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1 Introduction

Explicit use of the wave function

• strict definition of any electronic state with any multiplicity

• density matrices (1st and 2nd order) calculated from wave function

Hierarchy of “infinitely improvable” approximations

• one-electron basis set

• correlation energy
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3 Variation theorem

The expectation value of the energy is equal to the eigenvalue of the Schrödinger equation

ĤΨ = EΨ (1)
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Multiply by Ψ∗ and integrate:

〈Ψ|Ĥ|Ψ〉 = E〈Ψ|Ψ〉 E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(2)

The lowest energy belongs to the exact ground state wave function, i.e. for any approximate Ψ̃

E =
〈Ψ̃|Ĥ|Ψ̃〉
〈Ψ̃|Ψ̃〉

≥ E0 (3)

Eigenfunctions Ψk of the Hamiltonian form a complete, orthonormal basis

Ψ̃ =
∑

k

ckΨk (4)

〈Ψ̃|Ψ̃〉 =
∑

i

∑
j

c∗i cj〈Ψi|Ψj〉 =
∑

i

|ci|2 (5)

〈Ψ̃|Ĥ|Ψ̃〉 =
∑

i

∑
j

c∗i cjEj〈Ψi|Ψj〉 =
∑

i

|ci|2Ei (6)

Energy

E =
〈Ψ̃|Ĥ|Ψ̃〉
〈Ψ̃|Ψ̃〉

=
∑

i |ci|2Ei∑
i |ci|2

(7)

Since Ei ≥ E0

E =
〈Ψ̃|Ĥ|Ψ̃〉
〈Ψ̃|Ψ̃〉

≥
∑

i |ci|2E0∑
i |ci|2

= E0 (8)

The energy of an approximate wave function is upper bound of the exact energy.

3.1 Variation theorem II

The Schrödinger equation can be considered as a result of the variation theorem: we are looking
for the wave function that makes stationary the energy functional

δE = δ

[
〈Ψ̃|Ĥ|Ψ̃〉
〈Ψ̃|Ψ̃〉

]
= 0 (9)

First variation

δE =
〈δΨ|Ĥ|Ψ〉〈Ψ|Ψ〉 − 〈Ψ|Ĥ|Ψ〉〈δΨ|Ψ〉

〈Ψ|Ψ〉2
+ c.c. = 0 (10)

This expression and its complex conjugate should be separately zero

〈δΨ|Ĥ|Ψ〉〈Ψ|Ψ〉
〈Ψ|Ψ〉

− 〈δΨ|Ψ〉 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

= 0 (11)

we obtain another form of the variation theorem

〈δΨ|Ĥ − E|Ψ〉 = 0 (12)

and since δΨ is arbitrary
(Ĥ − E)Ψ = 0 (13)
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3.2 Stationary-value conditions

The variation theorem provides a necessary but not sufficient condition to have a minimum of the
energy. Let us examine the general Taylor expansion of the energy functional.
Denote the wave function, containing the independent parameters p1, p2, . . ., by

Ψ(p1, p2, . . . |x1,x2, . . .xN ) (14)

and the energy functional

E = H(p1, p2, . . .) =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(15)

The differential dH is:

dH =
∑

j

{
〈Ψ|Ĥ| ∂Ψ

∂pj〉

〈Ψ|Ψ〉
−
〈Ψ|Ĥ|Ψ〉〈Ψ| ∂Ψ

∂pj〉

〈Ψ|Ψ〉2

}
dpj + c.c. + . . . (16)

The term in curly brackets is just the j-th component of the general “gradient vector” of the energy

surface E = H(p1, p2, . . .). With the notations

(H∇)j =

〈
Ψ|(Ĥ −H)| ∂Ψ

∂pj

〉
〈Ψ|Ψ〉

(∇H)j =

〈
∂Ψ
∂pj

|(Ĥ −H)|Ψ
〉

〈Ψ|Ψ〉
(17)

the stationary-value conditions can be formulated as

(H∇)j = (∇H)j = 0 for all j (18)

Using the shorthand notation ∂Ψ
∂pj

= Ψj etc. the second derivatives are

(∇∇H)jk =
〈Ψjk|(Ĥ −H)|Ψ〉 − 〈Ψj |Ψ〉(∇H)k − (∇H)j〈Ψk|Ψ〉

〈Ψ|Ψ〉
(19)

(∇H∇)jk =
〈Ψj |(Ĥ −H)|Ψk〉 − 〈Ψj |Ψ〉(H∇)k − (∇H)j〈Ψ|Ψk〉

〈Ψ|Ψ〉
(20)

The variation around a point p0 = (p(0)
1 , p

(0)
2 , . . .) with E = H(p0) = H0 can be written in terms

of the above-defined tensors. Let pj = p
(0)
j + dj then

δE =
∑

j

[
d∗j (∇H)j + (H∇)jd

∗
j

]

+
1
2

∑
jk

[
d∗jd

∗
k(∇∇H)jk + 2d∗j (∇H∇)jkdk + (H∇∇)jkdjdk

]
+ . . .

(21)

The generalized ”forces” will be denoted by a and a∗ and the blocks of the generalized Hessian
matrix by

Qjk = (∇H∇)jk and Mjk = (∇∇H)jk

The Taylor expansion of the energy around the point p0 is

E = H0 +
(

d
d∗

)†(
a
a∗

)
+

1
2

(
d
d∗

)†(
M Q
Q∗ M∗

)(
d
d∗

)
(22)

In obvious notations:
E = H0 + D†A +

1
2
D†BD (23)

This relationship can serve to minimize the wave function using the Newton-method(
a
a∗

)
+
(

M Q
Q∗ M∗

)(
d
d∗

)
= 0 (24)
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4 Separation of electronic and nuclear motions

Total Hamiltonian

H(R, r) = −
∑
α

~2

2Mα
4α︸ ︷︷ ︸

TN

− ~2

2me

∑
i

4i︸ ︷︷ ︸
Te

+
∑
i<j

1
rij

−
∑

i

∑
α

Zα

riα
+
∑
α<β

ZαZβ

Rαβ︸ ︷︷ ︸
V

(25)

Let us introduce M an “average nuclear mass”, the dimensionless number µα = M/Mα charac-
terizing the nuclear mass of atom α, and the electron/nuclear mass ratio parameter

κ =
(m
M

)1/4

(26)

Total Hamiltonian in atomic units

H(R, r) = −1
2

∑
i

4i + V(r,R)− κ4

2

∑
α

µα4α

= He(R; r) + κ4TN (R)

Consider κ4TN as perturbation. At zero order we obtain the electronic Schrödinger equation

He(r;R)Ψn(r;R) = Un(R)Ψn(r;R) (27)

with the electronic Hamiltonian
He = Te + V (28)

The solutions of the electronic Schrödinger equation form a complete basis of the eigenfunctions
Ψn(r;R) on which the total wave function can be expanded

Υ(r,R) =
∑

n

Ξn(R)Ψn(r;R) (29)

with the nuclear coordinate dependent expansion coefficients, Ξn(R).
Substitute the expansion into the Schrödinger equation∑

n

{TN + He}Ξn(R)Ψn(r;R) = E
∑

n

Ξn(R)Ψn(r;R) (30)

and use that Ψn are eigenfunctions of He∑
n

{TN + Un(R)}Ξn(R)Ψn(r;R) = E
∑

n

Ξn(R)Ψn(r;R) (31)

The nuclear kinetic energy operator leads to electron-nuclear coupling terms related to the variation
of the electronic wave function with respect to the nuclear coordinates

− 1
2

∑
α

µα4α

[
Ψn(r;R)Ξn(R)

]
=

− 1
2

∑
α

µα

[
Ψn4αΞn + 2(∇αΨn∇αΞn) + Ξn4αΨn

] (32)

Multiply from left by Ψ∗
k(r;R), integrate over the electronic variables and denote the off-diagonal

coupling matrix elements by

Bkn = 〈Ψk|TN |Ψn〉 −
∑
α

µα〈Ψk|∇α|Ψn〉∇α (33)
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The exact solution of the nuclear problem

{TN + Uk(R) + 〈Ψk|TN |Ψk〉 − E}Ξk(R) =
∑
n 6=k

BknΞn(R) (34)

requires the complete set of electronic eigenfunctions Ψn.

4.1 Born-Oppenheimer approximation

Provided the energy gap of electronic states is large, the matrix elements of T and ∇α are small. In
this case the nuclei move on a single potential energy surface, Un(R), and the total wave function
can be written in a simple product form

Υ(R, r) = Ξ(R)Ψ(r;R)

Born-Oppenheimer approximation ⇒ all electron-nuclear coupling terms are neglected

{TN + Ek(R)}Ξk(R) = EΞk(R) (35)

Adiabatic approximation ⇒ diagonal coupling term is retained

{TN + Ek(R) + 〈Ψk|TN |Ψk〉}Ξk(R) = EΞk(R) (36)

4.2 Breakdown of the Born-Oppenheimer approximation

The 〈Ψi|∇α|Ψj〉 coupling terms can be neglected only if the electronic states are
well-separated.
Differentiate the electronic Schrödinger equation, multiply from left by Ψi, i 6= j and integrate

〈Ψi|
∂He

∂Rα
|Ψj〉+ 〈Ψi|He|

∂Ψj

∂Rα
〉 =

∂Ui

∂Rα
〈Ψi|Ψj〉+ Uj〈Ψi|

∂Ψj

∂Rα
〉 (37)

after rearranging

〈Ψi|
∂He

∂Rα
|Ψj〉+ Ui〈Ψi|∇α|Ψj〉 =

∂Ui

∂Rα
δij + Uj〈Ψi|∇α|Ψj〉 (38)

leading to the condition

〈Ψi|∇α|Ψj〉 = 〈Ψi|
∂He

∂Rα
|Ψj〉/(Uj − Ui) (39)

which indicates that a smaller energy gap leads to an enhanced coupling term (e.g. avoided cross-
ings).

5 Electron Hamiltonian and wave function

Electronic Schrödinger equation{
Te + VeN + Vee + VNN

}
Ψ = EΨ (40)

or {∑
i

ĥ(i) +
∑
i,j

′ĝ(i, j) + VNN

}
Ψ = EΨ (41)

The many-electron wave function Ψ(x1,x2, . . . ,xN)
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1. describes a definite spin state

ĤŜ2 − Ŝ2Ĥ = 0 therefore Ŝ2Ψ = S(S + 1)Ψ (42)

2. is normalized ∫
Ψ∗Ψdx =

∫
|Ψ|2dx = 1 (43)

3. satisfies the antisymmetry requirement

P̂Ψ = εP Ψ (44)

where εP = ±1 for a permutation of the arguments x1,x2, . . . ,xN comprising an even/odd
number of interchanges.

In the following we discuss briefly some implications of these properties on the construction of the
many-electron wave function.

5.1 Electron spin

Although the molecular Hamiltonian is usually spin-independent, we know from experiment (Zee-
man effect) that electrons have an intrinsic magnetic moment. Therefore we introduce

spin angular momentum operators ŝα acting on the spin variable, σ

ŝzη(σ) = λη(σ)

with two permitted solutions:

ŝzα(σ) =
1
2
α(σ)

ŝzβ(σ) = −1
2
β(σ)

(45)

5.2 Spin operators and spin functions

Spin variable σ with possible values
σ = ±1 (46)

Two spin functions
α( 1

2 ) = 1 α(− 1
2 ) = 0

β( 1
2 ) = 0 β(− 1

2 ) = 1
(47)

orthonormalized ∫
α(σ)α(σ)dσ =

∑
σ

α2(σ) = α2(
1
2
) + α2(−1

2
) = 02 + 12 = 1∫

β(σ)β(σ)dσ =
∑

σ

β2(σ) = 12 + 02 = 1∫
α(σ)β(σ)dσ =

∑
σ

α(σ)β(σ) = 0× 1 + 1× 0 = 0

(48)

eigenfunctions of ŝz and ŝ2 operators (~ = 1)

ŝ2α(σ) = 3
4α(σ) ŝzα(σ) = 1

2α(σ)

ŝ2β(σ) = 3
4β(σ) ŝzβ(σ) = − 1

2β(σ)
(49)
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behave as follows with the ŝ± operators

ŝ+α(σ) = 0 ŝ−α(σ) = β(σ)

ŝ+β(σ) = α(σ) ŝ−β(σ) = 0
(50)

5.3 Total spin operators

Cartesian components of the total spin of an N-particle system

Ŝ =
∑

i

ŝ(i) =
∑

i

 ŝ
(i)
x

ŝ
(i)
y

ŝ
(i)
z

 =

 Ŝx

Ŝy

Ŝz

 (51)

Satisfy the commutation rules

[Ŝα, Ŝβ ] = iŜγ (αβγ = xyz, yzx, zxy) (52)

Step-up and step-down operators

Ŝ+ = Ŝx + iŜy Ŝ− = Ŝx − iŜy (53)

in terms of which the Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z operator is

Ŝ2 = Ŝ−Ŝ+ + Ŝz + Ŝ2
z = Ŝ+Ŝ− − Ŝz + Ŝ2

z (54)

The simultaneous eigenfunctions Θ(S,MS) of Ŝ2 and Ŝz satisfy

Ŝ2Θ(S,MS) = S(S + 1)Θ(S,MS) ŜzΘ(S,MS) = MSΘ(S,MS) (55)

where § is a positive half-integer and MS = S, S − 1, . . . ,−S.
Step-down and step-up operators act as

Ŝ±Θ(S,MS) =
√
S(S + 1)−MS(MS ± 1)Θ(S,MS ± 1) (56)

5.4 Spin functions of a two-electron system

Form four possible spin-functions

α(σ1)α(σ2); α(σ1)β(σ2); β(σ1)α(σ2); β(σ1)β(σ2) (57)

One antisymmetric function

Θ(0, 0) =
1√
2

(α(σ1)β(σ2)− β(σ1)α(σ2)) (58)

Three symmetric functions

Θ(1, 1) = α(σ1)α(σ2)

Θ(1, 0) =
1√
2

(α(σ1)β(σ2) + β(σ1)α(σ2))

Θ(1,−1) = β(σ1)β(σ2)

(59)

For instance

Ŝzα(σ1)α(σ2) = (s(1)z + s(2)z )α(σ1)α(σ2) = (
1
2

+
1
2
)α(σ1)α(σ2) (60)

In the case of two electrons, an antisymmetric total wave function can always be constructed as
antisymmetric/symmetric combination of the space- and spin functions.
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5.5 Space and spin orbitals

spatial orbitals φi(r)

• wave functions of a single particle

ĥ(r)φi(r) = εiφi(r)

• describe the spatial distribution of an electron %i(r) = |φi(r)|2

• form an orthonormal set ∫
drφ∗i (r)φj(r) = 〈φi|φj〉 = δij

spin orbitals ψi(x)

• simultaneous eigenfunctions of ĥ(r) and ŝz

• products of spatial and spin functions

ψi(x) = φi(r)ηi(σ)

• orthonormality ∫
dxψ∗

i (x)ψj(x) =

∫
drφ∗i (r)φj(r)

∫
dσα(σ)∗β(σ) = δijδαβ

6 Density matrices

We do not necessarily need N-electron all information contained in the 4N -variable wave function
to obtain the energy and properties of the system. We introduce a hierarchy of functions that
depend explicitly on one, two, three, etc. particle coordinates.
The probability of finding electron 1 in dx1 = dr1dσ1, while other electrons are anywhere, is

dx1

∫
Ψ∗(x1,x2, . . . ,xN )Ψ(x1,x2, . . . ,xN )dx2 . . . dxN (61)

and the probability of finding any of the N electrons in dx1 is N times this, which can be written
as P (x1)dx1, where

P (x1) = N

∫
Ψ∗(x1,x2, . . . ,xN )Ψ(x1,x2, . . . ,xN )dx2 . . . dxN (62)

The probability of finding an electron in r1, without making reference to the spin coordinate is

ρ(r1) =
∫
P (x1)dσ1 (63)

This is the electron density function measured by X-ray crystallography.
The probability of finding any two electrons simultaneously in x1 and x2 is

Γ(x1,x2) = N(N − 1)
∫

Ψ∗(x1,x2, . . . ,xN )Ψ(x1,x2, . . . ,xN )dx3 . . . dxN (64)

and in the spinless version

γ(r1, r2) =
∫ ∫

Γ(x1)dσ1dσ2 (65)
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6.1 Reduced density matrices

For the purposes of evaluating one- and tow-electron operator expectation values, we need to
generalize the density functions as follows

P (x1;x′1) = N

∫
Ψ∗(x1,x2, . . . ,xN )Ψ(x′1,x2, . . . ,xN )dx2 . . . dxN (66)

and

Γ(x1,x2;x′1,x
′
2) =

N(N − 1)
∫

Ψ∗(x′1,x
′
2, . . . ,xN )Ψ(x′1,x

′
2, . . . ,xN )dx3 . . . dxN (67)

The expectation value of a one-electron operator Ĥ1 =
∑

i ĥ(i) is

〈Ψ|Ĥ1|Ψ〉 =
N∑

i=1

∫
· · ·
∫
dx1dxi−1dxi+1 . . . dxN

×
∫
dxiΨ∗(x1,x2, . . . ,xN )ĥ(i)Ψ(x′1,x2, . . . ,xN ) (68)

which can be written with the 1RDM as

〈Ψ|Ĥ1|Ψ〉 =
∫

x′
1=x1

ĥ(1)P (x1;x′1)dx1 (69)

where we put x′1 = x1 after the action of the operator on P (x1;x′1), before performing the integral.

Similarly, for a two-electron operator

〈Ψ|Ĥ2|Ψ〉 =
∫∫

x′
1=x1

x′
2=x2

ĝ(1, 2)Γ(x1;x′1)dx1dx2 (70)

Higher than 2RDMs are not needed to describe the interaction in a molecular system.

7 Construction of the wave function

Consider a simplified problem, by neglecting the electron-electron interaction, leading to a sum of
one-electron Hamiltonians

Ĥ =
N∑
i

ĥ(i) (71)

which has as eigenfunctions

ΨHP = ψi(x1)ψj(x2) . . . ψn(xN ) (72)

i.e. the product of one-electron functions, satisfying the following eigenequations

ĥ(i)ψj(xi) = εjψj(xi) (73)

where the electron i occupies the spin orbital ψj(xi) with energy εj . The energy of this Hartree

product is
〈Ψ|Ĥ|Ψ〉 = εi + εj + εk + . . .+ εn = EHP (74)

This wave function is obviously not a physically appropriate one (violates the Pauli principle)
and the complete neglect of electron repulsion is a very crude approximation. Nevertheless, we
can examine whether the idea of writing the N-electron wave function as a linear combination of
product formed by one-electron functions, can lead to the exact solution.
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7.1 Expansion theorem

Assume we have a complete set of functions {χi(x1)} of a single variable x1. Then any arbitrary
function of that variable can be expanded exactly as

Φ(x1) =
∑

i

aiχ(x1) (75)

We can expand also a two-variable function of x1 and x2 on the same domain by holding x2 fixed

Φ(x1, x2) =
∑

i

ai(x2)χ(x1) (76)

The ensemble of expansion coefficients ai(x2) for each fixed x2 coordinates, can be considered now
as a new function of a single variable, that can be expanded as

ai(x2) =
∑

j

bijχj(x2) (77)

and substituting this expansion into that of Φ(x1, x2), we have

Φ(x1, x2) =
∑
ij

bijχi(x1)χj(x2) (78)

This process can be extended to functions Φ(x1, x2, . . . , xN ) of any number of variables.
Let us collect the space and spin coordinates of an electron to x. The one-electron functions, the
spin orbitals, χ(x) enter into the general expansion

Φ(x1,x2,x3, . . . ,xN ) =
∑

ijk...N

bijk...Nχi(x1)χj(x2)χk(x3) . . . χN (xN ) (79)

However, the wave function should be antisymmetric with respect to the exchange of coordinates
of two electrons. For two electrons

Φ(x1,x2) = −Φ(x2,x1) (80)

which implies for the expansion coefficients that bij = −bji and bii = 0, or

Φ(x1,x2) =
∑
i>j

bij {χi(x1)χj(x2)− χj(x1)χi(x2)} =
∑
i>j

√
2bij det [χi(x1)χj(x2)] (81)

More generally, an arbitrary N -electron function can be expanded as linear combination of all
possibleN -electron determinants, formed from a complete set of one-electron spin orbitals, {χi(x)}.
Note that any complete set of one-electron spin orbitals can be used, in principle. Other possibilities
...

7.2 Configuration Interaction

Let us denote the N -electron determinants as ΦI , which will be supposed to be real and orthonor-
mal. The exact wave function, Ψ expanded on the fixed basis of these determinants

Ψ =
∑

I

cIΦI (82)

can be obtained by minimizing the expectation value of the Hamiltonian

〈Ψ|Ĥ|Ψ〉 =
∑
IJ

cIcJ〈ΦI |Ĥ|ΦJ〉 =
∑
IJ

cIcJHIJ (83)
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We suppose that Ψ is normalized, i.e.

〈Ψ|Ψ〉 =
∑
IJ

cIcJ〈ΦI |ΦJ〉 =
∑

I

c2I = 1 (84)

Since we would like to preserve the normalization of the wave function, the constrained minimiza-

tion method with Langrange multipliers is used, i.e. we minimize the function

L(c1, c2, . . . , cK , E) = 〈Ψ|Ĥ|Ψ〉 − E

(
〈Ψ|Ψ〉 − 1

)
=
∑
IJ

cIcJHIJ − E

(∑
I

c2I − 1
) (85)

The minimum of this function can be found from the condition

∂L

∂cI
= 2

∑
J

cJHIJ − 2EcI = 0 (86)

which is just the standard eigenvalue problem of the Hamiltonian matrix

Hc = Ec (87)

Consider all the possible eigenvalues Eα of the Hamiltonian matrix

Hcα = Eαcα (88)

Let us introduce the C and the diagonal matrix of the eigenvalues, E, then we have

HC = CE (89)

The α-th eigenvalue is the expectation value of the Hamiltonian with respect to Φα

〈Φβ |Ĥ|Φα〉 =
∑
IJ

cβI 〈ΨI |Ĥ|ΨJ〉cαJ =
∑
IJ

(cβ)†Hcα = Eα(cβ)†cα = Eαδαβ (90)

The lowest eigenvalue is upper bound to the ground state energy. Higher eigenvalues are upper
bounds to the energies of the excited states.

