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11. Introduction

Recommended books
• I. G. Kaplan, Intermolecular Interactions (Wiley 2006).

Mainly oriented to theorists. A valuable resource.

• M. Rigby, E. B. Smith, W. A. Wakeham & G. C. Maitland, The
Forces between Molecules (O.U.P. 1986).

Mainly concerned with experimental techniques for
investigating intermolecular forces.

• A. J. Stone, The Theory of Intermolecular Forces (O.U.P. 1996).
See also the corrections, if your library has an early copy:
The main reference.
Hardback:
http://www-stone.ch.cam.ac.uk/timf/corrections1996.pdf.
Paperback:
http://www-stone.ch.cam.ac.uk/timf/corrections1997.pdf.
The 2000 reprint includes all these corrections.

2Why study intermolecular forces?

Intermolecular forces play an important rôle in all the following:

• Deviations of gases from ideality (pressure, viscosity, diffusion, thermal
conductivity).

• Properties of solids and liquids – e.g. melting and boiling points. The
very existence of condensed phases depends on intermolecular forces.

• Crystal structures. Understanding polymorphism requires a very
accurate knowledge of intermolecular forces.

• Liquid structures; e.g. liquid crystals.

• Steric effects in reactions.

• Tertiary structure of proteins.

• Modern drug design methods.

• The formation of surface monolayers, micelles and membranes, and the
transport of ions and molecules across biological membranes.

• Interactions between molecules and surfaces: in heterogeneous
catalysis, in industrial processes, in atmospheric chemistry and
elsewhere.



3Experimental and theoretical advances

• Conventional sources of experimental information were averages over
the whole potential surface.

E.g. gas non-ideality: second virial coefficient, viscosity, diffusion
constants, etc.

• Recent spectroscopic techniques at very low temperatures provide
detailed information about energy levels in the region of the potential
energy minimum, which in turn provide information, via tunnelling
splittings, about barriers between equivalent minima and hence about
rearrangement pathways.

E.g. Studies of water dimer and trimer lead to a better understanding of
liquid water.

• With modern theoretical methods we can study intermolecular forces
accurately and in great detail.

Ab initio intermolecular perturbation theory gives the individual terms
in the interaction.

42. Basic ideas

Energy vs. distance

Gases condense, so there must
be an attractive force between
the molecules at long range.

E

R
0Liquids have finite volume and

low compressibility, so there
must be a steep repulsive region
at shorter distances.

−ε

σ Re

The depth of the well is
conventionally called ε or De,
the position of the minimum is
Re, and the position where the
repulsive branch crosses the
axis is σ, often called the
collision diameter.



5Orders of magnitude: estimating Re

The value of Re can be obtained easily and fairly accurately. Methods include

• rotational spectroscopy on the complex formed by a pair of molecules;

• x-ray diffraction of crystal structures.

Pauling showed in the 1930s that atoms in molecules can be assigned ‘Van
der Waals radii’ so that they pack in crystals with the separation between
adjacent atoms determined reasonably accurately by the sum of their radii.

Examples of Van der Waals radii (Ångstrom):

N O F Ne
1.50 1.40 1.35 1.54 Pauling (1960)
1.55 1.52 1.47 1.54 Bondi (1964)

P S Cl Ar
1.90 1.85 1.80 1.88 Pauling
1.80 1.80 1.75 1.88 Bondi

6Orders of magnitude: estimating epsilon

The well-depth ε is not so easy to determine. A rough value can be found
from Trouton’s rule.

For liquid and vapour in equilibrium, i.e., at the boiling-point,

∆Gvap = ∆Hvap −Tb∆Svap = 0. (2.1)

∆S> 0 for vapourization; a rough (under)estimate is

∆Svap ≈ Rln(Vg/Vl) ≈ Rln1000≈ 7R= 57JK−1mol−1. (2.2)

It is an underestimate because the liquid is more ordered than a dense gas.

Trouton’s empirical rule asserts that ∆Svap ≈ 85JK−1mol−1 ≈ 10R, or more for
associated liquids. So

∆Hvap = Tb∆Svap ≈ 10RTb. (2.3)



7Estimating epsilon

From Trouton’s rule:
∆Hvap = Tb∆Svap ≈ 10RTb. (2.3)

If we identify ∆Hvap with the energy needed to separate every atom from its n
neighbours, we have

∆Hvap ≈ 1
2NAnε.

(We need the 1
2 to avoid counting each interaction twice.)

That is
1
2NAnε ≈ 10RTb

i.e.
ε ≈ 20kBTb/n. (2.4)

8Pair-potential well-depths
The inert gases are approximately close-packed in the liquid, as in the
solid, so n≈ 12. Methane is similar.

Water has a much more open structure, with n≈ 4, because of
hydrogen bonding.

Tb/K n (20Tb/n)/K (εexp/kB)/K εexp/kJmol−1

He 4.2 12 7 11 0.1

Ar 87 12 145 142 1.2

Xe 166 12 277 281 2.3

CH4 111.5 12 186 180−300 1.5−2.5

H2O 373.2 4 1866 2400approx. 20

Note that there is a big difference between D0 and De because the binding is
quite weak. Intermolecular potentials are also often very anharmonic.



9Contributions to the interaction energy

The important interactions between molecules are all fundamentally
electrostatic, arising from Coulomb interactions between the particles in the
molecules.

There are magnetic interactions too, but they are very weak and need not
concern us.

‘Long-range’ interactions persist even at distances where the molecular
wavefunctions no longer overlap. They have a distance dependence which is
some inverse power of R.

‘Short-range’ interactions are present only when the wavefunctions do
overlap. They have a distance dependence approximately of the form
exp(−αR), where α is typically around 2bohr−1.

10Contributions to the interaction energy

Pairwise
Contribution Additive? Sign Comment

Long–range (U ∼ R−n)
Electrostatic Yes ± Strong orientation dependence
Induction No − Strongly non-additive
Dispersion approx. − Always present
Resonance No ± Degenerate states only
Magnetic Yes ± Very small

Short–range (U ∼ e−αR)
Exchange-Repulsion No + Dominates at very short range
Charge Transfer No − Donor–acceptor interaction
Penetration Yes ± Can be repulsive at very short range
Damping approx. + Modification of dispersion and induc-

tion



113. Pair potentials and many-body effects

If we have just two molecules we can write the energy as

W(A,B) = WA +WB+UAB, (3.1)

where WA is the energy of the isolated molecule A and UAB, the pair potential,
describes the interaction between A and B.

For three molecules, the equivalent expression is

W(A,B,C) = WA +WB +WC+UAB+UAC+UBC, (3.2)

This is usually only an approximation, because the presence of each molecule
modifies the interaction between the other two. We should write

W(A,B,C) = WA +WB+WC+UAB+UAC+UBC+UABC, (3.3)

where UABC is the three-body correction.

12Pair potentials and many-body effects

For a system of many molecules we have

W = ∑
A

WA + ∑
A>B

UAB+ ∑
A>B>C

UABC+ ∑
A>B>C>D

UABCD+ · · · , (3.4)

with four-body, five-body, . . . terms.

All these terms depend on the relative geometry of the molecules involved —
orientations as well as distances, in general.

