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1 Introduction

Explicit use of the wave function

e strict definition of any electronic state with any multiplicity

e density matrices (1st and 2nd order) calculated from wave function
Hierarchy of “infinitely improvable” approximations

e one-electron basis set

e correlation energy
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3 Variation theorem
The expectation value of the energy is equal to the eigenvalue of the Schrédinger equation

HY = EV (1)



Multiply by U* and integrate:

i  (V|H|D)
(V[H|¥) = E(U|¥) E= oy (2)

The lowest energy belongs to the exact ground state wave function, i.e. for any approximate U

E:%>EO (3)

Eigenfunctions ¥y of the Hamiltonian form a complete, orthonormal basis

\if = ZCk\I/k (4)
k

(FF) = 3 cieywilw;) = 3 lei? )

(V|H|V) = ZZC?@EJ(\IJ,Wﬂ = Z 12 (6)
i g %
Energy
| H | |cil? s
E:<‘~~|>:Ez|c|2 (7)
(U] ) > leil
Since Ei > EO
TG 2
E— (V|H[w) > >oilal®Eo — E, (8)

Oy~ el

The energy of an approximate wave function is upper bound of the exact energy.

3.1 Variation theorem II

The Schrodinger equation can be considered as a result of the variation theorem: we are looking
for the wave function that makes stationary the energy functional

First variation R R
(OU|H|W)(W|V) — (V[H|V)(ST|T)
(U[w)?

This expression and its complex conjugate should be separately zero

0F =

+cc.=0 (10)

we obtain another form of the variation theorem
(00|H — E|¥) =0 (12)
and since 0V is arbitrary X
(H—-E)¥ =0 (13)



3.2 Stationary-value conditions

The variation theorem provides a necessary but not sufficient condition to have a minimum of the
energy. Let us examine the general Taylor expansion of the energy functional.

Denote the wave function, containing the independent parameters p1,ps, ..., by
V(p1,p2,.. |1, T2,... TN) (14)
and the energy functional X
(VIH|P)
E=H(p1,p2,...) = ——— (15)
(P]w)

The differential dH is:
(U H| 2% (W] (W) (W] 2%
dH:Z{ <‘I’|\If§]> - —ny Pl dp; + e . (16)
j

The term in curly brackets is just the j-th component of the general “gradient vector” of the energy
surface E = H(p1,po,...). With the notations

. (i - )32 ) o (Ge\it - m)|w) -
T (V|w) T (W]w)
the stationary-value conditions can be formulated as
(HV); =(VH); =0 for all j (18)
Using the shorthand notation ng: = U7 etc. the second derivatives are
(WIF|(H — H) W) — (W) (VH);, — (VH); {(TF|¥)
(VVH)jx = (19)
! (V|w)
I|(H — H)| W) — (W |O)(HV)), — (VH);(T|0*
(VHY); — (w7( )W) — (W) (HV), — (VH);(V]¥") (20)
(W]w)
The variation around a point p, = (pgo),pgo), ...) with E = H(p,) = Hp can be written in terms
of the above-defined tensors. Let p; = pg_o) +d; then
SE=>Y {dj(VH)j + (HV);d;
’ (21)

1
+3 > {d;dZ(VVH)jk + 243 (VHY ) jidy, + (HVV)jkdjdk} +...
jk
The generalized ”forces” will be denoted by a and a* and the blocks of the generalized Hessian
matrix by
ij = (VHV)jk and Mjk = (VVH)jk

The Taylor expansion of the energy around the point p, is

BeHyt (g*)* ()43 (g*)T (M 2)(%) (22)

In obvious notations: .
E=H,+D'A+ 5DTBD (23)

This relationship can serve to minimize the wave function using the Newton-method

() (3 )@



4 Separation of electronic and nuclear motions

Total Hamiltonian

%(R,r):—ZQZ; ZA +Z——ZZ

a 1<j

TN Te v

Z Za Zﬁ 25)

/rl(X

Let us introduce M an “average nuclear mass”, the dimensionless number p, = M/M, charac-
terizing the nuclear mass of atom «, and the electron/nuclear mass ratio parameter

m 1/4
— (= 2
a (M) (26)
Total Hamiltonian in atomic units
r)——EZA-H?(r R)—’fz A
- 2 : 7 ) 2 - Mo

= H (R;7) + k*TN(R)

Consider k*Ty as perturbation. At zero order we obtain the electronic Schrodinger equation
He(r; R)V,(r; R) = Uy (R)V,(7; R) (27)

with the electronic Hamiltonian
H,. =T.+V (28)

The solutions of the electronic Schrodinger equation form a complete basis of the eigenfunctions
U, (r; R) on which the total wave function can be expanded

T(Tﬂ R) = Z En (R)\Ijn (T; R) (29)

n

with the nuclear coordinate dependent expansion coefficients, Z,,(R).
Substitute the expansion into the Schrédinger equation

D {TN + HYE(R) T, (r; R) = ezun U, (r; R) (30)

and use that ¥,, are eigenfunctions of I,
D ATN + Un(RNEA(R) U, (r; R) = €Y En(R)¥n(r; R) (31)

The nuclear kinetic energy operator leads to electron-nuclear coupling terms related to the variation
of the electronic wave function with respect to the nuclear coordinates

- 72:”04 a T R)—*n(R)] =
(32)
-3 Z“a [V, A0En +2(Va ¥, VaEn) + E0 A0 0,]

Multiply from left by ¥j (r; R), integrate over the electronic variables and denote the off-diagonal
coupling matrix elements by

By = <\Ijk|TN|\I/n> - Zﬂa<qjk|va|an>va (33)



The exact solution of the nuclear problem

{TN + Uk(R) + (V| TN [Pk) — E}ER(R) = Z B, =, (R) (34)
n#k

requires the complete set of electronic eigenfunctions ¥,,.

4.1 Born-Oppenheimer approximation

Provided the energy gap of electronic states is large, the matrix elements of 7 and V,, are small. In
this case the nuclei move on a single potential energy surface, U,,(R), and the total wave function
can be written in a simple product form

T(R,7) =Z(R)¥(r; R)

Born-Oppenheimer approximation =- all electron-nuclear coupling terms are neglected
{Tn + Ex(R)}ER(R) = EEL(R) (35)
Adiabatic approximation = diagonal coupling term is retained

{Tn + Ex(R) 4 (Wi |Tn|¥s) }ER(R) = EER(R) (36)

4.2 Breakdown of the Born-Oppenheimer approximation

The (¥;|V,|¥;) coupling terms can be neglected only if the electronic states are
well-separated.
Differentiate the electronic Schrodinger equation, multiply from left by ¥;, ¢ # j and integrate

0H, ov; aU; ov;
U | —E . V.| H.|—L) = L (| —L
(Wi =) + (Wl H SEE) = SE(05) + U (il 52 (31)
after rearranging
OH, oU;
<‘I’i|ﬁ|‘l’j> + Ui(¥i| Vo |¥;) = ﬁdm‘ + Ui (Vi Vo |¥5) (38)
leading to the condition
0H,
(W ValW5) = (Wil 52 10,)/(U; = U) (39)

which indicates that a smaller energy gap leads to an enhanced coupling term (e.g. avoided cross-
ings).

5 Electron Hamiltonian and wave function

Electronic Schrédinger equation

{Te +Ven +Vee + Van}¥ = E¥ (40)
or
{Zh(z‘) +) " 4(i, 4) +\7NN}sz = EV (41)
? 0,J
The many-electron wave function ¥(x3,Xa,...,XN)



1. describes a definite spin state

HS? - S82H =0  therefore 5?0 =S(S+1)¥ (42)

2. is normalized
/\IJ*\I!d:c :/|‘11|2d:1: =1 (43)
3. satisfies the antisymmetry requirement
PO =cpW¥ (44)

where ep = %1 for a permutation of the arguments 1, s, ...,y comprising an even/odd
number of interchanges.

In the following we discuss briefly some implications of these properties on the construction of the
many-electron wave function.

5.1 Electron spin

Although the molecular Hamiltonian is usually spin-independent, we know from experiment (Zee-
man effect) that electrons have an intrinsic magnetic moment. Therefore we introduce

spin angular momentum operators §, acting on the spin variable, o
5:1(0) = An(o)

with two permitted solutions:

S,a(c) = =a(o)
: (45)
8-6(0) = —5(0)
5.2 Spin operators and spin functions
Spin variable ¢ with possible values
o= +1 (46)
Two spin functions
af)=1  a(-H=0
(47)
SR =0 A=}t
orthonormalized
/a(a)a(o)da = ZOéQ(O') = az(%) + az(—%) =0%+12=1
[ 018010 =3 (o) =17 + 07 =1 (15)
/a(a)ﬁ(a)da = Za(a)ﬁ(a) =0x1+1x0=0
eigenfunctions of ., and 8% operators (h = 1)
2a(0) = 3a(o) .a(0) = La(o)
(49)



behave as follows with the §1 operators

Sya(oc) =0 $_a(o) = (o)

5.3 Total spin operators

Cartesian components of the total spin of an N-particle system

30 S,
=303 4 ( 5 )

i i §gi)

Satisfy the commutation rules

[Sa, S5] = iS5, (afy = xyz, yzx, zxy)
Step-up and step-down operators

8 =8 +iS, S =8 —ib,

in terms of which the §2 = SE + 5'5 + Sf operator is

§2=8558,+8.+58=58,5 -8, +6?
The simultaneous eigenfunctions O(S, Mg) of 52 and S, satisfy

520(S, Ms) = S(S +1)0(S, M) 5.0(8, Mg) = MsO(S, Ms)

where § is a positive half-integer and Mg =S5,5—-1,...,—S.
Step-down and step-up operators act as

S10(S, Ms) = \/S(S + 1) — Mg(Mg + 1)0(S, Mg + 1)

5.4 Spin functions of a two-electron system

Form four possible spin-functions

a(or)afoz);  a(o1)Bloz);  Blo1)a(oz);  B(o1)B(o2)
One antisymmetric function
1

©(0,0) = 7 (a(o1)B(o2) — Blo1)a(02))

Three symmetric functions

@(1, 1) = 01(01)(1(0'2)
1
0(1,0) = NG (ao1)B(0o2) + Blo1)a(o2))
G(L*l) = 5(01)5(02)
For instance
N 1 1

S.a(or)a(oz) = (s + s a(o)a(er) = (5 + )a(e1)al(0)

(51)

(56)

(60)

In the case of two electrons, an antisymmetric total wave function can always be constructed as

antisymmetric/symmetric combination of the space- and spin functions.

10



5.5 Space and spin orbitals
spatial orbitals ¢;(r)
e wave functions of a single particle
h(r)gi(r) = eidi(r)

e describe the spatial distribution of an electron o;(1) = |¢:(r)|?

e form an orthonormal set

/drqﬁf(r)gbj(r) = (¢il¢j) = di;

spin orbitals 1, (x)

e simultaneous eigenfunctions of hA(r) and 3.

e products of spatial and spin functions
Yi(x) = ¢i(r)ni(o)

e orthonormality

[ dwvi@ust@) = [ droi)s,r) [ doao)s(o) = sisus

6 Density matrices

We do not necessarily need N-electron all information contained in the 4 N-variable wave function
to obtain the energy and properties of the system. We introduce a hierarchy of functions that
depend explicitly on one, two, three, etc. particle coordinates.

The probability of finding electron 1 in dxy = drido, while other electrons are anywhere, is

dxzq /\Il*(:cl,acg,...,:cN)\IJ(ml,mQ,...,:cN)dacg...dmN (61)

and the probability of finding any of the N electrons in dx; is N times this, which can be written
as P(x1)dxy, where

P(xq) :N/\I/*(azl,:cg,...,a:N)\I/(a:l,wQ,...,wN)dwg...dwN (62)

The probability of finding an electron in r1, without making reference to the spin coordinate is

pr) = / P(@))do, (63)

This is the electron density function measured by X-ray crystallography.
The probability of finding any two electrons simultaneously in x; and x5 is

F(i[:l,SCQ) :N<N— 1)/\11*(331,w2,...,:cN)\IJ(zcl,wg,...,wN)d:cg...dacN (64)

and in the spinless version

(r1ma) = //F(a:l)daldag (65)

11



6.1 Reduced density matrices

For the purposes of evaluating one- and tow-electron operator expectation values, we need to
generalize the density functions as follows

P(xy;x)) :N/\I/*(acl,scg,...,:BN)\I/(m’l,scg,...,mN)d:cQ...da:N (66)
and
[(x1,x2; ), Th) =

N(N — 1)/\11*(w’1,:c’2,...,:cN)\I/(a:’l,:c'Q,...,a:N)dazg...dmN (67)

The expectation value of a one-electron operator Hy = > ﬁ(z) is

N
<\I/|H1|\I/> :Z/-~-/dw1dazi_1dazi+1...da:N
i=1

X /dwilll*(a:l,wg, o)) () xg, .. ) (68)
which can be written with the 1IRDM as
(U|Hy | W) = / h(1)P(xy; 2! )da, (69)

r_
ml_ml

where we put @] = x; after the action of the operator on P(x1;x}), before performing the integral.

Similarly, for a two-electron operator

(W[ H ) = // (1,20 (@1: !, ) dwr dars (70)

’

Ty =x
7

Lo=T2

Higher than 2RDMs are not needed to describe the interaction in a molecular system.

7 Construction of the wave function

Consider a simplified problem, by neglecting the electron-electron interaction, leading to a sum of
one-electron Hamiltonians

A N A~
H= Z h(i) (71)

which has as eigenfunctions

U = g (@1)9);(22) - . Pu(@N) (72)
i.e. the product of one-electron functions, satisfying the following eigenequations
h(i)i; (i) = e5005(ws) (73)

where the electron ¢ occupies the spin orbital 1;(x;) with energy €;. The energy of this Hartree
product is

(U|H|U) =¢; +ej+ep+... +e, = BT (74)
This wave function is obviously not a physically appropriate one (violates the Pauli principle)
and the complete neglect of electron repulsion is a very crude approximation. Nevertheless, we
can examine whether the idea of writing the N-electron wave function as a linear combination of
product formed by one-electron functions, can lead to the exact solution.

12



7.1 Expansion theorem

Assume we have a complete set of functions {x;(z1)} of a single variable z1. Then any arbitrary
function of that variable can be expanded exactly as

O(x1) = Zaix(fﬂl) (75)

We can expand also a two-variable function of 7 and x5 on the same domain by holding x5 fixed

O(x1,22) = Zai(fﬂz)X(ﬂh) (76)

The ensemble of expansion coefficients a;(z2) for each fixed x2 coordinates, can be considered now
as a new function of a single variable, that can be expanded as

ai(r2) = Z bijx;(z2) (77)

and substituting this expansion into that of ®(z1,z2), we have
O(z1,w2) = Y bijxa(w1)x;(22) (78)
ij
This process can be extended to functions ®(z1, z,...,zy) of any number of variables.

Let us collect the space and spin coordinates of an electron to . The one-electron functions, the
spin orbitals, x(x) enter into the general expansion

O(@1, 22,23, N) = Y ik v (@)x (@) xa(@s) - xn (@) (79)
ijk..N

However, the wave function should be antisymmetric with respect to the exchange of coordinates
of two electrons. For two electrons

(I)(ilfh wz) = —‘b($2, CBl) (80)
which implies for the expansion coefficients that b;; = —b;; and b;; = 0, or
O(wy,2) = bij {xi(@1)x;(w2) — x;(T1)xi(w2)} = D V2bij det [xi (1) x5 (22)] (81)
i>j i>j

More generally, an arbitrary N-electron function can be expanded as linear combination of all
possible N-electron determinants, formed from a complete set of one-electron spin orbitals, {x;(x)}.
Note that any complete set of one-electron spin orbitals can be used, in principle. Other possibilities

7.2 Configuration Interaction

Let us denote the N-electron determinants as ®;, which will be supposed to be real and orthonor-
mal. The exact wave function, ¥ expanded on the fixed basis of these determinants

U=> ¢®; (82)
I

can be obtained by minimizing the expectation value of the Hamiltonian

(UIHW) =" cres(®1|H|Ds) =Y cresHiy (83)
1J 1J

13



We suppose that ¥ is normalized, i.e.
(U)0) =Y "cres(@r|®) =) f =1 (84)
J I

Since we would like to preserve the normalization of the wave function, the constrained minimiza-

tion method with Langrange multipliers is used, i.e. we minimize the function

L(ci,co,. .. cx, B) = (U|H|T) — E(<\p|\1:> — 1)

(85)
= ZC[CJH]J —E(Zc? — 1)
1J I
The minimum of this function can be found from the condition
STL] =2 ZJ: cyHpy—2Ec; =0 (86)
which is just the standard eigenvalue problem of the Hamiltonian matrix
Hc=FEc (87)
Consider all the possible eigenvalues E, of the Hamiltonian matrix
Hc® = E, c” (88)
Let us introduce the C and the diagonal matrix of the eigenvalues, E, then we have
HC=CFE (89)
The a-th eigenvalue is the expectation value of the Hamiltonian with respect to @
(PlH|Po) =D (U |H|T )cG = () He" = Eo(c?) e = Eadag (90)
1J 1J

The lowest eigenvalue is upper bound to the ground state energy. Higher eigenvalues are upper
bounds to the energies of the excited states.