8 Method of determinants

We have seen that the exact N -electron wave function, satisfying the Pauli principle, can be
expanded in terms of antisymmetrized products of one-electron functions.
Such wave functions correspond to well-known mathematical objects, the determinants, which we
shall study in more details.

8.1 Permutation (symmetric) group

Consider N ordered indices
{1, 2, 3, . . . , N}

Define a permutation as
P{1, 2, 3, . . . , N} = {p1, p2, p3, . . . , pN}

which means that 1 is replaced by p1, etc.
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Notation

P =
(

1 2 . . . N
p1 p2 . . . pN

)
Product of two permutations is also permutation

PQ =
(

1 2 . . . N
p1 p2 . . . pN

)(
1 2 . . . N
q1 q2 . . . qN

)
=

=
(
q1 q2 . . . qN
r1 r2 . . . rN

) (
1 2 . . . N
q1 q2 . . . qN

)
=

=
(

1 2 . . . N
r1 r2 . . . rN

)
= R

(91)

Inverse permutation:

if P =
(

1 2 . . . N
p1 p2 . . . pN

)
then P−1 =

(
p1 p2 . . . pN

1 2 . . . N

)
(92)

Unity:

I =
(

1 2 . . . N
1 2 . . . N

)
(93)

Associativity:
(PQ)R = R(RQ) (94)

The ensemble of the possible permutations of N objects forms SN , a symmetric group of rank N
and of order N !.

8.2 Antisymmetrizer

Projection operator, selects the antisymmetric component of a many-electron function.

Â =
1√
N !

∑
P∈SN

εPP (95)

with
εP = (−1)P

Idempotent: ÂÂ = const× Â

ÂÂ =
(

1√
N !

)2 ∑
P∈SN

εPP
∑

Q∈SN

εQQ =
1
N !

∑
P∈SN

∑
Q∈SN

(−1)p+qPQ (96)

for a given P , if Q runs over SN , the product R = PQ runs over all the N ! elements of SN :

1
N !

∑
P∈SN

[ ∑
R∈SN

(−1)rR

]
︸ ︷︷ ︸

√
N !Â

=
√
N !Â (97)

Hermitian: Â† = Â, i.e. 〈ÂΨ|Ψ〉 = 〈Ψ|ÂΨ〉

〈ÂΨ(1, 2, . . . N)|Ψ(1, 2, . . . N)〉 =∑
P∈SN

εP 〈P−1PΨ(1, 2, . . . N)| P−1Ψ(1, 2, . . . N)〉 (98)
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Insertion of P−1 changes only the order of variables of integration. If P runs over all permutations,
then so does P−1 = Q too: ∑

P∈SN

εP 〈Ψ(1, 2, . . . N)| P−1Ψ(1, 2, . . . N)〉 =

∑
Q∈SN

εQ〈Ψ(1, 2, . . . N)| QΨ(1, 2, . . . N)〉 =

〈Ψ(1, 2, . . . N)| ÂΨ(1, 2, . . . N)〉

(99)

8.3 Why antisymmetrizer?

Consider a Q ∈ SN then

QÂ =
1√
N !

∑
P∈SN

(−1)q(−1)q(−1)pQP = (−1)q 1√
N !

∑
R∈SN

(−1)rR = (−1)qÂ (100)

Apply Q, a permutation of the N variables in Φ(1, 2, . . . , N) to

Ψ(1, 2, . . . , N) = ÂΦ(1, 2, . . . , N)

, where Φ(1, 2, . . . , N) is an arbitrary function.

QΨ(1, 2, . . . , N) = QÂΦ(1, 2, . . . , N)

= (−1)qÂΦ(1, 2, . . . , N)
= (−1)qΨ(1, 2, . . . , N)

(101)

After the action of Â, the function Φ(1, 2, . . . , N) becomes antisymmetric.

9 Determinant wave function

The wave function obtained after the action of the antisymmetrizer on a Hartree-product can be
written as a determinant:

DK = Â[φk1(1)φk2(2) . . . φkN
(N)]

=
1√
N !

det [φk1(1)φk2(2) . . . φkN
(N)]

(102)

DK =
1√
N !

∣∣∣∣∣∣∣∣∣
φk1(1) φk2(1) . . . φkN

(1)
φk1(2) φk2(2) . . . φkN

(2)
...

...
...

...
φk1(N) φk2(N) . . . φkN

(N)

∣∣∣∣∣∣∣∣∣ (103)

9.1 Invariance properties of the determinant wave function

Mixing of the orbitals constituting the determinant leaves it invariant (up to a constant
factor).
Let us consider the wave function

Φ = Â [φ1(2)φ2(2) . . . φN (N)] =
1√
N !

det {A} (104)
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where Aij = φj(i). Apply a linear transformation on the set of orbitals{φk}

ψj =
∑

k

Tkjφk (105)

The determinant wave function built from the new set of orbitals is

Ψ = Â [ψ1(2)ψ2(2) . . . ψN (N)] =
1√
N !

det {B} (106)

where Bij = ψj(i).
Using the transformation equation

ψj(i) = Bij =
∑

k

Tkjφk(i) =
∑

k

AikTkj = (AT)ij (107)

Determinant of the product of two matrices is equal to the product of the determinants

Ψ =
1√
N !

detB =
1√
N !

detAT =
1√
N !

detA detT = detT · Φ (108)

If the transformation is unitary U−1 = U†, then |detU| = 1 and the wave function is invariant
with respect to the unitary transformation of the spin orbitals.

Corollary: any determinant wave function can be written in terms of orthonormal spin orbitals.
Let the overlap matrix

Sij = 〈ψi|ψj〉 6= δij

and choose T a the following orthogonalization transformation (Löwdin orthogonalization)

T = S−1/2V (109)

where V is an arbitrary unitary matrix. In fact,

〈φi|φj〉 = 〈
∑

`

T`iψ`|
∑

k

Tkjψk〉 =
∑
`k

T ∗`i〈ψ`|ψk〉Tkj

=
∑
`k

T †i`S`kTkj =
(
T†ST

)
ij

=
(
V†S−1/2SS−1/2V

)
ij

=
(
V†V

)
ij

= δij

(110)

9.2 Physical meaning of the determinant wave function

Consider a two-electron system with spin orbitals ψ1(x1) and ψ2(x2)

◦ Hartree product

Ψ(1, 2) =
1√
2
ψ1(x1)ψ2(x2)

Two particle density matrix

Γ(x1,x2) = 2Ψ∗(x1,x2)Ψ(x1,x2) = |ψ1(x1)|2|ψ2(x2)|2 (111)

the simultaneous probability of finding electron-one in dx1 at x1 and in x2 at x2 is a simple
product of the densities associated with the two electrons and the indistinguishability of the
electrons is not respected.
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◦ Determinant with electrons having opposite spins

|Ψ(1, 2)〉 = Â|ψ1(x1)ψ2(x2)〉 = Â|φ1(r1)α(σ1)φ2(r2)β(σ2)〉

Spin-dependent two-particle reduced density matrix

Γ(x1,x2) =
1
2
{φ1(r1)α(σ1)φ2(r2)β(σ2)− φ1(r2)α(σ2)φ2(r1)β(σ1)}2 (112)

The spinless 2RDM is obtained by integration of the spin variables

γ(r1, r2) =
∫
dσ1

∫
dσ2Γ(x1,x2) =

1
2
{
|φ1(r1)|2|φ2(r2)|2 + |φ1(r2)|2|φ2(r1)|2

}
(113)

The indistinguishability of the electrons is reflected by the average of two terms, but the two
electrons are uncorrelated. In particular, if the space part of the orbitals is the same,

γ(r1, r1) 6= 0 (114)

i.e. there is a finite probability of finding two electrons of opposite spins at the same point
in space.

◦ Determinant with electrons having parallel spins

|Ψ(1, 2)〉 = Â|ψ1(x1)ψ2(x2)〉 = Â|φ1(r1)β(σ1)φ2(r2)β(σ2)〉

After integration the spin dependent 2RDM, we obtain

γ(r1, r2) =
∫ ∫

dσ1dσ2Γ(x1,x2)

=
1
2

{
|φ1(r1)|2|φ2(r2)|2 + |φ1(r2)|2|φ2(r1)|2

− [φ∗1(r1)φ2(r1)φ∗2(r2)φ1(r2) + φ1(r1)φ∗2(r1)φ2(r2)φ∗1(r2)]
} (115)

Electrons of the same spin are correlated (Fermi hole) as it can be seen by calculating the
probability of finding two electrons at the same point r1

γ(r1, r1) = 0 (116)

In a Slater-determinant the motion of electrons with parallel spin is correlated but the motion of
electrons with opposite spin is not.

10 Matrix elements between determinant wave functions

Two determinants constructed from two sets of spin orbitals {ui} and {vj}:

U∗ = Â [u∗1(1)u∗2(2) . . . u∗N (N)] and V = Â [v1(1)v2(2) . . . vN (N)]

Consider the product U∗V

U∗V = Â [u∗1(1)u∗2(2) . . . u∗N (N)] · Â [v1(1)v2(2) . . . vN (N)] (117)

It can be written using that Â† = Â and Â2 =
√
N !Â as

U∗V = [u∗1(1)u∗2(2) . . . u∗N (N)] · Â†Â [v1(1)v2(2) . . . vN (N)]

=
√
N ![u∗1(1)u∗2(2) . . . u∗N (N)]Â [v1(1)v2(2) . . . vN (N)]

= [u∗1(1)u∗2(2) . . . u∗N (N)] det [v1(1)v2(2) . . . vN (N)]
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The determinant det {V } is multiplied N times by factors of type u∗i (i).

Since the multiplication of a determinant by a number is equivalent to multiplying one of its rows
by the same number, we can arrange this expression by attributing each multiplicative factor to
one of the rows in the following way

U∗V = det [u∗1(1)v1(1) · . . . u∗i (i)vi(i) · . . . u∗N (N)vN (N)]
= det {u∗i (i)vk(i)}

(118)

The product of two Slater determinants is also a determinant, formed from products of the one-
electron functions.
Matrix element of an operator Ô

〈U |Ô|V 〉 =
∫
· · ·
∫
dx1 . . . dxN Ô(1, 2, . . . , N)

× det [u∗1(1)v1(1) · . . . u∗i (i)vi(i) · . . . u∗N (N)vN (N)] (119)

10.1 Laplace expansion formulae

An arbitrary determinant can be expanded according to the Laplace expansion formulae.

1. First order expansion formula

det{A} =
∑

k

ak(i)D(i|k) (120)

where ak(i) = Aik, the minor, formed by the i-th row and k-th column, and D(i|k) is the
corresponding cofactor, i.e. the signed determinant of the matrix obtained by deleting from
the original one the k-th row and i-th column:

(−1)k+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 . . . A1,k−1 A1,k+1 . . . A1N
A21 A22 . . . A2,k−1 A2,k+1 . . . A2N

...
...

...
...

...
...

...
Ai−1,1 Ai−1,2 . . . Ai−1,k−1 Ai−1,k+1 . . . Ai−1,N
Ai+1,1 Ai+1,2 . . . Ai+1,k−1 Ai+1,k+1 . . . Ai+1,N

...
...

...
...

...
...

...
AN1 AN2 . . . AN,k−1 AN,k+1 . . . ANN (N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Applied to the product of two determinants:

U∗ · V =
∑

k

u∗i (i)vk(i)D(k|i) (121)

2. Second-order Laplace expansion formula

det{A} =
1
2

∑
k`

∣∣∣∣Aik Ai`

Ajk Aj`

∣∣∣∣D(ij|k`) (122)

where the minor is a 2×2 determinant formed by the k and `-th rows and i and j-th columns,
and D(ij|k`) is the corresponding cofactor, i.e. the signed determinant of the matrix obtained
by deleting from the original one the k and `-th row and i and j-th column.

Applied to the product of two determinants:

U∗ · V =
∑
k<`

∣∣∣∣u∗i (i)vk(i) u∗i (i)v`(i)
u∗j (j)vk(j) u∗j (j)v`(j)

∣∣∣∣D(ij|k`) (123)
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10.2 Overlap of two determinants

Applying the general result for Ô = 1

〈U |V 〉 =
∫
· · ·
∫
dx1 . . . dxN det [u∗1(1)v1(1) · . . . u∗i (i)v∗i (i) · . . . u∗N (N)vN (N)]

= det
[∫

dx1u
∗
1(1)v1(1) · . . .

∫
dxiu

∗
i (i)vi(i) · . . .

∫
dxNu

∗
N (N)vN (N)

]
(124)

which is an antisymmetrized product of N one-particle overlap integrals.

〈U |V 〉 = det [〈u1|v1〉〈u2|v2〉 . . . 〈uN |vN 〉] = det {〈ui|vj〉} (125)

determinant of the overlap matrix Suivj
formed from the two sets of spin orbitals

〈U |V 〉 = det {S} (126)

10.3 Matrix elements of one-electron operators

Let H1 a the symmetric sum of h(i) one-electron operators:

Ĥ1 =
∑

i

ĥ(i) (127)

First-order Laplace expansion formula of the product of determinants and put into the general
result

〈U |Ĥ1|V 〉 =
∑

i

∑
k

{∫
dxiu

∗
i (i)ĥ(i)vk(i)

}
×

×
{∫

· · ·
∫
dxi . . . dxi−1dxi+1 . . . dxND(k|i)

}
(128)

The first part is just a one-electron integral. The second part, analogous to the overlap integral
discussed above, is the ak(i) = Aik cofactor of the determinant of the overlap matrix 〈ui|vk〉.
D(k|i) is the determinant of the overlap matrix obtained by deleting the i-th row and k-th column.

The standard expression of an inverse matrix(
S−1

)
ik

=
D(k|i)
det{S}

(129)

the matrix elements of a one-electron operator can be written in terms of the one-electron integrals,
the determinant of the overlap matrix and its inverse

〈U |H1|V 〉 =
∑
i,k

〈ui|h|vk〉
(
S−1

)
ik

det{S} (130)

10.4 Matrix elements of two-electron operators

Let us consider the two-electron symmetric operator

Ĥ2 =
1
2

∑′

i,j

ĝ(i, j) (131)

Taking the second-order Laplace expansion of the determinant product in the matrix element
expression and using the expression for the integral of the second-order cofactor, D(ij|k`)

D(ij|k`) =
[(

S−1
)
ki

(
S−1

)
`j
−
(
S−1

)
kj

(
S−1

)
`i

]
det{S} (132)
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we have the following expression

〈U |Ĥ2|V 〉 =
∑
i<j

∑
k<`

{∫ ∫
dxidxj [u∗i (i)vk(i)ĝ(i, j)u∗j (j)v`(j)−

− u∗i (i)v`(i)ĝ(i, j)u∗j (j)vk(j)]
}

×
{(

S−1
)
ki

(
S−1

)
`j
−
(
S−1

)
kj

(
S−1

)
`i

}
det{S} (133)

10.5 Notations for two-electron integrals

Two-electron integral of spin orbitals ψ(x) = φ(x)η(σ) in the bra-ket notation∫ ∫
dx1dx2ψ

∗
i (1)ψk(1)ĝ(1, 2)ψ∗j (2)ψ`(2) = 〈ψ∗i (1)ψ∗j (2)|ψk(1)ψ`(2)〉

= 〈ij|k`〉
(134)

This is the physicist’s notation, respecting the conventions for the bra and ket vectors

〈ij| = ψ∗i (1)ψ∗j (2)

|k`〉 = ψk(1)ψ`(2)

The antisymmetrized two-electron integral, appearing in the matrix elements of the the two-electron
operators, is usually denoted as

〈ij|k`〉 − 〈ij|`k〉 = 〈ij||k`〉 (135)

The chemist’s notation emphasizes that a two-electron integral is the electrostatic interaction of
two charge distributions∫ ∫

dx1dx2 ψ
∗
i (1)ψk(1)︸ ︷︷ ︸

ρik(1)

ĝ(1, 2)ψ∗j (2)ψ`(2)︸ ︷︷ ︸
ρj`(2)

= [ik|j`] (136)

In numerical calculations is more advantageous to express integrals directly in spatial orbitals. The
transformation is obvious using the orthogonality of the spin functions

[ik|j`] = (φiφk|φjφ`)δηiηk
δηjη`

(137)

In particular,

〈ij||ij〉 =

{
parallel spin [ii|jj]− [ij|ij] = (ii|jj)− (ij|ij)
antiparallel spin [ii|j̄j̄]− [ij̄|ij̄] = (ii|jj)

(138)

10.6 Summary of matrix element rules

◦ overlap
〈U |V 〉 = det {S} (139)

◦ one-electron operator

〈U |Ĥ1|V 〉 =
∑
i,k

〈ui|ĥ|vk〉
(
S−1

)
ik

det{S} (140)

◦ two-electron operator

〈U |Ĥ2|V 〉 =
∑
i<j

∑
k<`

〈ij||k`〉
{(

S−1
)
ki

(
S−1

)
`j
−
(
S−1

)
kj

(
S−1

)
`i

}
det{S} (141)
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10.7 Slater rules

We need these results applied to the special case of determinants built from a unique set of or-
thonormal spin orbitals, {ψi}. Let D such a determinant, any other determinant can be generated
by replacing one, two, or more spin orbitals {a, b, c, d, . . .} occupied in D by other spin orbitals,
{r, s, t, u, . . .} not occupied in D

D(a→ r) = Dr
a D(a→ r, b→ s) = Drs

ab D(a→ r, b→ s, c→ t) = Drst
abc

Overlap
〈D|D〉 = det {S} (142)

since Sab = δab

〈D|D〉 = 1 (143)

If the two determinants differ in at least one orbital

〈D|Dr
a〉 = 0 (144)

since due to the orthogonality of the orbitals Sar = 0 ∀ a, i.e. one row in the determinant
det {S} is zero.

One-electron matrix elements

〈U |H1|V 〉 =
∑
i,k

〈ui|h|vk〉
(
S−1

)
ik

det{S}

• U = V = D, since Sik = δik and det {S} = 1

〈D|Ĥ1|D〉 =
∑

i

〈ψi|ĥ|ψi〉 (145)

• V = D and U = Dr
a only one cofactor is nonzero

〈Dr
a|Ĥ1|D〉 = 〈ψr|ĥ|ψa〉 (146)

• V = D and U = Drs
ab all cofactors are zero

〈Drs
ab|Ĥ1|D〉 = 0 (147)

Two-electron matrix elements

〈U |Ĥ2|V 〉 =
∑
i<j

∑
k<`

〈ij||k`〉
{(

S−1
)
ki

(
S−1

)
`j
−
(
S−1

)
kj

(
S−1

)
`i

}
det{S}

• U = V = D then D(ij|k`) = δikδ`j since i = ` and k = j cases cannot occur

〈D|Ĥ2|D〉 =
∑
i<j

∑
k<`

〈ik||j`〉
(
δikδj` − δjkδi`

)
=
∑
i<j

∑
k<`

〈ij||k`〉δikδj` =
∑
i<j

〈ij||ij〉
(148)
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• U = Dr
a apply the general formula

〈U |Ĥ2|V 〉 =
∑
i<j

∑
k<`

〈uiuj ||vkv`〉D(ij|k`) (149)

the S matrix is diagonal, excepted the Saa element.

• i = k = a case: D(aj|a`) = δj` and sum over ` = j > a∑
`>a

〈r`||a`〉

• j = ` = a case: D(ia|ka) = δik and sum over k = i < a∑
k<a

〈kr||ka〉 =
∑
`<a

〈r`||a`〉

Summarizing these two cases

〈Dr
a|Ĥ2|D〉 =

N∑
j=1
j 6=a

〈rj||aj〉 (150)

• U = Drs
ab only one non-zero cofactor, D(ab|ab) = 1

〈Drs
ab|Ĥ2|D〉 = 〈rs||ab〉 (151)

10.8 Variation of a determinant wave function

The determinant
|Ψ〉 = A[ψ1(1)ψ2(2) . . . ψN (N)] (152)

can be varied through the variation of the one-electron orbitals:

ψa → ψa + δψa = ψa + paψa
′ (153)

where ψ′a is an arbitrary spin orbital and pa is a complex variation parameter.

|Ψ + δΨ〉 = A [{ψ1(1) + p1ψ
′
1} {ψ2(2) + p2ψ

′
2} . . . {ψN (N) + pNψ

′
N}] (154)

This is a sum of 2N determinant. To first order in the pa parameters the variation is a sum of
singly excited determinants:

|δΨ〉 =
∑

a

pa|Ψ(ψa→ψ′a)〉 (155)

Let the Q̂ the projection operator on the subspace of the orbitals that are occupied in the deter-
minant and P̂ the projector to its orthogonal complement

Q̂ =
N∑
i

|ψa〉〈ψa| P̂ = 1− Q̂ =
∑

r∈/{a}

|ψr〉〈ψr| (156)

The arbitrary spin orbital ψ′a can be decomposed as:

pa|ψ′a〉 =
N∑
b

qba|ψb〉+
∑

r

pra|ψr〉 (157)
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where the set of orbitals {ψr} are taken from the orthogonal complement of the occupied set {ψa}.∑N
b qbaψb does not change the determinant, up to a factor of normalization.