The interaction energy is said to be pairwise additive if the three-body,
four-body and higher terms are zero.

In practice the four-body and higher terms are usually quite small, but the
three-body terms are often large.



134. Perturbation Theory

We begin with the two-body interaction. The Hamiltonian for a pair of
interacting molecules (labeled A and B) is

H = HA +HB+ λV (4.1)

where HA and HB are the Hamiltonians for A and B and V is the interaction
operator which describes the interaction of the electrons and nuclei of A with
those of B:

V =
1

4πε0
∑
a∈A

∑
b∈B

eaeb

rab
, (4.2)

where ea and eb are the charges of particles a and b and rab is the distance
between these particles.

Let’s assume we know the eigenfunctions and eigenvalues of the
unperturbed Hamiltonians:

HA|mA〉 = WA
m|mA〉,

HB|nB〉 = WB
n |nB〉.

(4.3)

14Perturbation Theory: First Order
If λ = 0, then the dimer wavefunction is ψ(0) = |0A0B〉 and energy
W(0) = WA

0 +WB
0 . For non-zero λ we develop a perturbation expansion for the

wavefunction and energy as follows:

ψ = ψ(0) + λψ(1) + λ2ψ(2) + · · · ,
W = W(0) + λW(1) + λ2W(2) + · · ·

(4.4)

The interaction energy is given by

Wint = W(1) +W(2) + · · · . (4.5)

At first-order,

W(1) = 〈0A0B|V|0A0B〉 (4.6)

=

ZZ

ρA(r1)V(r1,r2)ρB(r2)dr1dr2. (4.7)

where ρA = N
R · · ·R |ϕA(1,2, ...,N)|2dr2...rN is the electron density. This is the

usual formula for the electrostatic interaction energy of two charge
distributions and will be called Ues.



15Second Order

W(2) = − ∑
mn6=00

|〈0A0B|V|mAnB〉|2
WA

m +WB
n −WA

0 −WB
0

. (4.8)

The only term excluded in the summation is the one for which both molecules
are in the ground state, so we take separately the terms for which one
molecule is in the ground state and the other is not. This gives three terms:

UA
ind = − ∑

m6=0

|〈0A0B|V|mA0B〉|2
WA

m −WA
0

, (4.9)

UB
ind = − ∑

n6=0

|〈0A0B|V|0AnB〉|2
WB

n −WB
0

, (4.10)

Udisp = − ∑
m6=0

∑
n6=0

|〈0A0B|V|mAnB〉|2
WA

m +WB
n −WA

0 −WB
0

. (4.11)

We shall see that UA
ind describes the change in energy of molecule A in

response to the electric field of molecule B. It is the induction energy of
molecule A. Similarly UB

ind is the induction energy of molecule B. The final
term, Udisp, is the dispersion energy.

16Interpretation of second-order terms
Consider the induction energy UA

ind:

UA
ind = − ∑

m6=0

|〈0A0B|V|mA0B〉|2
WA

m −WA
0

, (4.12)

= − ∑
m6=0

|〈0A|V[ρB]|mA〉|2
WA

m −WA
0

, (4.13)

where V[ρB] = ∑ri

R

ρB(r)V(ri ,r)dr is the electrostatic potential due to the
unperturbed charge density of B. Now consider the Hamiltonian
H = HA + ξV[ρB] and develop the usual perturbation expansion for the
ground state energy

E = E(0) + ξE(1) + ξ2E(2) + · · · . (4.14)

The second-order energy correction is clearly just UA
ind:

E(2) = − ∑
m6=0

|〈0A|V[ρB]|mA〉|2
WA

m −WA
0

= UA
ind. (4.15)



17

Differentiating E twice w.r.t. ξ and setting ξ → 0, we get

1
2

∂2E
∂ξ2 |ξ→0 = UA

ind. (4.16)

Thus the induction energy can be interpreted as the second-order energy
response of a molecule to the electrostatic field of the partner. It clearly
doesn’t matter where the field comes from. In general, V[ρB] will be replaced
by the electrostatic potential of the environment.

We will come back to this interpretation when we construct the asymptotic
forms of the interaction energy components.

Eq.(4.16) gives us a way of calculating the induction energy using the method
of finite-differences:

UA
ind ≈ 1

2
E(−ε)−2E(0)+E(ε)

2ε2 . (4.17)

18Dispersion: Drude model
The dispersion energy cannot be described in terms of classical interactions as
the electrostatic and induction terms can. A semi-classical picture is required.

� u - � u -

� R -

−Q −Q+Q +Q

zA zB

Model each molecule with a fixed charge +Q at the centre and an oscillating
charge −Q. In the usual scaled units (i.e. energy in units of hν = ~ω, length in
units of (~2/km)1/4) the Hamiltonian is (assuming infinite separation):

H = − 1
2

∂2

∂zA
2 + 1

2zA
2− 1

2
∂2

∂zB
2 + 1

2zB
2. (4.18)

The energy is the sum of the individual energies, i.e., EvAvB = vA +vB+1. The
ground state energy (vA = vB = 0) is 1 unit, i.e. hν.



19

If the instantaneous displacements are zA(t) and zB(t), the dipole moments on
A and B are µA = −QzA(t) and µB = −QzB(t), respectively.

At a finite separation R, these dipoles interact. The general form of the
dipole–dipole interaction energy is (derived later)

Uµµ = −µAµB

R3

(
2cosθAcosθB−sinθAsinθBcosϕ

)
,

Here, θA = θB = π and ϕ = 0 so the Hamiltonian at finite separations has the
additional term czAzB where c = − 2Q2

R3 .

Using the new variables Z1 =
√

1
2(zA +zB) and Z2 =

√
1
2(zA−zB), the potential

term in the Hamiltonian becomes

V = 1
2zA

2 +czAzB + 1
2zB

2 = 1
2(1+c)Z1

2 + 1
2(1−c)Z2

2, (4.19)

while the kinetic energy is unchanged in form:

T = − 1
2

∂2

∂zA
2 −

1
2

∂2

∂zB
2 = − 1

2
∂2

∂Z1
2 − 1

2
∂2

∂Z2
2 . (4.20)

20The dispersion energy: a correlation effect
So we now have an oscillator Z1 with frequency

√
1+c, and another, Z2, with

frequency
√

1−c. The allowed energies (in the original scaled units) are now
(v1 + 1

2)
√

1+c+(v2+ 1
2)
√

1−c.

In a classical system the coupling doesn’t change the minimum energy,
which occurs when both oscillators are at rest. That is, zA = zB = 0, so
Z1 = Z2 = 0 also, and the total energy is zero.

A quantum system, however, has zero-point energy: 1 unit in the original
uncoupled system.

When v1 = v2 = 0 the energy of the interacting system is

E = 1
2(
√

1+c+
√

1−c) = 1
2[(1+ 1

2c− 1
8c2 + · · ·)+ (1− 1

2c− 1
8c2−·· ·)]

= 1− 1
8c2−·· · . (4.21)

That is, the zero-point energy is smaller for the correlated oscillators than for
the uncoupled ones, whether c is positive or negative. The stabilization
energy is the Drude approximation to the disperion.