8 Method of determinants

We have seen that the eract N-electron wave function, satisfying the Pauli principle, can be
expanded in terms of antisymmetrized products of one-electron functions.

Such wave functions correspond to well-known mathematical objects, the determinants, which we
shall study in more details.

8.1 Permutation (symmetric) group

Consider N ordered indices
{1,2,3,...,N}

Define a permutation as
P{1a2737"'aN} = {plap27p37"'7pN}

which means that 1 is replaced by p1, etc.
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Notation

p_ ( 1 2 ... N )
p1 p2 ... DN
Product of two permutations is also permutation
1 2 ... N 1 2 ... N
PQ = (Pl P2 ... PN) <(11 g2 ... gn )
_(®n @2 --- 4qn 1 2 ... N _
T T2 ... TN q1 q2 ... (4N
1 2 ... N
= (T1 Ty ... TN> =R
Inverse permutation:
. 1 2 ... N _ P11 P2 ... DN
if P= then P71=
<P1 p2 ... pzv) (1 2 ... N
Unity:
1 2 . N
4 ( 1 2 N )
Associativity:

(PQ)R = R(RQ)

(91)

(94)

The ensemble of the possible permutations of N objects forms Sy, a symmetric group of rank N

and of order N!.

8.2 Antisymmetrizer
Projection operator, selects the antisymmetric component of a many-electron function.
A=— 3 op
\/m PeSN

with
€Ep = (—1)P

Idempotent: AA = const x A

. 1 \? 1
AA = (W) > epP > Q@@= 5 S ) (—yrtirQ

PeSn QESN PeSN QeSN

for a given P, if @ runs over Sy, the product R = PQ runs over all the N! elements of Sy:

=VNA

DY [Z (1R

PeSn LReESN

VNIA
Hermitian: Al = A, i.e. (AU[¥) = (U]|AD)

(A¥(1,2,...N)[¥(1,2,...N)) =

> ep(PT'PU(1,2,...N)| P'U(1,2,...N))
PeSN

15
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Insertion of P~! changes only the order of variables of integration. If P runs over all permutations,
then so does P~! = @ too:

> ep(U(1,2,...N)| PT¥(1,2,...N)) =
PeSn

> (T(1,2,...N)[ Q¥(1,2,...N)) = (99)

QeSn
(U(1,2,...N)| A¥(1,2,...N))

8.3 Why antisymmetrizer?
Consider a @@ € Sy then
1

1 q(_1\9(_1\P — (_ QL
QA= 75 3 (VPP = (7 3

Apply @, a permutation of the N variables in ®(1,2,...,N) to

, where ®(1,2,..., N) is an arbitrary function.

QU(1,2,...,N)=QA®(1,2,...,N)
= (—=1)9A4®(1,2,...,N) (101)
= (-1)79(1,2,...,N)

After the action of A, the function ®(1,2,...,N) becomes antisymmetric.

9 Determinant wave function

The wave function obtained after the action of the antisymmetrizer on a Hartree-product can be
written as a determinant:

Dy = A[¢k1(1)¢k2 (2) s ¢kN (N)]

X (102)
= ——=det [k, (1)Pr, (2) - - - Pren (N)]

VN
(bkl(l) ¢k2(1) (ka(l)
1 | . (2) 68,(2) - Brn(2)
Dy = ﬁ . . . . (103)

b(N) d(N) . fa (V)

9.1 Invariance properties of the determinant wave function

Mixing of the orbitals constituting the determinant leaves it invariant (up to a constant
factor).
Let us consider the wave function

—det {4) (104)

® = A[p1(2)¢2(2) ... on(N)] = Mo
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where A;; = ¢;(2). Apply a linear transformation on the set of orbitals{¢s}
b= Tt (109
k

The determinant wave function built from the new set of orbitals is
1

o :A[T/J1(2)¢2(2)---¢N(N)] = VN

det { B} (106)

where Bij = 1/Jj (Z)
Using the transformation equation

(i) = Bij = > Tijon(i) = > AuTi; = (AT)y; (107)
k k
Determinant of the product of two matrices is equal to the product of the determinants
1 1 1
UV=——detB=—det AT = —det Adet T =detT - P (108)

VN T U VN

If the transformation is unitary U~! = U, then |det U| = 1 and the wave function is invariant
with respect to the unitary transformation of the spin orbitals.

Corollary: any determinant wave function can be written in terms of orthonormal spin orbitals.
Let the overlap matrix

Sij = (ilby) # bi
and choose T a the following orthogonalization transformation (Léwdin orthogonalization)

T=S"Y2v (109)

where V is an arbitrary unitary matrix. In fact,
(Gild) = O Tuvel > Tajow) = Y T (wheltow) T
¢ k ok

= ZTZ.TESMT,W« = (T'ST)

ij

tk (110)
- (VTS*WSS*WV)
iJ
= (VTV)M = 0ij

9.2 Physical meaning of the determinant wave function

Consider a two-electron system with spin orbitals ¢ (1) and s (x2)

o Hartree product

W(1,2) = %wl(QCl)wQ(w?)

Two particle density matrix

[(@1, T) = 20* (@1, 22) U (@1, T2) = |th1 (1) [tha(z2) [° (111)

the simultaneous probability of finding electron-one in dx; at @1 and in x4 at x5 is a simple
product of the densities associated with the two electrons and the indistinguishability of the
electrons is not respected.

17



o Determinant with electrons having opposite spins
U (1,2)) = Al (@1)s(w2)) = Alg1 (r1)(01)d2(r2) B(02))
Spin-dependent two-particle reduced density matrix
[(z1,22) = %{%(7‘1)04(01)(252(7“2)5(02) — p1(r2)alo2)d2(r1)B(o1)} (112)

The spinless 2RDM is obtained by integration of the spin variables

Arire) = [don [ dnat(@r,ee) = 5 {orr)Plos(ra) + [oa(ro)Ploa(roP} (13

The indistinguishability of the electrons is reflected by the average of two terms, but the two
electrons are uncorrelated. In particular, if the space part of the orbitals is the same,

V(T ) #0 (114)

i.e. there is a finite probability of finding two electrons of opposite spins at the same point
in space.

o Determinant with electrons having parallel spins

U (1,2)) = Albi (1) (22)) = Al (r1)B(01)da(72) B(02))
After integration the spin dependent 2RDM, we obtain

~v(r1,r2) ://doldogf(azl,mg)
= {0 Ploatra)l? + lonra Ploatr) P (115)

— [¢1(r1)d2(r1)@5(r2)d1(T2) + H1 (T1)¢3(T1)¢2(7‘2)¢T(7‘2)]}

Electrons of the same spin are correlated (Fermi hole) as it can be seen by calculating the
probability of finding two electrons at the same point 7

Y(ri,r1) =0 (116)

In a Slater-determinant the motion of electrons with parallel spin is correlated but the motion of
electrons with opposite spin is not.

10 Matrix elements between determinant wave functions

Two determinants constructed from two sets of spin orbitals {u;} and {v;}:

U* = Afur(Dub(2) ... uk(N)] and V= Ai(D)va(2) ... vn(N)]
Consider the product U*V
UV = A (Dus(2) ... uly(N)] - Aor(1)v2(2) ... un(N)] (117)
It can be written using that AT = A and A% = VNA as
UV = [uf(Dus(2) ... un(N)] CATA [v1(1)v2(2) ... oN(N)]
= VNI[ui (1u3(2) .. wly (M)A [o1 (D)0a(2) ... on (V)]
= [ui(Dui(2) ... uny(N)]det [v1(1)va(2) ... on(N)]

18



The determinant det {V'} is multiplied N times by factors of type u (7).

Since the multiplication of a determinant by a number is equivalent to multiplying one of its rows
by the same number, we can arrange this expression by attributing each multiplicative factor to
one of the rows in the following way

UV =det [ul (Do (1) - ...owl (D)v;(3) - ... upy (N)oy (N)]
= det {u; (i)vr (i)}
The product of two Slater determinants is also a determinant, formed from products of the one-

electron functions. R
Matrix element of an operator O

(118)

<U|O|V>:/-~/d:c1...dmNO(l,Z,...,N)
x det [uf (Do (1) - ul(Dvi(i) - ... uly(N)on (N)] - (119)

10.1 Laplace expansion formulae
An arbitrary determinant can be expanded according to the Laplace expansion formulae.

1. First order expansion formula

det{A} = > ax(i)D(ilk) (120)
k

where ag (i) = A, the minor, formed by the i-th row and k-th column, and D(i|k) is the
corresponding cofactor, i.e. the signed determinant of the matrix obtained by deleting from
the original one the k-th row and i-th column:

An A oo A Al - AN
Az Ay . Ao Asppr .. Aon
(D) Aigr Az oo Ao Acigsr oo A
w1 Ag oo Ajar—1 Amiker - A
ANI ANQ AN,k—l AN,k+1 ANN(N)

Applied to the product of two determinants:
U*-V = ui(i)or(i) D(kli) (121)
k

2. Second-order Laplace expansion formula

1 Aie Au
det{A}:ig A A

D(ij|ke) (122)

where the minor is a 2 x 2 determinant formed by the k and ¢-th rows and ¢ and j-th columns,
and D(ij]kl) is the corresponding cofactor, i.e. the signed determinant of the matrix obtained
by deleting from the original one the k and ¢-th row and i and j-th column.

Applied to the product of two determinants:

Utv=>"
k<t

D(if|k0) (123)

i) i)
)

i (i) vk (
wi(f)oe(g)  uf(i)ve(s)
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10.2 Overlap of two determinants

Applying the general result for 0=1
VY = /-~-/dm1 - dmn det[ul (Vor(1) - . ()0 () - e (N)ow (N)]

= det {/dmluf(l)vl(l) /dml (@) v (7) - ./d:cNu}kV(N)vN(N) (124)
which is an antisymmetrized product of N one-particle overlap integrals.

(U|V) = det [(u1]vi)(uslva) ... (unlvn)] = det {{u;|v;)} (125)
determinant of the overlap matrix Suﬂ,j formed from the two sets of spin orbitals

(U|V) = det {S} (126)

10.3 Matrix elements of one-electron operators

Let H; a the symmetric sum of h(7) one-electron operators:
Hy =" h(i) (127)

First-order Laplace expansion formula of the product of determinants and put into the general
result

(UEL|V) = Z Z{/dwz h(z)vk(i)}x

« {/-n/dmi...dwi1dwi+1...dmN®(k‘|z’)} (128)

The first part is just a one-electron integral. The second part, analogous to the overlap integral
discussed above, is the ay(i) = A;; cofactor of the determinant of the overlap matrix (u;|vg).
D(kli) is the determinant of the overlap matrix obtained by deleting the i-th row and k-th column.

The standard expression of an inverse matrix

) D(k|i
5= da(s) (129)

the matrix elements of a one-electron operator can be written in terms of the one-electron integrals,
the determinant of the overlap matrix and its inverse

(U|H: V) = (uslhlog) (871),, det{S} (130)
ik
10.4 Matrix elements of two-electron operators

Let us consider the two-electron symmetric operator
N 1 ro
D) (131)
i,j

Taking the second-order Laplace expansion of the determinant product in the matrix element
expression and using the expression for the integral of the second-order cofactor, D(ij|kl)

D(zj|kt) = [(S_l)ki (S_l)Zj - (S_l)kj (S_l)&] det{S} (132)
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we have the following expression

Wity = S [ [ dwidas ot Gyontirati s Gronti)-

1<j k<t

—d (iyou(i) i 5 (o <j>]}
{5787, - (57,87, faerts) s

10.5 Notations for two-electron integrals
Two-electron integral of spin orbitals i(x) = ¢(x)n(o) in the bra-ket notation

[ [ dmsdas; (D 031,206 26e2) = (657 (D] @) (1)4(2)
= (ij|kt)
This is the physicist’s notation, respecting the conventions for the bra and ket vectors
(2] = 7 ()15 (2)
k) = r(1)1e(2)

The antisymmetrized two-electron integral, appearing in the matrix elements of the the two-electron
operators, is usually denoted as

(134)

(ij|ke) — (ijlek) = (ij]|k) (135)

The chemist’s notation emphasizes that a two-electron integral is the electrostatic interaction of
two charge distributions

/ / daydas 7 (1)e(1) (1, 2) 07 (20 (2) = [ik] 0 (136)

pir(1) pie(2)

In numerical calculations is more advantageous to express integrals directly in spatial orbitals. The
transformation is obvious using the orthogonality of the spin functions

[ik|j] = (¢ik|¢5 D) Fnim Onsme (137)
In particular,
parallel spin |37 — [e7)eg| = (it|37) — (29|eg
Gl = 4 P g ) = ) = () (139)
antiparallel spin  [ii|jj] — [i7]i7] = (#]75)

10.6 Summary of matrix element rules

o overlap
(U|V) = det {S} (139)
o one-electron operator
(UIHV) = (uilhlor) (S71),, det{S} (140)
ik

o two-electron operator

(U|H,|V) = ZZUHM{ ). (87 1)2].—(S‘l)kj(S‘l)Zi}det{S} (141)

1<j k<l
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10.7 Slater rules

We need these results applied to the special case of determinants built from a unique set of or-
thonormal spin orbitals, {;}. Let D such a determinant, any other determinant can be generated
by replacing one, two, or more spin orbitals {a,b,¢,d, ...} occupied in D by other spin orbitals,
{r,s,t,u,...} not occupied in D

D(a—r)=D;] D(a—r,b—s)=D.; D(a — r,b— s,c—t) = D"t

a abe

Overla
P (D|D) = det {S} (142)

since Sgp = Oap
(D|D)y =1 (143)

If the two determinants differ in at least one orbital
(D|D) =0 (144)
since due to the orthogonality of the orbitals S, = 0 V a, i.e. one row in the determinant

det {S} is zero.

One-electron matrix elements

(U|H:[V) = (uj|hlvg) (S7'),, det{S}

ik
e U=V =D, since S;; = 0;;, and det {S} =1

(DIH:|D) =) {tilhlss) (145)

e V=D and U = D] only one cofactor is nonzero
(D H1|D) = (4| Bl tba) (146)
e V=D and U = D]} all cofactors are zero

(Dii|H1|D) =0 (147)

Two-electron matrix elements

WiV) = 30 Y0 { (57),4(870),, - (870), (879, aer(s)

1<j k<t

e U =V =D then D(ij|kl) = 6,0¢; since i = ¢ and k = j cases cannot occur

D‘H2|D ZZ ZkHJK < Zk}djf - ]k(SzZ)

1<j k<l (148)
=3 igllkO)side = > (ijllij)
i<j k<t i<j
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e U = D apply the general formula
(U|Ho|V) = Z Z wiw; ||vkve) D (ij| kL) (149)
i<j k<t

the S matrix is diagonal, excepted the S, element.
e i =k =a case: D(ajlal) = dj; and sum over { =j > a
> (rtl]at)
{>a

o j=1{=a case: D(ialka) = J;;, and sum over k =14 < a

Z(k‘r”ka) = Z<r€||a€>

k<a l<a
Summarizing these two cases
N
(Dy|Hz|D) = (rjl|aj) (150)
j=1
Jj#a

e U = D77 only one non-zero cofactor, D(ablab) =1

(Dyp|H2|D) = (rs|ab) (151)

10.8 Variation of a determinant wave function

The determinant

W) = Alr(1)12(2) ... ¥n (N)] (152)
can be varied through the variation of the one-electron orbitals:
Yo = Ya + 0 = Ya + Patha’ (153)
where ¢! is an arbitrary spin orbital and p, is a complex variation parameter.
W+ 60) = A [{¥1(1) + prvn} {v2(2) + paibs} - {dn (V) + py iy} (154)

This is a sum of 2%V determinant. To first order in the p, parameters the variation is a sum of
singly excited determinants:

60) =" pal U (va—1})) (155)

Let the Q the projection operator on the subspace of the orbitals that are occupied in the deter-
minant and P the projector to its orthogonal complement

Q = Z |wa><wa‘ P=1- Q = Z |wr><wr| (156)
i r¢{a}

The arbitrary spin orbital 1/, can be decomposed as:

N
Palthe) = Z(Iba‘wl» + Zpra|wr> (157)
b T
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where the set of orbitals {¢,} are taken from the orthogonal complement of the occupied set {1 }.
Zév Gba®p does not change the determinant, up to a factor of normalization.
An arbitrary variation of a determinant can be written as a sum of singly excited determinants

N
60) =" pral¥7) (158)

11 Method of Second Quantization

Up to now, we satisfied the antisymmetry requirement by using determinant wave function. The
same goal can be achieved by transferring this antisymmetry property on the algebraic properties
of electron creation and annihilation operators.