An arbitrary variation of a determinant can be written as a sum of singly excited determinants

|δΨ〉 =
N∑
a

∑
r

pra|Ψr
a〉 (158)

11 Method of Second Quantization

Up to now, we satisfied the antisymmetry requirement by using determinant wave function. The
same goal can be achieved by transferring this antisymmetry property on the algebraic properties
of electron creation and annihilation operators.
No essentially new physics, just a convenient way to handle wave functions, operators and matrix
elements.

11.1 Representations of determinant wave functions

The determinant wave function can be considered as an ordered product of occupied spin orbitals

D(x1,x2, . . . ,xN ) ⇔ |ψ1ψ2 . . . ψa . . . ψb . . . ψN | (159)

The set of occupied spin orbitals is the electron configuration.

Particle number representation:
the number of electrons filling each of the orbitals occupation number is given explicitly (ni =
0 or 1)

D(x1,x2, . . . ,xN ) ⇔ |n1n2 . . . nk . . . n` . . . nM 〉 (160)

For instance:

|D〉 =|11111 . . . 11
N

00 . . . 000 . . . 000〉

|Dr
a〉 =|1110

a
1 . . . 11

N
00 . . . 1

r
00 . . . 000〉

11.2 Fock space

The Fock space is the vector space constituted of all the possible “kets”, corresponding to the total
number of electrons between 0 and M .
The vacuum state is an abstract state with 0 electron:

|vac〉 = |010203 . . . 0M 〉 (161)

Properties of the vacuum:

• normalization
〈vac|vac〉 = 1 (162)

• orthogonal to all other states

Second quantized operators manipulate the occupation numbers of the vectors in the Fock-space.
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11.3 Creation of electrons

A one-electron state, ψk(1) can be represented by the creation of an electron on the spin orbital
ψk

|k〉 = a+
k |vac〉 (163)

A two-electron state, Ψ(1, 2) is represented in the wave function language as a Slater determinant

D(1, 2) =
1√
2

∣∣∣∣ψi(1) ψk(1)
ψi(2) ψk(2)

∣∣∣∣ (164)

The same state is written in a second quantization language as

D(1, 2) ⇔ |ik〉 = a+
i a

+
k |vac〉 (165)

As a consequence of the antisymmetry property of D(1, 2)

D(1, 2) = −D(2, 1) (166)

we have
a+

i a
+
k |vac〉 = −a+

k a
+
i |vac〉 (167)

The antisymmetry of the wave function is translated as an algebraic property of the creation
operators:

a+
i a

+
k + a+

k a
+
i = 0 (168)

The creation operators of electrons (fermions) anticommute:

[a+
k , a

+
i ]+ = 0 (169)

If k = i
a+

i a
+
i = −a+

i a
+
i = 0 (170)

We are not allowed to create electrons twice on the same spin orbital:
Pauli principle.

11.4 Annihilation of electrons

The operator that removes an electron from a spin orbital is called the annihilation operator

ai|i〉 = |vac〉 (171)

We are not allowed to remove an electron from the vacuum

ai|vac〉 = 0 (172)

In order to annihilate an electron on the orbital ψi, this orbital should be immediately to the right
of the annihilator, e.g.

ai|ik〉 = aia
+
i a

+
k |vac〉 = a+

k |vac〉 = |k〉 (173)

If the position of the spin orbital ψi was not appropriate, we must do transpositions until it is
placed to the right of ai

ai|ki〉 = aia
+
k a

+
i |vac〉 = −aia

+
i a

+
k |vac〉 = −a+

k |vac〉 = −|k〉 (174)

The sign depends on the number of transpositions:

• even number of transpositions: + sign

a3a
+
2 a

+
1 a

+
3 |vac〉 = −a3a

+
2 a

+
3 a

+
1 |vac〉 = +a3a

+
3 a

+
2 a

+
1 |vac〉 = a+

2 a
+
1 |vac〉 (175)

• odd number of transpositions: − sign

a3a
+
2 a

+
3 a

+
1 |vac〉 = −a3a

+
3 a

+
2 a

+
1 |vac〉 = −a+

2 a
+
1 |vac〉 (176)
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11.5 Commutation relations

Let us consider an N -electron determinant in the particle number representation

|D〉 = |n1n2n3 . . . ni . . . nk . . . nM 〉 (177)

and reorder the orbitals so that ni and nk be in the first two positions

|D〉 = ±|ninkn1n2n3 . . . nM 〉 (178)

Study the effect of aia
+
k on this determinant

aia
+
k |ninkn1n2n3 . . . nM 〉 (179)

This expression is zero, if

◦ nk = 1 cannot create e− on an already occupied orbital (Pauli principle)

◦ ni = 0 cannot annihilate an e− on an empty orbital

Without loosing the generality of our conclusions, we can study the effect of aia
+
k on |i〉

aia
+
k |i〉 = ai|ki〉 = −ai|ik〉 = −|k〉 (180)

Similarly, for the operators in the reverse order

a+
k ai |i〉 = a+

k |vac〉 = |k〉 (181)

This is an “excitation operator”, i.e. removes an electron from i and puts it on k.
By the virtue of the above results, for an arbitrary determinant

(aia
+
k + a+

k ai)|D〉 = 0 (182)

which is equivalent to the following relationship between the operators (i 6= k)

aia
+
k + a+

k ai = 0 (183)

Let us examine the case of i = k. Two possibilities

ni = 0 ni = 1
a+

i ai|n1 . . . ni . . . nM 〉 = 0 |n1 . . . ni . . . nM 〉
aia

+
i |n1 . . . ni . . . nM 〉 = |n1 . . . ni . . . nM 〉 0

After summing the two equations we obtain

aia
+
i + a+

i ai = 1̂ (184)

The two results can be summarized in the anticommutation relation

[ai, a
+
k ]+ = δik (185)

11.6 Adjoint relations

The role of the operator ai is to annihilate the effect of a+
i

aia
+
k |vac〉 = δik|vac〉 (186)

Let us consider the functions ψi and ψk, members of an orthonormal set of functions {ψi}M
i=1, i.e.

Sik = 〈i|k〉 = δik (187)
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The ψk function can be written as
|k〉 = a+

k |vac〉 (188)

and the adjoint of the analogous definition for ψi = |i〉

〈i| = 〈vac|
(
a+

i

)†
(189)

The scalar product, i.e. the overlap integral is

Sik = 〈vac|
(
a+

i

)†
a+

k |vac〉 (190)

Since Sik = δik is diagonal (
a+

i

)†
a+

k |vac〉 = δik|vac〉 (191)

After comparison with Eq.(186) we conclude that

ai =
(
a+

i

)†
(192)

i.e. in the case of orthonormal basis functions, the annihilation operator is the adjoint of the
creation operator.
The “bra” corresponding to the “ket”

|D〉 = a+
N . . . a+

2 a
+
1 |vac〉

is
〈D| = 〈vac|a1a2 . . . aN

11.7 Non-orthogonal functions

Overlap matrix is non-diagonal

Sµν = 〈χµ|χν〉 = 〈vac|
(
χ+

µ

)†
χ+

ν |vac〉 (193)

Introduce the notation (
χ+

µ

)† = χ−µ (194)

Following anticommutation relation can be derived

[χ+
ν , χ

−
µ ]+ = Sµν (195)

Take an auxiliary Löwdin-orthogonalized basis ψλ =
∑

µ S
−1/2
λµ χµ. The creation and and anni-

hilation operators can be transformed to this basis as

ψ+
λ =

∑
µ

S
−1/2
λµ χ+

µ χ+
µ =

∑
λ

S
1/2
µλ ψ

+
λ (196)

ψ−τ =
∑

ν

S−1/2
ντ χ−ν χ+

ν =
∑

τ

S1/2
τν ψ

−
τ (197)

Applying these transformations

[χ+
ν , χ

−
µ ]− =

∑
λτ

S
1/2
µλ S

1/2
τν [ψ+

λ , ψ
−
τ ]+ =

∑
λτ

S
1/2
µλ S

1/2
τν δλτ = Sµν (198)

The operator χ−µ is not a true annihilation operator, for instance

χ−µ |χµχλ〉 = Sµµ|χλ〉 − Sµλ|χµ〉 (199)
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11.8 Properties of creation and annihilation operators: Summary

Properties of the vacuum

〈vac|vac〉 = 1
ak|vac〉 = 0

〈vac|a+
k = 0

Anticommutation relations (Pauli principle)

[a+
i , a

+
k ]+ = 0

[ai , ak ]+ = 0

[a+
i , ak ]+ = δik

Adjoint relation
ak =

(
a+

k

)†
Correspondences

|ψi〉 ⇔ a+
i |vac〉

|D〉 ⇔ a+
N . . . a+

2 a
+
1 |vac〉

〈ψi| ⇔ 〈vac|ai

|D〉 ⇔ 〈vac|a1a2 . . . aN

11.9 Particle number operator

A sequence of annihilation and creation operators acting on the same orbital

n̂i = a+
i ai

“measures” the occupation number of this orbital, i.e. tells if it is occupied (ni = 1) or if it is
empty (ni = 0)

n̂i|D〉 = a+
i ai|n1 . . . ni . . . nM 〉 = ni|n1 . . . ni . . . nM 〉 = ni|D〉 (200)

Determinant wave function is eigenfunction of n̂i with eigenvalue ni.

Operator of the total number of particles

N̂ =
M∑
i=1

n̂i =
M∑
i=1

a+
i ai (201)

Single determinants are eigenfunctions of N̂

N̂ |D〉 =
M∑
i=1

ni|D〉 = N |D〉 (202)

as well as multi-determinant wave functions

N̂ |Ψ〉 =
∑
K

cKN̂ |DK〉 =
∑
K

cK

M∑
i=1

niK |DK〉 =
∑
K

cKN |DK〉 = N |Ψ〉 (203)
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11.10 Representation of operators

In the first quantization representation an operator ÂS transforms the function Ψ to another one
Φ

ÂS |Ψ〉 = |Φ〉

We are looking for the second quantized operator that performs the analogous transformation
between wave functions in particle number representation.

|Φ〉 ÂS

−−−−−−−−→ |Ψ〉
?

⇓ ⇓ ⇓

|Φ±〉 ÂF

−−−−−−−−→ |Ψ±〉

The operator ÂS acts on one of the functions φi ∈ {φk}M
k=1 of the orthonormal set. The transformed

function ψi can be developed in the same basis {φk}M
k=1.

Let us follow step-by-step the correspondences between the first- and second-quantized picture:

FIRST QUANTIZATION SECOND QUANTIZATION

ÂS |φi〉 = |ψi〉 ÂFφ+
i |vac〉 = ψ+

i |vac〉

|ψi〉 =
∑

k cik|φk〉 ψ+
i =

∑
k cikφ

+
k

ÂS |φi〉 =
∑

k cik|φk〉 ÂFφ+
i |vac〉 =

∑
k cikφ

+
k |vac〉

〈φ`|ÂS |φi〉 =
∑

k cik〈φ`|φk〉 ⇓

A`i = ci` ⇒ ÂFφ+
i =

∑
k Akiφ

+
k

Complete this expression formally by φ−i

ÂFφ+
i φ

−
i =

∑
k

Akiφ
+
k φ

−
i

Sum on all basis functions φi

ÂF
∑

i

φ+
i φ

−
i︸ ︷︷ ︸

N̂

=
∑
ki

Akiφ
+
k φ

−
i

The particle number operator acts as a unit operator on one-electron functions, therefore we can
write

ÂF =
∑
ki

Akiφ
+
k φ

−
i (204)

11.11 One-electron operators

In the Schrödinger representation

ÂS =
N∑

i=1

Â(i) (205)
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The action of this operator on a Slater determinant leads to a linear combination of Slater deter-
minants

ÂS |Φ〉 = |Ψ〉 =
N∑
i

∑
k

cik|φ1 . . . φk . . . φN | (206)

The second-quantized counterpart of this expression is

ÂFφ+
N . . . φ+

i . . . φ
+
1 |vac〉 =

N∑
i

M∑
k

Akiφ
+
N . . . φ+

k . . . φ
+
1 |vac〉 (207)

We shall prove that the above result is obtained, if we apply the previously “derived” form of the
second-quantized operator, i.e.

ÂF =
M∑
i

M∑
k

Akiφ
+
k φ

−
i (208)

Let us study the expression

M∑
i

M∑
k

Akiφ
+
k φ

−
i φ

+
N . . . φ+

i . . . φ
+
1 |vac〉 (209)

the orbital i should be occupied, otherwise φ−i would give zero ⇒ summation over i is limited to
N instead of M

migrate φ+
i to the first position:

±φ+
i φ

+
N . . . φ+

i−1φ
+
i+1 . . . φ

+
1 |vac〉

using the anticommutation relation and that the spin orbital i has already been moved out of the
string

φ+
k φ

−
i φ

+
i = φ+

k (1− φ+
i φ

−
i︸ ︷︷ ︸

n̂i

) = φ+
k

migrate φ+
k back to the place of φ+

i . We need the same number of permutations, therefore we
recover the possible sign change

In effect, we retrieve the expression

ÂFφ+
N . . . φ+

i . . . φ
+
1 |vac〉 =

N∑
i

M∑
k

Akiφ
+
N . . . φ+

k . . . φ
+
1 |vac〉 (210)

The second-quantized operator does not depend on the number of electrons.

11.12 Two-electron operators

Two-electron operator in the Schrödinger picture

ÂS =
N∑

i<j

Â(ij)
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e.g. electron repulsion operator

V̂ee =
N∑

i<j

1
rij

transforms a pair of orbitals simultaneously

∑
i>j

Â(ij)|φ1 . . . φi . . . φj . . . φN |
N∑

i<j

∑
k`

cij,k`|φ1 . . . φk . . . φ` . . . φN | (211)

with
cij,k` =

∫ ∫
dx1dx2φ

∗
k(1)φi(1)

1
r12

φ∗` (2)φj(2) = 〈k`|ij〉

Following an analogous reasoning, we obtain the following expression for the second-quantized form
of the electron repulsion operator

V̂ F
ee =

1
2

∑
ijk`

〈ij|k`〉φ+
i φ

+
j φ

−
` φ

−
k (212)

Note the reversed order of indices k and `!

11.13 Reduced density matrices

The expectation value of a one-electron operator

Â =
∑
µν

Aµνa
+
µ aν

is
〈Â〉 =

∑
µν

Aµν〈a+
µ aν〉 (213)

where the quantity is brackets is the one-particle reduced density matrix (1RDM)

Pνµ = 〈a+
µ aν〉 (214)

The expectation value of a one-electron operator can be written as a trace

〈Â〉 =
∑
µν

AµνPνµ =
∑

µ

(AP )µµ = Tr(AP ) (215)

Analogously, the expectation value of a two-electron operator

〈Â〉 =
1
2

∑
µνλσ

Aµνλσ〈a+
µ a

+
ν aσaλ〉 (216)

can be written as a trace
〈Â〉 =

1
2

∑
µνλσ

AµνλσΓλσµν (217)

with the two-particle reduced density matrix, Γλσµν

Γλσµν = 〈a+
µ a

+
ν aσaλ〉 (218)
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The symmetry properties of Γ are determined by Hermitian symmetry and anticommutation rela-
tions

Γλσµν = 〈a+
µ a

+
ν aσaλ〉 = 〈a+

λ a
+
σ aνaµ〉 = Γµνλσ

= −〈a+
µ a

+
ν aλaσ〉 = −Γσλµν

= −〈a+
ν a

+
µ aσaλ〉 = −Γλσνµ

= 〈a+
ν a

+
µ aλaσ〉 = Γσλνµ

(219)

The diagonal elements are zero (Pauli principle)

Γµµλσ = Γµµλλ = 0 (220)

Normalization of the 2RDM

TrΓ =
∑
µν

Γµνµν =
∑
µν

〈ν+µ+µ−ν−〉 = −
∑
µν

〈µ+ν+µ−ν−〉

= −
∑
µν

〈µ+{δµν − ν−µ+}ν−〉

= −
∑
µν

{
δµν〈µ+ν−〉 − 〈µ+µ−ν+ν−〉

}
= −

∑
µ

〈n̂µ〉+
∑
µν

〈n̂µn̂ν〉

= N2 −N

(221)

The 1RDM is derivable from the 2RDM by contraction∑
λ

Γνλµλ =
∑

λ

〈µ+λ+λ−ν−〉 = (1−N)〈µ+ν−〉 = (1−N)Pνµ (222)

11.14 Hamiltonian and energy expressions

In an orthonormal basis {φµ}M
µ=1 the electronic Hamiltonian is

Ĥ =
∑
µν

hµνa
+
µ aν +

1
2

∑
µνλσ

〈µν|λσ〉a+
µ a

+
ν aσaλ (223)

The SQ Hamiltonian

◦ is not equal to the usual one: it is a projection on a finite (M -dimensional) space of one-
electron basis functions

◦ is independent of the number of electrons - this dependence is shifted to the wave function

The electronic energy – expectation value of the Hamiltonian – can be calculated using the one-
and two-particle RDMs

E = 〈Ψ|Ĥ|Ψ〉 =
∑
µν

hµνPνµ +
1
2

∑
µνλσ

〈µν|λσ〉Γλσµν (224)

This form of the energy expression is used in current quantum chemical calculations.
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An alternative energy expression is based on the reduced two-particle Hamiltonian, defined as

Ĥ =
1
2

∑
µνλσ

Kµν
λσa

+
µ a

+
ν a

−
σ a

−
λ (225)

where the matrix elements are

Kµν
λσ =

1
1−N

(δνσhµλ + δµλhνσ) + 〈µν|λσ〉 (226)

and the energy can be written in terms of the 2RDM

E =
∑
µνλσ

Kµν
λσΓλσµν (227)

(cf. DFT, where the energy is a functional on the one-particle density). Unconstrained varia-
tion of Γλσµν leads to much too low energies, since Γ should satisfy additional N-representability
conditions.

Rosina’s theorem: The ground state 2RDM completely determines the exact N-particle ground
state wave function (and p-RDMs) without any specific information about the Hamiltonian.
Contracted Schrödinger equations are of the following structure

K · 2D + K · 3D + K · 4D = E · 2D

11.15 Calculation of matrix elements

Let us consider first operator strings with vacuum:

1. we cannot annihilate on the vacuum

〈vac|a+
i ak|vac〉 = 0 (228)

2. use the anticommutation rule and the previous result

〈vac|aia
+
k |vac〉 = 〈vac|(δik − a+

k ai)|vac〉 = δik (229)

3. 〈vac|aiaja
+
k a

+
` |vac〉 =?

aiaja
+
k a

+
` = ai(δkj − a+

k aj)a+
` = aia

+
l δkj − aia

+
k aja

+
` =

(δi` − a+
` ai)δkj − (δik − a+

k ai)(δj` − a+
l aj) = δi`δkj − δikδjl + zeros

(230)

A graphical evaluation rule can also be deduced

〈vac|aiaja
+
k a

+
` |vac〉 = δi`δkj − δikδjl (231)

11.16 Matrix elements between single determinants

Let us calculate
〈HF|φ+

i φ
−
k |HF〉 = 〈vac|φ−1 . . . φ

−
Nφ

+
i φ

−
k φ

+
N . . . φ+

1 |vac〉

We proceed by steps
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1. if i,k ∈/{1, . . . , N}, the matrix element is zero

2. if i, k ∈ {1, . . . , N}, we order the pairs aaa
+
a (a 6= i, k; i 6= k) by an even number of

transpositions

〈vac|φ−i φ
−
k φ

+
i φ

−
k φ

+
i φ

+
k φ

−
Nφ

+
N . . . φ−1 φ

+
1 |vac〉 = 〈vac|φ−i φ

−
k φ

+
i φ

−
k φ

+
i φ

+
k |vac〉 = 0

3. if i, k ∈ {1, . . . , N} and i = k, we order all pairs a 6= i

〈vac|φ−i φ
+
i φ

−
i φ

+
i φ

−
Nφ

+
N . . . φ−1 φ

+
1 |vac〉 = 〈vac|φ−i φ

+
i φ

−
i φ

+
i |vac〉 = 1

Taking the sum of the three cases

〈HF|φ+
i φ

−
k |HF〉 = niδik (232)

11.17 Fermi vacuum

Evaluation of matrix elements involving single determinant (Hartree-Fock, HF) wave functions can
be simplified, since the creation and annihilation operators that generate the 〈HF| and |HF〉 states,
respectively, have only a passive role.

〈φ+
i . . . φ

−
k 〉HF = 〈vac|φ−1 φ

−
2 . . . φ

−
N︸ ︷︷ ︸

〈HF|

[φ+
i . . . φ

−
k ]φ+

N . . . φ+
2 φ

+
1 |vac〉︸ ︷︷ ︸

|HF〉

Therefore we define a Fermi-vacuum, which has analogous properties to the true vacuum.

VACUUM FERMI VACUUM

ai|vac〉 = 0 φ−i |HF〉 = 0 if ni = 0

〈vac|a+
i = 0 〈HF|φ+

i = 0 if ni = 0

〈vac|a+
i ak|vac〉 = 0 〈HF|φ+

i φ
−
k |HF〉 = nkδik

〈vac|aka
+
i |vac〉 = δik 〈HF|φ−k φ

+
i |HF〉 = (nk − 1)δik

The evaluation of matrix elements consists in simply to find all the combinations of the type

aka
+
i φ+

i φ
−
k

and associate to them the factor
δik nkδik

with a sign depending on the number of permutations.