21The Drude expression for C6

The Drude expression for the dispersion energy is − 1
8c2 = − Q4

2R6 which varies
as 1

R6 . The coefficient of this term is usually labeled C6 and, inserting the
energy factors scaled out, is defined as

C6 =
~ωQ4

2(4πε0)2k2 . (4.22)

We now need to relate Q and k to measurable quantities. This is done using
classical ideas.

If the charge −Q extends by z in an electric field E then balancing forces we
must have kz= −QE, or z= −QE

k . Now, by definition, µ= −zQ= Q2

k E. But, by
definition of the polarizability, µ= αE, therefore

α =
Q2

k
. (4.23)

This allows us to re-write the C6 as

C6 =
~ωα2

2(4πε0)2 . (4.24)

22The Drude expression for C6

In 3-dimensions this expression becomes

C6 =
3~ωα2

4(4πε0)2 , (4.25)

and taking, as London did, ~ω = EI , the ionization energy, we get

C6 =
3EI α2

4(4πε0)2 . (4.26)

This is an approximation, but it contains all the correct physics. The
dispersion energy is always attractive (at second-order) and can be
interpreted as arising from a correlation in the electronic fluctuations on the
molecules.

This is a purely quantum phenomenon and has no classical analogue.

We shall re-derive this approximation for C6 later using more sophisticated
means.



23Exchange and Asymptotic Energies
The expressions for the interaction energy components obtained from
perturbation theory are valid for all intermolecular separations.

At short intermolecular separations, when the molecular wavefunctions
overlap, the dimer wavefunction must be antisymmetrized with respect to
electron exchange between the monomers. This leads to additional terms in
the interaction energy: The exchange energies.

At large intermolecular separations, the interaction operator V can be
expanded in the multipole series and the interaction energy components can
be written in terms of properties of the unperturbed monomers.

We will look at this multipole expansion now and come back to exchange
effects later.

245. Multipole moments

5.1 A Molecule in an External Potential

We start with the electrostatic interaction, because it is the fundamental
interaction from which the other terms in the potential are derived.

We consider the energy of a molecule in an external electric field.
Eventually we will take this to be the field due to some other molecule.



25The dipole moment

Consider the interaction of a molecule with a uniform electric field F in the z
direction.

The electrostatic potential of this field is V = −Fz, and the energy of the
molecule in the field is

Ues = −F ∑
a

eaza, (5.1)

where ea is the charge on particle a and za = raz is the z component of its
position vector ra.

We are led to define the electric dipole moment:

µ= ∑
a

eara, (5.2)

Then (5.1) becomes simply Ues = −Fµz, or, more generally,

Ues = −F ·µ. (5.3)

26The dipole moment: units and numerical values

The traditional unit of
measurement for dipole
moments is the Debye:
1D = 10−18esu.

In SI units, molecular dipole
moments have very small
values, of the order of
10−29Cm.

It is often more convenient
to use atomic units: the
atomic unit of dipole
moment is
ea0 = 2.54D= 8.5×10−30Cm.

Typical values for small polar
molecules are of the order of 1 atomic
unit or a few Debye.

µ/D µ/10−30Cm µ/ea0

NH3 1.47 4.9 0.58

H2O 1.85 6.2 0.73

HF 1.83 6.1 0.72

HCl 1.11 3.7 0.44

H2CO 2.33 7.8 0.92

CH3CN 3.91 13.1 1.54

There is a useful tabulation of dipole
moments and other molecular
properties in Gray and Gubbins
(1984), Appendix D.



27Non-uniform electric fields

µ can also be described as the first moment of the charge distribution. The
zeroth moment is just the total charge:

q = ∑
a

ea. (5.4)

It is an integer multiple of the elementary charge e, and is constant for an
isolated molecule.

If we have a molecule in a non-uniform electric field, we need to go further.
The interaction energy of an assembly of charged particles, such as a
molecule, with an external potential is

Ues = ∑
a

eaV(A+ ra), (5.5)

where ra is the position of particle a relative to some molecular origin A.

28Some notation
It is convenient to write V(A) = V, (∇αV)A = Vα, etc.

Remember that the electric field is Fα = −∇αV = −Vα.

We also use the Einstein repeated-suffix summation convention:

• Greek suffixes α, β, etc., take the values x, y or z.

• Where a suffix is repeated in one term, a sum over these three values is
implied; so for instance,

Mγγ ≡ Mxx+Myy+Mzz,

µαVα ≡ µxVx +µyVy +µzVz.

• The quantity δαβ is the Kronecker delta:

δαβ =

{
1 if α = β,

0 if α 6= β.

Notice that δγγ ≡ δxx+ δyy+ δzz= 3 (not 1).



29The second moment

Recall from eq. (5.5) that Ues = ∑
a

eaV(A+ ra).

We expand the potential in a Taylor series:

V(A+ ra) = V(A)+∑
α

raα(∇αV)A + 1
2 ∑

αβ
raαraβ(∇α∇βV)A + · · · .

= V + raαVα + 1
2raαraβVαβ + · · · .

The energy becomes

Ues = ∑
a

eaV(A+ ra) = V ∑
a

ea +Vα ∑
a

earaα + 1
2Vαβ ∑

a
earaαraβ + · · · .

We can recognize the charge and dipole moment in the first two terms
to express this in the form

Ues = qV+µαVα + 1
2MαβVαβ + · · · ,

where we have also introduced Mαβ = ∑aearaαraβ, the second moment of
the charge distribution.

30The second moment for a spherical atom

The energy is
Ues = qV+µαVα + 1

2MαβVαβ + · · · , (5.6)

The second moment Mαβ is not a very convenient quantity to use. To see why,
consider an argon atom in the external field.

Because of the atom’s spherical symmetry, its second moment has
components Mxx = Myy = Mzz= M, say, while Mxy = Mxz = · · · = 0. That is,
Mαβ = Mδαβ, where δαβ is the Kronecker delta.

Now the term in the energy involving the second moment becomes

1
2MαβVαβ = 1

2MδαβVαβ = 1
2MVαα = 1

2M∇2V = 0, (5.7)

where the last step arises because the external field satisfies Laplace’s
equation.

So the second moment of a spherical atom contributes nothing to the energy
of interaction with an external field.



31The quadrupole moment

Thus a spherical atom has a non-zero second moment, but there is no
interaction with the external field.

In matrix form, this second moment is M =




M 0 0
0 M 0
0 0 M


.

For a molecule, we can write

M =




Mxx ? ?
? Myy ?
? ? Mzz


 =




Mxx−M ? ?
? Myy−M ?
? ? Mzz−M


+




M 0 0
0 M 0
0 0 M


 .

(The off-diagonal elements are irrelevant for the moment.) The second term
contributes nothing to the energy, whatever the value of M.

We choose M so that the first term is traceless, i.e. so that
Mxx+Myy+Mzz−3M = 0 or M = 1

3Mγγ.

32The quadrupole moment

The quadrupole moment is defined as this traceless modified second moment,
though for historical reasons we also multiply by 3

2 :

Θαβ = 3
2

(
Mαβ −

(1
3Mγγ

)
δαβ

)

= ∑
a

ea
(

3
2raαraβ − 1

2r2
aδαβ

)
. (5.8)

The quadrupole moment is zero by definition for a spherical atom, and
describes only the non-spherical part of the second moment.

