
Introduction to unix/linux I
A familiarity with unix or linux and particularly the command-line interface is important in computational
science. Even if you use graphical tools in your day-to-day work, at some point it is likely that you will have
to access a compute server remotely or find that you need the flexibility provided by the command-line.
The first set of sessions in the Mathematics: Computational Classes are to introduce you to working on
the command-line and the C++ language.

There are many programs which do the same thing. You are allowed to use whatever ones you like best
though command-line tools are strongly encouraged. The notes provided do not cover all possibilities. In
particular, I have chosen to use bash (Bourne Again Shell) as the unix shell as it is widely used as the
default shell. Other possibilities include csh, tcsh and zsh: feel free to try them. Some commands are the
same between shells, some are different.

Similarly there is a variety of terminals you can use to run the shell in: they have more similarities than
differences. OSX has its own terminal and xterm (supplied by X11), which is the same as that found in
linux. Linux distributions tend to have several: the different desktops all have their own versions as well as
the ubiquitous xterm and others such as aterm. I will switch between different ones.

The choice of text editor (more on this later) is particularly personal and is one we leave to you.

These sessions are aimed at introducing you to a command-line interface and so most of the time will be
spent trying things out. If you wish to do this elsewhere (e.g. at a CMTH workstation), that is fine. I will be
here to answer any questions. Experimentation is encouraged!

Contact
James Spencer

email: j.spencer@imperial.ac.uk

website: http://www.cmth.ph.ic.ac.uk/people/j.spencer

Unix philosophy
A key idea behind all unix systems is to have many small programs, each of which perform a specific task,
rather than large "jack-of-all-trades" programs. To accomplish complicated tasks, tools can be connected
together. This flexibility makes it possible to combine utilities to achieve what we want without having to
write the utilities ourselves; for example data can be sorted without having to write a sorting program
ourselves.

Additional resources
GNU/Linux Command-Line Tools Summary by Gareth Anderson

A little dated but an excellent and comprehensive introduction to the Linux command line.
http://tldp.org/LDP/GNU-Linux-Tools-Summary/html/GNU-Linux-Tools-Summary.html

Advanced Bash-Scripting Guide by Mendel Cooper
A thorough exploration of scripting and unix utilities but starts without assuming any previous knowledge
and gives lots of examples. Invaluable. http://tldp.org/LDP/abs/html/

I have borrowed from both of these in places.

Bash reference manual
The ultimate reference guide. http://www.gnu.org/software/bash/manual/bashref.html

Launching the terminal
The Mathematics: Computational Classes require command line tools and a C/C++ compiler: the gcc suite
(http://gnu.gcc.org) is free and includes what is widely regarded as the standard C/C++ compiler.

mailto:j.spencer@imperial.ac.uk
http://www.cmth.ph.ic.ac.uk/people/j.spencer
http://tldp.org/LDP/GNU-Linux-Tools-Summary/html/GNU-Linux-Tools-Summary.html
http://tldp.org/LDP/abs/html/
http://www.gnu.org/software/bash/manual/bashref.html
http://gnu.gcc.org

Linux
A terminal can be launched in most Linux distributions from the main menu: it's typically in the
Accessories sub-menu. Some distributions can launch the terminal from the desktop menu (right click on
the desktop). Some other (free) programs will be needed: these will be mentioned as needed.

Mac OSX
Enter terminal into the spotlight search box and select the Terminal application. I suggest you then add it
to the dock permanently for convenience. The iTerm application (a free download) is a much nicer
terminal to use.

Windows
Cygwin (http://www.cygwin.com) provides a Linux-like environment for Windows, including gcc.

Command format
Commands are typically in the format:

command [options] compulsory_arguments

Throughout the notes the above format will be used to indicate shell commands. The output from the
commands will not (in general) be given: try out the commands to see what happens! Commands referred
to in the main text are formatted like this (at least the first time they're mentioned).

Options are usually signified with either a single dash ('-') or a double dash ('--'). A single dash is used fort
short options (i.e. a single letter) whereas the double dash is used for options which are words. Short
options can usually be grouped together:

ls -l -h
ls -lh

Short options often have more verbose equivalents. Both long and short options can take arguments
(which can stop short options being grouped together).

Help
Most commands come with help which briefly explain their common options and how to run the command:

open -h
open --help

The open command is only really useful under OSX, where it is used to open files and directories. In fact,
the Linux open command is completely different (and doesn't even have a help option) and is used only in
C/C++ programming. Try also ls --help.

More information can be obtained from the man page associated with the command:

man ls
man man

The man page can be scrolled forwards and back and searched by typing / followed by the search string.

But what if you don't know what the relevant command is in the first place? You can search for it either
using google or on the command line using man:

http://www.cygwin.com

man -k "copy file"

man -k searches a short description of the command for the string provided (in the above example, "copy
file"). man -K searches the entire man page but this is much slower. Sometimes man -k lists many
commands (try man -k copy!) but at least it provides a starting point.

There are quite a lot of differences in the options for BSD commands (used in OSX) and those in Linux.
For this reason I will rarely give options to commands: please look at the help or man pages for these.
Some commands are used in examples but not explained: these should be tried and their functions looked
up using the man pages.