11.18 Slater rules – an example

One-electron matrix element 〈Dr
a|Ĥ1|D〉

Using
〈Dr

a| = 〈HF|a+
a ar and Ĥ1 =

∑
ij

hija
+
i aj

the matrix element is
〈Dr

a|Ĥ1|D〉 =
∑
ij

hij〈HF|a+
a ara

+
i aj |HF〉 (233)
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Taking the possible pairings and associating them the factors

a+
i ak ⇒ nkδik and aia

+
k ⇒ (1− nk)δik

we have

〈Dr
a|Ĥ1|D〉 =

∑
ij

hij

{
naδaj (1− nr)δri + nrδar njδij

}
=
∑
ij

hij δajδri = hra

(234)

11.19 Energy of a single determinant

Expectation value of the electronic Hamiltonian with the single-determinant wave function

EHF =
∑
µν

hµν〈HF|χ+
µχ

−
ν |HF〉+

1
2

∑
µνλσ

(µλ|νσ)〈HF|χ+
µχ

+
ν χ

−
σ χ

−
λ |HF〉

=
∑
µν

hµνPνµ +
1
2

∑
µνλσ

(µλ|νσ)(PσνPλµ − PσµPλν)
(235)

After permutation of the dummy indices

EHF =
∑
µν

hµνPνµ +
1
2

∑
µνλσ

PνµPσλ {(µν|λσ)− (µλ|νσ)} (236)

Remembering the definition of the Fock matrix

Fµν = hµν +
∑
µνλσ

Pσλ {(µν|λσ)− (µλ|νσ)} (237)

the Hartree-Fock energy can be written as a trace

EHF =
1
2
Tr(h + F )P (238)

12 Hartree-Fock theory

Explicit variation of the energy of a determinant constructed up from a set of orthogonal orbitals

• orthogonality of orbitals should be preserved during the variation process

• modify energy functional by the method of Lagrange multipliers

• mathematically problematic: the orthogonality of orbitals is anticipated in the energy
expression to be varied

Apply the variation principle for an arbitrary variation of the determinant

• take the most general variation of a one-determinant wave function

• a condition is given for stationary character of the energy of a one-determinant wave
function (Brillouin theorem)

• obtain the Hartree-Fock equations from the Brillouin theorem
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12.1 Brillouin theorem

Take the expression of the variation principle

〈δΨ|Ĥ − E|Ψ〉 = 0 (239)

and substitute the general variation of a one-determinant wave function

N∑
i

∑
r

p∗ri〈Ψ(ψi→ψr)|Ĥ − E|Ψ〉 = 0 (240)

Since the pri variation parameters are independent, each term should vanish individually, and since
pri → 0 but pri 6= 0, we can simplify as

〈Ψ(ψi→ψr)|Ĥ|Ψ〉 − E〈Ψ(ψi→ψr)|Ψ〉 = 0 (241)

The overlap of two determinants differing in one orthogonal spin orbital vanishes

〈Ψ(ψi→ψr)|Ĥ|Ψ〉 = 0 (242)

Since this condition is trivially satisfied if the spin of ψi and ψr is different, we can constrain the
variation to spin orbitals ψr = φr(r)ηr(σ) having the same spin component as ψi

〈Ψ(φiηi→φrηi)|Ĥ|Ψ〉 = 0 (243)

Brillouin theorem: Stationary one-determinant wave function does not interact with the singly
excited configurations.
Equivalent to the variation principle applied to a one-determinant wave function.

12.2 Unrestricted Hartree-Fock equations

Consider the determinant wave function

Ψ = det[ψ1(1)ψ2(2) . . . ψN (N)] (244)

If the {ψi} spin orbitals were not orthogonal, they can always be orthogonalized (c.f. invariance
property of determinants).
Apply the Brillouin theorem

〈Ψ(φiηi→φrηi)|Ĥ|Ψ〉 = 0 (245)

Use the Slater rules

〈Ψr
i |Ĥ|Ψ〉 = 〈ψr|ĥ|ψi〉+

N∑
j=1
j 6=i

〈ψrψj ||ψiψj〉 (246)

and write the expression in spatial orbitals for the case of ηi = ηr we obtain

(φr|ĥ|φi) +
N∑

j=1
j 6=i

{
(φrφi|φjφj)− (φrφj |φjφi)δηiηj

}
= 0 (247)

Introduce (local) the Coulomb-

Ĵjφ(r1) =
∫
dr2

φj(r2)∗φj(r2)
r12

φ(r1) (248)
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and (nonlocal) exchange operators

K̂jφ(r1) =
∫
dr2

φ∗j (r2)φ(r2)
r12

φj(r1) (249)

The orbital form of the Brillouin-conditions

(φr|ĥ+
N∑

j=1
j 6=i

{
Ĵj − K̂jδηiηj

}
|φi) = 0 (250)

Since φr lies in the orthogonal complement of the occupied orbitals, it is sufficient to require that{
ĥ+

N∑
j=1
j 6=i

(
Ĵj − K̂jδηiηj

)}
φi =

N∑
j=1

λjiφjδηiηj
(251)

i.e. the function obtained after the action of the operator in curly brackets Fockian lies entirely in
the space of the occupied orbitals of the same spin.

Let us apply this result to an unrestricted determinant made of na α and nb β orbitals, {φα
i }

na
i=1

and {φβ
i }

nb
i=1. Use the Coulomb- and exchange operators defined separately for orbitals with α

and β spin, to obtain the following two sets of equations{
ĥ+

na∑
j=1
j 6=i

(
Ĵa

j − K̂a
j

)
+

nb∑
j=1

Ĵb
j

}
φα

i =
na∑
j=1

εajiφ
α
j (252)

{
ĥ+

na∑
j=1

Ĵa
j +

nb∑
j=1
j 6=i

(
Ĵb

j − K̂a
j

)}
φβ

i =
nb∑

j=1

εbjiφ
β
j (253)

which are coupled by the Coulomb-interaction with electrons of antiparallel spin. Since Ĵa
j φ

α
j =

K̂a
j φ

α
j , we can remove the summation restriction by adding the

Ĵa
j φ

α
j − K̂a

j φ
α
j = 0 (254)

self-repulsion term and define the Fock-operators, which are now identical for all orbitals in a
given set (α or β)

F̂ a = ĥ+
na∑
j=1

(
Ĵa

j − K̂a
j

)
+

nb∑
j=1

Ĵb
j F̂ b = ĥ+

na∑
j=1

Ĵa
j +

nb∑
j=1

(
Ĵb

j − K̂b
j

)
(255)

The UHF equations are obtained in the following form

F̂ a|φα
i 〉 =

na∑
j=1

εaji|φα
j 〉 F̂ b|φβ

i 〉 =
nb∑

j=1

εbji|φ
β
j 〉 (256)

It is quite impractical to solve directly these coupled integro-differential equations. Before bringing
them to a more convenient form, check some properties of the Fockian.

The Fock operator does not change if constructed from a set of orbitals obtained by a unitary
transformation of the orbitals of the same spin
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Unitary transformation

φi =
na∑
j

Ujiφ
′
j φ′i =

na∑
j

(U †)jiφj (257)

Consider, for instance, the Coulomb operator

na∑
i

Ĵa
i =

na∑
i

∫
dr2

φ∗i (r2)φi(r2)
r12

=
na∑
i

na∑
j,k

∫
dr2

U∗
jiφ

′∗
j (r2)Ukiφ

′
k(r2)

r12
(258)

Using the unitary character of the transformation, U∗
ji = (U †)ij = (U−1)ij we obtain

na∑
i

na∑
j,k

Uki(U †)ij

∫
dr2

φ′∗j (r2)φ′k(r2)
r12

=
na∑
j

∫
dr2

φ∗′j (r2)φ′j(r2)
r12

=
na∑
j

Ĵa′

j (259)

The Fock operator is hermitian
Exchange operator

〈φ | K̂i ψ 〉 =
∫
dr1φ

∗(r1)
[∫

dr2
φ∗i (r2)ψ(r2)

r12
φi(r1)

]
=
∫
dr1

∫
dr2

φ∗(r1)φ∗i (r2)φi(r1)ψ(r2)
r12

= 〈φφi|φiψ〉
(260)

〈 K̂i φ |ψ 〉 =
∫
dr1

[∫
dr2

φ∗i (r2)φ(r2)
r12

φi(r1)
]∗
ψ(r1)

=
∫
dr1

∫
dr2

φ∗i (r1)φ∗(r2)ψ(r1)φi(r2)
r12

= 〈φiφ|ψφi〉
(261)

After an interchange of the integration variables

〈φ | K̂i ψ 〉 = 〈φφi|φiψ〉 = 〈φiφ|ψφi〉 = 〈 K̂i φ |ψ 〉 Q.E.D. (262)

We can show analogously that the same holds for the Coulomb operator. The Fock operator, being
itself the sum of hermitian operators, is hermitian too.

12.3 Canonical UHF equations

εji are the elements of a hermitian Fock-operator matrix

F̂ a|φα
i 〉 =

na∑
j

εji|φα
j 〉 (263)

〈φα
k |F̂ a|φα

i 〉 =
na∑
j

εji 〈φα
k |φα

j 〉︸ ︷︷ ︸
δkj

= εki (264)

Since F̂ a can be constructed from any set of orbitals that is obtained by a unitary transformation
of the orbitals of the same spin, we can take U that diagonalizes the hermitian ε matrix(

U †εU
)
ik

= ε′ik = εφ
α′

i δik (265)
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In fact, this transformation applied to the orbitals leads to a diagonal ε matrix

ε′ik =
〈∑

j

Ujiφ
α
j |F̂ a|

∑
`

U`kφ
α
`

〉
=
∑
j,`

U∗
ji 〈φα

j |F̂ a|φα
` 〉︸ ︷︷ ︸

εaj`

U`k =

=
∑
j,`

U∗
jiε

a
j`U`k =

(
U †εU

)
ik

= εa
′

i δik

(266)

There exists a set of spin orbitals for which the Fockian is diagonal. Using this basis set the
canonical unrestricted Hartree-Fock equations are obtained

F̂ aφα
i = εai φ

α
i i = 1, 2, . . . ,∞

F̂ bφβ
i = εbiφ

β
i i = 1, 2, . . . ,∞

(267)

that are coupled pseudo-eigenvalue equations. The first na and nb solutions are the occupied
orbitals while the remaining solutions are the virtual orbitals.

• Although the eigenfunctions of the HF-equations have no physical meaning (the wave
function is invariant to their unitary transformation) the eigenvalues (orbitals energies)
can be approximately related to the ionization potentials (Koopmans theorem).

• An infinite number of equivalent orbital sets can be obtained by unitary transformations
of the canonical orbitals. Chosen according to some well-defined criteria, these unitary
transformations may lead to orbitals with specific properties, i.e. the localized orbitals,
closer to our feeling about chemical bonding.

12.4 Unrestricted Hartree-Fock energy expression

Let us apply the general result for the expectation value of the Hamiltonian for a single determinant
built from N = na + nb spin orbitals

E =
na+nb∑

i

〈i|ĥ|i〉+
1
2

na+nb∑
i

na+nb∑
j

〈ij||ij〉 (268)

Separate sums over orbitals of spin α and spin β and write integrals in terms of space orbitals

E =
na∑
i

(i|ĥ|i) +
1
2

na∑
i

{na+nb∑
j

(ii|jj)−
na∑
j

(ij|ij)
}

+

+
nb∑
i

〈i|ĥ|i〉+
1
2

nb∑
i

{na+nb∑
j

(ii|jj)−
nb∑
j

(ij|ij)
} (269)

Use the notations

hαα
ii = (iα|ĥ|iα) Jαα

ij = (iαiα|jαjα)

Jαβ
ij = (iαiα|jβjβ) Kαα

ij = (iαjα|iαjα)
(270)
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and the energy expression can also be written as

E =
na∑
i

hαα
ii +

1
2

na∑
i

na∑
j

{
Jαα

ij −Kαα
ij

}
+

1
2

na∑
i

nb∑
j

Jαβ
ij +

+
nb∑
i

hββ
ii +

1
2

nb∑
i

nb∑
j

{
Jββ

ij −Kββ
ij

}
+

1
2

nb∑
i

na∑
j

Jβα
ij

(271)

Orbital energies are the diagonal matrix elements of the α- and β-spin Fock operators in a canon-
ical molecular orbital basis, e.g.

εαi = (φα
i |F̂α|φα

i ) = (iα|ĥ+
na∑
j

(Ĵa
j − K̂a

j ) +
nb∑
j

Ĵb|iα)

= hαα
ii +

na∑
j

{
Jαα

ij −Kαα
ij

}
+

nb∑
j

Jαβ
ij

(272)

The sum of orbital energies

na+nb∑
i

εi =
na∑
i

hαα
ii +

na∑
i

na∑
j

{
Jαα

ij −Kαα
ij

}
+

na∑
i

nb∑
j

Jαβ
ij

+
nb∑
i

hββ
ii +

nb∑
i

nb∑
j

{
Jββ

ij −Kββ
ij

}
+

nb∑
i

na∑
j

Jβα
ij 6= E

(273)

is not equal to the total energy, due to the double counting of electron-electron interactions.

12.5 Spin properties of the UHF wave function

Eigenfunction of the Ŝz operator

Ŝz|D〉 =
1
2
(nα − nβ)|D〉 (274)

but not eigenfunction of the Ŝ2 = Ŝ−Ŝ+ + Ŝz + Ŝ2
z operator!

For example, a two-electron DODS (different orbitals different spin) system |D〉 = |Â[φαφ
β
]〉

Ŝ2|D〉 = Â[Ŝ−Ŝ+φ
αφ

β
+ Ŝzφ

αφ
β

+ Ŝ2
zφ

αφ
β
]

where we use that [Ŝ2, Â] = 0.
Last two terms are zero, since (nα − nβ) = 0.

Ŝ−Ŝ+{φαφ
β} = Ŝ−{φαφβ} = φ

α
φβ + φαφ

β
(275)

The two-electron UHF wave function is not eigenfunction of the Ŝ2 operator

Ŝ2|D〉 = |D〉+ Â[φ
α
φβ ] 6= (S(S + 1)|D〉 (276)

Expectation value of Ŝ2 is

〈D|Ŝ2|D〉 = 〈D|D〉+ 〈Âφαφ
β |Âφα

φβ〉

= 1 +

∣∣∣∣∣〈φα|φα〉 〈φα|φβ〉
〈φα|φβ〉 〈φα|φα〉

∣∣∣∣∣ = 1− |Sαβ |2
(277)
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12.6 Symmetry dilemma

While the exact solutions of the molecular Schrödinger equation are eigenfunctions of all the
operators that commute with the molecular Hamiltonian, this is not necessarily the case for an
approximate (e.g. UHF) solution. This can be the case for the symmetry operation of the molecular
point group and it is the case for the Ŝ2 operator, which has the expectation value for a UHF wave
function: 〈

Ŝ2
〉
UHF

=
(nα − nβ

2
)(nα − nβ

2
+ 1
)

︸ ︷︷ ︸〈
Ŝ2
〉
exact

+nβ −
∑

i

∑
j

|Sαβ
ij |

2 (278)

If we require that the solutions have the correct symmetry, it appears as a constraint (restriction)
in the variation problem, and leads necessarily to a higher energy than the solution of the uncon-
strained (unrestricted) problem. We should decide whether we give up the symmetry requirements
to get a better energy or we restrict the solutions on physical grounds and obtain a worse energy.
This is the Löwdin symmetry dilemma.

12.7 Restricted Hartree-Fock equations

A determinant built up from pairs of spin orbitals composed of the same space orbital multiplied
by either α(σ) or β(σ) is a restricted determinant. The case of closed shells, i.e. N = 2n is
particularly important

Ψ = A
{
φ1(1)φ1(2)φ2(3)φ2(4) . . . φn(2n− 1)φn(2n)

}
(279)

Instead of repeating the derivation from the Brillouin theorem, we can simply consider this problem
as a special case of the UHF equations with na = nb = n and Ĵa

i = Ĵb
i = Ĵi, etc. We obtain

F̂ = ĥ+
n∑

j=1

2Ĵj − K̂j (280)

where the summation is over the n space orbitals. The canonical molecular orbitals are obtained
as eigenfunctions of the canonical RHF equations

F̂ |φi〉 = εi|φi〉 i = 1, 2, . . . ,∞ (281)

with orbital energies as eigenvalues.

12.8 RHF energy expression

Closed shell RHF electronic energy in terms of n space orbitals

E = 2
n∑
i

(i|ĥ|i) +
n∑
i

n∑
j

2(ii|jj)− (ij|ji) = 2
n∑
i

hii +
n∑
i

n∑
j

2Jij −Kij (282)

Orbital energies are the diagonal elements (and eigenvalues) of the RHF Fock operator and using
integrals in space orbitals in the chemists’ (charge density) convention

εi = hii +
n∑
j

2Jij −Kij = (i|ĥ|i) +
n∑
j

2(ii|jj)− (ij|ji) (283)

The sum of the energies of the n doubly occupied orbitals
2n∑
i

εi = 2
n∑
i

hii + 2
n∑
j

2Jij −Kij 6= E (284)

is not equal to the total energy.
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12.9 Orbital energies

〈ψi|F̂ |ψj〉 = εj〈ψi|ψj〉 = εjδij (285)

εi = 〈i|ĥ|i〉+
N∑
b

〈ib||ib〉 (286)

• Occupied orbitals

εa = 〈a|ĥ|a〉+
N∑

b=1
b 6=a

〈ab||ab〉 (287)

where 〈aa||aa〉 = 0 is used. The energy of an occupied orbital corresponds to a particle
moving in a N − 1-electron potential.

• Virtual orbitals

εr = 〈r|ĥ|r〉+
N∑

b=1

〈rb||rb〉 (288)

describe electrons in the potential of all the N electrons of the Hartree-Fock ground state.

12.10 Koopmans theorem

Let us group together those terms of the electronic energy, which depend on a given molecular
orbital, e.g. k

EN =
N∑

i 6=k

〈i|ĥ|i〉+ 〈k|ĥ|k〉 +
1
2

N∑
i 6=k

N∑
j 6=k

〈ij||ij〉+
N∑

i 6=k

〈ik||ik〉+
1
2
〈kk||kk〉 (289)

Since the self-interaction 〈kk||kk〉 = 0, the last term is 0 and we can drop the summation restriction

EN =
N∑

i 6=k

〈i|ĥ|i〉+
1
2

N∑
i 6=k

N∑
j 6=k

〈ij||ij〉 + 〈k|ĥ|k〉+
N∑
i

〈ik||ik〉 = EN−1(k) + εk (290)

The negative of the orbital energy is equal to the energy difference of (N − 1)-electron and the
N -electron determinants, the ionization potential,

IP = EN−1(k)− EN = −εk (291)

provided we neglect the orbital relaxation effects (spin orbitals are supposed to be frozen in the
(N − 1)-electron determinant.

Similarly, we can examine the energy of an (N + 1)-electron determinant, obtained by adding a
virtual spin orbital ψr to the N -electron determinant.

EN+1 = EN + 〈r|ĥ|r〉 +
N∑
i

〈ri||ri〉 = EN + εr (292)

The electron affinity, EA, can be approximated as the negative of the virtual orbital energy:

EA = EN − EN+1(r) = −εr (293)

Koopmans theorem: Provided that the spin-orbitals satisfy the canonical HF equations, and
the same set of orbitals are used to describe the neutral system and its ions, their energy difference
is stationary against spin-orbital variations.
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12.11 Excitation operators - Generalities

Define an excitation operator by
Ô†

n|0〉 = |n〉 (294)

In bra-ket representation
Ô†

n = |n〉〈0| (295)

Th corresponding de-excitation operator

Ôn = |0〉〈n| (296)

Apply the commutator [Ĥ, Ô†
n] to the exact ground state wave function

[Ĥ, Ô†
n]|0〉 = ĤÔ†

n|0〉 − Ô†
nĤ|0〉 = Ĥ|n〉 − E0Ô

†
n|0〉

= EnÔ
†
n|0〉 − E0Ô

†
n|0〉 = ∆E0nÔ

†
n|0〉

(297)

This leads to the (super)operator equation

[Ĥ, Ô†
n] = ∆E0nÔ

†
n (298)

Excitation energy as Rayleigh quotient

∆E0n =
〈0|Ôn[Ĥ, Ô†

n]|0〉
〈0|ÔnÔ

†
n|0〉

(299)

These are the basic relations of the EOM (equation of motion) approach.

12.12 Generalized Koopmans theorem

An ionization process can be described by the operator

Ô†
n =

∑
r

c∗rar = Ô+ (300)

which creates a positive ion by removing one electron. The ionization potential, ∆E+ is

∆E+ =
∑

rs c
∗
rcs〈0| a+

s [Ĥ, ar]|0〉∑
rs c

∗
rcs〈0|a+

s ar|0〉
=

c†Kc

c†Pc
(301)

In the denominator we recognize the density matrix elements, and in the numerator we have the
matrix elements of the Koopmans operator

Krs = 〈0| a+
s [Ĥ, ar]|0〉 (302)

After expansion of the SQ Hamiltonian operator

Krs =
〈∑

tu

htu

(
s+t+u−r− − s+r−t+u−

)
+

1
2

∑
tuvw

〈tu|vw〉
(
s+t+u+w−v−r− − s+r−t+u+w−v−

)〉 (303)

Applying the anticommutation relations we obtain the 1RDM operator

s+t+u−r− − s+r−t+u− = s+t+u−r− − s+(δrt − t+r−)u− = −δrts
+u− (304)
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and the 2RDM operator

s+t+u+w−v−r− − s+r−t+u+w−v− =

s+t+u+w−v−r− − s+(δrt − t+r−)u+w−v− =

s+t+u+w−v−r− − δrts
+u+w−v− + s+t+(δru − u+r−)w−v− =

− δrts
+u+w−v− − δrus

+t+w−v− = −δrts
+u+w−v− + δrus

+t+w−v−

(305)

Krs = −
〈∑

tu

htuδrts
+u− +

1
2

∑
tuvw

〈tu|vw〉
(
δrts

+u+w−v− − δrus
+t+w−v−

)〉
= −

〈∑
u

hrus
+u− +

1
2

(∑
uvw

〈ru|vw〉s+u+w−v− −
∑
tvw

〈tr|vw〉s+t+w−v−
)〉

= −
[∑

t

hrtPts +
∑
tuv

〈rt|uv〉Γuv,st

] (306)

The condition for a stationary value of ∆E+ is

δ∆E+ =
δc†Kc

c†Pc
−
(

c†Kc

c†Pc

)
δc†Pc

c†Pc
+ c.c. = 0 (307)

leading to the matrix equation
Kc = ∆E+Pc (308)

For a HF wave function P = I and the Koopmans matrix is

Krs = −
[∑

t

hrtδts +
∑
tuv

〈rt|uv〉nunv(δtuδrv − δtvδru)
]

= −Frs (309)

equal to the matrix of the Fock operator, which has as eigenvalues the orbital energies. It can
be concluded that for a HF wave function the variational ionization potential is just the orbital
energy ∆E+ = −εi and the corresponding excitation operator is ai, which removes an occupied
spin orbital from the HF determinant.