In terms of the quadrupole moment, the energy becomes

Ues = qV+µαVα + 1
3ΘαβVαβ + · · · . (5.9)

The quadrupole moment has dimensions of [charge]× [length]2, so the atomic
unit is ea2

0 = 4.49×10−40Cm2. A typical value for a small molecule is a few
atomic units.



33Quadrupole moments and the field gradient

In a uniform electric field Fξ, the field is
the same everywhere and its derivatives
with respect to position are all zero.

The field at any molecule due to
neighbouring molecules is often highly
non-uniform. That is, the electric field Fξ
varies from place to place, and the field
gradient Fξη = ∂Fξ/∂xη may be nonzero.

x

y
b b

b b

Fx > 0

Fx < 0

Fxy > 0

In the example illustrated, Fx < 0 when y < 0 and Fx > 0 when y > 0, so that
Fxy = ∂Fx/∂y> 0 (and Vxy < 0).

A CH2F2 molecule in the position shown has a positive quadrupole moment
Θxy, and its interaction energy 1

3ΘαβVαβ with the field gradient is negative.

C

FH

F H

−+

− +

34Components of the quadrupole moment
There are five independent components of Θαβ, because Θαβ = Θβα and
Θxx+ Θyy+ Θzz= 0. Thus the independent components are Θzz, Θxx−Θyy, Θxy,
Θxz and Θyz.

Of these, only Θzz may be non-zero for a
linear molecule or symmetric top. It can
be written alternatively as

Θzz= ∑
a

ea(
3
2z2

a− 1
2r2

a) (5.10)

= ∑
a

1
2ear2

a(3cos2 θa−1), (5.11)

where (ra,θa,ϕa) are the polar coordinates
describing the position of particle a.

From this we can see that positive charge near the z axis (cos2 θ > 1
3 , i.e.

θ < 55◦ or θ > 125◦) contributes positively to Θzz and negative charge
contributes negatively, while charges in the region near the xyplane
(55◦ < θ < 125◦) contribute with the opposite sign.

z

x y

55◦

− 1
2− 1

2

+1

+1

0

1
2(3cos2 θ−1)



35Quadrupole moments

z

x y

55◦

− 1
2− 1

2

+1

+1

0

O

O

C

CO2 has negatively charged O
atoms on the z axis and has a
negative quadrupole moment
of −3.3ea2

0.

Θzz= −3.3ea2
0

B
F

F F
BF3 has negatively-charged
atoms in the xy plane, leading to
a positive quadrupole moment.

Θzz> 0

36Atomic quadrupole moments

Θzz< 0

The charge distribution of an individual
atom may be non-spherical, leading to a
non-zero quadrupole moment. An electron
in a pz orbital has most of its electron density
in the region where 1

2(3cos2 θ−1) is positive,
and so contributes negatively to Θzz.

A complete p shell is spherical, but a Cl atom
with a hole in the 3pz orbital has a positive
Θzz.

Similarly, HCl has a positive quadrupole
moment, in part because the pσ orbital is
involved in bonding, while the pπ orbitals
are non-bonding and more diffuse.
(Remember that there’s also an r2 factor in
the quadrupole moment.)



37Other components of the quadrupole moment

Molecules with lower symmetry have
other non-zero components. To find
out which, we just have to look up the
functions x2, y2, z2, xy, xzand yzin the
character table and see which are
symmetric. The general rule that
Θxx+ Θyy+ Θzz= 0 always applies.

The water molecule has C2v symmetry,
and the character table shows that it
can have non-zero Θxx, Θyy and Θzz.

With axes as shown, Θxx−Θyy =
〈
∑a

3
2(x2

a−y2
a)

〉
> 0. In fact

Θxx = 1.96ea2
o,

Θyy = −1.86ea2
0,

Θzz= −0.10ea2
0.

OH H

−

−

++

x

y

38Change of origin

If the origin is changed to a new
position at d relative to the old origin,
the multipole moments may change.
Using primed quantities to refer to the
new origin, the dipole moment
becomes

µ′α = ∑
a

ear ′aα

= ∑
a

ea(raα −dα)

= µα −qdα. (5.12)
If the charge q is non-zero, the dipole
moment depends on the choice of origin.

y

x

x′

y′

d

r′a
ra

eab



39Change of origin: the quadrupole moment

For the quadrupole moment:

Θ′
αβ = ∑

a
ea

(
3
2r ′aαr ′aβ − 1

2(r ′a)
2δαβ

)

= Θαβ − 3
2dαµβ − 3

2dβµα +(d ·µ)δαβ + 1
2q(3dαdβ −d2δαβ). (5.13)

HF has a positive quadrupole moment Θzz if we take the origin at the F atom
or the centre of mass, but if we were to take the origin at the H atom Θzz

would be negative.

F

H

Θzz> 0 H

F

Θzz< 0

The quadrupole moment is independent of origin if q and µ are both zero, but
otherwise it is essential to specify the origin of coordinates when giving
values for quadrupole moments.

40Higher multipoles

So far we have met the charge, dipole moment and quadrupole moment:

qA = ∑ea, (5.4)

µA
α = ∑earaα, (5.2)

ΘA
αβ = ∑ea(

3
2raαraβ − 1

2r2
aδαβ). (5.8)

We can define higher moments in a similar way. The multipole moment of
rank n (the ‘2n-pole moment’) is

ξ(n)A
αβ...ν ≡ (−)n 1

n! ∑
a

ear2n+1
a

∂
∂raα

∂
∂raβ

· · · ∂
∂raν

(
1
ra

)
. (5.14)

From the definition it follows that the multipole moment ξ(n)A
αβ...ν is unchanged

by any permutation of its suffixes, and is traceless with respect to any pair of
suffixes. (That is, if we set any two suffixes equal to x, y and z in turn, and add
up the results, we get zero.) These properties imply that although ξ(n)A

αβ...ν has
3n components, only 2n+1 of them are independent.



41Spherical harmonic formulation

An equivalent definition of the multipole moments can be given in terms of
spherical harmonics:

Qnm = ∑
a

earn
aCnm(θa,ϕa), (5.15)

where

Cnm =

√
4π

2n+1
Ynm (5.16)

is a modified spherical harmonic, and (ra,θa,ϕa) are the spherical polar
coordinates of the position ra of particle a.

This definition explicitly leads to 2n+1 independent components, which can
be expressed in terms of the Cartesian components. It is a more convenient
definition for advanced work, but the Cartesian definition is easier to handle
in simple applications.

42Multipole expansion

The electrostatic energy becomes

Ues = VqA +VαµA
α +

1
3

VαβΘA
αβ + · · ·

+
1

(2n−1)!!
Vαβ...νξ(n)A

αβ...ν + · · · , (5.17)

where (2n−1)!! ≡ (2n−1)(2n−3) . . .5.3.1.

Recall that V can be any external potential acting on A. This equation
describes the interaction of molecule A with such a potential, in terms of its
multipole moments and the potential and its derivatives at the centre of the
molecule (i.e., at A).

The same expression can be written in terms of the electric field Fα = −Vα, the
field gradient Fαβ = −Vαβ, and so on.