Files and directories
The ls command lists files and directories. With no path specified it lists the contents of the current
directory:

ls
ls /tmp

The string after ls is used to list only select files or directories. You can use the ? and * wildcards, which
match a single letter and any (or no) letters respectively:

ls /t?p
ls D*
ls Documents Downloads

Directories are separated using a forward slash. The filesystem starts from the top-level or "root" directory,
denoted by /. A path to a directory or file can be specified either as an absolute path (i.e. specified starting
from the root) or as a relative path (specified relative to the current working directory). A single dot, '.',
represents the current directory and a double dot, '..', represents the parent directory. pwd prints the
current directory you're in.

You can move around the filesystem using the cd command:

cd /tmp
pwd
cd -
pwd

cd - is special and returns you to the previous directory you were in. Running cd without specifying a
directory returns you to your home directory. The home directory is the directory which contains your files,
directories and settings. Generally you only have the necessary permission to create, delete and modify
files and directories within your home directory unless another user has granted you permission to do so
with their files.

mkdir and rmdir create and delete (empty) directories:

mkdir my_dir
rmdir my_dir

cp copies files and directories and rm deletes files and directories:

echo "test" > test_file
cp test_file test_file_2
rm test_file*

mv is used to move or rename files and directories:

mv file1 file2 # Renames file1 to file2
mv file1 dir1 # Moves file1 to directory dir1
mv file1 file2 dir1 # Moves file1 and file2 to directory dir1

cp, mv and rm have many options governing their behaviour (especially for working with directories).
Refer to the man pages for more details.

It is quite useful to create new files (especially for experimenting with) or to update the last modification
time of an existing file. The touch command does this:

touch new_file
ls -l
sleep 5
touch new_file
ls -l

The contents of a file (or files) can be viewed using cat:

echo "test" > test_file
cat test_file

cat dumps the whole file to screen which is unhelpful for large files. The more command can be used to
print the file to the terminal one screen-full at a time. Space moves forwards in the file and search is the
same as with man pages. more is quite limited: you can only move forwards. less (which is actually more
than more in this case) allows files to be scrolled through and searched in both directions.

Because bash separates commands on spaces, it is inconvenient to use spaces in the names of files and
directories despite the fact that this is common in other operating systems.

Input, output and redirection
Input, output and error information are treated separately in a unix system.

standard input
Standard input is the input from the user. Normally refers to the keyboard.

standard output
Standard output is the output from a program and is printed (by default) to the screen (or more
specifically, to the terminal from which the program is run).

standard error
Standard output contains any error messages from a program. This is also printed by default to then
screen and so output and error messages appear to be mixed. The key difference between standard
error and standard output is that standard output can be buffered and standard error is not. This means
that error messages can appear earlier than output if the output buffer is not full. (We shall discuss this
distinction a little more in the C++ sessions.)

All three of these can be redirected:

>
Send standard output elsewhere.

2>
Send standard error elsewhere. For example:

echo hello world > hi
cat hi hi2 2> err

more err
cat hi hi2 > out 2> err
more out err

&>
Sends standard output and standard error to the same place.

<
Takes information from somewhere else (normally a text file) and sends it to standard input as if you
had typed it in yourself. For example:

tr '[a-z]' '[A-Z]' < hi

Note that using > to redirect output or error to a file will cause that file to be overwritten. Use >>, 2>> and
&>> to append to files if they exist.

Sometimes you don't want to see any output and/or error messages. There's a "black hole" which things
can be redirected to in this case called /dev/null:

cat hi hi2 2> /dev/null

Text editors
Input to and output from command line programs is commonly in plain (ASCII) text. For this reason we
must use an editor which does not add formatting information or saves files a proprietary format. This also
allows unix tools to interact easily. A text editor (rather than word processor) is used to edit files. Most text
editors also have options such as syntax highlighting and automatic indentation which are useful when
writing programs.

Some text editors are:

vi and vim
A standard unix editor (also available for windows). vim is an improved editor based upon vi: many
systems now alias vi to vim.

emacs
emacs requires much more resources than vim but is far more than just an editor. Is almost an
operating in its own right. See emacs and xemacs under Linux and AquaMacs under OSX.

gedit and kate
GUI text editors included with the GNOME and KDE environments respectively. gedit is also available
for OSX.

TextEdit
OSX. Launch from spotlight.

notepad
Windows only. Very basic.

XCode
OSX. An integrated development environment rather than just a text editor. Launch from spotlight.

The choice of editor is very personal and it's worth spending some time looking at the options and finding
one which suits you as they can make a huge difference to your productivity. However some familiarity
with vi/vim is recommended as it is available on almost all unix-based systems.

In this course I will use vim, but you are welcome to use an editor of your choice. The default behaviour of
vim can be controlled by options given in the ~/.vimrc file.

Tasks
1. Running

ls ~/

doesn't show any files beginning with a dot. Why not? How can you see them?

2. Create a directory and some file(s) in the directory. Try deleting the directory using rmdir. What
happens? How can you delete it? (Hint: look at the rm man page.)

3. Run the command

mkdir ~/dir1/dir2

How can the error be fixed?

4. Familiarise yourself with the vim text editor (or an editor of your choice). The vim tutor has its own
command:

vimtutor

Ensure that you go through a tutorial before the next session. Many other text editors also have a
tutorial.

5. The operators <, > and >> were described above. There's also (unsurprisingly) a << operator.
Find out what it does.

	Contact
	Unix philosophy
	Additional resources
	Launching the terminal
	Linux
	Mac OSX
	Windows

	Command format
	Help
	Files and directories
	Input, output and redirection
	Text editors
	Tasks