No essentially new physics, just a convenient way to handle wave functions, operators and matrix
elements.

11.1 Representations of determinant wave functions

The determinant wave function can be considered as an ordered product of occupied spin orbitals

D(ml,mg,...,ch)<:>|1/)11/12...1/)a...1/)b...1/)N| (159)

The set of occupied spin orbitals is the electron configuration.

Particle number representation:
the number of electrons filling each of the orbitals occupation number is given explicitly (n; =
0 or 1)

D(xy,x2,...,ZN) < [n1N2 ... Mg ... Mg ... Np1) (160)
For instance:
|D) :|11111...1J{’00...000...OOO>
|D>) =|11101...1%00...100...000}

11.2 Fock space

The Fock space is the vector space constituted of all the possible “kets”, corresponding to the total
number of electrons between 0 and M.
The vacuum state is an abstract state with 0 electron:

|VaC> = |010203 N 0]\/[> (161)

Properties of the vacuum:

e normalization
(vac|vac) =1 (162)

e orthogonal to all other states

Second quantized operators manipulate the occupation numbers of the vectors in the Fock-space.
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11.3 Creation of electrons

A one-electron state, 15 (1) can be represented by the creation of an electron on the spin orbital

U

|k) = a}f [vac) (163)

A two-electron state, U(1,2) is represented in the wave function language as a Slater determinant
L |i(1) wk(l)‘

D(1,2) = — 164

1= 6 @) 1oy

The same state is written in a second quantization language as

D(1,2) & |ik) = af a}} [vac) (165)
As a consequence of the antisymmetry property of D(1,2)
D(1,2) = —-D(2,1) (166)
we have
Faf|lvac) = —afa]|vac) (167)

The antisymmetry of the wave function is translated as an algebraic property of the creation
operators:

afal +afal =0 (168)
The creation operators of electrons (fermions) anticommute:
[ a1+ = (169)
Ifk=i
afaf = —afaf =0 (170)

We are not allowed to create electrons twice on the same spin orbital:
Pauli principle.

11.4 Annihilation of electrons
The operator that removes an electron from a spin orbital is called the annihilation operator

a;|i) = |vac) (171)
We are not allowed to remove an electron from the vacuum

a;|vac) =0 (172)

In order to annihilate an electron on the orbital v;, this orbital should be immediately to the right
of the annihilator, e.g.
a;lik) = a;a; af [vac) = af [vac) = |k) (173)

If the position of the spin orbital 1; was not appropriate, we must do transpositions until it is
placed to the right of a;

ailki) = a;af af |vac) = —a;a af [vac) = —af [vac) = —|k) (174)

The sign depends on the number of transpositions:

e even number of transpositions: + sign

azay af af |vac) = —azad ad af |vac) = +azai ad af |vac) = af af |vac) (175)
e odd number of transpositions: — sign
azag aj af [vac) = —azai ad af|vac) = —ag af |vac) (176)
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11.5 Commutation relations

Let us consider an N-electron determinant in the particle number representation
|D) = |nimang...n; ...k ... 0p1) (177)
and reorder the orbitals so that n; and ny be in the first two positions
|D) = £|n;ngninang ... nar) (178)
Study the effect of aia; on this determinant
a;ay [ningninang ... nar) (179)
This expression is zero, if
o mg = 1 cannot create e~ on an already occupied orbital (Pauli principle)

o n; = 0 cannot annihilate an e~ on an empty orbital

Without loosing the generality of our conclusions, we can study the effect of aia;l' on |i)
a;a) i) = a;ki) = —a;|ik) = —|k) (180)
Similarly, for the operators in the reverse order
afa;li) = af [vac) = [k) (181)

This is an “excitation operator”, i.e. removes an electron from 7 and puts it on k.
By the virtue of the above results, for an arbitrary determinant

(aa; +a;a;)|D) =0 (182)
which is equivalent to the following relationship between the operators (i # k)
aa; +afa; =0 (183)
Let us examine the case of i = k. Two possibilities

n; =0 n; =1
0 [ny...ni...nar)
[nq...n;...n00)

a;"ai|n1...m...nM>
aiaﬂnl...ni...nM)

After summing the two equations we obtain
aaf +afa; =1 (184)
The two results can be summarized in the anticommutation relation

[ai, ai )+ = i (185)

11.6 Adjoint relations

The role of the operator a; is to annihilate the effect of a;”
a;a; [vac) = &;;|vac) (186)
Let us consider the functions 1/; and v, members of an orthonormal set of functions {1; },, i.e.

Sik, = (i|k) = 0 (187)
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The 9y, function can be written as
k) = af |vac) (188)

and the adjoint of the analogous definition for ¢; = |i)
(i| = (vac| (a})" (189)
The scalar product, i.e. the overlap integral is
Sk = (vac| (a;”)T a) [vac) (190)

Since S;, = d;x is diagonal
(a) " af [vac) = bix|vac) (191)

After comparison with Eq.(186) we conclude that
ws = (a)] (192)

i.e. in the case of orthonormal basis functions, the annihilation operator is the adjoint of the
creation operator.
The “bra” corresponding to the “ket”

D) = ay ...a3 af |vac)
is

(D] = (vaclaias . ..an

11.7 Non-orthogonal functions

Overlap matrix is non-diagonal

i
Suv = (Xulxw) = (vac| (x;;) Xy vac) (193)
Introduce the notation :
() =x. (194)
Following anticommutation relation can be derived
DGl X1+ = S (195)

Take an auxiliary Lowdin-orthogonalized basis ) = >, )\#1 /2Xu The creation and and anni-

hilation operators can be transformed to this basis as
= Z S Axit Z St (196)
Z Sy Z S1/2y- (197)
Applying these transformations

o ]- Z SISt ) = SMAS25y = S, (198)

The operator x,, is not a true annihilation operator, for instance

X;L‘XMXX> = Suub@\) - S;M|Xu> (199)
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11.8 Properties of creation and annihilation operators: Summary
Properties of the vacuum

(vac|vac) = 1
ag|vacy =0

(vacla} =0

Anticommutation relations (Pauli principle)

Adjoint relation

Correspondences
1)  af |vac)
|D) & af; ...afa] |vac)
(] & (vacla,
|D) < (vaclajasz...an
11.9 Particle number operator
A sequence of annihilation and creation operators acting on the same orbital
’ﬁi = a;rai

“measures” the occupation number of this orbital, i.e. tells if it is occupied (n; = 1) or if it is
empty (n; = 0)

;| Dy = aj'a,-|n1 ce M) =g ng . gL onpy) = ng D) (200)
Determinant wave function is eigenfunction of n; with eigenvalue n;.

Operator of the total number of particles

M M
N=> i =) ala; (201)
i=1 i=1

Single determinants are eigenfunctions of N
M
NID) =3 ni|D) = N|D) (202)
i=1
as well as multi-determinant wave functions

N[@) => exN|Dg) = cx anmm => cxN|Dg) = N|¥) (203)
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11.10 Representation of operators

In the first quantization representation an operator AS transforms the function ¥ to another one
P
A%10) = |@)

We are looking for the second quantized operator that performs the analogous transformation
between wave functions in particle number representation.

AS

®) — )
?
4 4 4

AF
%) —2— |u¥)

The operator A acts on one of the functions ¢; € {¢x}, of the orthonormal set. The transformed
function 1; can be developed in the same basis {¢x L .

Let us follow step-by-step the correspondences between the first- and second-quantized picture:

FIRST QUANTIZATION SECOND QUANTIZATION
A3\¢i) = wi) AT g [vac) = ¢ |vac)
|9i) = 22y ikl k) Ui = et
A%|gi) = 22 cirlon) AP g [vac) = 3o, candyf [vac)
(@el A%|6i) = 32, can{belbr) U
Ap = cie = AP o =30 Ay

Complete this expression formally by ¢,
Alolo; = Anglor
k

Sum on all basis functions ¢;
AFN "ol or =) Aol o;
N
The particle number operator acts as a unit operator on one-electron functions, therefore we can
write

AR =N Al or (204)
ki

11.11 One-electron operators

In the Schrodinger representation

N
AS =" A(i) (205)



The action of this operator on a Slater determinant leads to a linear combination of Slater deter-
minants

N
AS|‘I>>:|‘I’>:ZZCik|¢1---¢k~--¢N| (206)
ik

The second-quantized counterpart of this expression is
N M
APl of o vac) =)0 T Arily . o . 67 vac) (207)
ik

We shall prove that the above result is obtained, if we apply the previously “derived” form of the
second-quantized operator, i.e.

M M
AT =38 Aol or (208)
i k
Let us study the expression
M M
DD Audlor bk o b [vac) (209)
i k

the orbital ¢ should be occupied, otherwise ¢; would give zero = summation over ¢ is limited to
N instead of M

migrate ¢;-" to the first position:

:I:qu¢} . z‘+—1¢i++1 . ¢f|vac>

using the anticommutation relation and that the spin orbital ¢ has already been moved out of the
string

oo T = (1 - ) =oF

oF b7
\A,_/

ng

migrate gzﬁ back to the place of gb;“. We need the same number of permutations, therefore we
recover the possible sign change

In effect, we retrieve the expression

N M
APl of o vac) =) O T Arigly ..o . 67 [vac) (210)
ik
The second-quantized operator does not depend on the number of electrons.

11.12 Two-electron operators

Two-electron operator in the Schrodinger picture

N
AS =" A(iy)
1<j



e.g. electron repulsion operator

N 1
-yt
i<j Y
transforms a pair of orbitals simultaneously
R N
S CAGG) 1 i by NI DY Cijmeldr b e bN] (211)
i>j i<j ke

with
1
ciia = [ [ i (16,00 67(200,(2) = (Wl

Following an analogous reasoning, we obtain the following expression for the second-quantized form
of the electron repulsion operator

VE = 5 S Gk 0F 6 7 b (212)
ijke

Note the reversed order of indices k and /¢!

11.13 Reduced density matrices

The expectation value of a one-electron operator
A= Z Al“,af[al,
nv

(A) =" Ay lafa,) (213)

uv

where the quantity is brackets is the one-particle reduced density matrix (1IRDM)

P, = (afay) (214)

The expectation value of a one-electron operator can be written as a trace

(4) = 3" A Pu = 3 (AP),, = Tr(AP) (215)

m

Analogously, the expectation value of a two-electron operator

N 1
(A) =3 > Aurolafatagay) (216)
2.4
can be written as a trace 1
<A> = 5 Z AHV}\UI‘)\JILU/ (217)
2N

with the two-particle reduced density matrix, I'xo ..

F)\J/w = <aj,,raiaaa>\> (218)
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The symmetry properties of I' are determined by Hermitian symmetry and anticommutation rela-
tions

Taopr = (a,‘f FTagyay) = (a)\a ava,) =T uure
+7;faAaa UALV
~la i e )= ! (219)
< a,a,a A> FAJV#
= <aj :aka0> FUAVM
The diagonal elements are zero (Pauli principle)
Lppre = Tupar =0 (220)

Normalization of the 2RDM

Tl = T = D wHutp vy == (whvtpvo)

- fzywawu— ey
- i{éuu<M+V_> — (utpmrteT)} (221)
- %}fm + ;mm»

=N?_-N

The 1RDM is derivable from the 2RDM by contraction

D Toam = (WFATAVT) = (1= N)(utv™) = (1 - N)P,, (222)
A A

11.14 Hamiltonian and energy expressions

In an orthonormal basis {¢;¢} , the electronic Hamiltonian is
H= Z hl“,a a, + = Z (uv|Ao) a alasay (223)
MVAG

The SQ Hamiltonian

o is not equal to the usual one: it is a projection on a finite (M-dimensional) space of one-
electron basis functions

o is independent of the number of electrons - this dependence is shifted to the wave function

The electronic energy — expectation value of the Hamiltonian — can be calculated using the one-
and two-particle RDMs

1
= (U|H|V) = Zh,w +§Z<MV|A0>F>\UW (224)

2N

This form of the energy expression is used in current quantum chemical calculations.
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An alternative energy expression is based on the reduced two-particle Hamiltonian, defined as

Z K{ afafazay (225)
NVAU
where the matrix elements are
, 1
K7 = (5whu>\ + dunhue) + (uv|Ao) (226)

Ao T 1 _
and the energy can be written in terms of the 2RDM

E= Z KT sy (227)

2.X4

(cf. DFT, where the energy is a functional on the one-particle density). Unconstrained varia-
tion of I'ys,, leads to much too low energies, since I' should satisfy additional N-representability
conditions.

Rosina’s theorem: The ground state 2RDM completely determines the exact N-particle ground
state wave function (and p-RDMs) without any specific information about the Hamiltonian.

Contracted Schrodinger equations are of the following structure
K- D+K-?D+K-*D=E-*D
11.15 Calculation of matrix elements

Let us consider first operator strings with vacuum:

1. we cannot annihilate on the vacuum

(vacla; ay|vac) = 0 (228)

2. use the anticommutation rule and the previous result

(vacla;af |vac) = (vac|(d;x — a;f a;)|vac) = 0y (229)
3. (vacla;a;a; af [vac) =?
aiajaiaj = a;(0k; — aZaj)azr = aiafékj — aiazajaj = (230)
((Sig — azrai)dkj — (61,1(: — a:ai)((sjg — a;raj) = 5i55kj — 5ik5jl + zeros

A graphical evaluation rule can also be deduced
(vacla;a;a;af |vac) = 6;¢0k; — Siji (231)

11.16 Matrix elements between single determinants

Let us calculate
(HF |7 ¢y, [HF) = (vac|gy ... on o) ¢ dn - - 61 [vac)
We proceed by steps
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1. if 4,k €/{1,..., N}, the matrix element is zero

2. if i,k € {1,...,N}, we order the pairs a,a} (a # i,k;i # k) by an even number of
transpositions

(vaclo; ¢y 6 by & O OO - 61 61 [vac) = (vacld o ¢ 61 & ¢ [vac) =0
3. ifi,ke{l,...,N} and i = k, we order all pairs a # i
(vaclg; 67 d; &7 dNON - - 01 61 [vac) = (vaclo; ¢ ¢; ¢ [vac) =1
Taking the sum of the three cases
(HF | ¢, [HF) = n;6;, (232)

11.17 Fermi vacuum

Evaluation of matrix elements involving single determinant (Hartree-Fock, HF) wave functions can
be simplified, since the creation and annihilation operators that generate the (HF| and |HF) states,
respectively, have only a passive role.

(97 ... ¢ yur = (vac|dy @5 ... oN[8] ... ] Ok - .. b3 ¢ [vac)

(HF| |HF)

Therefore we define a Fermi-vacuum, which has analogous properties to the true vacuum.

VACUUM FERMI VACUUM

ailvac) =0 ¢; [HF) =0 it n;=0

(vacla;j =0 (HF|p] =0 it n;=0
(vaclaj ag|vac) = 0 (HF | ¢, [HF) = 1y by,

(vaclaga; [vac) = &, (HF|¢>;¢:F|HF> = (ng — 1)di
The evaluation of matrix elements consists in simply to find all the combinations of the type
aka;" Qsj_(b]:

and associate to them the factor
dik N0k

with a sign depending on the number of permutations.