436. The Asymptotic form of the interaction operator

The electrostatic interaction between
two molecules, in its simplest form, is
just the sum of the coulombic
interactions between the particles
comprising them:

V =
1

4πε0
∑
a∈A

∑
b∈B

eaeb

rab

=
1

4πε0
∑
a

∑
b

eaeb

|R− ra+ rb|
, (6.1)

where ea is the charge of particle a,
which is at position ra relative to the
‘centre’ of molecule A at A. The choice of
‘centre’ is arbitrary, though one choice
may be more sensible than others. R is
the vector B−A from the centre of A to
the centre of B.

R

A

B

eara

eb
rb

R+ rb− ra

44The multipole expansion

The electrostatic energy is

V =
1

4πε0
∑
a∈A

∑
b∈B

eaeb

rab
=

1
4πε0

∑
a

∑
b

eaeb

|R− ra+ rb|
. (6.2)

We can write this as the energy of the multipoles of molecule A in the field at
A due to molecule B (eq. (5.17)):

V = qAVA + µ̂A
αVA

α + 1
3Θ̂A

αβVA
αβ + · · · (6.3)

or as the energy of the multipoles of molecule B in the field at B due to
molecule A:

V = qBVB + µ̂B
αVB

α + 1
3Θ̂B

αβVB
αβ + · · · , (6.4)

We shall use the second form. Note that we are now treating the interaction
as an operator.



45Interaction functions
To use eq. (6.4) we need the potential at B due to A.

We consider first just the charge qA of molecule A.

The electrostatic potential at B due to this charge is VB = qA/4πε0R.

We define a new quantity T by

T =
1

4πε0R
, (6.5)

so that VB = qAT .

To derive the interaction in multipole expansion form we need the fields, i.e.
the derivatives of T .

46Differentiating functions of R

If the vector R has components (X,Y,Z), then R=
√

X2 +Y2 +Z2, so that

∂R
∂X

=
∂

∂X
(X2 +Y2 +Z2)1/2 = 1

2(X2 +Y2 +Z2)−1/2×2X =
X
R

.

More generally, ∂R/∂Rα = Rα/R.

Then, using the chain rule, the first derivative of T is given by

4πε0Tα =
∂

∂Rα

1
R

= − 1
R2 ×

Rα

R
= −Rα

R3 . (6.6)



47Interaction tensors

For the second derivative, note that ∂Rβ/∂Rα is 1 if α = β and 0 otherwise; i.e.,
∂Rβ/∂Rα = δαβ.

Then

4πε0Tαβ =
∂2

∂RαRβ

1
R

= − ∂
∂Rα

Rβ

R3

= − 1
R3 δαβ +Rβ.

3
R4 .

Rα

R

=
3RαRβ −R2δαβ

R5

=
3R̂αR̂β − δαβ

R3 (6.7)

where the last line is expressed in terms of components R̂α = Rα/R of the unit
vector R̂ = R/R.

48Interaction tensors

In general we define the nth-rank interaction tensor by

Tαβ...ν ≡
1

4πε0
∇α∇β . . .∇ν

1
R

. (6.8)

Tαβ...ν (n suffixes) is R−n−1 times a polynomial of degree n in the components
of the unit vector R̂.

Now the energy is

V = VBqB +VB
α µ̂B

α + 1
3VB

αβΘ̂B
αβ + · · · , (6.9)

and VB = qAT , so in terms of the interaction tensors T, Tα, etc., the energy of
molecule B in the field of a point charge qA at A becomes

V = qATqB +qATαµ̂B
α + 1

3qATαβΘ̂B
αβ + · · · . (6.10)



49The electrostatic potential of a molecule
More generally, the potential at B due to A is

VB = ∑
a

ea

4πε0|R− ra|
. (6.11)

We expand this as a Taylor series:

VB = ∑
a

ea

4πε0

×
{

1
R

+ raα

(
∂

∂raα

1
|R− ra|

)

ra=0
+ 1

2raαraβ

(
∂2

∂raαraβ

1
|R− ra|

)

ra=0
+ · · ·

}
.

(6.12)

Now we can change the derivative w.r.t. raα to a derivative w.r.t. Raα,
provided we change the sign:

VB = ∑
a

ea

4πε0

×
{

1
R

+ raα

(
− ∂

∂Rα

1
|R− ra|

)

ra=0
+ 1

2raαraβ

(
∂2

∂RαRβ

1
|R− ra|

)

ra=0
+ · · ·

}
.

(6.13)

50The electrostatic potential of a molecule

When we set ra = 0 in the derivatives the expression simplifies:

VB = ∑
a

ea

4πε0

{
1
R
− raα∇α

1
R

+ 1
2raαraβ∇α∇β

1
R
−·· ·

}

= ∑
a

ea
(
T − raαTα + 1

2raαraβTαβ −·· ·
)

= qAT − µ̂A
αTα + 1

3Θ̂A
αβTαβ −·· · . (6.14)

Differentiating the potential to get the fields is now (formally) trivial: we just
add another suffix to each T··· for each derivative. So, for example,

VB
γ = qATγ − µ̂A

αTαγ + 1
3Θ̂A

αβTαβγ −·· · . (6.15)



516.1 The multipole expansion

We can now construct the electrostatic interaction in terms of the multipole
moments. We need to be careful with the suffixes.

V = VBqB +VB
α µ̂B

α +VB
αβΘ̂B

αβ + · · ·
= (qAT − µ̂A

ξ Tξ + 1
3Θ̂A

ξηTξη + · · ·)qB

+(qATα − µ̂A
ξ Tξα + 1

3Θ̂A
ξηTξηα + · · ·)µ̂B

α

+(qATαβ − µ̂A
ξ Tξαβ + 1

3Θ̂A
ξηTξηαβ + · · ·)1

3Θ̂B
αβ + · · ·

= qATqB+qATαµ̂B
α − µ̂A

ξ TξqB +qATαβ
1
3Θ̂B

αβ − µ̂A
ξ Tξβµ̂B

β + 1
3Θ̂A

ξηTξηqB

− µ̂A
ξ Tξαβ

1
3Θ̂B

αβ + 1
3Θ̂A

ξηTξηαµ̂B
α + 1

3Θ̂A
ξηTξηαβ

1
3Θ̂B

αβ + · · · (6.16)

For neutral species, the charges are zero, and the leading term is the
dipole-dipole interaction:

V = −µ̂A
αTαβµ̂B

β − 1
3µ̂A

αTαβγΘ̂B
βγ + 1

3Θ̂A
αβTαβγµ̂

B
γ + 1

9Θ̂A
αβTαβγδΘ̂B

γδ + · · · (6.17)

52The multipole expansion

The multipole expansion of the electrostatic interaction between two neutral
molecules has the form

V = −µ̂A
αTαβµ̂B

β − 1
3µ̂A

αTαβγΘ̂B
βγ + 1

3Θ̂A
αβTαβγµ̂

B
γ

− 1
15µ̂A

αTαβγδΩ̂B
βγδ + 1

9Θ̂A
αβTαβγδΘ̂B

γδ − 1
15Ω̂A

αβγTαβγδµ̂B
δ + · · · (6.18)

We can now use this expanded form of the interaction operator in the
perturbation theory expressions for the electrostatic, induction and
dispersion energies we have already derived.