12.13 How good is the Koopmans theorem?

• orbital relaxation correction - lowers the energy of the ions

• correlation energy correction - depends on the number of electrons
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E(N) E(N+1)E(N-1)

?

6

−εi

6

?

−εr

?

6

IP

6
? EA

Two errors compensate each other for the ionization potential, enhance each other for the electron
affinity.

12.14 Excited states

Excite an electron from the i-th occupied to the r-th virtual level of a RHF wave function. Two
possible excited determinants

Ψr
i Ψr̄

ī (310)

Their linear combinations form pure singlet and triplet states

1Ψ =
1
2
(
Ψr

i + Ψr̄
ī

)
(311)

3Ψ =
1
2
(
Ψr

i −Ψr̄
ī

)
(312)

The excitation energies ∆ES,T in this single transition approximation, (STA) depend on the orbital
energies and the electron-electron interactions.

ES,T =
1
2

(
〈Ψr

i |Ĥ|Ψr
i 〉+ 〈Ψr̄

ī |Ĥ|Ψ
r̄
ī 〉 ± 〈Ψ

r̄
ī |Ĥ|Ψ

r
i 〉 ± 〈Ψr

i |Ĥ|Ψr̄
ī 〉
)

(313)

The first two matrix elements are equal (just α and β are interchanged) and the last two are
complex conjugates, which are also equal for real wave functions.

The energy of the excited determinant is obtained from the ground state energy by removing εi and
replacing it by εr and correcting for the missing e−-repulsion term between electrons of parallel
spin

〈Ψr
i |Ĥ|Ψr

i 〉 = E0 + εr − εi − 〈φr|Ĵi − K̂i|φr〉 (314)

Transition matrix element between determinants that differ in two spin orbitals

〈Ψr
i |Ĥ|Ψr̄

ī 〉 = 〈φ1φ1 . . . φrφi . . . |Ĥ|φ1φ1 . . . φiφr . . .〉
= 〈rī||ir̄〉 = [rī|ir̄]− [rī|r̄i] = (ri|ir)− 0 = Kir
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Summarizing these results

ES,T =
1
2

{
2(E0 + εr − εi − Jir +Kir)± 2Kir

}
(315)

Excitation energies

∆ES = εr − εi − Jir + 2Kir (316)
∆ET = εr − εi − Jir (317)

Relative magnitude of singlet/triplet splittings can sometimes be estimated from the shape of the
occupied and virtual orbitals, as the self-energy of the transition density φ∗i (r)φr(r).

13 EOM for excited states

Let us use the equation of motion method for electronic excited states. Define the singlet excitation
operator

Ô†
n =

1
2

∑
ar

X∗
ar(a

+
rαa

−
aα + a+

rβa
−
aβ) =

∑
ar

X∗
arÊ

†
ar (318)

and its adjoint

Ôn =
1
2

∑
ar

Xar(a+
aαa

−
rα + a+

aβa
−
rβ) =

∑
ar

XarÊar (319)

The excitation energy can be obtained from

∆En =
〈0|Ôn[Ĥ, Ô†

n]|0〉
〈0|ÔnÔ

†
n]|0〉

(320)

Substitution of the excitation operators

∆En =
∑

ar

∑
bsX

∗
arXbs〈0|Êbs[Ĥ, Ê†

ar]|0〉∑
ar

∑
bsX

∗
arXbs〈0|ÊbsÊ

†
ar|0〉

(321)

The matrix elements in the denominator

〈0|ÊbsÊ
†
ar|0〉 =

1
4
(〈0|a+

bαaaα + a+
bβaaβ |0〉δrs =

1
2
ρab (322)

is the half of the spinless one-particle reduced density matrix. Define Q as

Qbs,ar = 2〈0|Êbs[Ĥ, Ê†
ar]|0〉 (323)

and the excitation energy expression in matrix form

∆En =
X†QX

X†ρX
(324)

The stationary condition leads to the matrix equation

QX = ∆EρX (325)

In the special case of a one-determinant HF wave function as ground state ρ = I and

Qbs,ar = 2(〈1Ds
b |Ĥ|1Dr

a〉 − δabδsr〈D|Ĥ|D〉) (326)
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The Q matrix is the single-CI matrix (TDA – Tamm-Dancoff approximation). The diagonal
elements are the STA excitation energies that we have already derived previously

Qar,ar = εa − εb − (aa|rr) + 2(ar|ar) (327)

while the off-diagonal elements are

Qbs,ar = −(ab|sr) + 2(ar|bs) (328)

The use of TDA is mandatory when the STA gives qualitatively wrong results. For instance, the
benzene excited states

• 4 possible single excitations between doubly degenerate HOMO to doubly degenerate
LUMO

• four-fold degenerate i.r. with 4 identical STA excitation energies

• TDA leads to the correct symmetry-adapted combinations and splitting of the excitation
energies

TDA is often used with semi-empirical model Hamiltonians (PPP, CNDO/S) and sometimes also
with ab initio (e.g. Gaussian program).

13.1 Hartree-Fock density matrix

The operator of the one-particle reduced density matrix in SQ is

ρ̂(x1;x′1) =
∑
k`

ψ`(x1)ψ∗k(x′1)k
+`− (329)

Since the 1RDM can be expanded as

ρ(x1;x′1) =
∑
k`

ψ∗` (x1)P`kψk(x′1) (330)

the matrix elements P`k = 〈k+`−〉 form a discrete representation of the 1RDM.
In the case of a single determinant HF wave function the 1RDM on the basis the MOs

Pki = 〈HF|ψ+
i ψ

−
k |HF〉 = nkδik (331)

is diagonal. The trace of Pki is equal to N =
∑M

i ni, the number of electrons.

The density matrix of a HF wave function is idempotent. This property follows simply from the
fact that ni = 0 or ni = 1, therefore

(P 2)k` =
∑

i

PkiPil =
∑

i

nkδik · niδ`i = n2
i δk` = Pk` (332)

The idempotency of the one-particle reduced density matrix is a necessary and sufficient condition
for the one-determinant character of the wave function.
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13.2 Natural orbitals

For multi-configurational (e.g. CI) wave functions the 1RDM is not necessarily diagonal. Never-
theless, since P is hermitian, one can find a unitary matrix U that U †PU be diagonal. Let U
such a matrix. Then the transformation from the original (MO) and the new basis is

ηi =
∑

k

ψkUki ψk =
∑

i

ηi(U †)ik =
∑

i

ηiU
∗
ki (333)

Substituting this transformation to the expansion of the 1RDM

ρ̂(x1;x′1) =
∑
k`

∑
ij

U∗
`iηi(x1)P`kUkjη

∗
j (x′1) (334)

Since U has been chosen such that U†PU ij = λiδij

ρ̂(x1;x′1) =
∑

i

λiηi(x1)η∗i (x′1) (335)

The orbitals, that diagonalize the 1RDM are called natural orbitals. Let us write the wave
function as a linear combination of determinants built from the natural orbitals. In this case the
diagonal elements of the density matrix

Pii = λi =
∑
K

∑
L

c∗KcL〈DK |η+
i η

−
i |DL〉

=
∑
K

∑
L

c∗KcLn
L
i 〈DK |DL〉 =

∑
K

|cK |2nK
i

(336)

are nK
i is the occupation number of the i-th NO in determinant K. The diagonal elements, λi, can

be any number between 0 and 1. The matrix representation of the 1RDM for a multi-configurational
wave function is not idempotent.

13.3 Two-particle density matrix for a HF wave function

The matrix representation of the two-particle reduced density matrix is obtained from the following
expectation value

ΓHF
lk,ij = 〈HF|ψ+

i ψ
+
j ψ

−
k ψ

−
l |HF〉 = ninj(δjkδil − δjlδik) (337)

in the basis of molecular orbitals.
The two-particle density matrix of a one-determinant wave function can be expressed by the
elements of the 1RDM matrix elements as

ΓHF
lk,ij = PliPjk − PljPki (338)

The first part corresponds to the Coulomb-component

ΓHF,Coul
lk,ij (x1,x2;x1′,x′2) = P (x1,x

′
1)P (x2,x

′
2) (339)

and the second part first part is the exchange-component

ΓHF,exch
lk,ij (x1,x2;x1′,x′2) = −P (x1,x

′
2)P (x2,x

′
1) (340)
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14 Hartree-Fock-Hall-Roothan equations

The UHF and RHF equations can be brought to a more practical form, by writing the molecular
orbitals as linear combination of some fixed functions. In quantum chemistry, these are usually
some approximations to atomic orbitals (AO). In this LCAO approximation

φi =
m∑

µ=1

cµiχµ (341)

where cµi = (ci)µ is an element of the column vector of the expansion coefficients. We suppose
that the m basis functions (AOs) are linearly independent and in general, form a non-orthogonal
set. The cµi MO-coefficients are not true linear variation parameters, since the HF equations are
only pseudo-eigenvalue equations.
We can proceed again from the Brillouin condition

〈Ψ(φi → φ′i)|Ĥ|Ψ〉 = 0 (342)

and we suppose that both φi and φ′i can be expanded in the same AO basis

φi =
m∑

µ=1

cµiχµ φ′i =
m∑

µ=1

qµχµ (343)

Introduce the projection operator to the subspace of occupied orbitals

P̂ =
occ∑
j=1

|φj〉〈φj | (344)

Any function P̂ |ψ〉 = P̂ |
∑

ν pνχν〉 lies in the occupied subspace and any function (1 − P̂ )|ψ〉 =
(1−P̂ )|

∑
ν pνχν〉 is orthogonal to this subspace. Since the pν coefficients are arbitrary, we should

require the fulfillment of the Brillouin theorem for all functions of the form |φ′〉 = (1− P̂ )|χν〉.
Using the Slater rules

〈φ′|F̂ |φi〉 = 0 (345)

and substituting the definition 〈φ′|

〈χν |(1− P̂ )F̂ |φi〉 = 〈χν |F̂ |φi〉 − 〈χν |
occ∑
j=1

φj〉 〈φj |F̂ |φi〉︸ ︷︷ ︸
εji

= 0 (346)

Putting the LCAO expansion of |φi〉 and |φj〉

〈χν |F̂ |
m∑

µ=1

cµiχµ〉 =
occ∑
j=1

〈χν |
m∑

µ=1

cµiχµ〉εji (347)

Supposing that we have already performed the unitary transformation that diagonalizes the ε
matrix, and using obvious matrix element notations

m∑
µ=1

Fνµcµi = εi

m∑
µ=1

Sνµcµi (348)

The result is a generalized pseudo-eigenvalue equation

Fci = εiSci i = 1, 2, . . . ,m (349)
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which can be written in matrix form by constructing the m ×m MO coefficient matrix, C, from
the column vectors of the expansion coefficients

FC = εSC (350)

Solutions

N (in closed shell RHF case N/2) occupied orbitals

m−N virtual orbitals

The Hartree-Fock-Roothaan equations are not equivalent with the Hartree-Fock equations. By
increasing the basis set we can only approach the “Hartree-Fock limit”.

14.1 P-matrix

In the LCAO-theory we use frequently the projector to the subspace of occupied orbitals, expressed
by the LCAO coefficients

P̂ =
occ∑
i=1

|φi〉〈φi| =
m∑
µν

occ∑
j=1

ciµc
∗
iν |χµ〉〈χν | =

m∑
µν

Pµν |χµ〉〈χν | (351)

In components, and also in matrix notation using the column vector of the LCAO coefficients, ci

Pµν =
occ∑
i=1

ciµc
∗
iν P =

occ∑
i=1

cic
†
i (352)

In the RHF case it is used multiplied with a factor of 2

D = 2P

The P-matrix is often called density matrix. The electronic density has the expression

%(r) =
occ∑
i

φi(r)φ∗i (r) =
m∑
µ

m∑
ν

Pµνχ
∗
ν(r)χµ(r) (353)

The P-matrix appears in the expectation values of one-electron operators.
The operator P̂ is a projector, i.e. P̂ 2 = P̂ . The idempotency of its matrix representation in the
MO basis and in any orthonormal basis is a criterion for the one-determinant character of the
underlying wave function.
However, this property does not hold for its matrices in a non-orthogonal basis, like the AO basis

〈χµ|P̂ |χν〉 =
occ∑
i

〈χµ|φi〉〈φi|χν〉 =
occ∑
i

(SPS)µν (354)

which is obviously not idempotent.

Let us calculate that component of an arbitrary orbital ψ =
∑

τ dτχτ which lies in the occupied
subspace. Using the P̂ projection operator

P̂ |ψ〉 =
occ∑
i=1

|φi〉〈φi|ψ〉 =
m∑
µ

pµ|χµ〉 (355)
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Using the LCAO expansions of P̂ and ψ

P̂ |ψ〉 =
∑
µν

∑
τ

Pµνdτ |χµ〉〈χν |χτ 〉 =
∑
µν

∑
τ

PµνSντdτ |χµ〉 =
∑
µν

(PS)µτdτ |χµ〉

The matrix of the projection, PS can be deduced from

pµ =
∑

ν

(PS)µνdν (356)

The PS matrix is idempotent. To see that, consider the expression of the overlap of two molecular
orbitals

〈φi|φj〉 =
∑

µ

∑
ν

c∗µicνj〈χµ|χν〉 = δij (357)

in matrix notation
c†iScj = δij (358)

to calculate the square of the PS matrix

PSPS =
occ∑
i

occ∑
j

cic
†
iScjc

†
jS =

occ∑
i

occ∑
j

ciδijc
†
jS =

occ∑
i

cic
†
iS = PS (359)

The trace of the PS matrix is equal to the number of electrons.

N =
∫
dr%(r) =

∑
µ

∑
ν

Pµν

∫
drχ∗ν(r)χµ(r) =

∑
µ

∑
ν

PµνSνµ =
∑

µ

(PS)µµ (360)

The PS matrix can be considered as the correct representation of the one-particle reduced density
matrix (1RDM).

14.2 Population analysis

Total number of electrons (AO basis)

N =
∑

µ

∑
ν

PµνSνµ =
∑

µ

(PS)µµ (361)

Each term can be interpreted as the number of electrons associated to the orbital χµ. Since the
AO-s are assigned to atoms, we can group together the net charge (electronic + nuclear) associated
with an atom A

QA(Mulliken) = ZA −
∑
µ∈A

(PS)µµ (362)

This is the Mulliken population analysis. It corresponds to the halving of the electron density
associated with a pair of AOs.
This definition of the atomic charge is not unique. Since TrAB = TrBA

N =
∑

µ

(SαPS1−α)µµ (363)

with a value of α ≤ 1. In particular

QA(Löwdin) = ZA −
∑
µ∈A

(S1/2PS1/2)µµ (364)

This is the Löwdin-population analysis.
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14.3 Potential-fitted charges

The electrostatic properties (multipole moments, electrostatic potential, etc.) cannot be described
by Mulliken (or Löwdin) charges correctly. Take the molecular dipole moment.

µ =
∑
A

ZARA −
∑
A

∑
µ∈A

∑
ν

Pµν〈χµ|r̂|χν〉

=
∑
A

ZARA −
∑
A

∑
µ∈A

∑
ν

Pµν〈χµ|RA + r̂A|χν〉

=
∑
A

ZARA −
∑
A

∑
µ∈A

∑
ν

PµνSµνRA −
∑
A

∑
µ∈A

∑
ν

Pµν〈χµ|r̂A|χν〉

=
∑
A

QARA −
∑
A

µA = µ(Mulliken) +
∑
A

µA

(365)

If the molecular multipoles (dipole, etc.) are wrong, asymptotic behaviour of the electrostatic
potential calculated from them

V (rk) =
∑
A

QA

|rk −RA|
(366)

is also incorrect.
Approximately correct electrostatics can be obtained from fitted charges. Take the expression of
the potential on a grid of points

V (rk) =
∑

a

qa

|rk −Ra|
=

Na∑
a

T kaqa k = 1, . . . , Ngrid (367)

and look for the best set of charges that reproduce the quantum chemically calculated electrostatic
potential in the same points,

Vk =
∑
A

ZA

|rk −RA|
−
∑
µν

Pµν〈χµ|
1

|rk − r|
|χν〉 (368)

This leads to an overdetermined system of equations (Ngrid � Na)

Vk =
Na∑
a

T kaqa (369)

In matrix form, the formal solution (in the least squares sense)

v = Tq

q = (T †T )−1v
(370)

Depend to some extent on the choice of sampling grid.

14.4 Covalent bond orders

Correlation of fluctuation of the number of electrons associated to two atoms

BAB = −2(〈NANB〉 − 〈NA〉〈NB〉) (371)

is considered as a measure of the covalent bond order between two atoms.
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It can be shown that it is related to the change of correlation content during bond formation in
the diatomic fragment. The deviation of the pair density from the simple product of one-particle
densities is the correlation function, f(r1, r2)

γ(r1, r2) =
1
2
%(r1)%(r2)[1 + f(r1, r2)] (372)

Integrated on a given region (e.g. atomic region), it gives the total correlation content

F (ΩA,ΩA) =
∫

ΩA

dr1

∫
ΩA

dr2 %(r1)%(r2)f(r1, r2) (373)

The correlation content is dominated by the exchange correlation component, therefore the bond
order is often related to directly with the exchange part of the above quantity

BAB = 2
∫

ΩA

dr1

∫
ΩB

dr2 [%α(r2; r1) %α(r1; r2) + %β(r2; r1) %β(r1; r2)] (374)

Using Mulliken’s definition of the atomic population, we get the following bond order definition

BAB =
∑
µν

(P αS)µν(P αS)νµ + (P βS)µν(P βS)νµ (375)

Gives 1 for single, 2 for double and 3 for triple bonds.

14.5 Implementation of the HFR equations: SCF procedure

We suppose that a reasonable initial guess of the P-matrix, P (0), is available. For a closed shell
system

• Calculate the one-electron integrals to form the core-Hamiltonian matrix

Hcore
µν = Tµν + V nucl

µν (376)

• Calculate the list of two-electron integrals

(µν|λσ) =
∫
dr1

∫
dr2χ

∗
µ(1)χν(1)r−1

12 χ
∗
λ(2)χσ(2) (377)

There are O(K4/8) unique integrals, therefore this step constitutes the major part of the
computational effort.

• Form the Fock matrix of the n-th iteration

F (n)
µν = Hcore

µν +
∑
λσ

P
(n−1)
λσ

[
2(µν|λσ)− (µλ|σν)

]
= Hcore

µν +Gµν(P (n−1)) (378)

• Solve the matrix equation
FC = SCε (379)

• Introduce the canonical orthogonalization (avoiding problems with linearly depen-
dent basis sets) by the following equations

U†SU = s X = Us−1/2 (380)

• Transform the Roothaan equations directly by substituting C = XC ′

FXC ′ = SXC ′ε

(X†FX)C ′ = (X†SX)C ′ε
(381)
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• Diagonalize F ′ = (X†FX) to get C ′ and ε

• Transform back the coefficient matrix to the original basis

C = XC ′ (382)

• Form a new P-matrix
P n+1 = CC† (383)

• Check convergence by comparing P (n) and P (n+1); if necessary start a new cycle

14.6 Direct SCF procedure

After a few SCF cycles, most of the P-matrix elements do not change appreciably. Consider the
Fockian update formula

F (n) = H + G(P (n−1)) (384)

The density matrix of the (n− 1)th iteration is P (n−1) = P (n−2) + ∆P (n−1). Since

F (n−1) = H + G(P (n−2)) (385)

the update formula can be written also as

F (n) = F (n−1) + G(∆P (n−1)) (386)

The matrix of two-electron update matrix

G(∆P (n−1))µν =
∑
λσ

∆P (n−1)
λσ

[
2(µµ|λσ)− (µλ|σν)

]
(387)

is sparse and we need only those two-electron integrals, which are multiplied by |∆P (n−1)
µν | > ε.

These integrals can be calculated directly, at each iteration, thus reducing huge data storage and
disk access overheads.

14.7 Basis sets

• Slater type orbitals (STO) or exponential orbitals (ETO)

χSTO
n`m (ra) = Nrn−1

a e−ζra · Y m
` (θa, φa) (388)

• correct R→ 0 and R→∞ behaviour

• atomic HF orbitals are linear combinations of a few STOs

• a molecular basis set may contain one, two (double ζ), three (triple ζ), four
(quadruple ζ), etc. sets of STOs per atom

• Electron repulsion integrals (ERI) are difficult to calculate for more than two
centers

• Gaussian type orbitals (GTO)

guvw(ra) = Nxuyvzw · e−αr2
a (Cartesian)

gn`m(ra) = Ne−αr2
arn−1 · Y m

` (θa, φa) (spherical)
(389)

• incorrect behaviour at R→ 0 (no cusp) and at R→∞ (too fast decay)

• much more (5–10 times) GTOs are needed to describe an atomic HF orbital

• basis functions are fixed combination of primitive Gaussians: contracted Gaussian
functions

• easy calculation of ERIs for three and four centers too (product theorem)
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14.8 Product theorem for Gaussian functions

The ERIs involve the product of two primitive Gaussian functions

exp (−αr2a) exp (−βr2b ) =
∏

i=x,y,z

exp
(
−α(ri −Ai)2 − β(ri −Bi)2

)
(390)

We can transform the exponent, e.g. for the component x

−α(x−Ax)2 − β(x−Bx)2 = −α(x2 − 2Axx+A2
x)− β(x2 − 2Bxx+B2

x)

= −(α+ β)
(
x2 − 2x

αAx + βBx

α+ β
+
αA2

x + βB2
x

α+ β

)
= −(α+ β)

[(
x− αAx + βBx

α+ β

)2 − αβ

α+ β
(Ax −Bx)2

] (391)

leading to a new Gaussian function

exp
(
− αβ

α+ β
(Ax −Bx)2

)
· exp

(
−(α+ β)(x−XAB)2

)
(392)

with (α+ β) exponent and

XAB =
αAx + βBx

α+ β
(393)

center. It means that even four-center integrals can be handled as easily as two-center ones.

