinger perturbation theory:

Split the Hamiltonian into two parts:

H = H0 + λV

where H0 is a Hamiltonian which we know how to solve and
V contains that troublesome parts. We expect V to be a
perturbation so it must be small in some sense.
λ is a complex number that will be 1 for the physical solution.
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Møller–Plesset Perturbation Theory II

Let the solutions of H0 be:

H0Ψ
(0)
i = E

(0)
i Ψ

(0)
i

Here the ‘0’ indicates that these eigenvalues and
eigenfunctions are of zeroth-order in the perturbation V. We
will use the short-form:

|Ψ(0)
i 〉 ≡ |i〉

Express the solutions of H in a power-series:

Ψi = Ψ
(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i + · · · =

∑
n

λnΨ
(n)
i

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · =

∑
n

λnE
(n)
i
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Møller–Plesset Perturbation Theory III

Energies can be calculated by collecting terms at various
orders:

E
(0)
i = 〈Ψ(0)

i |H0|Ψ(0)
i 〉 = 〈i |H0|i〉

E
(1)
i = 〈Ψ(0)

i |V|Ψ
(0)
i 〉 = 〈i |V|i〉

E
(2)
i = 〈Ψ(0)

i |V|Ψ
(1)
i 〉

etc. for higher order terms.

The first-order correction to the wavefunction is given by

|Ψ(1)
i 〉 =

∑
n 6=0

|n〉〈n|V|i〉
E

(0)
i − E

(0)
n
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Møller–Plesset Perturbation Theory IV

So we get

E
(2)
i =

∑
n 6=0

|〈n|V|i〉|2

E
(0)
i − E

(0)
n
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Møller–Plesset Perturbation Theory V

Many-body perturbation theory (MBPT) starts from Hartree–Fock
theory:

H0 =
N∑
i=1

f (i) =
n∑

i=1

(
h(i) + vHF(i)

)
(10)

where h(i) = −1
2∇

2
i −

∑
α

Zα
riα

We can now define the perturbation as

V =
N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

vHF(i) (11)

Unlike vHF, the perturbation V is a 2-electron operator.
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Møller–Plesset Perturbation Theory VI

MBPT energy at λ0:

E
(0)
0 = 〈0|F|0〉 =

∑
a∈occ

εa

At first-order we get (no proof):

E
(1)
0 = −1

2

N∑
a=1,b=1

[
〈ab|r−1

12 |ab〉 − 〈aa|r
−1
12 |bb〉

]
We have not seen this before, but the sum of E

(0)
0 and E

(1)
0 is just

the Hartree–Fock ground state energy:

EHF = E
(0)
0 + E

(1)
0 (12)

This means that we need to get to at least second-order in
perturbation theory to go beyond the Hartree–Fock description.
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Møller–Plesset Perturbation Theory VII

Here is what the second-order MBPT energy expression looks like:

E
(2)
0 =

occ∑
a,b>a

vir∑
r ,s>r

[
〈ab|r−1

12 |rs〉 − 〈ab|r
−1
12 |sr〉

]2
εr + εs − εa − εb

(13)

This expression is termed as MBPT2 or MP2. The latter name
comes from the other name for this kind of perturbation theory:
Møller–Plesset perturbation theory.
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Møller–Plesset Perturbation Theory VIII

BAD A problem with Møller–Plesset perturbation theory: it
diverges! See Olsen et al. J. Chem. Phys. 112, 9736 (2000)
for details. We now rarely go beyond MP2 in practical
calculations.

GOOD MP2 contains correlation.

BAD But not enough correlation. Problems with systems with
small HOMO-LUMO gaps (band gap — HOMO is highest
occupied MO and LUMO is lowest unoccupied MO).

GOOD (kind of!) It has a computational cost of O(N5). I.e.,
double the system in size and it will cost 32 times more
computational power.

GOOD MBPT is size-consistent
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Which method and basis? I

The Gold Standard:

CCSD(T) / aug-cc-pVTZ (or larger)

If not, use MP2, but with caution! Or else, use DFT (next lecture).
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