537. Asymptotic interaction energy components

7.1 The Electrostatic energy

The first-order energy is just the expectation value of V over the ground-state
wavefunction for the non-interacting two-molecule system, i.e. the product
0A0B:

Ues = 〈0A0B|V|0A0B〉. (7.1)

This leads to an energy expression in which the multipole moment operators
are simply replaced by their expectation values:

Ues = −µA
αTαβµB

β − 1
3µA

αTαβγΘB
βγ + 1

3ΘA
αβTαβγµ

B
γ

− 1
15µA

αTαβγδΩB
βγδ + 1

9ΘA
αβTαβγδΘB

γδ − 1
15ΩA

αβγTαβγδµB
δ + · · · (7.2)

54Properties of multipole interaction terms
The rank of a multipole moment is 0 for the charge (zeroth moment), 1 for the
dipole (first moment), 2 for the quadrupole (derived from the second
moment) and so on.

The interaction between multipole moments QA
k and QB

k′ , with ranks k and k′,
involves a Tαβ... with k+k′ suffixes, and has the form

QA
k QB

k′

4πε0
×R−k−k′−1×angular factor.

The angular factor depends on the direction of R and the orientations of A
and B. It averages to zero

• over all orientations of molecule A (unless k = 0) or

• over all orientations of molecule B (unless k′ = 0) or

• over all directions of R (unless k = k′ = 0).

Consequently the electrostatic interaction is strongly orientation-dependent,
and it has a strong influence on structure.



55The dipole–dipole interaction

The dipole–dipole interaction energy is

Uµµ = −µA
αTαβµB

β

= −µA
α

3RαRβ −R2δαβ

4πε0R5 µB
β

=
R2µA ·µB−3(µA ·R)(µB ·R)

4πε0R5 . (7.3)

z

x

y
A

R

ϕA

θA

B ϕB

θB

It is often convenient to choose coordinates
with the z axis along R, with the origin at A.
The direction of µA is specified by polar
angles θA and ϕA and the direction of µB by
θB and ϕB. Then

R =




0
0
R


 , µA = µA




sinθAcosϕA

sinθAsinϕA

cosθA


 , µB = µB




sinθBcosϕB

sinθBsinϕB

cosθB


 .

56The dipole–dipole interaction
The dipole–dipole interaction becomes

Uµµ = − µAµB

4πε0R3

(
2cosθAcosθB−sinθAsinθB cosϕ

)
,

where ϕ = ϕB−ϕA.

z

x

y
A

R

ϕA

θA

B ϕB

θB

µAµB

4πε0R3× −2 +2 −1 +1

55◦

0
[]

The most favourable orientation, at a given
distance R, is θA = θB = 0, when the interaction
energy is −2µAµB/4πε0R3.

[]

The geometry with θA = θB = π/2, ϕ = π has energy
−µAµB/4πε0R3 and is also favourable.



57The quadrupole–quadrupole interaction
Another important interaction is the one between two non-polar (µ= 0)
quadrupoles. For a linear molecule or symmetric top, the only non-zero
components of the quadrupole moment are Θzz= Θ and Θxx = Θyy = − 1

2Θ.

Note that the distance dependence is R−5 in this case.

ΘAΘB

4πε0R5 × +6 −3

T

21
4 +1

45◦

−2 7
16

Slipped
parallel

In this case the favourable structures are the ‘T’ and the ‘slipped-parallel’
geometries. The better angular factor for the T structure is often counteracted
by a smaller separation in the slipped-parallel geometry, and both structures
are commonly observed, often in the same crystal.

58The dipole–quadrupole interaction

Many molecules have both a dipole and a quadrupole moment, and the
interaction between such molecules involves not only the dipole–dipole and
quadrupole–quadrupole terms but also the quadrupole–dipole and
dipole–quadrupole.

ΘAµB

4πε0R4 × −3 +3 − 3
2

In such cases, the preferred geometry is a compromise between all the effects.

For HF dimer, for instance, the observed geometry is neither T-shaped (as the
quadrupole–quadrupole interaction would favour) nor linear (as the
dipole–dipole interaction would suggest), but is a non-linear structure with
the F–H···F angle close to linear and the FH···F–H angle in the region of 120◦.



597.2 The induction energy
Let’s look at the leading (dipole–dipole) term in the perturbation V, i.e.
−µ̂A

αTαβµ̂B
β . UB

ind (see Eq. (4.11)) becomes

UB
ind = − ∑

n6=0

〈0A0B|µ̂A
αTαβµ̂B

β |0AnB〉〈0AnB|µ̂A
δ Tγδµ̂B

γ |0A0B〉
WB

n −WB
0

= −µA
αTαβ ∑

n6=0

〈0B|µ̂B
β |nB〉〈nB|µ̂B

γ |0〉
WB

n −WB
0

TγδµA
δ

= − 1
2µA

αTαβαB
βγTγδµA

δ . (7.4)

Now −µA
βTαβ is the electric field FB

α at B due to the dipole moment of A, and
similarly −TγδµA

δ = FB
γ . Thus UB

ind can be written in the form

UB
ind = − 1

2αB
αγF

B
α FB

γ . (7.5)

In this example the electric field arises purely from the dipole moment of A,
but the source of the field is immaterial. Consequently this result applies
equally to the general case of a molecule in the field of all its neighbours.

60Induction: Physical interpretation

If a molecule is placed in an external electric field F, the electrons experience
forces in one direction and the nuclei in another, and the charge distribution
distorts. The result is that there is an induced dipole moment ∆µ. The
induced dipole need not be parallel to the applied field, and it is given by the
expression

∆µξ = αξηFη, (7.6)

where αξη is the polarizability tensor.

E.g. in benzene, the electrons can
move more freely in the molecular
plane than perpendicular to it, so
αxx and αyy (which are equal by
symmetry) are larger than αzz.

F

∆µ

∆µz = αzzFz

∆µx = αxxFx

When the electrons distort in response to the field, there is an associated
change in the energy. By the variational principle it must be negative, and it
takes the form

Uind = − 1
2αξηFξFη. (7.7)



61The induction energy: General form

More generally, the energy of interaction between the molecule and a
uniform external electric field can be written as a power series in the field:

U = −µ0
ξFξ − 1

2αξηFξFη − 1
6βξηζFξFηFζ −·· · , (7.8)

where βξηζ is the hyperpolarizability tensor.

The derivative of this expression with respect to external field is the dipole
moment as a function of applied field:

µξ = − ∂U
∂Fξ

= µ0
ξ + αξηFη + 1

2βξηζFηFζ + · · · . (7.9)

For simplicity we shall ignore the non-linear hyperpolarizability terms.

62Mean polarizability and polarizability anisotropy

For an atom or ion, the induced dipole is always parallel to the electric field,
so the polarizability tensor takes the form αξη = αδξη, and

∆µξ = αδξηFη = αFξ. (7.10)

The induction energy becomes

Uind = − 1
2αδξηFξFη = − 1

2αFξFξ = − 1
2αF2. (7.11)

In general, we can write
αξη = αδξη + ∆αξη, (7.12)

where

• α = 1
3αξξ is the mean polarizability,

• ∆αξη is the polarizability anisotropy.