14.9 Contracted Gaussian functions

Reduce the number of variational parameters in the HFR equations by taking fixed linear combi-
nation of primitive functions

χCGF
µ (r −RA) =

L∑
p=1

dpµgp(αpµ, r −RA) (394)

• STO-nG basis sets
obtained as least square fits to STO basis function with ζ = 1.0

• generalized contraction
MOs from atomic GTO calculations

• ANO basis
atomic natural orbitals from correlated atomic calculations

• split-valence basis sets
minimal contracted basis for core orbitals, more flexibility for valence shell: valence double
zeta (VDZ), valence triple zeta (VTZ)

• polarization functions
have higher angular quantum number than the highest occupied atomic orbital

• diffuse functions
to describe excited states, negative ions
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14.10 Second Quantized Hamiltonian in AO basis

In non-orthogonal basis, like the AO basis, creation and annihilation operators follow the anticom-
mutation relation

[χ+
ν , χ

−
µ ]+ = Sµν (395)

and the operators χ−µ do not act as true annihilation operators. Try to find the “true” annihilation
operators χ̃−µ associated with χ+

ν , by requiring to satisfy the usual anticommutation rule

[χ+
µ , χ̃

−
ν ]+ = δµν (396)

Expand χ̃−ν as linear combination of χ−ν

χ̃−ν =
∑

λ

Lνλχ
−
λ (397)

Substitution into Eq.(396) gives

[χ+
µ , χ̃

−
ν ]+ =

∑
λ

Lνλ[χ+
µ , χ

−
λ ]+ =

∑
λ

LνλSλµ = δµν (398)

The above relationship is satisfied if L = S−1

χ̃−ν =
∑

λ

S−1
νλ χ

−
λ (399)

In general, a set of functions {χ̃i} form the bi-orthogonal set related to the non-orthogonal set
{χi} if they satisfy the 〈χ̃i|χj〉 = δij relation. The χ̃−λ operators form a bi-orthogonal set related
to χ−µ .
Let us write the Hamiltonian with the symmetrically orthogonalized auxiliary AO basis set ψi =∑

µ S
−1/2
iµ χµ. In this orthogonal basis the Hamiltonian has the usual form

Ĥ =
∑
ij

hijψ
+
i ψ

−
j +

1
2

∑
ijkl

〈ij|kl〉ψ+
i ψ

+
j ψ

−
l ψ

−
k (400)

After transformation of the operators to the original overlapping AO basis

Ĥ =
∑
ij

∑
µν

hijS
−1/2
µi S

−1/2
jν χ+

µχ
−
ν

+
1
2

∑
ijkl

∑
µνλσ

〈ij|kl〉S−1/2
µi S

−1/2
νj S

−1/2
lσ S

−1/2
kλ χ+

µχ
+
ν χ

−
σ χ

−
λ

(401)

Transform back the one-electron integrals too into the original basis

hij =
∑
αβ

S
−1/2
iα S

−1/2
βj hαβ (402)

and similarly for the two-electron integrals. Summation over i, k and i, j, k, l leads to the following
relatively simple form

Ĥ =
∑

µναβ

S−1
µαhαβS

−1
βν χ

+
µχ

−
ν +

1
2

∑
µνλσ

∑
αβγδ

S−1
µαS

−1
νβ 〈αβ|γδ〉S

−1
γσ S

−1
δλ χ

+
µχ

+
ν χ

−
σ χ

−
λ (403)

We can take advantage of the simple anticommutation relations between χ+
µ and χ̃−λ , if we use the

above Hamiltonian in the following form

Ĥ =
∑
µν

hµ̃νχ
+
µ χ̃

−
ν +

1
2

∑
µνλσ

〈µ̃λ̃|νσ〉χ+
µχ

+
ν χ̃

−
σ χ̃

−
λ (404)
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where the half-transformed integrals are defined as

hµ̃ν =
∑

λ

S−1
µλhλν (405)

and
(µ̃λ̃|νσ) =

∑
τε

S−1
µτ S

−1
λε (τε|νσ) (406)

In order to calculate the expectation values of the operator strings in this energy expression, let
us consider the AO/MO transformations in both original and bi-orthogonal bases.

φ = C†χ χ = (C†)−1φ (407)

using that the MOs are orthonormal

C†SC = 1 (C†)−1 = SC (408)

and the definition of the bi-orthogonal orbitals

χ̃ = χ†S−1 = φ†C† (409)

we get the relationships

χ+
µ =

∑
i

(C†S)iµφ
+
i χ̃−µ =

∑
i

cµiφ
−
i (410)

Substitution of these expressions and taking the expectation value

〈χ+
µ χ̃

−
ν 〉 = (PS)νµ

〈χ+
µχ

+
ν χ̃

−
σ χ̃

−
λ 〉 =

∑
ητ

ΓσλητSηµSτν
(411)

In the special case of HF wave functions we obtain for the two-particle string

〈HF|χ+
µχ

+
ν χ̃

−
σ χ̃

−
λ |HF〉 =

∑
ητ

(
PστPλη − PσηPλτ

)
SηµSτν

= (PS)σν(PS)λµ − (PS)σµ(PS)λν

(412)

14.11 Hellmann-Feynman theorem

Consider a Hamiltonian, which depends on one or more parameters, αi

Ĥ(α) = Ĥ(0) +
∑

i

αiÂi (413)

The first derivative of the total energy for a (normalized) Hartree-Fock determinant wave function,
D is

∂E

∂αi
=

∂

∂αi
〈D|Ĥ|D〉 = 〈 ∂D

∂αi
|Ĥ|D〉+ 〈D|∂Ĥ

∂αi
|D〉+ 〈D|Ĥ| ∂D

∂αi
〉 (414)

Since the Hartree-Fock wave function is stationary with respect to any variation in the class of
one-determinant wave functions, we remain with

∂E

∂α
= 〈D|∂Ĥ

∂α
|D〉 = 〈D|Âi|D〉 (415)

The exact Hartree-Fock wave function satisfies the Hellmann-Feynman theorem.
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Let us apply this result to the calculation of the molecular dipole moment. The Hamiltonian in
the presence of an electric field

Ĥ(F) = Ĥ(0) + Fαµ̂α

where µ̂α is the α = x, y, z component of the multipole moment operator. Expanding the total
energy in Taylor series

E(F) = E(0) +
(
∂E(F)
∂Fα

)
F=0

Fα +
1
2

(
∂2E(F)
∂Fα∂Fβ

)
F=0

FαFβ + . . . (416)

The dipole moment is defined as

µα = −
(
∂E(F)
∂Fα

)
F=0

(417)

According the previous result, the dipole moment can be calculated from a HF wave function as
the expectation value

µα = −〈D|µ̂α|D〉 (418)

In the case of non-variational wave functions the molecular properties must be calculated from the
energy derivatives.

14.12 Hartree-Fock gradients

Exact solutions of the molecular Hamiltonian require infinite basis sets. The advantage of the
SQ formalism is that eigenfunctions of the SQ Hamiltonian in a given finite basis set are exact
solutions of this model Hamiltonian. Therefore, the Hellmann-Feynman theorem applies to its
exact eigenfunctions, as well as variational solutions, like the Hartree-Fock wave function,in the
given finite basis.
The derivative of the energy can be calculated as

δE = 〈Ψ|δĤ|Ψ〉 (419)

The derivative of the SQ Hamiltonian

δĤ =
∑
µν

δhµ̃νχ
+
µ χ̃

+
ν +

1
2

∑
µνλσ

δ〈µ̃λ̃|νσ〉χ+
µχ

+
ν χ̃

−
σ χ̃

−
λ (420)

Use the expectation values of the operator strings and the following relationships to calculate the
derivative of the half-transformed AO-integrals, e.g.

δ(S−1h) = δS−1 · h + S−1 · δh δS−1 = S−1δSS−1 (421)

We obtain for the special case HF wave function

δEHF =
∑
µν

δhµνPµν +
1
2

∑
µνλσ

δ〈µν|λσ〉
(
PλµPσν − PλνPσµ

)
−
∑
µνλσ

FµνPνλδSλσS
−1
σµ (422)

Using the definition of the P-matrix and the SCF condition
∑

ν Fµνcnui = εi

∑
ν Sµνcνi the last

term can be rewritten as

−
∑
µν

occ∑
i

εicµic
∗
νi︸ ︷︷ ︸

Wµν

δSνµ (423)
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and we obtain the final result

δEHF =
∑
µν

δhµνPµν +
1
2

∑
µνλσ

δ〈µν|λσ〉
(
PλµPσν − PλνPσµ

)
−
∑
µν

WµνδSνµ (424)

This expression is completely general. In the special case of forces the derivatives are taken with
respect to the nuclear coordinates. Since the atomic orbitals follow the nuclei (orbital following)
the geometrical derivatives of the integrals enter in the force expression (wave function forces).

14.13 BSSE

Take a complex A
⋃

B and trace the energy as a function of their separation, EA
⋃

B(R,Ω). As a
consequence of the orbital-following principle, we have a different basis set at each distance and
relative orientation. In particular, for the interaction energy

∆E = EA∪B(R,Ω)− EA∪B(R = ∞,Ω) = EA∪B(R,Ω)− EA − EB (425)

At small separations the partner basis functions improve the monomer description (nothing to do
with the physical interaction) and lead to an extra stabilization of the complex.
Remedy: Boys-Bernardi counterpoise correction
Calculate monomer energies in the dimer basis at each geometry

∆E = EA∪B(R,Ω)− EA(A ∪ B|R,Ω)− EB(A ∪ B|R,Ω) (426)

As an example, the dissociation curve of the Ar dimer. An artificial minimum appears in the RHF
calculations; after counterpoise correction the potential curve has no minimum (electron correlation
would be needed to describe the van der Waals minimum in this system).

14.14 Response properties

In the Taylor-expansion of the total energy of a system in the presence of an external perturbation

E(F) = E(0) +
(
∂E(F)
∂Fα

)
F=0

Fα +
1
2

(
∂2E(F)
∂Fα∂Fβ

)
F=0

FαFβ + . . . (427)

the second-order terms are related to the polarizability, i.e. linear response of the system to the
perturbation

ααβ =
(
∂2E(F)
∂Fα∂Fβ

)
F=0

(428)

We can apply the general Taylor-expansion of the energy by remarking that in the presence of an
external perturbation

Ĥ = Ĥ0 + Ĥ ′

a = ∇H = ∇H0 + ∇H ′ (429)

If the unperturbed energy is variational, ∇H0 = 0, we obtain the following equation for the
parameter variations, d that make the perturbed system energy stationary(

∇H ′

H ′∇

)
+
(

M Q
Q∗ M∗

)(
d
d∗

)
= 0 (430)

which simplifies in case of real wave function and perturbation as

∇H ′ + (M + Q)d = 0 (431)
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The first order parameter change, d is proportional to the derivative of the Hamiltonian a = ∇H ′

d = (M + Q)−1a (432)

In the case of an external field perturbation Ĥ ′ =
∑

α Fαµ̂α the energy can be expressed as

E = E0 − 2
∑
α

∑
β

Fα(∇µα)†(M + Q)−1(µβ∇)Fβ (433)

Comparison with the definition of the electric dipole polarizability yields immediately

ααβ = (∇µα)†(M + Q)−1(µβ∇) (434)

14.15 General wave function variation

We have seen that the first order variation of a single determinant wave function can be parame-
terized as

|Ψ〉 = |Ψ0〉+
∑
ar

par|Ψr
a〉 (435)

A more general approach, valid to any kind of wave function and also to higher order variations,
can be developed by SQ.
Let us describe the variation of orbitals as resulting from a unitary transformation, ψ′i =

∑
k ψkUki,

which means that the corresponding creation and annihilation operators transform according to

a′i
† =

∑
k

a†kUki

a′i =
∑

k

akU
∗
ki

(436)

• The unitary transformation can be written as

a′i
+ = exp (−iΛ̂)a+

i exp (iΛ̂) (437)

where Λ̂ is a hermitian operator

Λ̂ =
∑

i

∑
j

Λija
+
i aj (438)

Using the expansion of the exponential operator

exp (−iΛ̂)a+
i exp (iΛ̂) = a+

i + [a+
i , iΛ̂] +

1
2
[[a+

i , iΛ̂], iΛ̂] + . . . (439)

The commutator expressions can be simplified using the anticommutator relationships,
e.g.

[a+
i , a

+
k al] = a+

i a
+
k al − a+

k ala
+
i

= −a+
k a

+
i al − a+

k ala
+
i

= −a+
k (δil − ala

+
i )− a+

k ala
+
i = −a+

k δil

(440)

Applied to the first commutator

[a+
i , iΛ̂] =

∑
kl

iΛkl[a+
i , a

+
k al] =

∑
kl

iΛkl(−a+
k δil) = −

∑
k

a+
k iΛki (441)
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The second-order commutator yields

[[a+
i , iΛ̂], iΛ̂] =

∑
k

a+
k (iΛiΛ)ki (442)

and finally one can show that

exp (−iΛ̂)a+
i exp (iΛ̂) =

∑
k

a+
k (1− iΛ̂ +

1
2
(iΛ̂iΛ̂) + . . .)ki =

∑
k

a+
k exp (−iΛ̂)ki (443)

This is a unitary transformation, provided that Λ is hermitian, i.e. we can parameterize
the transformation as

U = exp (−iΛ) (444)

• The effect of orbital transformations is identical to a unitary (norm conserving!) transfor-
mation of the wave function. Consider a transformed determinant Ψ

|Ψ′〉 = a′1
+
a′2

+
. . . a′N

+|vac〉

= e(−iΛ̂)a+
1 e(iΛ̂)e(−iΛ̂)a+

2 e(iΛ̂) . . . e(−iΛ̂)a+
Ne(iΛ̂)|vac〉

= exp (−iΛ̂)a+
1 a

+
2 . . . a

+
N |vac〉 = exp (−iΛ̂)|Ψ〉

(445)

and the result holds for any linear combination of determinants too.

• Since the hermitian matrix Λ can be expressed with the real symmetric and antisymmetric
matrices λ and K as Λ = λ + iK and the purely imaginary part of the transformation
concerns only an uninteresting phase factor exp (iλ), we can write

Û = exp (−iΛ̂) = exp (K̂) (446)

• For small values of the transformation parameters, Λkl, we can expand the exponential
operator as

|Ψ′〉 = exp (K̂)|Ψ〉 = |Ψ〉+
∑
kl

Kkla
+
k al|Ψ〉−

1
2

∑
kl

∑
mn

KklKmna
+
k ala

+
man|Ψ〉+. . . (447)

Bring the operator product of last term in the normal order

a+
k ala

+
man = a+

k (δlm − a+
mal)an = δlma

+
k an + aka+

manal (448)

and the transformed wave function is written as a linear combination of singly-, doubly-,
etc. excited configurations

|Ψ′〉 = |Ψ〉+
∑
kl

Kkl|Ψk
l 〉 −

1
2

∑
kl

∑
mn

KklKmn

(
δlm|Ψk

l 〉+ |Ψkm
ln 〉

)
+ . . . (449)

14.16 Coupled Hartree-Fock equations

Having a general expression of the parameterization of the wave function, we can write the energy
as

E = 〈Ψ|e−K̂ĤeK̂ |Ψ〉

= 〈Ψ|(1− K̂ +
1
2!
K̂2 − . . .)Ĥ(1 + K̂ +

1
2!
K2 + . . .)|Ψ〉

= 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|[Ĥ, K̂]|Ψ〉+
1
2!
〈Ψ|
[
[Ĥ, K̂], K̂

]
|Ψ〉+ . . .

(450)

61



The operator K̂ can be written in term of the one-particle excitation operators Êij as

K̂ =
∑
ij

pija
+
i aj =

∑
ij

pijÊij (451)

and the Taylor expansion of the energy (for real wave function and variations)

E = 〈Ψ|Ĥ|Ψ〉+
∑
ij

pij〈Ψ|[Ĥ, Êij ]|Ψ〉+
1
2!

∑
ij

∑
kl

pijpkl〈Ψ|
[
[Ĥ, Êij ], Êkl

]
|Ψ〉+ . . . (452)

The M and Q matrices can be identified as

Qij,kl = 〈Ψ|ÊijĤÊkl + ÊklĤÊij |Ψ〉
Mij,kl = −〈Ψ|ĤÊijÊkl + ÊklÊijĤ|Ψ〉

(453)

The matrix elements in the second derivative of the energy for the special case of a Hartree-Fock
wave function are obtained after expansion of the SQ operators.

15 Comparison of RHF and UHF solutions

Example of the Li atom

|2ΨRHF〉 = |φ1sφ1sφ2s〉 |2ΨUHF〉 = |φα
1sφ

β

1sφ
α
2s〉

? ?
6

6
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6 φ2s

φ1s

φα
2s

φα
1s

φβ
1s

1sα and 1sβ electrons experience different effective potentials (with and without exchange interac-
tion with 2sα). The 2sα electron “polarizes” the 1s shell, and the corresponding spatial functions
tend to be different.
The unrestricted doublet state can be expanded on the basis of exact doublet, quadruplet, etc.
states:

|2ΨUHF〉 = c2|2〉+ c4|4〉+ c6|6〉+ . . . (454)

Since the contamination comes always from higher multiplicity components, 〈S2〉UHF is always too
large, as can be seen from its expression.

15.1 RHF solution of minimal basis H2

The molecular orbitals are fully determined by symmetry

φ1 =
1√

2(1 + SAB)

(
χa + χb

)
φ2 =

1√
2(1− SAB)

(
χb − χb

) (455)

where χa and χb are 1s atomic orbitals on the two H atoms.
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As the form of orbitals does not depend on the intermolecular separation, we can analyze the case
Rab →∞, when Sab = 〈χa|χb〉 → 0. The one-determinant RHF wave function

ΨRHF
R→∞ = Â

[
φ1(1)α(1)φ1(2)β(2)

]
=

1
2
Â
[
{χa(1) + χb(1)}α(1) {χa(2) + χb(2)}β(2)

]
=

1
2
{
Â[χaχa] + Â[χbχb] ionic terms

+ Â[χaχb] + Â[χbχa]
}

covalent terms

(456)

The RHF wave function has an equal weight of “ionic” and “covalent” terms, instead of the correct
dissociation limit

ΨR→∞ =
1√
2

{
Â[χaχb] + Â[χbχa]

}
(457)

i.e. the symmetrized combination of two H-atom wave functions.

15.2 UHF orbitals of minimal basis H2

The unrestricted orbitals are not symmetry-constrained. The one degree of freedom can be in-
corporated easily if we write the unrestricted orbitals as linear combination of the restricted ones

φα,β
1 = cos θ φ1 ± sin θ φ2 φα,β

2 = ∓ sin θ φ1 + cos θ φ2 (458)

These are the unitary transformations which bring the orbitals from the original RHF set {φ1, φ2}
to the UHF ones.

Uα,β =
(

cos θ ± sin θ
∓ sin θ cos θ

)
= exp

(
0 ±θ

∓θ 0

)
(459)

The two occupied orbitals of interest can be written in terms of the AOs as

φα
1 = c1χa + c2χb φβ

1 = c2χa + c1χb (460)

with the coefficients
c1,2 =

1√
2(1 + Sab)

cos θ ± 1√
2(1− Sab)

sin θ (461)
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15.3 UHF solutions for minimal basis H2

UHF energy
E0 = (φα

1 |ĥ|φα
1 ) + (φβ

1 |ĥ|φ
β
1 ) + (φα

1φ
α
1 |φ

β
1φ

β
1 ) (462)

can be written after expanding the UHF orbitals in terms of the integrals over RHF MOs as

E0(θ) = 2 cos2 θ h11 + 2 sin2 θ h22

+ cos4 θ J11 + sin4 θ J22 + 2 cos2 θ sin2 θ (J12 − 2K12)
(463)

The energy is extremum if

dE0(θ)/dθ = 4 cos θ sin θ

×
[
h22 − h11 + sin2 θ J22 − cos2 θ J11

+ (cos2 θ − sin2 θ)(J12 − 2K12)
]

= 0

(464)

• RHF solution exists at any interatomic distance with θ = 0, i.e.