11.18 Slater rules — an example

One-electron matrix element (D”|H;|D)
Using
(DI'| = (HF|a} a, and H = Zhijajaj

the matrix element is

(D"|Hy|D) = Zh” (HF|af a,a; a;[HF) (233)
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Taking the possible pairings and associating them the factors
r 5 d sai = (1 —ng)s;
a; a, = npdi an a;a; = ( ng)0ik
we have

<D2|ﬁ1|D> = Z hij{nada]’ (1 - nr)(sm' + npdgr njaij}

ij

(234)
= Z hij 0aj0ri = hrq
ij
11.19 Energy of a single determinant
Expectation value of the electronic Hamiltonian with the single-determinant wave function
_ 1 _
By = ) hy (HE[XE X [HE) + 5 (uAlvo) (HF X! x5 x5 [HE)
nuv 2N
1 (235)
=> huwPo+ 3 > (uAvo) (Poy Py — PoyPay)
% pUvAo
After permutation of the dummy indices
1
Bur =Y huPoy + 3 > PuuPox {(pv|Ao) — (uA|vo)} (236)
pnv 2.
Remembering the definition of the Fock matrix
Fuw =y + 3 Pox {(vAo) = (pAlwo)} (237)
2N
the Hartree-Fock energy can be written as a trace
1
Eyr = iTr(h + F)P (238)

12 Hartree-Fock theory

Explicit variation of the energy of a determinant constructed up from a set of orthogonal orbitals

e orthogonality of orbitals should be preserved during the variation process
e modify energy functional by the method of Lagrange multipliers

e mathematically problematic: the orthogonality of orbitals is anticipated in the energy
expression to be varied

Apply the variation principle for an arbitrary variation of the determinant

e take the most general variation of a one-determinant wave function

e a condition is given for stationary character of the energy of a one-determinant wave
function (Brillouin theorem)

e obtain the Hartree-Fock equations from the Brillouin theorem
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12.1 Brillouin theorem
Take the expression of the variation principle
(80|H — E|U) =0 (239)

and substitute the general variation of a one-determinant wave function

N
Zzp:i<‘1’(¢i—>¢7~)|ﬁ — E|¥) =0 (240)

Since the p,.; variation parameters are independent, each term should vanish individually, and since
pri — 0 but p.; # 0, we can simplify as

(U (s — )| H[Y) = E(W(sh; —1),)|¥) =0 (241)
The overlap of two determinants differing in one orthogonal spin orbital vanishes
(U (=, [H|T) = 0 (242)

Since this condition is trivially satisfied if the spin of ; and %, is different, we can constrain the
variation to spin orbitals 1, = ¢,.(r)n, (o) having the same spin component as ;

(U (s — Gpmi) [ H|W) = 0 (243)

Brillouin theorem: Stationary one-determinant wave function does not interact with the singly
excited configurations.
Equivalent to the variation principle applied to a one-determinant wave function.

12.2 Unrestricted Hartree-Fock equations

Consider the determinant wave function

W = detft (1)9(2) ... o (V) (244)

If the {4;} spin orbitals were not orthogonal, they can always be orthogonalized (c.f. invariance
property of determinants).
Apply the Brillouin theorem

(U(pim; — ¢ [ H|W) = 0 (245)

Use the Slater rules N
(OIH[W) = (@ ) + > (Whrthslhiny) (246)

j=1

Jj#i

and write the expression in spatial orbitals for the case of 1; = 7, we obtain

N

(Grlhlé) + 3 {<¢r¢i|¢j¢>j> - <¢r¢j|¢j¢i>6w} ~0 (247)
j=1
i

Introduce (local) the Coulomb-

Jié(m) = / dr, 21T 0i(T2) 4 (248)
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and (nonlocal) exchange operators
Ryotry) = [ar, BTN ) (219)

The orbital form of the Brillouin-conditions

(¢r|h+ Z{J K0y, Héi) =0 (250)
J#z

Since ¢, lies in the orthogonal complement of the occupied orbitals, it is sufficient to require that

N N
{h + Z(jj — K;Spn,) }@‘ = Z Aji®50nin; (251)
j=1 j=1
J#i

i.e. the function obtained after the action of the operator in curly brackets Fockian lies entirely in
the space of the occupied orbitals of the same spin.

Let us apply this result to an unrestricted determinant made of n, « and n, [ orbitals, {¢%}ie,

and {(/)ZB .. Use the Coulomb- and exchange operators defined separately for orbitals with o
and ( spin, to obtain the following two sets of equations

{iwi( ~ K¢?) +ZJ”} Zeﬂ (252)

i

Na ny ny
{h+ZJf+Z(Jf—K?)}¢fZZGSW? (253)

Jj=1 Jj=1 j=1

i
which are coupled by the Coulomb-interaction with electrons of antiparallel spin. Since J Lo =

IA(]‘%?, we can remove the summation restriction by adding the
Jio) — Ki¢f =0 (254)

self-repulsion term and define the Fock-operators, which are now identical for all orbitals in a
given set (« or ()

Pooha Y (S -R) 40 P ohedodred(H-R) ()
j j=1 j=1

The UHF equations are obtained in the following form

np

Folgry =S enlen)  Bbel) = Ze 162) (256)
j=1

It is quite impractical to solve directly these coupled integro-differential equations. Before bringing
them to a more convenient form, check some properties of the Fockian.

The Fock operator does not change if constructed from a set of orbitals obtained by a unitary
transformation of the orbitals of the same spin
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Unitary transformation

¢ =Y Uud) ¢ =>> (U)o, (257)
J J
Consider, for instance, the Coulomb operator
a a 7‘2 QSZ T‘Q lo ¢l* T2 Ukz¢k(r2)
Jo = /dr / 258
DUEDS -33 e 59

Using the unitary character of the transformation, U7; = (U");; = (U™);; we obtain
Ng Mg

S UL /d 7"”5“2 Z/d d’*'” ’"Q_Zw (250)
ik

The Fock operator is hermitian
Exchange operator

(o1 R = [ drio (m)[/dr gilralitra) (m)}

()6 (260)
/dr / (725 T1 (725 ”'2)@(”'1)¢(T2) _ <¢¢7|¢7¢>

(Kiolv) = [dn [/dr (r2) r2)¢ (m)rvﬁ(rn
= [ary [ ar, 0 ot — (piolos)

After an interchange of the integration variables

(¢ Kih) = (poiloih) = (didlvgs) = (Ki¢|v)  Q.ED. (262)

We can show analogously that the same holds for the Coulomb operator. The Fock operator, being
itself the sum of hermitian operators, is hermitian too.

(261)

12.3 Canonical UHF equations

€;; are the elements of a hermitian Fock-operator matrix

o) = €ilo) (263)
J
(B |F102) = ; €ji ($16%) = e (264)

Okj

Since F'% can be constructed from any set of orbitals that is obtained by a unitary transformation
of the orbitals of the same spin, we can take U that diagonalizes the hermitian € matrix

af

U'eU),, =€) = € bin (265)
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In fact, this transformation applied to the orbitals leads to a diagonal € matrix

€k = <Z Uji¢?|ﬁa|ZUzk¢?> Z A5 F|¢3) Ui =
J V4 D
€50 (266)
=Y Ul Un = (U'eU),, = € by

There exists a set of spin orbitals for which the Fockian is diagonal. Using this basis set the
canonical unrestricted Hartree-Fock equations are obtained

(267)

that are coupled pseudo-eigenvalue equations. The first n, and n; solutions are the occupied
orbitals while the remaining solutions are the virtual orbitals.

o Although the eigenfunctions of the HF-equations have no physical meaning (the wave
function is invariant to their unitary transformation) the eigenvalues (orbitals energies)
can be approximately related to the ionization potentials (Koopmans theorem).

e An infinite number of equivalent orbital sets can be obtained by unitary transformations
of the canonical orbitals. Chosen according to some well-defined criteria, these unitary
transformations may lead to orbitals with specific properties, i.e. the localized orbitals,
closer to our feeling about chemical bonding.

12.4 Unrestricted Hartree-Fock energy expression

Let us apply the general result for the expectation value of the Hamiltonian for a single determinant
built from N = n, + np spin orbitals

Ng+np na+nb Na+np

Z ilhli) +* Z Z (illij) (268)

Separate sums over orbitals of spin a and spin § and write integrals in terms of space orbitals

Mg  MNa+Np

E:i(i|ﬁ|i) 32 Z (iil ) Z(wlw)} +

! (269)
ny NaTNb
+ ) (ilhli) + Z{ Z (iilj3) Z(w\w)}
Use the notations
htixz_a — (4@ }AL i quoc — (§952 ja rey
af _ (a|(x| ) i(x ( | «@ a) (270)
Jij = (u |] ) K7 = (1"7i"5%)
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and the energy expression can also be written as

Ng Ng MNa MNa  MNp
B=) hi+3 ZZ{J““ K§h+3 ZZJ%“
i

ny Np Ny Na

DI B S AR DI

(271)

Orbital energies are the diagonal matrix elements of the a- and §-spin Fock operators in a canon-
ical molecular orbital basis, e.g.

= (7 1Fg) = (iR + ) (J7 — K5) + > J°li%)
i i

- - (272)
=i+ D {5 - K+ ZJQB
J
The sum of orbital energies
Nag+Np Ng Ng Na Ng MNp
_ ao o ao aB
SR SRS SEE IR0 ) oF
' an nj, njb ny nNg (273)
BB B8 BB B
+2_h 0 5 - K }+ZZJ ’
i i
is not equal to the total energy, due to the double counting of electron-electron interactions.
12.5 Spin properties of the UHF wave function
Eigenfunction of the S, operator
A 1
5:|D) = 5(n® — n?)|D) (274)

but not eigenfunction of the $2 = S_S, + S, + S operator!
For example, a two-electron DODS (different orbitals different spin) system |D) = |fl[¢a$ﬁ]>

S2D) = A[S_S,¢°F" + 8.6°" + §2¢°9")

where we use that [$2, 4] = 0.
Last two terms are zero, since (n® —n”) = 0.

8-8:{676"} = 8-{9°0"} = 6" + ¢°3 (275)
The two-electron UHF wave function is not eigenfunction of the 52 operator
S%|D) = |D) + A[¢"¢”] # (S(S + 1)|D) (276)
Expectation value of 52 is
(D|5?|D) = (D|D) + (A¢*d" | 45" ¢°)

(@6 (416"
(@%167) (& |¢™)

(277)
=1+
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12.6 Symmetry dilemma

While the exact solutions of the molecular Schrédinger equation are eigenfunctions of all the
operators that commute with the molecular Hamiltonian, this is not necessarily the case for an
approximate (e.g. UHF) solution. This can be the case for the symmetry operation of the molecular
point group and it is the case for the S2 operator, which has the expectation value for a UHF wave

function:
. o _pB po_ B

<52>UHF:<n 5 )(n 2n +1 ZZWWP (278)

<52>exact
If we require that the solutions have the correct symmetry, it appears as a constraint (restriction)
in the variation problem, and leads necessarily to a higher energy than the solution of the uncon-
strained (unrestricted) problem. We should decide whether we give up the symmetry requirements
to get a better energy or we restrict the solutions on physical grounds and obtain a worse energy.
This is the Léwdin symmetry dilemma.

12.7 Restricted Hartree-Fock equations

A determinant built up from pairs of spin orbitals composed of the same space orbital multiplied
by either a(o) or B(o) is a restricted determinant. The case of closed shells, i.e. N = 2n is
particularly important

U =A{p1(1)61(2)02(3)05(4) ... on(2n — 1), (2n) } (279)

Instead of repeating the derivation from the Brillouin theorem, we can simply consider this problem
as a special case of the UHF equations with n, = n, = n and J“ = Jb Jl, etc. We obtain

zn: J; — (280)

where the summation is over the n space orbitals. The canonical molecular orbitals are obtained
as eigenfunctions of the canonical RHF equations

Flo) = eilps)  i=1,2,...,00 (281)

with orbital energies as eigenvalues.

12.8 RHF energy expression

Closed shell RHF electronic energy in terms of n space orbitals
E =2 (ilhli) + > > 2(iljj) — jlji) =2 hi+ Y > 2Jij — Ky (282)
i i i i

Orbital energies are the diagonal elements (and eigenvalues) of the RHF Fock operator and using
integrals in space orbitals in the chemists’ (charge density) convention

& =ha+ > 20y — Ky = (ilhli) +Z (idlj7) — (ijl3i) (283)
J

The sum of the energies of the n doubly occupied orbitals
2n n n
S e =2 hi+2) 25— Ki; #E (284)
i i j
is not equal to the total energy.
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12.9 Orbital energies
(Wil Fly) = &5 (iliy) = €505 (285)

N
= (il hli) + > _(ib]|ib) (286)
b
e Occupied orbitals

N
ea = (alhla) + ) (ab]|ab) (287)
b=1
b#a
where (aa|laa) = 0 is used. The energy of an occupied orbital corresponds to a particle
moving in a N — l-electron potential.

e Virtual orbitals N

(r|h|r) Z rb||rb) (288)

describe electrons in the potential of all the NV electrons of the Hartree-Fock ground state.

12.10 Koopmans theorem

Let us group together those terms of the electronic energy, which depend on a given molecular
orbital, e.g. k

N
En = (ilhli) + (k|h|k) ZZ (i§l|i7) + Z ik||ik) + kk||kk> (289)
i#£k z;ék j#k i#£k

Since the self-interaction (kk||kk) = 0, the last term is 0 and we can drop the summation restriction

N
Ex = (ilhli) ZZ ijllij)  + (k|h|k) + Z ik||ik) = Ex_1(k) + ex (290)
i#k z;ék j#k

The negative of the orbital energy is equal to the energy difference of (N — 1)-electron and the
N-electron determinants, the ionization potential,

IP = EN_l(k) - EN = —€k (291)

provided we neglect the orbital relaxation effects (spin orbitals are supposed to be frozen in the
(N — 1)-electron determinant.

Similarly, we can examine the energy of an (N + 1)-electron determinant, obtained by adding a
virtual spin orbital ¢, to the N-electron determinant.

Eny1=En+ (rlhlr) + Z ril|ri) = En + € (292)

The electron affinity, EA, can be approximated as the negative of the virtual orbital energy:
FA= EN - EN—H(T) = —€p (293)

Koopmans theorem: Provided that the spin-orbitals satisfy the canonical HF equations, and
the same set of orbitals are used to describe the neutral system and its ions, their energy difference
is stationary against spin-orbital variations.
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12.11 Excitation operators - Generalities

Define an excitation operator by

Of10) = |n) (294)
In bra-ket representation A

O}, = [n)(0] (295)
Th corresponding de-excitation operator

On = |0)(n] (296)

Apply the commutator [H,O}] to the exact ground state wave function

[H,0]]/0) = HOL|0) — OLH|0) = H|n) — EqO}|0)

. R R (297)
This leads to the (super)operator equation
Excitation energy as Rayleigh quotient
0|0, [H, O1]]0
AEy, < D10:(A.0110) 00
(0/0,,0r]0)
These are the basic relations of the EOM (equation of motion) approach.
12.12 Generalized Koopmans theorem
An ionization process can be described by the operator
Of = cra, =0" (300)
which creates a positive ion by removing one electron. The ionization potential, AE™T is
AE+ — er C;F'CS<O‘ CL: [ﬁa aT} |0> _ CTKC (301)

S, cies{Olaga 0y ctPe

In the denominator we recognize the density matrix elements, and in the numerator we have the
matrix elements of the Koopmans operator

K.y = (0 af[H,a,]|0) (302)

After expansion of the SQ Hamiltonian operator

K., = <Z Ry, (s+t+u77“7 — s+r7t+u7)
tu

(303)
+ L Z (tulow) (stttutw o r™ —sTr tTutw v7)
2
tuvw
Applying the anticommutation relations we obtain the 1IRDM operator
stttur™ —str ttu” =sTttu r™ — st (6 —tTr )u™ = —048Tu™ (304)
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and the 2RDM operator

stTttutw v r™ —sTr ttutw v =
sTttutw v r™ —sT (6 —tTr )uTw v~ =
sTttutw v r™ = dusTutw v + st (6 —uTr )w v =

—OsTuTw v = GpusTtTw v = —GpsTutw v 4 Gpys Tt

=
| |

tu vw

uvw tvw

|:Z hrtPts + Z Tt"LL’U uv st:|

tuv

The condition for a stationary value of AE™ is

SAET = +cc.=0

5cTKc_ c'Ke\ écf Pe
ctPc ctPc ) c¢tPe

leading to the matrix equation
Kc=AE"Pc

For a HF wave function P = I and the Koopmans matrix is

K, {Z hr0rs + Z Tt uv) Ny (840 — Otp0ru) | = —Frg

tuv

equal to the matrix of the Fock operator, which has as eigenvalues the orbital energies.

wo

+,,- + ot o= = +pt
_<zu:h,.us u +2(Z<ru|vw>s uTwv —Z(tr\vw)s tTw

v

<thu astuT + = Z tu\vw estutTw vT —5ms+t+w_v_)>

"))

(305)

(306)

(307)

(308)

(309)

It can

be concluded that for a HF wave function the variational ionization potential is just the orbital
energy AET = —¢; and the corresponding excitation operator is a;, which removes an occupied

spin orbital from the HF determinant.

12.13 How good is the Koopmans theorem?
e orbital relaxation correction - lowers the energy of the ions

e correlation energy correction - depends on the number of electrons
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E(N-1) E(N) E(N+1)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

IP

C I P

Two errors compensate each other for the ionization potential, enhance each other for the electron
affinity.