The polarizability anisotropy is zero for atoms and ions. The same is true for
spherical-top molecules, and it is a good approximation for some less
symmetrical molecules.



637.3 Non-additivity of the induction energy

The field at an atom due to a
neighbouring dipole µ is F = 2µ/R3, so
the induction energy is
− 1

2αF2 = −2αµ2/R6.
αµ

If there are two neighbouring dipoles
their fields can add, so that the
induction energy is
− 1

2α(2F)2 = −8αµ2/R6 . . .
αµ µ

1

4

. . . or they can cancel, so that the field
and the induction energy are both
zero.

In both cases the total energy differs
greatly from the sum of two pair
interactions: the induction energy is
strongly non-additive. This makes the
induction energy very awkward to
handle computationally.

αµ µ 0

64Example: alkaline-earth halides
A striking example of the non-additivity
of the induction energy is provided by
the alkaline-earth halides such as MgCl2.
One might expect the Mg2+ ions to be
arranged symmetrically around each Cl−

ion. However the electric field at the Cl−

ion is zero in this arrangement, so that the
induction energy is also zero.

−+ +

A less symmetrical arrangement, right,
leads to a non-zero field at the Cl− ion
and hence a non-zero induction energy, at
the cost of a slightly increased repulsion
between the Mg2+ ions. If the
polarizability of the halide ion is large
enough, the distorted structure is
favoured, and it is this structure that is
observed, except in the fluorides.

∆µ

+ +

θ

See Wilson and Madden (1994).



65Cooperative induction

Another aspect of the non-additivity of the
induction energy is its cooperative nature.

In the example shown, each atom is polarized
by the total dipole of the other, including the
induced dipole:

∆µA
z = αA

zzF
A
z = −αA

zzTzz(µ
B
z + ∆µB

z),

∆µB
z = αB

zzF
B
z = −αB

zzTzz(µ
A
z + ∆µA

z).
(7.13)

The induced dipole and the induction energy
are enhanced as a result.

The effect is particularly important in
hydrogen-bonded liquids such as water.

A

µA

∆µA

B

µB

∆µB

z

66Quadrupole polarizabilities

If a tetrahedral molecule such as CH4

is placed in a field gradient Fxy as
shown, the two H atoms in the regions
where xy> 0 will become positively
charged, and those where xy< 0 will
become negatively charged. The result
is a dipole in the z direction and a Θxy

quadrupole moment.

x

y
b b

b b

C

HH

H H

−+

− +

The polarizabilities that describe these effects are the dipole–quadrupole
polarizability Aξ,ηζ and the quadrupole–quadrupole polarizability Cξη,λζ. In this
case,

µz = 1
3Az,xyFxy,

Θxy = Cxy,xyFxy,
(7.14)

so both Az,xy and Cxy,xy are non-zero for methane and other tetrahedral
molecules.



67Quadrupole polarizabilities and the induction energy

In a tetrahedral molecule, a uniform field in the z direction induces a
quadrupole moment Θxy. The dipole–quadrupole polarizability describes this
effect too:

Θxy = Az,xyFz. (7.15)

Standard group-theoretical techniques can be used to find the non-zero
components of these polarizabilities in any symmetry. For example, the
dipole–quadrupole polarizability must change sign under inversion (because
Fz changes sign and Θxy doesn’t). If inversion is a symmetry operation, it will
leave Aξ,ηζ unchanged, so all components of A must be zero in this case.

In a non-uniform electric field, the induction energy is

Uind =− 1
2αξηFξFη

− 1
3Aξ,ηζFξFηζ

− 1
6Cξη,λζFξηFλζ −·· · (7.16)

687.4 The dispersion energy

We again consider only the dipole-dipole term in V:

U (6)
disp = − ∑

mA 6=0
∑

nB 6=0

〈0A0B|µ̂A
αTαβµ̂B

β |mAnB〉〈mAnB|µ̂A
γ Tγδµ̂B

δ |0A0B〉
WA

m −WA
0 +WB

n −WB
0

= −TαβTγδ ∑
mA 6=0

∑
nB 6=0

〈0A|µ̂A
α|mA〉〈mA|µ̂A

γ |0A〉〈0B|µ̂B
β |nB〉〈nB|µ̂B

δ |0B〉
WA

m −WA
0 +WB

n −WB
0

. (7.17)

This is an inconvenient expression to deal with, because although the matrix
elements can be factorised into a part referring to A and a part referring to B,
the denominator cannot.

One way to handle it was first introduced by London, and uses the Unsöld or
average-energy approximation: we assume that the significant terms in the
sum over mA (i.e. those with large numerators) all have excitation energies
WA

m −WA
0 close to some average excitation energy UA, and that the significant

terms for B all have excitation energies close to some average energy UB.



69Dispersion energy — the London formula

Using the average-energy approximation:

U (6)
disp ≈−TαβTγδ ∑

mA 6=0
∑

nB 6=0

〈0A|µ̂A
α|mA〉〈mA|µ̂A

γ |0A〉〈0B|µ̂B
β |nB〉〈nB|µ̂B

δ |0B〉
UA +UB

= − UAUB

UA+UB
TαβTγδ ∑

mA 6=0
∑

nB 6=0

〈0A|µ̂A
α|mA〉〈mA|µ̂A

γ |0A〉〈0B|µ̂B
β |nB〉〈nB|µ̂B

δ |0B〉
UAUB

≈− UAUB

4(UA+UB)
TαβTγδαA

αγαB
βδ (7.18)

(using the average-energy approximation in the polarizability formula).

For atoms, ααγ reduces to αδαγ, and this becomes

U (6)
disp = − UAUB

4(UA +UB)
αAαBTαβTαβ = − 3UAUB

2(UA+UB)

αAαB

(4πε0)2R6 , (7.19)

because TαβTαβ = 6/(4πε0)
2R6.

70The London formula

U (6)
disp = − 3UAUB

2(UA +UB)

αAαB

(4πε0)2R6 , (7.20)

This is the London formula for the dispersion energy between two atoms,
often written as −C6R−6. Compare this with the Drude approximation eq.
(4.26).

• Notice the R−6 distance dependence.

• The dispersion coefficient C6 is proportional to the polarizabilities of
both atoms.

• All molecules are polarizable, so dispersion is universal.

• The same formula can be used for molecules, when it gives the
dispersion interaction averaged over relative orientations of the two
molecules.

• This doesn’t give a practical formula for determining C6, both because
it’s an approximation and because we don’t know UA or UB.