4 cos θ sin θ = 0 (465)

with energy
E0(0) = 2h11 + J11 = 2ε1 − J11 (466)

• UHF solution exists, if at a given R the values of integrals are such that[
h22 − h11 + sin2 θ J22 − cos2 θ J11 + (cos2 θ − sin2 θ)(J12 − 2K12)

]
= 0 (467)

i.e. the equation

cos2 θ =
h22 − h11 + J22 − J12 + 2K12

J11 + J22 − 2J12 + 4K12
(468)

can be satisfied.
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15.4 Stability of the RHF/UHF solutions

The nature of the restricted solution can be studied through the second derivative of the energy

d2E(θ)/dθ2|θ=0 = E′′(0) = 4(h22 − h11 + J22 − J12 + 2K12)
= 4(ε2 − ε1 − J12 −K12)

(469)

At the “saddle point” (E′′(0) = 0) the UHF and RHF solutions become separated.
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15.5 Behaviour at dissociation

The UHF wave function tends to the correct dissociation limit, while the RHF leads to a “disso-
ciation catastrophe”.
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The UHF wave function in the R→∞ limit is

ΨUHF
R→∞ = Â[χa(1)χb(2)] (470)

Instead of the correct (symmetrical) form

ΨR→∞ =
1√
2

{
Â[χa(1)χb(2)] + Â[χb(1)χa(2)]

}
(471)

Although the orbitals are correct, the wave function is not!
Expand the UHF wave function using the unitary transformation of the orbitals

|ΨUHF〉 = |φα
1φ

β

1 〉 = |
(
cos θ φ1 + sin θ φ2

)(
cos θ φ1 − sin θ φ2

)〉
= cos2 θ|φ1φ1〉 − sin2 θ|φ2φ2〉 − cos θ sin θ

[
|φ1φ2〉 − φ2φ1〉

]︸ ︷︷ ︸
√

2|3Ψ2
1〉

(472)

There is a triplet contaminant, with growing weight as R increases. At the dissociation limit
(θ = π/4)

|ΨUHF
R→∞〉 =

1
2
[
|φ1φ1〉 − |φ2φ2〉

]
− 1

2
|3Ψ2

1〉 (473)

The triplet contaminant is the price to pay for having a one-determinant wave function.

16 Configuration interaction method

The multi-configurational wave function

|Φ〉 = c0|Ψ〉+
( 1
1!
)2∑

ar

cra|Ψr
a〉+

( 1
2!
)2 ∑

abrs

crs
ab|Ψrs

ab〉

+
( 1
3!
)2∑

abc
rst

crst
abc|Ψrst

abc〉+
( 1
4!
)2 ∑

abcd
rstu

crstu
abcd|Ψrstu

abcd〉+ . . .
(474)
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where the coefficients are the eigenvectors of the CI-matrix.
The CI wave function is not normalized in the sense that

〈Φ|Φ〉 = 1 +
∑
ab

(cba)2 +
( 1
2!
)4 ∑

abrs

(crs
ab)

2 + . . . (475)

However, it satisfies the intermediate normalization condition

〈Ψ|Φ〉 = 1 (476)

Schrödinger equation
Ĥ|Φ〉 = E0|Φ〉 (477)

By subtracting E0|Φ〉
(Ĥ − E0)|Φ〉 = (E0 − E0)|Φ〉 = Ecorr|Φ〉 (478)

multiplication and integration by 〈Ψ|

〈Ψ|Ĥ − E0|Φ〉 = Ecorr〈Ψ|Φ〉 = Ecorr (479)

lets appear explicitly the correlation energy, Ecorr.

Substitute the CI-expansion of the wave function

〈Ψ|Ĥ − E0|Φ〉 = 〈Ψ|Ĥ − E0

(
|Ψ〉+

∑
ct

ctc|Ψt
c〉+

∑
c<d
t<u

ctucd|Ψtu
cd〉+ . . .

)

=
∑
c<d
t<u

ctucd〈Ψ|Ĥ|Ψtu
cd〉

(480)

The (unnormalized) coefficients of the double excited configurations determine the correlation
energy

Ecorr =
∑
c<d
t<u

ctucd〈Ψ|Ĥ|Ψtu
cd〉 (481)

In order to know these coefficients exactly, we must solve the full CI problem!

17 Structure of the CI matrix

The CI matrix 

〈Ψ|Ĥ|Ψ〉 0 〈Ψ|Ĥ|D〉 0 0 . . .

〈S|Ĥ|S〉 〈S|Ĥ|D〉 〈S|Ĥ|T 〉 0 . . .

〈D|Ĥ|D〉 〈D|Ĥ|T 〉 〈D|Ĥ|Q〉 . . .

〈T |Ĥ|T 〉 〈T |Ĥ|Q〉 . . .

〈Q|Ĥ|Q〉 . . .


(482)

• Brillouin theorem 〈Ψ|Ĥ|S〉 = 0

• Slater rules 〈Ψ|Ĥ|T 〉 = 〈Ψ|Ĥ|Q〉 = 〈S|Ĥ|Q〉 = 0

• nonzero blocks are sparse

• double excitations play a predominant role

• by indirect coupling all types of excitations contribute to the correclation energy
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17.1 Doubly excited CI

Neglect all configurations except the doubly excited ones

|ΦDCI〉 = |Ψ〉+
∑
c<d
t<u

ctucd|Ψtu
cd〉 (483)

After substitution into
(Ĥ − E0)|ΦDCI〉 = Ecorr|ΦDCI〉 (484)

and successive multiplication by 〈Ψ| and by 〈Ψrs
ab| we obtain the system of equations∑

c<d
t<u

ctucd〈Ψ|Ĥ|Ψtu
cd〉 = Ecorr

〈Ψrs
ab|Ĥ|Ψ〉+

∑
c<d
t<u

ctucd〈Ψrs
ab|Ĥ − E0|Ψtu

cd〉 = crs
abEcorr

(485)

Introduce the matrix notations

(B)rasb = 〈Ψrs
ab|Ĥ|Ψ〉

(D)rasb,tcud = 〈Ψrs
ab|Ĥ − E0|Ψtu

cd〉
(c)rasb = crs

ab

(486)

and the DCI matrix equations are(
0 B†

B D

)(
1
c

)
= Ecorr

(
1
c

)
(487)

17.2 Approximate solutions of the DCI equations

The exact solution of the DCI problem is the lowest eigenvalue of the CI matrix(
0 B†

B D

)
(488)

We can solve this problem by the matrix partitioning technique by considering the corresponding
partitioned system of equations

B†c = Ecorr (489)
B + Dc = cEcorr (490)

Solve the second equation for c
c = −(D − 1Ecorr)−1B (491)

and
Ecorr = −B†(D − 1Ecorr)−1B (492)

As a first approximation we can set Ecorr = 0 in the denominator and get

Ecorr ≈ −B†D−1B (493)

This expression is not variational (not upper bound to the energy) but size-extensive (unlike
truncated CI).
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As a further simplification, we neglect off-diagonal elements of D, i.e.

(D−1)rasb,tucd =
δacδbdδrtδsu

〈Ψrs
ab|Ĥ − E0|Ψrs

ab〉
(494)

and the correlation energy becomes approximately

Ecorr ≈ −
∑
a<b
r<s

〈Ψ|Ĥ|Ψrs
ab〉〈Ψrs

ab|Ĥ|Ψ〉
〈Ψrs

ab|Ĥ − E0|Ψrs
ab〉

=
∑
a<b
r<s

Ecorr

(
rs
ab

)
(495)

sum of double-excitation contributions.

17.3 Natural orbitals

Natural orbitals diagonalize the 1RDM for any (including multi-configurational) wave function.
Take a two-electron singlet system with the following CI expansion

|1Φ〉 = c0|11̄〉+
K∑

r=2

cr1|1Ψr
1〉+

1
2

K∑
r=2

K∑
s=2

crs
11|1Ψrs

11〉 (496)

where the spin-adapted singlet configuration functions (CF) are

|1Ψr
1〉 =

1√
2
(|1r̄〉+ |r1̄〉) |1Ψrs

11〉 =
1√
2
(|rs̄〉+ |sr̄〉) (497)

Substitute these CFs

|1Φ〉 = c0|11̄〉+
1√
2

K∑
r=2

cr1
{
|1r̄〉+ |r1̄〉

}
+

1√
2

K∑
r=2

K∑
s=2

crs
11

{
|rs̄〉+ |sr̄〉

}
=

K∑
i=1

K∑
j=1

Cij |ij̄〉
(498)

where the Cij coefficients form a symmetric matrix. The CI expansion contains K2 terms.
The 1RDM can be calculated as

P (x1,x
′
1) =

∑
ij

∑
kl

C∗
ijCkl

∫
[i∗(1)j̄∗(2)− i∗(2)j̄∗(1)][k∗(1′)l̄∗(2)− k∗(2)l̄′∗(1)]d2

=
∑
ij

(CC†)ij [i(1)j∗(1′) + ī(1)j̄∗(1′)]
(499)

Let us choose a transformation U such that

U †CU = d (500)

where d is a diagonal matrix. The orbitals ηk obtained from the transformation

ηk =
∑

i

ψiUik and ψi =
∑
m

ηmUim (501)

diagonalize the 1RDM

P (x1,x
′
1) =

∑
i

d2
i [ηi(1)η∗i (1′) + η̄i(1)η̄∗i (1′)] (502)
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Substitution in the CI expansion leads to

K∑
ij

Cij |ij̄〉 =
K∑
ij

K∑
mn

UimCijUjn|ηmη̄n〉

=
K∑

mn

(U †CU)mn|ηmη̄n〉 =
K∑
m

dm|ηmη̄m〉

(503)

which contains only K terms instead of K2!

17.4 Minimal basis H2 molecule

Out of the six possible determinants four symmetry adapted configuration functions (CFs) can be
formed

X1Σ+
g |Ψ〉 =|11̄〉

B1Σ+
u |1Ψ2

1〉 =|12̄〉+ |21̄〉
E1Σ+

g |1Ψ22
11〉 =|22̄〉

b3Σ+
u |3Ψ2

1〉 =


|12〉
|12̄〉 − |21̄〉
|1̄2̄〉

Taking into account the spin multiplicity (singlet and triplet) and space symmetry (g or u), the
CI matrix has the following structure

〈1Ψ|Ĥ|1Ψ〉 〈1Ψ |Ĥ|1Ψ22
11〉 0 0

〈1Ψ22
11|Ĥ|1Ψ22

11〉 0 0
〈1Ψ2

1|Ĥ|1Ψ2
1〉 0

〈3Ψ2
1|Ĥ|3Ψ2

1〉

 (504)

The energies of the B1Σ+
u state is given by

〈1Ψ2
1|Ĥ|1Ψ2

1〉 =
1
2
(
〈12̄|Ĥ|12̄〉 − 〈21̄|Ĥ|12̄〉 − 〈12̄|Ĥ|21̄〉+ 〈21̄|Ĥ|21̄〉

)
= h11 + h22 + J12 +K12

(505)

and of the b3Σ+
u state

〈3Ψ2
1|Ĥ|3Ψ2

1〉 = 〈12|Ĥ|12〉 = h11 + h22 + J12 −K12 (506)

which lies below the corresponding singlet state (Hund’s rule) and tends to the limit of E(H) at
R→∞.
The MO energies of the two 1Σ+

g states are

EMO(X1Σ+
g ) = 2h11 + J11 EMO(E1Σ+

g ) = 2h22 + J22 (507)

which dissociate to the same limit (in the MO approximation!).
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17.5 DCI of the minimal basis H2

To solve the 2× 2 CI problem we need the matrix elements

(B)212̄1̄ = 〈Ψ22̄
11̄|Ĥ|Ψ〉 = 〈1̄||22̄〉 = [12|1̄2̄]− [12̄|1̄2] = (12|12)− 0 = K12 (508)

and
(D)212̄1̄,212̄1̄ = 〈Ψ22̄

11̄|Ĥ − E0|Ψ22̄
11̄〉 = 2h22 + J22 − 2h11 − J11 (509)

Using the orbital energies

ε1 = h11 + J11 ε2 = h22 + 2J12 −K12 (510)

we can write
(D)212̄1̄,212̄1̄ = 2∆ = 2(ε2 − ε1) + J11 + J22 − 4J12 + 2K12 (511)

The DCI matrix takes the simple form(
0 K12

K12 2∆

)(
1
c

)
= Ecorr

(
1
c

)
(512)

The solution can be found from

K12 + 2∆c = Ecorrc c =
K12

Ecorr − 2∆
(513)

K12c = Ecorr Ecorr =
K2

12

Ecorr − 2∆
(514)
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The exact (in minimal basis) correlation energy is

Ecorr = ∆−
√

∆2 +K2
12 (515)

At dissociation ε1 = ε2, h11 = h22 = E(H). Since all two-electron integrals J11 = J22 = J12 =
K12 = (χaχa|χaχa) tend to the same value, ∆ = 0 and the total energy

ECI(X1Σ+
g ) = 2h11 + J11 + ∆−

√
∆2 +K2

12 (516)

tends to 2E(H).
In this limit the CI coefficient

c =
−K12

∆ + (∆2 +K2
12)1/2

→ −1 (517)

which means that the CI wave function in the dissociation limit

|ΨCI
R→∞〉 = |Ψ〉+ |Ψ22

11〉 = |χaχb〉+ |χbχa〉 (518)

is the linear combination of two ground state H atoms.
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17.6 Approximate CI solution of minimal basis H2

Use the approximate correlation energy expression

Ecorr ≈ −B†D−1B (519)
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Since B = K12 and D† =
2∆ we get immediately
the estimation

Ecorr ≈ −K12

2∆

In this special case, the one-particle density matrix is diagonal in the original MO basis (NO=MO).
Using the normalized CI expansion coefficients

C11 =
1√

1 + c2
C22 =

c√
1 + c2

(520)

the P-matrix (
C2

11 0
0 C2

22

)
(521)
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The “perturbational” cor-
relation energy is a good
approximation as far as
n1 ≈ 1 and it dete-
riorates when the wave
function becomes multi-
configurational (n1 < 1).

17.7 Size-consistency problem

The energy of a non-interacting dimer (N-mer) should be the sum of monomer energies.
The Hartee-Fock wave function of an infinitely separated dimer of H2 molecules is

|Ψ0〉 = |111̄1121̄2〉 (522)
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with the energy

E0 = 4h11 + 〈111̄1||111̄1〉+ 〈121̄2||121̄2〉+ 2〈111̄1||121̄2〉 = 2(2h11 + J11) (523)

sum of the monomer energies.
The DCI wave function involves only “local” excitations

|Φ〉 = |Ψ0〉+
2∑

i=1

ci|Φ2i2̄i

1i1̄i
〉 (524)

Matrix elements
〈Ψ|Ĥ|Φ212̄1

111̄1
〉 = 〈111̄1||212̄1〉 = (1121|1121) = K12 (525)

and the DCI matrix is  0 K K
K 2∆ 0
K 0 2∆

1
c
c

 = Ecorr

1
c
c

 (526)

leading to the equations

K12 + 2∆c = Ecorrc c =
K12

Ecorr − 2∆
(527)

2Kc = Ecorr Ecorr =
2K2

12

Ecorr − 2∆
(528)

DCI correlation energy of the dimer

(2)Ecorr = ∆−
√

∆2 + 2K2
12 (529)

is not equal to the sum of monomer correlation energies

(2)Ecorr 6= 2(1)Ecorr = 2∆− 2
√

∆2 +K2
12 (530)

Similar result holds for an N-mer:

(N)Ecorr = ∆−
√

∆2 +NK2
12 (531)

which means that the DCI (truncated CI) correlation energy per monomer tends to 0 with increas-
ing system size.
If we take the approximate correlation energy expression, applied to an N-mer

(N)Ecorr ≈ −
N∑
i

B†
iBi

Di
= −NK

2∆
(532)

i.e. N times the approximate monomer correlation energy.

17.8 Full CI of a non-interacting H2 dimer

The wave function includes a quadruple excitation too

|Φ〉 = |Ψ0〉+ c1|212̄1121̄2〉+ c2|111̄1222̄2〉+ c3|212̄1222̄2〉 (533)

The FCI matrix is augmented with respect to the DCI one
0 K K 0
K 2∆ 0 K
K 0 2∆ K
0 K K 4∆




1
c
c
c3

 = Ecorr


1
c
c
c3

 (534)
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Solve the equations by taking first the fourth and first rows

2Kc+ 4∆c3 = Ecorr c3 c3 =
2Kc

Ecorr − 4∆
(535)

2Kc = Ecorr Ecorr =
Ecorr

Ecorr − 4∆
(536)

Using the second row
K + 2∆ c+Kc3 = Ecorr c (537)

and substitution of c3
c =

2K
Ecorr − 4∆

(538)

which leads to the equation for the correlation energy

Ecorr =
2K2

Ecorr − 4∆
(539)

and the solution is twice the monomer correlation energy

Ecorr = 2(∆−
√

∆2 +K2) (540)

Remark that the coefficient of the quadruple excitation

c3 =
2Kc

Ecorr − 4∆
= c× c (541)

18 Rayleigh-Schroedinger perturbation theory

18.1 Schroedinger equation with perturbation

We are looking for the ground state solution of the problem

Ĥψ = (Ĥ0 + V̂ )ψ = Eψ (542)

and we already know the (exact) solution of the zero-order problem

Ĥ0ϕ0 = E0ϕ0 (543)

Let us write ∆E = E − E0, the energy correction

(Ĥ0 − E0)ψ = (∆E − V̂ )ψ (544)

and in order to fix the phase of ψ, impose the intermediate normalization

〈ϕ0|ψ〉 = 1 (545)

Introduce the reduced resolvent operator as

R̂0 = (1− |ϕ0〉〈ϕ0|)(Ĥ0 − E0)−1 (546)

which can be regarded as the inverse of the operator Ĥ0 −E0 in the space of functions orthogonal
to ϕ0

R̂0(Ĥ0 − E0) = 1− |ϕ0〉〈ϕ0| (547)

Multiplying the Schrödinger equation by R̂0

R̂0(Ĥ0 − E0)ψ = R̂0(∆E − V̂ )ψ (548)
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using the definition of the resolvent and the intermediate normalization an equation is obtained
for the wave function

ψ = ϕ0 + R̂0(∆E − V̂ )ψ (549)

After multiplication of the Schrödinger equation by 〈ϕ0|

〈ϕ0|(Ĥ0 − E0)|ψ〉 = 〈ϕ0|(∆E − V̂ )|ψ〉 (550)

we get the energy correction
∆E = 〈ϕ0|V̂ |ψ〉 (551)

18.2 Iterative solution of the perturbed Schroedinger equation

These equations can be solved iteratively

∆En = 〈ϕ0|V̂ |ψn−1〉
ψn = ϕ0 + R̂0(∆En − V̂ )ψn

(552)

To the lowest orders of iteration we find by using ψ0 = ϕ0 and R̂0ϕ0 = 0

∆E1 = 〈ϕ0|V̂ |ψ0〉
ψ1 = ϕ0 − R̂0V̂ ψ0

∆E2 = 〈ϕ0|V̂ |ψ1〉 = 〈ϕ0|V̂ |ψ0〉 − 〈ϕ0|V̂ R̂0V̂ |ψ0〉 = ∆E1 − 〈ϕ0|V̂ R̂0V̂ |ψ0〉
ψ2 = ϕ0 − R̂0(∆E2 − V̂ )ψ1

= ϕ0 − R̂0(〈ϕ0|V̂ |ψ0〉 − 〈ϕ0|V̂ R̂0V̂ |ψ0〉 − V̂ )(ϕ0 − R̂0V̂ ψ0)

= ϕ(1) − R̂0(V̂ −∆E2)R̂0V̂ ϕ0

(553)

18.3 H-atom in electric field

Hamiltonian of the H-atom in an electric field, Fz

Ĥ = Ĥ0 + ẑFz where Ĥ0 = −1
2
∆− 1

r
(554)

The Hamiltonian of the isolated H-atom has
the lowest eigenvalue E0 = − 1

2 and eigenfunction ϕ0 = 1√
π
e−r.