12.14 Excited states

Excite an electron from the i-th occupied to the r-th virtual level of a RHF wave function. Two
possible excited determinants

vl \I/;f (310)
Their linear combinations form pure singlet and triplet states
1 ,
1 T T
U =— (0! + Ut 311
(w7 + ) (311)
1 ,
3 T T
U =—(U!— U 312
() — o) (312)

The excitation energies AEg p in this single transition approzimation, (STA) depend on the orbital
energies and the electron-electron interactions.

1 . U . .
e = 5 (WWHI19) + (W1E19) + (0 ) = (o)) (313)

The first two matrix elements are equal (just o and § are interchanged) and the last two are
complex conjugates, which are also equal for real wave functions.

The energy of the excited determinant is obtained from the ground state energy by removing ¢; and
replacing it by &, and correcting for the missing e -repulsion term between electrons of parallel
spin . A .

<\IJ:|H|‘II:> :E0+€7‘_5i_ <¢T|J1_Kz|¢r> (314)

Transition matrix element between determinants that differ in two spin orbitals

(UFHYT) = (161 ey [H |91y . 0id, )

= (rilliF) = [rilif] — [ri|Fi] = (rilir) — 0 = Kir
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Summarizing these results

1
Est = 2{2(E0 +er—ei — Jip + Kip) £ 2Kir} (315)
Excitation energies
AFEg =¢, —¢; — Jiy + 2K, (316)
AET =&r —&; — Jz'r (317)

Relative magnitude of singlet/triplet splittings can sometimes be estimated from the shape of the
occupied and virtual orbitals, as the self-energy of the transition density ¢} (r)¢.(r).

13 EOM for excited states

Let us use the equation of motion method for electronic excited states. Define the singlet excitation
operator

~ 1 A
i1 f (ot g o) — « prt
On - 9 ;Xar(araaaa + arﬂa’aﬁ) - %;X(M‘Ear (318)
and its adjoint
~ 1 .
— + - + ) —
On =75 Z Xar (g + afgar,) = ; XorEar (319)

The excitation energy can be obtained from

| |
AE, = — (320)
(0/0,,01][0)
Substitution of the excitation operators
X* Xps (0| Evs[H, ET 1|0
AEn:ZGTZbS ar<*b < | bA[ ATar” > (321)
Zar st X;TXbS <O|EbSEGT|O>
The matrix elements in the denominator
Ao 1 1
<O|EbsE¢1r|O> = 1(<0|a;aaaa + a;ﬁaaﬁ|0>57's = §pab (322)
is the half of the spinless one-particle reduced density matrix. Define Q as
Qus.ar = 2(01 By [H, EL,)|0) (323)
and the excitation energy expression in matrix form
X'Qx
AE, = X QX (324)
XTpX
The stationary condition leads to the matrix equation
QX =AEpX (325)
In the special case of a one-determinant HF wave function as ground state p = I and
Qbs,ar = 2(<1D§|I:I\1DZ> - 5ab55r<D|I:I|D>) (326)
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The Q matrix is the single-CI matrix (TDA — Tamm-Dancoff approximation). The diagonal
elements are the STA excitation energies that we have already derived previously

Qar,ar =E&q — &b — (CL(Z"I“?“) + 2((17“@7‘) (327)

while the off-diagonal elements are
Qbs.ar = —(ablsr) + 2(ar|bs) (328)
The use of TDA is mandatory when the STA gives qualitatively wrong results. For instance, the

benzene excited states

e 4 possible single excitations between doubly degenerate HOMO to doubly degenerate
LUMO

o four-fold degenerate i.r. with 4 identical STA excitation energies

e TDA leads to the correct symmetry-adapted combinations and splitting of the excitation
energies

TDA is often used with semi-empirical model Hamiltonians (PPP, CNDO/S) and sometimes also
with ab initio (e.g. Gaussian program).

13.1 Hartree-Fock density matrix

The operator of the one-particle reduced density matrix in SQ is

plasah) = vu(x)vj(a))kT e (329)
174

Since the 1IRDM can be expanded as

p(misah) =Y 0 (1) Ptbn()) (330)
ke

the matrix elements Py, = (kT¢~) form a discrete representation of the IRDM.
In the case of a single determinant HF wave function the IRDM on the basis the MOs

Pyi = (HF |y, ¢y [HF) = ny. 08 (331)
is diagonal. The trace of Py; is equal to N = wa n;, the number of electrons.

The density matrix of a HF wave function is idempotent. This property follows simply from the
fact that n; = 0 or n; = 1, therefore

(P*)ee = PuiPy = mibi - nidsi = n 6k = Pro (332)

The idempotency of the one-particle reduced density matrix is a necessary and sufficient condition
for the one-determinant character of the wave function.
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13.2 Natural orbitals

For multi-configurational (e.g. CI) wave functions the 1IRDM is not necessarily diagonal. Never-
theless, since P is hermitian, one can find a unitary matrix U that U'PU be diagonal. Let U
such a matrix. Then the transformation from the original (MO) and the new basis is

= YUk vk =Y (U = > niUf (333)
k 7 i

Substituting this transformation to the expansion of the IRDM

plevat) =3 S Ugimila) Py () (334)

ke ij
Since U has been chosen such that UTPUZ-]- = Ailij

plxy; ) = Z Aini(1)n; () (335)

7

The orbitals, that diagonalize the 1IRDM are called natural orbitals. Let us write the wave
function as a linear combination of determinants built from the natural orbitals. In this case the
diagonal elements of the density matrix

Pi=X=Y_ > cier(Dilnn;|Dr)
K L
=D > ckernf(Dg|Dr) =) lex[*nf
K L K

are nZK is the occupation number of the i-th NO in determinant K. The diagonal elements, \;, can
be any number between 0 and 1. The matrix representation of the IRDM for a multi-configurational
wave function is not idempotent.

(336)

13.3 Two-particle density matrix for a HF wave function

The matrix representation of the two-particle reduced density matrix is obtained from the following
expectation value

L5 = (HE o o ¢ [HF) = nang (85,00 — 6106 (337)

in the basis of molecular orbitals.
The two-particle density matrix of a one-determinant wave function can be expressed by the
elements of the 1IRDM matrix elements as

Tikij = PP — Pij P (338)
The first part corresponds to the Coulomb-component
Fﬁi’jcom(ml, o, x1/,Th) = Pz, T)) P22, Th) (339)
and the second part first part is the exchange-component

THEeh (31 2oi @11, @) = —P@1, @) Plxs, o)) (340)
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14 Hartree-Fock-Hall-Roothan equations

The UHF and RHF equations can be brought to a more practical form, by writing the molecular
orbitals as linear combination of some fixed functions. In quantum chemistry, these are usually
some approximations to atomic orbitals (AO). In this LCAO approximation

d)i = Z CuiXup (341)
pn=1

where ¢,; = (¢;), is an element of the column vector of the expansion coefficients. We suppose
that the m basis functions (AOs) are linearly independent and in general, form a non-orthogonal
set. The c,; MO-coeflicients are not true linear variation parameters, since the HF equations are
only pseudo-eigenvalue equations.

We can proceed again from the Brillouin condition

(W(¢; — ¢})|H|¥) =0 (342)

and we suppose that both ¢; and ¢} can be expanded in the same AO basis

¢i = Z CpiXp ¢; = Z QuXp (343)
p=1 p=1

Introduce the projection operator to the subspace of occupied orbitals

occ

P =3 ;) (344)

Any function PJp) = P|S, p,xy) lies in the occupied subspace and any function (1 — P)Jy)) =
(1—P)| S, puxv) is orthogonal to this subspace. ~Since the p, coefficients are arbitrary, we should
require the fulfillment of the Brillouin theorem for all functions of the form |¢') = (1 — P)|x.).
Using the Slater rules

(@|Fl¢i) =0 (345)
and substituting the definition (¢'|

occ

(Xol(L=P)Flps) = (xlFloi) — (xul Y 65) (051 F|¢i) = 0 (346)

1
/ €ji

Putting the LCAO expansion of |¢;) and |¢;)

m m

<XV|F| Z CuiXu> = Z<XV| Z CuiXu>5ji (347)

p=1 p=1

Supposing that we have already performed the unitary transformation that diagonalizes the e
matrix, and using obvious matrix element notations

Z Fl’ﬂcﬂi =£&; Z Suucui (348)
p=1 p=1

The result is a generalized pseudo-eigenvalue equation

Fec;, =¢;S¢; i=1,2,...,m (349)
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which can be written in matrix form by constructing the m x m MO coefficient matrix, C, from
the column vectors of the expansion coefficients

FC =eSC (350)
Solutions

N (in closed shell RHF case N/2) occupied orbitals

m — N virtual orbitals

The Hartree-Fock-Roothaan equations are not equivalent with the Hartree-Fock equations. By
increasing the basis set we can only approach the “Hartree-Fock limit”.

14.1 P-matrix

In the LCAO-theory we use frequently the projector to the subspace of occupied orbitals, expressed
by the LCAO coefficients

occ m occ

P= Z |¢z ¢z| = ZZ chw|X# Xul = ZP;W|X;L XV (351)

pr j=1 %

In components, and also in matrix notation using the column vector of the LCAO coefficients, ¢;

occ occ

Py =Y cinc}, P=) cc| (352)
=1 =1

In the RHF case it is used multiplied with a factor of 2
D =2P
The P-matrix is often called density matriz. The electronic density has the expression

occ

) =26 = 0D P (r)xu(r) (353)

The P-matrix appears in the expectation values of one-electron operators.

The operator Pisa projector, i.e. P2 = P. The idempotency of its matrix representation in the
MO basis and in any orthonormal basis is a criterion for the one-determinant character of the
underlying wave function.

However, this property does not hold for its matrices in a non-orthogonal basis, like the AO basis

occ occ

(ol PI) = S 0alon) (6ilv) = S (SPS),u (354)

i i
which is obviously not idempotent.

Let us calculate that component of an arbitrary orbital ¢ = »°_d,x, which lies in the occupied
subspace. Using the P projection operator

occ

Pl =" loi) (i) = > pulxi) (355)
i=1 "
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Using the LCAO expansions of P and v
P|"/’ Zzpuvd ‘Xu><XV|XT> = ZZPAWSWdT|Xp> = Z(PS)MTdT|Xu>
ny T uy T nv
The matrix of the projection, P.S can be deduced from

Pu = Z(PS)uudu (356)

v

The PS matrix is idempotent. To see that, consider the expression of the overlap of two molecular
orbitals
¢1|¢] chuzcuj X/L|XV = 1 (357)

in matrix notation

clSe; =6, (358)
to calculate the square of the PS matrix

occ oce occ occ occ

PSPS =) > ciclSc;cls = chz(sm cls = Zcz Is=ps (359)
iog

The trace of the PS matrix is equal to the number of electrons.
N = [dror) =S5 P [ ariir =305 i = P (30)
wov I

The PS matrix can be considered as the correct representation of the one-particle reduced density
matrix (IRDM).

14.2 Population analysis

Total number of electrons (AO basis)

N=2 > PuSun=23 (PS)u (361)

m

Each term can be interpreted as the number of electrons associated to the orbital x,. Since the
AO-s are assigned to atoms, we can group together the net charge (electronic + nuclear) associated
with an atom A

Q*(Mulliken) = Z — Y (PS),, (362)
pEA

This is the Mulliken population analysis. It corresponds to the halving of the electron density
associated with a pair of AOs.
This definition of the atomic charge is not unique. Since TrAB = TrB A

N=> (8°PS'™). (363)

“w

with a value of @« < 1. In particular

Q*(Lowdin) = Z4 — »_(S'*PS'?),, (364)
neEA

This is the Lowdin-population analysis.
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14.3 Potential-fitted charges

The electrostatic properties (multipole moments, electrostatic potential, etc.) cannot be described
by Mulliken (or Léwdin) charges correctly. Take the molecular dipole moment.

= ZZARA YD Pulxultlx)

A peA v
= ZZARA ZZ ZP;LD X,u|RA +7 |XV>
A ped v (365)
ZZARA XAjz;ZPWSWRA XA:Z;Z A Lanl P
HEA v HEA v

= Z Q R* — Z p? = p(Mulliken) + Z WA
A

If the molecular multipoles (dipole, etc.) are wrong, asymptotic behaviour of the electrostatic
potential calculated from them

A
V(ry) = ; m (366)

is also incorrect.
Approximately correct electrostatics can be obtained from fitted charges. Take the expression of
the potential on a grid of points

a Na
q a _a
V(T’k) = E m = E Tk q k= 1, .. 'aNgT’id (367)

a

and look for the best set of charges that reproduce the quantum chemically calculated electrostatic
potential in the same points,

zZ4A 1
V= _ — P, — Xy 368
k EA:M_RM %}; M<X#||rk—r\|x> (368)
This leads to an overdetermined system of equations (Ng.;q > N,)

Nq

Vi =Y Thg" (369)

a

In matrix form, the formal solution (in the least squares sense)

v=Tq
=1 (370)
q=(T'T)
Depend to some extent on the choice of sampling grid.
14.4 Covalent bond orders
Correlation of fluctuation of the number of electrons associated to two atoms
Bap = —2((NaNg) — (Na)(Ng)) (371)

is considered as a measure of the covalent bond order between two atoms.
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It can be shown that it is related to the change of correlation content during bond formation in
the diatomic fragment. The deviation of the pair density from the simple product of one-particle
densities is the correlation function, f(r1,72)

A1, 72) = selr)e(ra)[1 + £(r1,72)] (372)

Integrated on a given region (e.g. atomic region), it gives the total correlation content

F(QA, QA> = /Q d’l"l /Q d’l“g ,Q(’I"l)Q(Tg)f(T17’I"2) (373)

The correlation content is dominated by the exchange correlation component, therefore the bond
order is often related to directly with the exchange part of the above quantity

Bup = 2/ dry dry [0a(r2;11) 0a(r1;T2) + 08(r2;11) 08(T1;T2)] (374)
Q. Q5

Using Mulliken’s definition of the atomic population, we get the following bond order definition

Bap =Y (P"S)u(P*8)yu + (P°S),(P’S),, (375)

%

Gives 1 for single, 2 for double and 3 for triple bonds.

14.5 Implementation of the HFR equations: SCF procedure

We suppose that a reasonable initial guess of the P-matrix, P(O), is available. For a closed shell
system

e Calculate the one-electron integrals to form the core-Hamiltonian matrix

Hcore — T:uy + Vnucl (376)

7% nv

e Calculate the list of two-electron integrals
(o) = [ dry [[drax W 2 (377)

There are O(K*/8) unique integrals, therefore this step constitutes the major part of the
computational effort.

e Form the Fock matrix of the n-th iteration

F = Here + 57 POV [2(uw)A0) — (uAov)] = HEZC + G (PUD) (378)
Ao

Solve the matrix equation

FC = SCe (379)

e Introduce the canonical orthogonalization (avoiding problems with linearly depen-
dent basis sets) by the following equations

UtSU =s X =Us"'/? (380)
e Transform the Roothaan equations directly by substituting C = X C’

FXC' =8XC'e

(XTFX)C' = (XTSX)C'e (381)
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e Diagonalize F' = (XTFX) to get C' and €
e Transform back the coefficient matrix to the original basis

C=XC (382)

e Form a new P-matrix
prtl = cct (383)

e Check convergence by comparing P and P™*V). if necessary start a new cycle

14.6 Direct SCF procedure

After a few SCF cycles, most of the P-matrix elements do not change appreciably. Consider the
Fockian update formula

F™ = H 4+ GP" ) (384)
The density matrix of the (n — 1)th iteration is P~ = P2 L AP~ Gince

F" Y = H 4 G(P"Y) (385)

the update formula can be written also as
F = p=Y L gApP"Y) (386)

The matrix of two-electron update matrix
G(AP™ V), =3 APC TV [2(up|Ao) — (uh|ow)] (387)

Ao

is sparse and we need only those two-electron integrals, which are multiplied by |AP,(Z:L;1)| > €.

These integrals can be calculated directly, at each iteration, thus reducing huge data storage and
disk access overheads.

14.7 Basis sets
e Slater type orbitals (STO) or exponential orbitals (ETO)
Xntm (Ta) = N1g™te ™" - Y[ (6a; 6a) (388)

correct R — 0 and R — oo behaviour

atomic HF orbitals are linear combinations of a few STOs

e a molecular basis set may contain one, two (double (), three (t¢riple ¢), four
(quadruple (), etc. sets of STOs per atom

e Electron repulsion integrals (ERI) are difficult to calculate for more than two
centers

o Gaussian type orbitals (GTO)

GJuow ('ra) = NUCquZw : e—(,w'z (Cartesian)

—ar? n—1 m . (389)
gném(ru) = Ne ar . )/g (Ha, ¢a) (Spherlcal)

e incorrect behaviour at R — 0 (no cusp) and at R — oo (too fast decay)
e much more (5-10 times) GTOs are needed to describe an atomic HF orbital

e basis functions are fixed combination of primitive Gaussians: contracted Gaussian
functions

e casy calculation of ERIs for three and four centers too (product theorem)
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14.8 Product theorem for Gaussian functions

The ERIs involve the product of two primitive Gaussian functions

exp (—ar2)exp (—fry) = ‘ H exp (—oz(ri —A)? = Blr; — Bi)2) (390)

We can transform the exponent, e.g. for the component x

—a(x — Agﬁ)2 - Bz — Bx)2 = foz(xQ — 24,7 + Az) - ﬁ(xQ — 2B,z + Bz)
oA, + BB, N aA? + 3B2

= (a4 ) = 20— ot i) (391)
(a4 B)| (o - LT - 2, B2
leading to a new Gaussian function
v (222~ B) -0 (o A~ X)) (392
with (o + ) exponent and
Xap = O‘A%ZB“C (393)

center. It means that even four-center integrals can be handled as easily as two-center ones.

14.9 Contracted Gaussian functions

Reduce the number of variational parameters in the HFR equations by taking fixed linear combi-
nation of primitive functions

L
XEGF(T —Ra) = Z dppp(apu, T — Ra) (394)
p=1

e STO-nG basis sets
obtained as least square fits to STO basis function with ¢ = 1.0

e generalized contraction
MOs from atomic GTO calculations

e ANO basis
atomic natural orbitals from correlated atomic calculations

e split-valence basis sets
minimal contracted basis for core orbitals, more flexibility for valence shell: valence double
zeta (VDZ), valence triple zeta (VTZ)

e polarization functions
have higher angular quantum number than the highest occupied atomic orbital

o diffuse functions
to describe excited states, negative ions
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14.10 Second Quantized Hamiltonian in AO basis

In non-orthogonal basis, like the AO basis, creation and annihilation operators follow the anticom-
mutation relation

X X+ = S (395)
and the operators x,, do not act as true annihilation operators. Try to find the “true” annihilation
operators y,, associated with X, , by requiring to satisfy the usual anticommutation rule

X X0 1+ = O (396)
Expand x, as linear combination of x;,
X =D Laxy (397)
A
Substitution into Eq.(396) gives
[X;L ;(;]+ = ZLVA[XI7X;]+ = Z Lu/\S)\;L = (Sp.l/ (398)
A A

The above relationship is satisfied if L = §~*

Z Sy (399)

In general, a set of functions {x;} form the bi-orthogonal set related to the non-orthogonal set
{x:} if they satisfy the (X;|x;) = d;; relation. The x, operators form a bi-orthogonal set related
to x,, -

Let us write the Hamiltonian with the symmetrically orthogonalized auxiliary AO basis set ¥; =
>ouS 1/ 2 Xu- In this orthogonal basis the Hamiltonian has the usual form

=Y ooy + 5 Stk v v oy (400)
] ijkl

After transformation of the operators to the original overlapping AO basis

= Zzhwsmlﬂ —1/2 + _
Y14

401)
1 . —1/2 o—1/2 g—1/2 o—1/2 (
+§Z Z<7’]|kl>slu/ Su]/ Slg / S / XNXVXJX)\
ijkl pvo
Transform back the one-electron integrals too into the original basis
=828, hag (402)
ap

and similarly for the two-electron integrals. Summation over i, k and i, j, k, [ leads to the following
relatively simple form

o= Z S; aﬁS VX;J,XV + 5 Z Z Sp,o}Syﬁ Oéﬁ|75> S&)\ XNXZ/ XO'X)\ (403)
uvaf ;u/)\a afBvyo

We can take advantage of the simple anticommutation relations between XI and X, , if we use the
above Hamiltonian in the following form

_ 1 i e
= Zhwxu X 5 D (Ao G X Xy (404)

pHrAo
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where the half-transformed integrals are defined as
R = Z Sixhay (405)

and
(iXvo) = ZSM o (Telvo) (406)

In order to calculate the expectation values of the operator strings in this energy expression, let
us consider the AO/MO transformations in both original and bi-orthogonal bases.

¢=C'x x=(C""'¢ (407)
using that the MOs are orthonormal
cisc=1 (cHh'=sC (408)
and the definition of the bi-orthogonal orbitals
x=x'8"=¢'C (409)
we get the relationships
Xt =D (C18)dt Xy =D ity (410)
Substitution of these expressions and taking the expectation value
<X:>~<;> = (PS)uu

<Xu Xjf(;f(; ZFﬂAnTSmLSTV (411)
nt

In the special case of HF wave functions we obtain for the two-particle string

<HF|X:X1J/F>2;>2;|HF> = Z(PUTP)\U - PJnP)\T)Sn,uSTV
nT (412)

= (P8)ou(PS)nu = (PS)ou(PS)

14.11 Hellmann-Feynman theorem

Consider a Hamiltonian, which depends on one or more parameters, «;

H(a)=H(0 +ZaH (413)

The first derivative of the total energy for a (normalized) Hartree-Fock determinant wave function,
D is
oE 0 oD
D|H|D
5o = 5 DIHID) = (5

Since the Hartree-Fock wave function is statlonary with respect to any variation in the class of
one-determinant wave functions, we remain with

21Dy + (OIS 1) + (Dl 52) (114)

OF
o

The exact Hartree-Fock wave function satisfies the Hellmann-Feynman theorem.

<D|f|D> (D|4;|D) (415)
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Let us apply this result to the calculation of the molecular dipole moment. The Hamiltonian in
the presence of an electric field R .
H(F) = H(0) + Fafia

where [i, is the a = x,y, z component of the multipole moment operator. Expanding the total
energy in Taylor series

2
E(F) = FE(0) + <88E}(«§))F g“ + - (gFEéFD FoFg+ .. (416)

The dipole moment is defined as

fla = — (aaEg) > o (417)

According the previous result, the dipole moment can be calculated from a HF wave function as
the expectation value
Mo = _<D|ﬂa|D> (418)

In the case of non-variational wave functions the molecular properties must be calculated from the
energy derivatives.

14.12 Hartree-Fock gradients

Exact solutions of the molecular Hamiltonian require infinite basis sets. The advantage of the
SQ formalism is that eigenfunctions of the SQ Hamiltonian in a given finite basis set are exact
solutions of this model Hamiltonian. Therefore, the Hellmann-Feynman theorem applies to its
exact eigenfunctions, as well as variational solutions, like the Hartree-Fock wave function,in the
given finite basis.

The derivative of the energy can be calculated as

SE = (U|6H|W) (419)
The derivative of the SQ Hamiltonian
Zéhul/Xu X;/ + Z 6 /’L)\|VU>X;I,XV XO’ X)\ (420)
puAU

Use the expectation values of the operator strings and the following relationships to calculate the
derivative of the half-transformed AO-integrals, e.g.

5(S'h)=08"'-h+8S'.6h 8 '=8"188" (421)

We obtain for the special case HF wave function

SEHF — Zéhw vt = Zduled(PAqu PaPop) = > FuPoabSre S, (422)

;u/)\a 2N

Using the definition of the P-matrix and the SCF condition >, Fj cnui = €; Y., Suvcui the last

term can be rewritten as
occ

- Z Z €iCuiCh; 0Sup (423)
puroq
Wi
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and we obtain the final result
1
SEHF _ ;Z Oy P + 5 2; §(uv|Aa) (PruPoy — PrPoy) — %: W08, (424)
v HVAO v

This expression is completely general. In the special case of forces the derivatives are taken with
respect to the nuclear coordinates. Since the atomic orbitals follow the nuclei (orbital following)
the geometrical derivatives of the integrals enter in the force expression (wave function forces).

14.13 BSSE

Take a complex A|JB and trace the energy as a function of their separation, E,jg(R,€2). As a
consequence of the orbital-following principle, we have a different basis set at each distance and
relative orientation. In particular, for the interaction energy

AFE = E‘AU]?,(_R,7 Q) - EAUB(R = 00, Q) = EAUB(R, Q) - EA - EB (425)

At small separations the partner basis functions improve the monomer description (nothing to do
with the physical interaction) and lead to an extra stabilization of the complex.

Remedy: Boys-Bernardi counterpoise correction

Calculate monomer energies in the dimer basis at each geometry

AE = Exus(R,Q) — EA(AUB|R, Q) — E5(AUB|R, Q) (426)

As an example, the dissociation curve of the Ar dimer. An artificial minimum appears in the RHF
calculations; after counterpoise correction the potential curve has no minimum (electron correlation
would be needed to describe the van der Waals minimum in this system).

14.14 Response properties

In the Taylor-expansion of the total energy of a system in the presence of an external perturbation

2
E(F) = E(0) + (f?gg)) P+ 1((m>F_faFﬂ +o (427)

N -
F=0 2

the second-order terms are related to the polarizability, i.e. linear response of the system to the

perturbation
O?’E(F)
_ 42
fed (aFaaF5>F_o 2s)

We can apply the general Taylor-expansion of the energy by remarking that in the presence of an
external perturbation

H=Hy+H
oF ) (429)
a=VH=VHy+VH
If the unperturbed energy is variational, VHy = 0, we obtain the following equation for the
parameter variations, d that make the perturbed system energy stationary
VH' M Q d\
)5 ()
which simplifies in case of real wave function and perturbation as
VH + (M +Q)d=0 (431)
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The first order parameter change, d is proportional to the derivative of the Hamiltonian a = VH'

d=(M+Q) 'a (432)
In the case of an external field perturbation H = > o Falla the energy can be expressed as
E=FEy—2) Y Fu(Via) (M + Q) (V) Fp (433)
B

Comparison with the definition of the electric dipole polarizability yields immediately
ap = (Via) (M + Q) (s V) (434)

14.15 General wave function variation

We have seen that the first order variation of a single determinant wave function can be parame-
terized as

0) = (o) + D Par|¥5) (435)

A more general approach, valid to any kind of wave function and also to higher order variations,
can be developed by SQ.

Let us describe the variation of orbitals as resulting from a unitary transformation, ¥, = >, ¥, Uk,
which means that the corresponding creation and annihilation operators transform according to

= ZaLUki
k

(436)
a; = Z arUg;
k
e The unitary transformation can be written as
ai" = exp (—il)aj exp (id) (437)

where A is a hermitian operator
A = Z Z Aija:raj (438)
i g

Using the expansion of the exponential operator

exp (—iM)a] exp (ih) = af + [a,iA] + 1[[aj,z'[\], N+ ... (439)

The commutator expressions can be simplified using the anticommutator relationships,

e.g.
[aj', azal] = aja:al - a:alaj'
= —afafa — af qa) (440)
= —a;r(éil —a) — azalaj = —azéil
Applied to the first commutator
[a?‘, ’LA] = Z iAkl [a;", a;:al] = Z ZAM ak 1l Z ak ZA]W (441)
ki ki
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The second-order commutator yields

([a)fiA], i) = af (iNiA)gi (442)
k
and finally one can show that

exp (—iM)a; exp (iM) Zak (1—ih+= (ZAZA Zak exp (—iA)y (443)

This is a unitary transformation, provided that A is hermitian, i.e. we can parameterize
the transformation as
U = exp (—iA) (444)

o The effect of orbital transformations is identical to a unitary (norm conserving!) transfor-
mation of the wave function. Consider a transformed determinant W

0y =a, " el dly Tt vac)
= (i) gt M) e(=ih) g He(ih) e(_iA)a}e(iA) |vac) (445)

= exp (—iM)af a3 ... ak|vac) = exp (—id)|¥)

and the result holds for any linear combination of determinants too.

e Since the hermitian matrix A can be expressed with the real symmetric and antisymmetric
matrices A and K as A = XA 4 ¢K and the purely imaginary part of the transformation
concerns only an uninteresting phase factor exp (iA), we can write

U = exp (—iA) = exp (K) (446)

e For small values of the transformation parameters, Ag;, we can expand the exponential
operator as

N 1
W) = exp (K)|W) = [0)+ > Kyaj a)|¥)— 3 DY KuKpnaf aiahan|®)+...  (447)
kl kl mn
Bring the operator product of last term in the normal order

+. o+

— 7t - + k
ap aiay,an = a; (8m — atay)a, = Oimay, an + a alana (448)

and the transformed wave function is written as a linear combination of singly-, doubly-,
etc. excited configurations

+ZKMI\IJZ ZZKMK,M(%|¢'“>+|¢ ™) 4L (449)

kl mn

14.16 Coupled Hartree-Fock equations

Having a general expression of the parameterization of the wave function, we can write the energy
as

= (Ule K K| D)
= (U](1-K + Q'KQ )H(1+K+ 2'K2 ) (450)
= (V|H|W) + (V|[H, K]|¥) + <‘1’\H K], K]|®) +
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The operator K can be written in term of the one-particle excitation operators Eij as
K= Zpijajaj = ZpijEij (451)
ij ij
and the Taylor expansion of the energy (for real wave function and variations)

N PN 1 PN .
E = (U[H[Y) + > pi;{U|[H, Ey]|¥) + o7 SO pipw (Y [[H, Eij), Ew] W) + ... (452)
ij ij ki
The M and Q matrices can be identified as
Qijrt = (V|EyyHEy + EnHE,;|0) (453)
M;jr = *(‘I’|ﬁE¢jEkz + EAMEA'UE”‘I’)

The matrix elements in the second derivative of the energy for the special case of a Hartree-Fock
wave function are obtained after expansion of the SQ operators.

15 Comparison of RHF and UHF solutions

Example of the Li atom

PUrir) = [$15B1.02,) PUone) = |65, 61:65.)
; o —— %
—— —l—qsi
——

1sa and 1sg electrons experience different effective potentials (with and without exchange interac-
tion with 2sa). The 2sa electron “polarizes” the 1s shell, and the corresponding spatial functions
tend to be different.
The unrestricted doublet state can be expanded on the basis of exact doublet, quadruplet, etc.
states:

‘Q\I/UHF> = 62‘2> + C4|4> + 06|6> —+ ... (454)

Since the contamination comes always from higher multiplicity components, (S?)ygr is always too
large, as can be seen from its expression.

15.1 RHF solution of minimal basis H,

The molecular orbitals are fully determined by symmetry

1
1 = ——x—(Xa + Xp)

2(1 Y Sap) (455)
b2 = o) (X6 — xb)

where ., and x; are 1s atomic orbitals on the two H atoms.
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As the form of orbitals does not depend on the intermolecular separation, we can analyze the case
Rap — 00, when Sup = {Xa|xp) — 0. The one-determinant RHF wave function

WRIE 61 (1)a(1) 6r(2)0(2)]

LAl + xp(D}a() () + 0 (@)52)] -
= %{fl[ma] +A[xpx,]  ionic terms
+ AlxaXs] + AlbXa]}  covalent terms

The RHF wave function has an equal weight of “ionic” and “covalent” terms, instead of the correct
dissociation limit

Voo = %{Amm + Aboxa) (457)

i.e. the symmetrized combination of two H-atom wave functions.

15.2 UHF orbitals of minimal basis H,

The unrestricted orbitals are not symmetry-constrained. The one degree of freedom can be in-
corporated easily if we write the unrestricted orbitals as linear combination of the restricted ones

f’ﬁ = cosf ¢y £ sinf ¢ ¢§‘7‘3 = Fsinf ¢ + cosb ¢z (458)
These are the unitary transformations which bring the orbitals from the original RHF set {¢1, ¢2}

to the UHF ones.
a3 [ cosf £sinf\ 0 =0
v™’ = (q: sin 6 cosf | = SXP F0 0 (459)

The two occupied orbitals of interest can be written in terms of the AOs as

T = C1Xa + C2Xb @) = caxa + C1Xb (460)
with the coefficients ) )
€12 = ——=—=0080 £ ——=sind (461)
2(1+ Sap) 2(1 — Sap)
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6=0 0<f<m/4 0=m/4

a-spin MO

0.8 - 4 08

0.6 4 06

04 4 04

02 L L L . L 0.2
P B

0.8 4 08

0.6 4 06

04 F 4 04

02 L L L L L 0.2
-2 -1 0 1 2

Cc] = Cy Cc1 > Co c1=10 ¢ =0.0

15.3 UHF solutions for minimal basis H,

UHF energy
Eo = (67 |hlo7) + (67 [Rl6Y) + (¢767|07 6 (462)
can be written after expanding the UHF orbitals in terms of the integrals over RHF MOs as
Ey(0) =2 cos? 0 hyy + 2sin? 0 hoy (463)
+cos* 0 J11 + sin? 0 Joo + 2 cos® 0 sin® 0 (J12 — 2K39)
The energy is extremum if
dEy(0)/df = 4 cosfsind
X [haa — h11 + sin? 0 Joy — cos? 0 J1, (464)
+ (cos® § — sin® ) (J12 — 2K12)] =0

e RHF solution exists at any interatomic distance with 6 =0, i.e.
4cosfsind =0 (465)

with energy
EO(O) =2hy1 + J11 = 2¢1 — J11 (466)

e UHF solution exists, if at a given R the values of integrals are such that
[hgg — h11 +sin? 0 Jag — cos® 0 Jy1 + (cos? 0 — sin? ) (Jy2 — 2K12)] =0 (467)

i.e. the equation
haga — hi1 + Jag — J12 + 2K12

468
Jin + Jag — 2J12 + 4K 2 (468)

cos?f =

can be satisfied.
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15.4 Stability of the RHF/UHF solutions

The nature of the restricted solution can be studied through the second derivative of the energy
dQE(G)/dHQ\gzo = E”(O) = 4(h22 — hll + J22 - J12 + 2K12)
=4(e2 — &1 — J12 — K12)

At the “saddle point” (E”(0) = 0) the UHF and RHF solutions become separated.