First iteration in the energy yields zero

∆E1 = Fz〈ϕ0|ẑ|ψ0〉 = µz · Fz = 0 (555)

First iteration in the wave function leads to the equation

ψ1 = ϕ0 − R̂0V̂ ϕ0

(Ĥ0 − E0)ψ1 = −
(
V̂ −∆E1

)
ϕ0(

−1
2
∆− 1

r
+

1
2

)
ψ1 = − 1√

π
Fz z e−r (556)

which has the solution
ψ1 = − Fz√

π
z
(r

2
− 1
)

e−r (557)
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Second energy iteration

∆E2 = Fz〈ϕ0|ẑ|ψ1〉 = −9
4
· F 2

z (558)

This leads to a development of the energy in the powers of Fz

E = E0 + ∆E2 = E0 −
9
4
· F 2

z (559)

the dipole polarizability is

α = −
(
∂2E

∂F 2
z

)
Fz=0

=
9
2

a.u. (560)

18.4 Rayleigh-Schroedinger perturbation expansion

Assuming that the iteration process converges, the exact wave function and energy can be expanded
in power series of a perturbation parameter λ

(Ĥ0 + λV̂ )ψ = ∆Eψ (561)

as

∆E =
∞∑

n=1

λn∆E(n) and ψ =
∞∑

n=0

λnψ(n) (562)

Substitute the series expansions in

∆E = 〈ϕ0|V̂ |ψ〉 and ψ = ϕ0 + R̂0(∆E − V̂ )ψ

leading to ∑
n=1

λn∆E(n) =
∑
m=0

λm+1〈ϕ0|V̂ |ψ(m)〉

∑
n=1

λnψ(n) = ϕ0 + R̂0

(∑
m=1

λm∆E(m) − λV̂

)∑
k=1

λkψ(k)

(563)

and collect terms of the same power to obtain the general recursion formulae

∆E(n) = 〈ϕ0|V̂ |ψ(n−1)〉

ψ(n) = −R̂0V̂ ψ
(n−1) −

n−1∑
k=1

∆E(k)R̂0ψ
(n−k)

(564)

18.5 Explicit formulae at low orders

The reduced resolvent has the spectral resolution

R̂0 =
∑
k 6=0

|ϕ0〉〈ϕ0|
Ek − E0

(565)

◦ First order
∆E(1) = 〈ϕ0|V̂ |ϕ0〉 (566)

ψ(1) = −R̂0V̂ ϕ0 = −
∑
k 6=0

〈ϕk|V̂ |ϕ0〉
Ek − E0

ϕk (567)
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The wave function corrections are often expressed in terms of the expansion coefficients c(n)
k =

〈ϕk|ψ(n)〉 on the basis of the eigenfunctions of the zero order Hamiltonian

c
(1)
k = −

∑
k 6=0

〈ϕk|V̂ |ϕ0〉
Ek − E0

(568)

◦ Second order

Energy

E(2) =〈ϕ0|V̂ |ψ(1)〉 = −〈ϕ0|V̂ R̂0V̂ |ϕ0〉

=−
∑
k 6=0

〈ϕ0|V̂ |ϕk〉〈ϕk|V̂ |ϕ0〉
Ek − E0

(569)

Wave function

ϕ(2) = R̂0V̂ R̂0V̂ ψ
(1) + R̂0E

(1)R̂0V̂ ψ
(0) =

= R̂0V̂ R̂0V̂ ϕ0 − R̂0〈V̂ 〉R̂0V̂ ϕ0 = R̂0V R̂0V̂ ϕ0

(570)

where we used the definitions

〈V̂ 〉 = 〈ϕ0|V̂ |ϕ0〉 and V = V̂ − 〈V̂ 〉 (571)

◦ Third order

∆E(3) = 〈ϕ0|V̂ |ψ(2)〉 = −〈ϕ0|V̂ R̂0V R̂0V̂ |ϕ0〉

=
∑
k 6=0

∑
l 6=0

〈ϕ0|V̂ |ϕk〉〈ϕk|V |ϕl〉〈ϕl|V̂ |ϕ0〉
(Ek − E0)(El − E0)

(572)

Summary of energy corrections

∆E(1) = 〈V̂ 〉 (573)

∆E(2) = 〈V̂ R̂0V̂ 〉 (574)

∆E(3) = 〈V̂ R̂0V R̂0V̂ 〉 (575)

∆E(4) = 〈V̂ R̂0

(
V R̂0V − 〈V R̂0V 〉

)
R̂0V̂ 〉 (576)

∆E(5) = 〈V̂ R̂0(V R̂0V R̂0V − 〈V R̂0V R̂0V 〉
− V R̂0〈V R̂0V 〉 − 〈V R̂0V 〉R̂0V )R̂0V̂ 〉 (577)

18.6 Energy with the first-order wave function

The energy (Rayleigh quotient)

E =
〈ψ|Ĥ + λV̂ |ψ〉

〈ψ|ψ〉
(578)

with the first order wave function, ψ = ϕ0 + λψ(1) = ϕ0 − λV̂ R̂0ϕ0

E =
〈ϕ0 − λϕ0V̂ R̂0|Ĥ + λV̂ |ϕ0 − λV̂ R̂0ϕ0〉

1 + λ2〈ϕ0V̂ R̂0|R̂0V̂ ϕ0〉
(579)
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After expanding the denominator and using that R̂0Ĥ0ϕ0 = 0

E =
(
E0 + λE(1) − 2λ2〈ϕ0|V̂ R̂0V̂ |ϕ0〉+

+ λ2〈ϕ0|V̂ R̂0(Ĥ + λV̂ )R̂0V̂ |ϕ0〉
)
×

×
(
1− λ2〈ϕ0V̂ R̂0|R̂0V̂ ϕ0〉

) (580)

and collecting terms of the same order

E = E0 + λE(1)−
− λ22〈ϕ0|V̂ R̂0V̂ |ϕ0〉−
− λ2〈ϕ0|V̂ R̂0(Ĥ − E0)R̂0V̂ |ϕ0〉
+ λ3〈ϕ0|V̂ R̂0(V̂ − E(1))R̂0V̂ |ϕ0〉

(581)

Use that E(1) = 〈V̂ 〉 and R̂0(Ĥ − E0) = 1− |ϕ0〉〈ϕ0| and obtain the previously derived 3rd order
energy expression

E = E0 + 〈ϕ0|V̂ |ϕ0〉 − 〈ϕ0|V̂ R̂0V̂ |ϕ0〉+ 〈ϕ0|V̂ R̂0(V̂ − 〈V̂ 〉)R̂0V̂ |ϕ0〉 (582)

This result can be generalized: the nth order wave function determines the (2n-1)th order energy
expression, provided the normalization is taken into account.
The perturbational energy is not a upper bound to the exact energy, but the Rayleigh-quotient is
an upper bound.

18.7 Deformation energy and perturbation energy

Up to second order the Rayleigh quotient can be written as a sum of two terms, the expectation
value of the zero order Hamiltonian

〈ϕ− λϕV̂ R̂0|Ĥ|ϕ− λV̂ R̂0ϕ〉
1 + λ2〈ϕV̂ R̂0|R̂0V̂ ϕ〉

= E0 + λ2〈ϕ|V̂ R̂0V̂ |ϕ〉 = E0 + ∆E(2)
def (583)

and the expectation value of the perturbation operator

〈ϕ− λϕV̂ R̂0|λV̂ |ϕ− λV̂ R̂0ϕ〉
1 + λ2〈ϕV̂ R̂0|R̂0V̂ ϕ〉

= λ〈ϕ|V̂ |ϕ〉 − λ22〈ϕ|V̂ R̂0V̂ |ϕ〉 = E(1) + ∆E(2)
stab (584)

The second order correction to the expectation value of the perturbation is twice the second order
energy correction and it is twice the energy raise of the wave function due to the deformation of
the wave function.

∆E(2)
stab = −2∆E(2)

def (585)

18.8 Dalgarno’s (2n+1) theorem

Although the recursion formulae would suggest that we need the (n − 1) order wave function
correction to calculate the n-th order energy correction, as the previous example showed, there is
a much stronger statement:
In order to obtain the (2n+1) order energy correction, it is sufficient to know the n-th
order wave function correction.
Wave function

ψ =
n∑
k

ψ(k) + O(λn+1) (586)
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Energy

E =
n∑
k

n∑
l

〈ψ(k)|Ĥ|ψ(l)〉+ O(λ2n+2) (587)

Transformation formulae (Löwdin)

∆E(2n) = 〈ϕ0|V̂ |ψ(2n−1)〉

= 〈ψ(n)|V̂ |ψ(n−1)〉 −
n∑

k=1

n∑
l=1

∆E(2n−k−l)〈ψ(k)|ψ(l)〉
(588)

∆E(2n+1) = 〈ϕ0|V̂ |ψ(2n)〉

= 〈ψ(n)|V̂ |ψ(n)〉 −
n∑

k=1

n∑
l=1

∆E(2n+1−k−l)〈ψ(k)|ψ(l)〉
(589)

Computational difficulties increase significantly at 2n orders.

18.9 Pertubational correction of expectation values

Expectation value of an arbitrary Hermitian operator, B̂ with a first order wave function ψ ≈
(1 + R̂0V̂ )ϕ

B =
〈ϕ− λϕV̂ R̂0|B̂ + λV̂ |ϕ− λV̂ R̂0ϕ〉

1 + λ2〈ϕV̂ R̂0|R̂0V̂ ϕ〉
(590)

Expanding up to first order in the perturbation

〈ϕ|B̂ + B̂R̂0V̂ + V̂ R̂0B̂ + V̂ R̂0(B̂ −B0)R̂0V̂ |ϕ〉 = B0 + ∆B(1) (591)

Suppose that the perturbation is of the form V̂ = aÂ = Âa†, then

∆B(1) = a†〈ÂR̂0B̂ + B̂R̂0Â〉a = a†K(ÂB̂)a (592)

where K(ÂB̂) = 〈ÂR̂0B̂ + B̂R̂0Â〉 is the linear response function.

18.10 Partitioning method

Let us consider an orthonormal basis {ϕk} divided into two subsets, A and B, containing nA and
nB functions, respectively. The result, obtained by using only nA functions can be improved by
adding the nB extra functions, i.e. the secular equations are partitioned as(

HAA HAB

HBA HBB

)(
cA

cB

)
= E

(
cA

cB

)
(593)

which is equivalent to the system of equations

HAAcA + HABcB =EcA

HBAcA + HBBcB =EcB
(594)

A formal solution can be obtained by expressing cB from the second equation

cB = (E1BB −HBB)−1HBAcA (595)
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and inserting it into the first one leading to

HeffcA = EcA (596)

The effective Hamiltonian is an nA × nA matrix

Heff = HAA + HAB(E1BB −HBB)−1HBA (597)

including implicitly the effect of the nB other functions. The effective Hamiltonian depends on the
yet unknown energy, E, therefore the solution should be obtained by iteration.
Take the case nA = 1, cA = c1 = 1, then Heff is just a single element

E = Heff = f(E) (598)

Insert as a first approximation E = H11 and expand the inverse matrix, using (I + ∆)−1 =
I −∆ + ∆2 leading to second order in the off-diagonal elements

E = H11 +
∑
κ>1

H1κHk1

H11 −Hκκ
(κ > 1) (599)

The expansion coefficients in the cB vector (c.f. above)

cB = (E1BB −HBB)−1HBAcA (600)

can be approximated similarly as

cκ =
Hκ1

H11 −Hκκ
(601)

Analogous to RSPT, but

◦ basis is finite

◦ no a priori separation of the Hamiltonian is necessary

◦ complete set of eigenfunctions not needed

◦ analogies with RSPT to handled with caution

To make the connection with RSPT clear, choose the eigenfunctions of Ĥ0 as basis

Ĥ0ϕk = E
(0)
k ϕk (602)

and the relevant matrix elements are

H11 = 〈ϕ1|Ĥ0 + V̂ |ϕ1〉 = E
(0)
1 + 〈ϕ1|V̂ |ϕ1〉 (603)

H1k = 〈ϕ1|Ĥ0 + V̂ |ϕk〉 = 〈ϕ1|V̂ |ϕk〉 (604)

By application of the previously derived results we obtain for the perturbational corrections to the
i-th state

Ei = E
(0)
i + 〈ϕi|V̂ |ϕi〉+

∑
k( 6=i)

〈ϕi|V̂ |ϕk〉〈ϕk|V̂ |ϕi〉
E

(0)
i − E

(0)
k

(605)

ψi = ϕi +
∑

k( 6=i)

cikϕk = ϕi −
∑

k( 6=i)

〈ϕk|V̂ |ϕi〉
E

(0)
i − E

(0)
k

ϕk (606)

(Quasi)-degenerate cases can be handled by taking(nA > 1).
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In non-orthogonal basis sets the matrix equations are(
HAA HAB

HBA HBB

)(
cA

cB

)
= E

(
MAA MAB

MBA MBB

)(
cA

cB

)
(607)

where M is the overlap (metric) matrix of the basis. The effective equation is

HeffcA = EMAAcA (608)

with the effective Hamiltonian

HAA + (HAB − EMAB)(E1BB −HBB)−1(HBA − EMBA) (609)

and the energy to second order is

E =
H00

M00
+
∑

k

[Hk0 −Mk0(H00/M00)]
2

[H00/M00 − (Hkk/Mkk)]
(610)

19 RSPT treatment of intramolecular correlation

Let us separate the N-electron Hamiltonian into two parts

Ĥ = Ĥ0 + Ŵ (611)

where Ĥ0 is the Hartree-Fock Hamiltonian

Ĥ0 =
∑

i

F̂ (i) (612)

and the perturbation is the difference between the HF and total Hamiltonians

Ŵ = Ĥ −
∑

i

F̂ (i) =
∑
i<j

1
rij

−
∑

i

Ĵ(i)− K̂(i) (613)

which often called the fluctuation potential.
The zero order wave function is the Hartree-Fock determinant.
The zero order energy is the sum of occupied orbital energies

E(0) = 〈Ψ|
∑

i

F̂ (i)|Ψ〉 =
N∑
a

εa (614)

The first order energy correction is just the “double counting correction” we discussed in the
Hartree-Fock theory

E(1) = 〈Ψ|Ŵ |Ψ〉 =
∑
a<b

〈ab||ab〉 −
∑

a

∑
b

(Jab −Kab) = −
∑
a<b

〈ab||ab〉 (615)

The Hartree-Fock energy is

E0 = E(0) + E(1) =
N∑
a

εa −
1
2

N∑
a

N∑
b

〈ab||ab〉 (616)

In order to apply the second order energy and first order wave function correction formulae, the
“intermediate states”, ϕk should be identified ⇒ excited determinants formed from the complete
set of eigenfunctions of F̂ .
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◦ singly excited determinants

〈Ψ|Ŵ |Ψr
a〉 = 〈Ψ|Ĥ − Ĥ0|Ψr

a〉 = 〈Ψ|Ĥ|Ψr
a〉 − Far = 0 (617)

they cannot contribute by the virtue of the Brillouin theorem and HF equations.

◦ triply (and higher) excited determinants do not contribute – Slater rules

◦ double excitations, |Ψrs
ab〉 – yes

Application of the general formula leads to

E(2) = −
∑
a<b
r<s

〈Ψ|Ŵ |Ψrs
ab〉〈Ψrs

ab|Ŵ |Ψ〉
〈Ψrs

ab|Ĥ0 − E(0)|Ψrs
ab〉

(618)

Let us use that
〈Ψrs

ab|Ĥ0 − E(0)|Ψrs
ab〉 = −(εa + εb − εr − εs) (619)

and the Slater rules
〈Ψ|Ŵ |Ψrs

ab〉 = 〈Ψ|
∑
i<j

1
rij
|Ψrs

ab〉 = 〈ab||rs〉 (620)

we end up the second order Møller-Plesset (or MBPT) correction

E(2) =
∑
a<b
r<s

|〈ab||rs〉|2

εa + εb − εr − εs
=

1
4

∑
abrs

|〈ab||rs〉|2

εa + εb − εr − εs
(621)

In terms of the regular integrals the second order energy

E(2) =
1
2

∑
abrs

〈ab|rs〉〈rs|ab〉
εa + εb − εr − εs

− 1
2

∑
abrs

〈ab|rs〉〈rs|ba〉
εa + εb − εr − εs

(622)

and for closed shells in terms of spatial orbitals

E(2) = 2
N/2∑
abrs

〈ab|rs〉〈rs|ab〉
εa + εb − εr − εs

−
N/2∑
abrs

〈ab|rs〉〈rs|ba〉
εa + εb − εr − εs

(623)

19.1 Third order MBPT energy

The third order energy expression is more laborious

E(3) =
1
8

∑
abcdrs

〈ab||rs〉〈cd||ab〉〈rs||cd〉
(εa + εb − εr − εs)(εc + εd − εr − εs)

+
1
8

∑
abrstu

〈ab||rs〉〈rs||tu〉〈tu||ab〉
(εa + εb − εr − εs)(εa + εb − εt − εu)

+
∑

abcrst

〈ab||rs〉〈cs||tb〉〈rt||ac〉
(εa + εb − εr − εs)(εa + εc − εr − εt)

(624)
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19.2 Comparison with the partitioning method

We have already seen (c.f. discussion of the CI method) that the DCI correlation energy can be
obtained from the following matrix

〈Ψ|Ĥ0 + Ŵ |Ψ〉 〈Ψ|Ŵ |Ψrs
ab〉 . . . 〈Ψ|Ŵ |Ψtu

cd〉
〈Ψrs

ab|Ŵ |Ψ〉 〈Ψrs
ab|Ĥ0 + Ŵ |Ψrs

ab〉 . . . 〈Ψrs
ab|Ŵ |Ψtu

cd〉
. . . . . . . . . . . .

〈Ψtu
cd|Ŵ |Ψ〉 〈Ψtu

cd|Ŵ |Ψrs
ab〉 . . . 〈Ψtu

cd|Ĥ0 + Ŵ |Ψtu
cd〉

 (625)

where we used the notations (
〈Ψ|Ĥ0 + Ŵ |Ψ〉 Babrs

B†
abrs Dabrs,cdtu

)
(626)

and the correlation energy is

∆E =
∑
abrs

∑
cdtu

B†
abrs (Dabrs,cdtu)−1

Babrs (627)

Decompose the Dabrs,cdtu matrix D = K + W , i.e. as a sum of a diagonal (K) and non-diagonal
(W ) contribution and expand the inverse matrix

D−1 =(K +W )−1 = [K(1 +K−1W )]−1

=(1 +K−1W )−1K−1 = K−1 −K−1WK−1 +K−1WK−1WK−1 . . .
(628)

Since the inverse of the diagonal matrix Krs
ab is trivial, the approximate correlation energy has the

form
∆E =

∑
abrs

B†
abrs (Krs

ab)
−1

Babrs (629)

Two possible choices for the partition

◦ Møeller-Plesset partition

Krs
ab(MP) = 〈Ψrs

ab|Ĥ0|Ψrs
ab〉 = E(0) − (εa + εb − εr − εs) (630)

leading to the MP2 result

∆E(MP2) =
1
4

∑
abrs

B†
abrsBabrs

εa + εb − εr − εs
(631)

◦ Epstein-Nesbet partitioning

Krs
ab(EN) = 〈Ψrs

ab|Ĥ0 + Ŵ |Ψrs
ab〉 = Krs

ab(MP)− drs
ab (632)

leading to

∆E(EN) =
1
4

∑
abrs

∑
cdtu

B†
abrsBabrs

(εa + εb − εr − εs)− drs
ab

(633)

which is the result obtained previously as an approximate correlation energy expression.
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19.3 Partial summation of MBPT series

Second order correction
E(2) =

1
4

∑
abrs

〈ab||rs〉〈rs||ab〉(Krs
ab)

−1 (634)

A component of the third order correction

E(3) =
1
4

∑
abrs

〈ab||rs〉drs
ab〈rs||ab〉(Krs

ab)
−1 (635)

where
drs

ab = 〈ab||ab〉+ 〈rs||rs〉 − 〈ar||ar〉 − 〈br||br〉 − 〈as||as〉 − 〈bs||bs〉 (636)

Similar terms come in fourth-, fifth-, etc. order

E(2) + E(3) + . . . =
1
4

∑
abrs

K−1〈ab||rs〉〈rs||ab〉

[
1 +

(
d

K

)
+
(
d

K

)2

+ . . .

]

=
1
4

∑
abrs

〈ab||rs〉〈rs||ab〉
K(1− d/K)

(637)

We obtain by partial summation the Epstein-Nesbet result.

19.4 MBPT correlation energy of minimal basis H2

The exact correlation energy was found for this system as

Ecorr = ∆− (∆2 +K2
12)

1/2 (638)

with
∆ = 2(ε2 − ε1) + J11 + J22 − 4J12 + 2K12 (639)

We can apply directly the formulae by considering that a = b = 1 and r = s = 2. Second order

E(2) = 2
〈11|22〉〈22|11〉

2(ε1 − ε2)
− 〈11|22〉〈22|11〉

2(ε1 − ε2)
=

K2
12

2(ε1 − ε2)
(640)

The third order result can be obtained from the general formula by taking into account that the
first order energy correction

E(1) = 〈Ψ|Ŵ |Ψ〉 = −J11 (641)

and the perturbation matrix element

〈Ψ|Ŵ |Ψ22̄
11̄〉 = 〈11̄||22̄〉 = 〈11|22〉 = K12 (642)

Third order energy

E(3) =
K2

12(J11 + J22 − 4J12 + 2K12)
4(ε1 − ε2)

(643)
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19.5 Size-consistency

N-mer of non-interacting H2 molecules
Second order energy

E(2) =
N∑

i=1

|〈Ψ|Ŵ |Ψ2i2̄i

1i1̄i
〉|2

2(ε1 − ε2)
=

NK2
12

2(ε1 − ε2)
(644)

is N times the monomer MP2 energy.
Third order energy correction

E(3) =
NK2

12(J11 + J22 − 4J12 + 2K12)
4(ε1 − ε2)2

(645)

The general result is true: the MPn energy correction is size-consistent.

19.6 Size-consistent methods

The size consistency can be qualitatively discussed by invoking the one- and two-particle excitation
operators

T̂1 =
∑
ar

T r
aa

+
r aa T̂2 =

∑
abrs

T rs
ab a

+
r a

+
s abaa (646)

◦ SDCI wave function of a complex

(1 + T̂A
1 + T̂A

2 )|ΨA〉(1 + T̂B
1 + T̂B

2 )|ΨB〉 = |ΨAB(SDCI)〉 + (T̂A
1 T̂

B
2 + . . .)|ΨAΨB〉

which is not of SCDI form

◦ coupled cluster wave functions (CCSD) of a complex

exp (T̂A
1 + T̂A

2 )|ΨA〉 exp (T̂B
1 + T̂B

2 )|ΨB〉 = exp (T̂A
1 + T̂B

1 + T̂A
2 + T̂B

2 )|ΨAΨB〉

is still of the CCSD form.
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19.7 Local MP2

One can use localized (Wannier-) orbitals instead of canonical ones in the MPn theory. Problem:
Fock operator is not diagonal.
First order wave function correction satisfies ψ(1) = ϕ0 − R̂0Ŵϕ0, i.e.

(Ĥ0 − E(0))ψ(1) = −Ŵϕ0 (647)

Let ϕ0 = Ψ0, the Hartree-Fock wave function written in localized orbitals and the first order wave
function correction is

ψ(1) =
∑
ab

∑
rs

T ab
rs Ψrs

ab (648)

with r, s localized virtual orbitals.∑
abrs

(Ĥ0 − E(0))|Ψrs
ab〉T ab

rs = −Ŵ |Ψ0〉 (649)

Multiplication from left by 〈Ψtu
cd| leads to the linear equations∑

abrs

〈Ψtu
cd|Ĥ0 − E(0)|Ψrs

ab〉T ab
rs = −〈Ψtu

cd|Ŵ |Ψ0〉 (650)

which can be solved directly for the unknown amplitudes, T ab
rs , and the MP2 energy is

E(LMP2) =
∑
abrs

T ab
rs 〈Ψ0|Ŵ |Ψrs

ab〉 (651)

Advantage: linear scaling correlation method!
Of course, this is a generalization of the canonical MP2 result, where the linear equations can be
solved analytically, since

〈Ψtu
cd|Ĥ0 − E(0)|Ψrs

ab〉 = δacδbdδrtδsu(εt + εu − εb − εc) (652)

is a diagonal matrix.
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