(469)
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15.5 Behaviour at dissociation

The UHF wave function tends to the correct dissociation limit, while the RHF leads to a “disso-
ciation catastrophe”.
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The UHF wave function in the R — oo limit is
W = Alxa(1)X(2)] (470)
Instead of the correct (symmetrical) form
1= _ ~ _
VR0 = E{A[Xa(l)Xb(2)] + Ao (X4 (2)]} (471)
Although the orbitals are correct, the wave function is not!
Expand the UHF wave function using the unitary transformation of the orbitals
|WUHEY — 16¢0]) = |(cosf g1 + sin 6 ¢2) (cos O ¢y — sinb ¢,) )
— 052 0]¢13,) — sin® 0]dy) — cosOsin [|é15,) — ¢uy)] (472)
—_——

V2[303)
There is a triplet contaminant, with growing weight as R increases
(0 =m/4)

At the dissociation limit

1 — — 1.
PR = §[|¢1¢1> — |p2a)] — 5\3‘I’%> (473)
The triplet contaminant is the price to pay for having a one-determinant wave function

16 Configuration interaction method

The multi-configurational wave function

) = col®) + ()" S + ()" 2

)7 el
1 2 7St a:st 1 2 :sb):: rstu (474)
+ (g) Z (lb0|\1/abc> (4!) Z abcd|\Ijabcd> .
abc abcd
rst rstu
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where the coefficients are the eigenvectors of the Cl-matrix.
The CI wave function is not normalized in the sense that

(B12) = 1+ 32 (? + (57)* Do (eri)? + -
ab

abrs

However, it satisfies the intermediate normalization condition
(W[®) =1

Schrodinger equation R
H|®) = &|®)

By subtracting Ey|®) K
(H - E0)|(I)> = (80 - E0)|CD> = Ecorr|¢)>

multiplication and integration by (U]
(UIH — Eo|®) = Ecor(¥|®) = oo
lets appear explicitly the correlation energy, F ;.

Substitute the Cl-expansion of the wave function

(U|H — Ey|®) = (V|H — E, <|\11> + ) W)+ el

ct c<d
t<u

= chu(U|H|TL)

c<d
t<u

(475)

(476)

(477)

(478)

(479)

(480)

The (unnormalized) coefficients of the double excited configurations determine the correlation

energy

Beore = Y _ cli(U|H[WLY)

c<d
t<u

In order to know these coefficients exactly, we must solve the full CI problem!

17 Structure of the CI matrix

The CI matrix

(W) 0 (WHD) 0 0
(SIH|S) (S|H|D) (SIAT) 0

(D|F|D) (DIH|T) (DIH|Q)
(TIH|T) (TIH|Q)
(QIFIQ)

Brillouin theorem (¥|H|S) =0
Slater rules (U|H|T) = (V|H|Q) = (S|H|Q) = 0

nonzero blocks are sparse

double excitations play a predominant role

e by indirect coupling all types of excitations contribute to the correclation energy
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17.1 Doubly excited CI
Neglect all configurations except the doubly excited ones
|Ppcr) = W) + ) k| vl
c<d

t<u

After substitution into R
(H - E0)|(I>DCI> = Ecorr|q)DCI>

and successive multiplication by (¥| and by (¥77| we obtain the system of equations

> (U H|PL) = Eeor

=

u

(UL H|W) + Y iU | H — Eo|UL) = ¢3 Beon
c<d
t<u

Introduce the matrix notations

(B)rasb = < 7‘IS7|‘I?I|\IJ>
(D)rasb,tcud = < Z|H E0|\Ilfu>

(©)rasb = cip

and the DCI matrix equations are

(5 B) (&)= (2)

17.2 Approximate solutions of the DCI equations

The exact solution of the DCI problem is the lowest eigenvalue of the CI matrix

(5 %)

(483)

(484)

(485)

(486)

(487)

(488)

We can solve this problem by the matrix partitioning technique by considering the corresponding

partitioned system of equations

BTC = Ecorr
B + Dc = cE.yr

Solve the second equation for ¢
c=—(D—-1E..,) 'B

and
Ecorr = _BT(D - 1Ec0rr)_1B

As a first approximation we can set E.o, = 0 in the denominator and get

Eewr~—-B'D™'B

(489)
(490)

(491)

(492)

(493)

This expression is not variational (not upper bound to the energy) but size-extensive (unlike

truncated CI).
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As a further simplification, we neglect off-diagonal elements of D, i.e.

6ac(5bd67"t65u
(UeplH — Eo|W3)

(D_l)rasb,tucd = (494)

and the correlation energy becomes approximately

Ecorr ~ — § < | rs| ab>< b‘ | > = E Ecorr (7‘2) (495)
a<b (wr |H Eo|0rs) a<b a
r<s r<s

sum of double-excitation contributions.

17.3 Natural orbitals

Natural orbitals diagonalize the IRDM for any (including multi-configurational) wave function.
Take a two-electron singlet system with the following CI expansion

K
'®) = col1T) + > ' Ty) + ch Lyrs) (496)
r=2 r=2s=2

where the spin-adapted singlet configuration functions (CF) are

(117) + |r1)) 1) = —=(rs) + Is7) (497)

o) = 7

7

Substitute these CFs

|1 >*CO‘11 chl{Hr +|7‘1 TZZ 11{|T’,§>+|SF>}

K K (498)
-2 Z ialid)
where the C;; coefficients form a symmetric matrix. The CI expansion contains K? terms.
The 1RDM can be calculated as
Plenat) =) 3 CiCn [l Wi @ - @ @Ik O @) - @ (12
" o (499)
=Y (CCHli(1)5* (1) +i(1)5*(1)]
1j
Let us choose a transformation U such that
U'cu =d (500)
where d is a diagonal matrix. The orbitals 7 obtained from the transformation
me=Y iU, and = nuUim (501)
diagonalize the 1IRDM
P(xy,xh) Zd ni(Dn; (V) + m (17 (1) (502)
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Substitution in the CI expansion leads to
K K K
Z Cij |Zj> = Z Z UimCijan|7]m77n>
ij 1 mn (503)
= Z UTCU mn|7lm77n de|77m7]m

which contains only K terms instead of K?2!

17.4 Minimal basis H, molecule

Out of the six possible determinants four symmetry adapted configuration functions (CFs) can be
formed

xX'sf |T) =[11)
Byt |1 w2y =|12) + |21)
E'SS el =[22)
|12)
Iy P0T) = 4 112) — [21)
|12)

Taking into account the spin multiplicity (singlet and triplet) and space symmetry (g or u), the
CI matrix has the following structure

("wlH'Y) ('O || 0 0
("URHN) 0 0
; 504
CWHERE) 0 o0
(CwRH[PYT)
The energies of the B1Y! state is given by
N 1 A [N Ao oA
(U2 AP0 = 5(<12|H|12> — (21|H|[12) — (12|H|21) + (21| H|21)) (505)
= h11 + hae + Ji2 + K12
and of the b3X] state
CUHPOT) = (12| H[12) = ha1 + hay + J12 — K12 (506)

which lies below the corresponding singlet state (Hund’s rule) and tends to the limit of E(H) at
R — oc.
The MO energies of the two 12;‘ states are

EMO(X'SH) = 2hyy + Ji EMO(E'ST) = 2hag + Ja (507)

which dissociate to the same limit (in the MO approximation!).
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17.5 DCI of the minimal basis H,
To solve the 2 x 2 CI problem we need the matrix elements
(B)oiar = (V32| H|W) = (1]|22) = [12/12] - [12]12] = (12]12) — 0 = K1» (508)
and . B
(D)2131,2121 = (V53 |H — Eo|V31) = 2hay + Jao — 2h11 — Jun (509)
Using the orbital energies
g1 =hu+Ju €9 = hoo + 2J12 — K12 (510)
we can write
(D)2151 2151 = 2A = 2(e2 — 1) + Ji1 + Jo2 — 4J12 + 2K12 (511)
The DCI matrix takes the simple form
0 Ko 1\ 1
(& 5)() -5 ()
The solution can be found from

Klg + QAC =F orrC

c= K12
Ecorr - QA
K2
Ecorr = E 12

KIQC = Ecorr

—2A
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The exact (in minimal basis) correlation energy is

Ecorr = A — \/ A? + K122
At dissociation €1 = ea, hyy = hoa = E(H)

(515)
. Since all two-electron integrals Ji1 = Jog = Jio =
K12 = (XaXa|XaXa) tend to the same value, A = 0 and the total energy

EONX'S)) =2k + Ju + A — /A2 + KF,
tends to 2E(H).
In this limit the CI coefficient

(516)
—Kio
= -1 517
CTAY(ATF KRR (517)
which means that the CI wave function in the dissociation limit

TR )

R—o0

[T) + [TTF) = [xaX) + [X6Xa)
is the linear combination of two ground state H atoms.

(518)
i
\ \ I
0.8 \\
g Iy+
\ \\ E1Y7(CI)
|} N\ N et e
0.6 LN R —
° S - T
—~ \ BIST=N-
:3 O 4 \ “ N W2 W PN
< U ) EY 5 (MO)
m .\ '-o--'---—
S L3Y‘+ ".‘.
0.2 K XTSI (MO)
.‘. ""
\.~’1'."
0 00"' -.;a‘
""' E;(CI
0.2 Nec=z
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17.6 Approximate CI solution of minimal basis H,

Use the approximate correlation energy expression

Eeor ~—B'D7'B

(519)
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In this special case, the one-particle density matrix is diagonal in the original MO basis (NO=MO).

Using the normalized CI expansion coefficients

1 B c

Ci1 = Coy =
11 T 22 T
the P-matrix
0.5 = 1
~
n1\\ y
0.45 B
0.4 % 0.9
\
0.35 ) Ecorr__-__
0.3 \ __.--""‘ 08 The “perturbational” cor-
& ' \‘ ) ' relation energy is a good
r.r.‘lg 0.25 3 ,"' & approximation as far as
" 09 3 ",i" 0.7 ny ~ 1 and it dete-
A riorates when the wave
0.15 r," \“ function becomes multi-
0.1 i \ 0.6 configurational (n; < 1).
Eorr N\
0.05 S <
o Lo Seo
Q0 Ls== — == 0.5
0 2 4 6 8 10
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17.7 Size-consistency problem
The energy of a non-interacting dimer (N-mer) should be the sum of monomer energies.
The Hartee-Fock wave function of an infinitely separated dimer of Hy molecules is
|Wo) = [11111515)
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with the energy

EO = 4h11 + <1111||1111> + <1212||1212> + 2<1111H1212> = 2(2h11 + Jll)

sum of the monomer energies.

The DCI wave function involves only “local” excitations

2
) = [Wo) + > i ®2i)
i=1
Matrix elements . B B B
(U H|®TT) = (1114]12121) = (1121]1121) = K1z
and the DCI matrix is
0 K K 1 1
K 2A 0 c| =FEcr | ¢
K 0 2A c
leading to the equations
Ky
K 2A - Ecorr = —_—
2 N ¢ ¢ ¢ Ecorr - 2A
2K?
2Kc = Ecorr Eeorr = e
¢ Ecorr - QA
DCI correlation energy of the dimer

@ Boore = A — /A2 4 2K2,

is not equal to the sum of monomer correlation energies

(Q)Ecorr 7é 2(1)Ecorr =2A — 2\/m
Similar result holds for an N-mer:

M) Beorr = A — /A2 + NK2,

which means that the DCI (truncated CI) correlation energy per monomer tends to 0 with increas-
ing system size.

If we take the approximate correlation energy expression, applied to an N-mer

N T
Mg o SeBIB_ NK
— D 2A

i.e. N times the approximate monomer correlation energy.

17.8 Full CI of a non-interacting H, dimer

The wave function includes a quadruple excitation too

|P) = [Wo) + 1]21211212) + c2]11112222) + €3]21212225)
The FCI matrix is augmented with respect to the DCI one

0 K K 0

1
K 2A 0 K c| B c
K 0 2A K c| T | ¢
0 K K 4A C3 C3
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(524)

(525)

(526)

(527)

(528)

(529)

(530)

(531)

(532)
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Solve the equations by taking first the fourth and first rows

2Kc
2K 4Ac3 = Eeorr i
c+ C3 C3 C3 P — 4A

E T
2Kc = Ecorr Eeorr = -Ecorrcﬁ

Using the second row
K+2Ac+ Kcz = Eeoir C

and substitution of c3

2K
cC= ——mmmm
Ecorr - 4A
which leads to the equation for the correlation energy
2K?
ECOI‘I‘ = = A
Ecorr - 4A

and the solution is twice the monomer correlation energy

Beor = 2(A — /A2 + K2)

Remark that the coefficient of the quadruple excitation

2Kc
(3= ———=cXC

Ecorr —4A

18 Rayleigh-Schroedinger perturbation theory
18.1 Schroedinger equation with perturbation
We are looking for the ground state solution of the problem
Hy = (Hy+ V) = By
and we already know the (exact) solution of the zero-order problem
Hopo = Eoo
Let us write AE = F — Ej, the energy correction
(Ho — Eo)y = (AE = V)y
and in order to fix the phase of 1, impose the intermediate normalization
{polyp) =1
Introduce the reduced resolvent operator as

Ro = (1 — |go) (o) (Ho — Eo) ™"

(535)

(536)

(537)

(538)

(539)

(540)

(541)

(542)

(543)

(544)

(545)

(546)

which can be regarded as the inverse of the operator Hy — Ej in the space of functions orthogonal

to o
Ro(Ho — Ep) = 1 — |0) {0

Multiplying the Schréodinger equation by Ry
Ro(Hy — Eo)¢p = Ro(AE — V)ip
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using the definition of the resolvent and the intermediate normalization an equation is obtained

for the wave function

Y=o+ RO(AE - V)T/)
After multiplication of the Schrédinger equation by (]

(ol (Ho — Eo) 1) = (ol (AE — V)[¢)

we get the energy correction A
AE = {¢o|V¢)

18.2 TIterative solution of the perturbed Schroedinger equation

These equations can be solved iteratively

AE, = (@o|V]thn_1)
wn = o + RO(AETL - f/)d}n

To the lowest orders of iteration we find by using 1y = g and I%mpo =0

AE, = <<P0|V|¢o>
U1 = o — RoVio
AE; = (polV[1) = (ol V]to) — (w0l VRoV[ho) = AE1 — (00| VRV |tho)
o = o — Ro(AE — V)i
= o — Ro((o|V[tho) — (0| VRoV [tho) — V) (0 — RoVeo)
= oW — Ro(V — AE2) RoVepo

18.3 H-atom in electric field

Hamiltonian of the H-atom in an electric field, F,

N N . 1 1
H = Hy+ zF, where Hy = —§A - -
r
The Hamiltonian of the isolated H-atom has
the lowest eigenvalue Ey = f% and eigenfunction ¢y = ﬁe’r.

First iteration in the energy yields zero
AE; = F{pol2|to) = po - F. =0
First iteration in the wave function leads to the equation
1= o — ROV<P0
(Ho — Bo)in = — (V = AE1) o
<—;A - % + ;) P = —% F,ze™™

which has the solution
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(552)

(553)

(554)
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Second energy iteration
9

AE; = F.(pol2ltn) = =7 - FZ

This leads to a development of the energy in the powers of F,
9 o
E:E0+AE2:E0—Z~FZ

the dipole polarizability is

<32E> 9 .
o= — = — .u.
OF? ) p _y 2

18.4 Rayleigh-Schroedinger perturbation expansion

(558)

(559)

(560)

Assuming that the iteration process converges, the exact wave function and energy can be expanded

in power series of a perturbation parameter A
(Ho +AV)i = ABY

as

n=1

AE =Y X'AE™  and =) A
n=0

Substitute the series expansions in

AE = (po|V]1h) and ¥ = o+ Ro(AE — V)¢

leading to

D OATAE™ =N A o[V [ (™)
n=1 m=0

>N = g+ Ry (Z ATMAEM) AV) S Aky®)
n=1 m=1

k=1

and collect terms of the same power to obtain the general recursion formulae

AE™ = (po|V[p" =)

n—1
P = —RoVeyp(n—b — Z AE® Ry (=)
k=1

18.5 Explicit formulae at low orders

The reduced resolvent has the spectral resolution

A o) (ol
Ro= Y kel
Prrd E, — Ey

o First order .
AEW = {(@olV]po)

<<Pk|‘7|<ﬂo>

P = —ReVipp == BB,

k0

7

(561)

(562)

(563)

(564)

(565)

(566)

(567)



(n) _

The wave function corrections are often expressed in terms of the expansion coefficients ¢;, ~ =
(r|¥™) on the basis of the eigenfunctions of the zero order Hamiltonian

(1) (0x|V |0)
=y o) 568
ck = Ek _ EO ( )

o Second order

Energy
E® :<<P0\VWJ(1)> = *<S00|VR0V|<P0>

_ (ol VIpr) (k] V|00) (569)

k0
Wave function

0@ = RV RV + Ry B Ry Vpl® —

PP e ma A . . (570)
= ROVRQVL,D() — R0<V>R0Vgo() = RoVR()V(pO
where we used the definitions
(V') = {0l Vo) and V=V-—(V) (571)

o Third order
AE® = (|V[p®) = —(0|V RoV RoV | 00)

(2ol V| ) (| VIr) (1] V | 00) (572)
B ZZ (Ex — Eo)(E; — Ey)

k0 1£0

Summary of energy corrections

AEM = (V) (573)
AE® = (VRV) (574)
AE®) = (VR,VR,V) (575)
AEW = (VRy (VRV - <VR0V)) RoV) (576)
AE® = (VRy(VRV RV — (VReV RoV)
—VRo(VRV) — (VRyV)RoV)RoV) (577)
18.6 Energy with the first-order wave function
The energy (Rayleigh quotient)
(WIH + NV |v)
E= "7 (578)
(Wl)
with the first order wave function, 1) = g + A\pM) = ¢y — /\Vf%o(po
— AoV Ro|H + A\V|pog — AV R
E = <§DO ®o RO' + |(P0 VROSD0> (579)

1+ A2(poV Ro|RoV o)
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After expanding the denominator and using that Roﬁogoo =0

E = (Ey + AEMW — 2X%(00|V RoV | o)+
+ X2 (po|VRo(H + AV)R0V|¢O>) X (580)
X (1 - )\2<<P0V}?O|RO‘7<PO>)
and collecting terms of the same order

E=Ey+\EW -
- )\22<S00|VROV\800>*
— A {@o|VRo(H — Eo)RoV|g0)
+ X (00| VRo(V = EW) RoV|00)

(581)

Use that B = (V) and Ro(H — Eo) = 1 — |¢0) (0| and obtain the previously derived 3rd order

energy expression
E = By + (0| Vo) — (ol VRoV |0) + (po|VRo(V — (V) RoV |0) (582)

This result can be generalized: the nth order wave function determines the (2n-1)th order energy
expression, provided the normalization is taken into account.

The perturbational energy is not a upper bound to the exact energy, but the Rayleigh-quotient is
an upper bound.

18.7 Deformation energy and perturbation energy

Up to second order the Rayleigh quotient can be written as a sum of two terms, the expectation
value of the zero order Hamiltonian

(o — MoV Ro|H|p — AV Rop)
1+ /\2<80‘71%0|R0V80>

= Eo+ X {p|VRV|g) = By + AE) (583)

and the expectation value of the perturbation operator

(6 — AoV Ro|AV o — AV Rop)

DD T :ASO‘A/Sﬁf)PQQDVRV@ :E(1)+AE(2) 584
4 2oV ol o) (@l Ve) = X°2(e|V RoV ) (584)

stab

The second order correction to the expectation value of the perturbation is twice the second order
energy correction and it is twice the energy raise of the wave function due to the deformation of
the wave function.

AER), = —2AE®) (585)

stab

18.8 Dalgarno’s (2n+1) theorem

Although the recursion formulae would suggest that we need the (n — 1) order wave function
correction to calculate the n-th order energy correction, as the previous example showed, there is
a much stronger statement:

In order to obtain the (2n+1) order energy correction, it is sufficient to know the n-th
order wave function correction.

Wave function

b = fjw““ + O\ (586)
k
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Energy
E=> Y W HpO) + oA+ (587)
k l

Transformation formulae (Lowdin)

AEE — (| V5m )
= <1Z)(n)|f/|w(n71)> _ ZZAE(% k—1) |?/1(l > (588)

k=11=1

ABCH = (o] V)

= ) — 303D AEHED 0 y0)

k=11=1

(589)

Computational difficulties increase significantly at 2n orders.

18.9 Pertubational correction of expectation values

Expectation value of an arbitrary Hermitian operator, B with a first order wave function P =
(1 + R()V)(,D

B = (o — A‘PVRO‘B + )\V|L,O — /\VRO@>

——— = (590)
1+ A2 <<,OVRO‘ROV(,O>
Expanding up to first order in the perturbation
(¢|B + BRyV + VRoB + VRy(B — By)RoV|¢) = By + ABWY (591)
Suppose that the perturbation is of the form V=aA= flaT, then
ABWY = af(AR\B + BRyA)a = a' K(AB)a (592)

where K(AB) = (ARyB + BRyA) is the linear response function.

18.10 Partitioning method

Let us consider an orthonormal basis {pg} divided into two subsets, A and B, containing n4 and
np functions, respectively. The result, obtained by using only n4 functions can be improved by
adding the np extra functions, i.e. the secular equations are partitioned as

HAA HAB CA CA
() () = u (%) o

which is equivalent to the system of equations

H*%eA + H"BcB =peA

594
HP4cA + HEBCP —ECP (594)

A formal solution can be obtained by expressing ¢? from the second equation
B — (E1pp — HPB)THPAcA (595)
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and inserting it into the first one leading to
H.gc” = Ect (596)
The effective Hamiltonian is an n4 X n4 matrix
H.=H*" + H*?(E1g5 — HPP)'HBA (597)

including implicitly the effect of the np other functions. The effective Hamiltonian depends on the
yet unknown energy, F, therefore the solution should be obtained by iteration.
Take the case ngy =1, ca = ¢; = 1, then H g is just a single element

E:Heff:f(E) (598)

Insert as a first approximation E = Hj; and expand the inverse matrix, using (I + A)~! =
I — A + A? leading to second order in the off-diagonal elements

HinH,
E=Hy + Z H111 ~ (k> 1) (599)

The expansion coefficients in the ¢? vector (c.f. above)

B — (E1pp — HPB)THPAcA (600)
can be approximated similarly as
Hlil
= 601
¢ Hll Hﬁn ( )

Analogous to RSPT, but

o basis is finite
o no a priori separation of the Hamiltonian is necessary
o complete set of eigenfunctions not needed

o analogies with RSPT to handled with caution

To make the connection with RSPT clear, choose the eigenfunctions of H, as basis

Hopr = E;(CO)% (602)

and the relevant matrix elements are
Hyy = (1| Ho + Vigr) = B + (01 V[io1) (603)
Hip = (p1|Ho + View) = (p1|V]ex) (604)

By application of the previously derived results we obtain for the perturbational corrections to the
i-th state

Z <<Pi\V\<Pk>(<Pk\V\<Pi>

Ei = B + (@il VIes) + (605)
’ ¢ ‘ ! (0) (0)
k(1) E;7 — Ey
Vg
Vi =i + Z CikPk = Pi — Z %@k (606)
k(#1) k(1) E; — E

(Quasi)-degenerate cases can be handled by taking(nag > 1).
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In non-orthogonal basis sets the matrix equations are

(s () (et w0 o

where M is the overlap (metric) matrix of the basis. The effective equation is
H.gc* = EM*4e? (608)
with the effective Hamiltonian
H* + (HA® — EM*P)(E1pp — HPB)"Y(HP* — EMP?) (609)

and the energy to second order is

Hyo Z [Hko - MkO(HOO/MOO)]2

E=— 610
Moo~ <~ [Hoo/Moo — (Hr/Mpt)] (610)
19 RSPT treatment of intramolecular correlation
Let us separate the N-electron Hamiltonian into two parts
H=Hy+W (611)
where I:IO is the Hartree-Fock Hamiltonian
Hy=> F(i) (612)
and the perturbation is the difference between the HF and total Hamiltonians
. N N 1 A N
W=H - F(i) = — = J(1) — K(i 613
Zi: (4) ; - Z (1) — K (i) (613)
which often called the fluctuation potential.
The zero order wave function is the Hartree-Fock determinant.
The zero order energy is the sum of occupied orbital energies
N
EO = )3 Py = e, (614)

The first order energy correction is just the “double counting correction” we discussed in the
Hartree-Fock theory

EW = (U[W[P) = (abllab) = > > (Jap — Kap) = — Y _(ab||ab) (615)
a b

a<b a<b

The Hartree-Fock energy is

N N N
1
Ey = E© + D — g €aq — 3 E E (abHab) (616)
a a b

In order to apply the second order energy and first order wave function correction formulae, the
“intermediate states”, ¢y should be identified = excited determinants formed from the complete
set of eigenfunctions of F.
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o singly excited determinants

(U|WW5) = (| H — Ho|¥y) = (V|H|V]) — For =0

they cannot contribute by the virtue of the Brillouin theorem and HF equations.

o triply (and higher) excited determinants do not contribute — Slater rules

o double excitations, |¥77) — yes
Application of the general formula leads to

3 (W (W W) (W W 0)

E® = -
(W3 Ho — EO5)

a<b
r<s

Let us use that A
(Wri|Ho — EOWW03) = —(cq + €6 — & — €5)
and the Slater rules
(TW[0rs) = (U] Z 7|\p = (ab||rs)

1<j

we end up the second order Mgller-Plesset (or MBPT) correction

b||rs)|? {ab||rs)|?
E® — [(a
ZE +éep—&r —Es 425(1‘1’517_57"_55

a<b
r<s

In terms of the regular integrals the second order energy

9 1 ab|rs)(rs|ab 1 ab|rs)(rs|ba
E():§Z<I><|>_*Z<|><‘>

€at+Ep—Er —Es 2 €a+Epb—Er —Es

abrs abrs

and for closed shells in terms of spatial orbitals
N/2

22 (ab|rs)(rs|ab) 72 (ab|rs)(rs|ba)

Eq+Ep—€Er —Eg Eqa+Ep—€Er — €5

abrs abrs

19.1 Third order MBPT energy

The third order energy expression is more laborious

g L $ (abl|rs)({cd||ab)(rs||cd)
abedrs (Ea Ty —é&r - 55)<EC tEa—&r— 88)
n 1 (ab||rs)(rs||tu)(tu]|ab)
8 (o +eb—er—€s)(Eat+Eb— et —ey)

abrstu

n Z (abl|rs)(cs||tb) (rt||ac)

abcrst +€b_€7 — Es )(&1"‘80—57, —gt)
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19.2 Comparison with the partitioning method

We have already seen (c.f. discussion of the CI method) that the DCI correlation energy can be
obtained from the following matrix

(U|Ho + W W) (0075 (U WL
(Urs|WIw)  (Wr5|Ho+ WIWL5) ... (W5 W|wt) (625)
(DLW | ) (WhWers) L (U Hy + WBt)

where we used the notations

(U|Ho+ W[T)  Baprs )
626
< BILZ)’I‘S Dabrs,cdtu ( )
and the correlation energy is
AE = Z Z B(J;st (Dabrs,cdtu)il Bprs (627)

abrs cdtu

Decompose the Dgprs, catn, matrix D = K + W, i.e. as a sum of a diagonal (K') and non-diagonal
(W) contribution and expand the inverse matrix

D' =(K+W) '=[K(1+K W)~}

628
=1+ K W) 'K =K' - K 'WK '+ K 'WK'WK ... (628)

Since the inverse of the diagonal matrix K; is trivial, the approximate correlation energy has the
form

AE=> B, (K})"" Bas (629)

abrs

Two possible choices for the partition

o Mgeller-Plesset partition
ns(MP) = (Wi | Ho|W73) = E© — (e4 + 25 — & — &) (630)

leading to the MP2 result

1 BlbrsBabrs
AB(MP2) = 5 ; e (631)

o Epstein-Nesbet partitioning

i (EN) = (W05 | Ho + W|W05) = K3 (MP) — dj; (632)
leading to
1 B!, B,
AE(EN) = = abrs” 8775 633
EN) =320 erra e ey (633)

abrs cdtu

which is the result obtained previously as an approximate correlation energy expression.
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19.3 Partial summation of MBPT series

Second order correction

B(2) =7 > (abllrs){rs|lab) (Kz5) ™! (634)

abrs

A component of the third order correction

E(S)ZZZW)IITS) p(rsllab) (Kg5) ™" (635)
abrs
where
ab = (abllab) + (rs||rs) — (ar||ar) — (br|lbr) — (as||as) — (bs||bs) (636)

Similar terms come in fourth-, fifth-, etc. order

d d\?
E(2) + E(3) fZK (ab||rs){rs||ab) 1+<K>+<K> +]
abrs (637)
1 Z (abl|rs)(rs||ab)
K(1—-d/K)
We obtain by partial summation the Epstein-Nesbet result.
19.4 MBPT correlation energy of minimal basis H,
The exact correlation energy was found for this system as
Eeorr = A — (A% + K3,)/? (638)
with
A=2(€2 —e1) + J11 + Joo —4J12 + 2K (639)

We can apply directly the formulae by considering that « =b =1 and r = s = 2. Second order

@ _ 2<11|22><22\11> (11]22)(22|11) K%,

E 2(61 —-52) B 2(61 —-62) o 2(61 —-62)

(640)

The third order result can be obtained from the general formula by taking into account that the
first order energy correction

EY = (O|W|¥) = —Jp, (641)
and the perturbation matrix element
(W) = (11]|22) = (11]22) = Kis (642)
Third order energy
56 _ K%,(J11 + Jog — 4J12 + 2K12) (643)

4(61 —'52)
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19.5 Size-consistency
N-mer of non-interacting Ho molecules
Second order energy
al \I’IW\\I’ ?‘> NK?,
E : (644)
P €2) 2(e1 —e2)
is N times the monomer MP2 energy.
Third order energy correction
2
E(?’) _ NKlg(Ju + Jog — 4J19 + 2K12) (645)
4(81 — 52)2

The general result is true: the MPn energy correction is size-consistent
19.6 Size-consistent methods

The size consistency can be qualitatively discussed by invoking the one- and two-particle excitation
operators

§a+a+abaa

(646)
abrs

T1:ZTga;"aa Tg:ZT7

ar

o SDCI wave function of a complex

(14 TA + THONA + TF + TP)|wB) = |wAB(SDCI)) + (TATF

)| wAwE)
which is not of SCDI form
o coupled cluster wave functions (CCSD) of a complex
exp (T{* + T U4 exp (T + 7)) [0P) = exp (T + TP + T3 + T7) w4 wP)
is still of the CCSD form
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19.7 Local MP2

One can use localized (Wannier-) orbitals instead of canonical ones in the MPn theory. Problem:
Fock operator is not diagonal. o
First order wave function correction satisfies (1) = pg — RoW g, i.e.

(Hy — EO)p™ = — W (647)
Let ¢g = ¥y, the Hartree-Fock wave function written in localized orbitals and the first order wave

function correction is
g =N T (648)
ab Ts
with r, s localized virtual orbitals.

S (Hy — BO)WIT = —1|W) (649)

abrs

Multiplication from left by (¥%%| leads to the linear equations

> (W Ho — EQU T = —(WLy| W |Wo) (650)

abrs

which can be solved directly for the unknown amplitudes, 7%°, and the MP2 energy is

rs)

EEMP2) = N b (B |W [ W3) (651)

abrs

Advantage: linear scaling correlation method!
Of course, this is a generalization of the canonical MP2 result, where the linear equations can be
solved analytically, since

(W4 Ho — EO|W05) = 64c00a0r¢0su (et + €0 — € — £¢) (652)

is a diagonal matrix.
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