71A better method

An alternative approach yields an exact formula. It depends on the identity:

1
A+B

=
2
π

Z ∞

0

AB
(A2 +u2)(B2 +u2)

du, (7.21)

which is valid for positive A and B. Applying this formula to the energy
denominator in the dispersion energy formula, eq. (7.17), with
~A = WA

m −WA
0 = ~ωA

m, we get

U (6)
disp = −2~

π
TαβTγδ

Z ∞

0
∑
m

′ 〈0A|µ̂A
α|mA〉〈mA|µ̂A

γ |0A〉ωA
m

~
(
(ωA

m)2 +u2
)

×∑
n

′ ω
B
n〈0B|µ̂B

β |nB〉〈nB|µ̂B
δ |0B〉

~
(
(ωB

n)2 +u2
) du. (7.22)

We can recognize in the two sums over states the expressions for the
polarizabilities of A and B at the imaginary frequency iu, so the result is

U (6)
disp = − ~

2π
TαβTγδ

Z ∞

0
αA

αγ(iu)αB
βδ(iu) du. (7.23)

72The exact formula

U (6)
disp = − ~

2π
TαβTγδ

Z ∞

0
αA

αγ(iu)αB
βδ(iu) du. (7.24)

For spherical atoms, this reduces in the same way as before to give

C6 =
3~

(4πε0)2π

Z ∞

0
αA(iu)αB(iu) du. (7.25)

• These formulae are formally exact in the limit of large R.

• The polarizabilities can be computed accurately ab initio . . .

• . . . and determined experimentally from data on spectral intensities
and frequencies — see, e.g., Kumar and Meath (1985),
Meath and Kumar (1990).



73Dispersion coefficients

Dispersion coefficients (C6 coefficients) have dimensions of [energy]× [length]6.
In atomic units this becomes Eha6

0, but many other units are used.

C6/Eha6
0 α/4πε0a3

0

He···He 1·46 1·39
Ne···Ne 6·6 2·00
Ar ···Ar 64·3 11·08
Xe ···Xe 286 27·67
Ar ···Xe 134·5
He···CO 10·7

C6/Eha6
0 α/4πε0a3

0

CO···CO 81·4 13·36
SO2 ···SO2 294 26·3
CS2 ···CS2 871 58·7

HCCH···HCCH 204·1 23·6
C6H6 ···C6H6 1723 70·2
HCCH···C6H6 593·0

• The values increase rapidly with the number of electrons,
corresponding to increasing polarizability.

• As both the London formula and the exact formula suggest, mixed C6

coefficients may be obtained reasonably accurately from the geometric

mean formula, CAB
6 ≈

√
CAA

6 CBB
6 .

74Higher terms
The dipole–dipole perturbation that we have used gives only the leading
terms in a power series in 1/R. In general,

Udisp = −C6

R6 −
C7

R7 −
C8

R8 − . . . (7.26)

The additional terms arise when dipole–quadrupole,
quadrupole–quadrupole, . . . terms in the electrostatic perturbation are
included.
A general contribution to the dispersion energy looks like

− ~

2π
T(m+p)T(n+q)

Z

αA
(m,n)(iu)αB

(p,q)(iu) du (7.27)

where α(m,n) is a polarizability describing the rank m response to a rank n

field or vice versa, and T(m+p) is an interaction function with m+ p suffixes.
For example Aα,βγ is an α(1,2). The distance dependence of such a term is
R−(m+n+p+q+2).

To get an R−7 term we need an α1,1 on one molecule and α1,2 on the other,
and this will give zero for centrosymmetric molecules, where the A tensor
vanishes. For similar reasons, all the odd terms vanish for such molecules.



758. Short-range Forces

We have used perturbation theory to derive the electrostatic, induction and
dispersion components of the interaction energy. This was done without full
antisymmetrization of the dimer wavefunction. For small intermolecular
separations, the effects of antisymmetrization become very important and
lead to additional terms in the interaction energy. These are the exchange
energies.

At short-range, the expanded forms of the electrostatic, induction and
dispersion energies is no longer valid. This occurs for two reasons: (1)
Overlap effects become important and must be included. This leads to the
penetration energy. And (2), the multipole expansion diverges and must be
damped to remove the singularities.

There is an additional short-range term: the Charge Transfer. which is quite
non-trivial in origin and can be regarded as a part of the induction energy. It
is basis-set-dependent.

We will first derive some properties of the molecular wavefunction that will
be useful in understanding these effects.

768.1 Electrostatic penetration

Suppose that we have a hydrogen-like atom, nuclear charge Z, interacting
with a proton.

The only non-zero multipole moment in each case is the charge, and at long
range, the interaction energy is TqAqB = (Z−1)e2/4πε0R, since the total
charge on the hydrogen-like atom is Z−1.

If the proton is close enough to penetrate inside the electron cloud of the
atom, however, we have to solve Poisson’s equation:

∇2V = −ρ/ε0. (8.1)

For the hydrogen-like atom, the charge density is

ρ = Zeδ(R)− eZ3

πa3
0

exp(−2ZR/a0). (8.2)

The first term here is the nuclear charge and the second describes the electron
density.



77Electrostatic penetration continued

We have to solve

∇2V = −ρ/ε0 with ρ = Zeδ(R)− eZ3

πa3
0

exp(−2ZR/a0). (8.3)

It is not too difficult to show that the potential satisfying this equation is

V =
e

4πε0

{
Z−1

R
+exp(−2ZR/a0)

( Z
a0

+
1
R

)}
. (8.4)

So the energy eV of a proton in this potential has two terms:

• The long-range term (Z−1)e2/4πε0R;

• A penetration term
e2

4πε0
exp(−2ZR/a0)

( Z
a0

+
1
R

)
.

Here the penetration term is positive (repulsive). Normally it is negative,
because it is the electron cloud of each molecule that penetrates into the
other, rather than the nuclei.

In common with other short-range terms, the penetration term decays
exponentially with increasing separation.

788.2 Damping

The long-range theory gives the dispersion energy between two atoms in the
form

Udisp = −C6

R6 −
C8

R8 −
C10

R10 −·· · , (8.5)

This clearly cannot be correct in the limit R→ 0 — the electronic energy
remains finite in that limit, and the nucleus–nucleus repulsion behaves like
1/R.

Consequently the dispersion energy must take a different form at short range.



79Damping functions

As in the case of the short-range repulsion, it is necessary to take exchange of
electrons between the molecules into account, and the theory becomes
extremely complicated.

For atoms the dispersion energy can be described by a modified expression:

Udisp = − f6(R)
C6

R6 − f8(R)
C8

R8 − f10(R)
C10

R10 −·· · , (8.6)

where the fn(R) are damping functions.

The damping functions must satisfy the following conditions:

• fn(R) → 1 as R→ ∞, to recover the long-range formula.

• fn(R) → Rn as R→ 0, to suppress the singularity.

80Tang–Toennies damping functions
The form of the damping functions is very hard to calculate. It is usual to use
simple model functions that have the right behaviour. The most widely used
damping functions are probably those proposed by Tang and Toennies
(1984). They are incomplete gamma functions:

fn(R) = 1−exp(−bR)
n

∑
k=0

(bR)k

k!
(8.7)

0 10 20

1

0
bR

f6 f10



81Overlap repulsion

We must take account of the fact that the electrons are indistinguishable and
that the wavefunction should be antisymmetric. The wavefunction then
becomes

ψ = ϕA(1)ϕB(2)−ϕA(2)ϕB(1). (8.8)

(Remember that the electrons have parallel spin; that is, the spin function is
one of the symmetric triplet spin functions.)

This wavefunction is not yet normalized; the normalization integral is

〈ψ|ψ〉 =

Z [
ϕA(1)2ϕB(2)2−2ϕA(1)ϕB(2)ϕA(2)ϕB(1)

+ ϕA(2)2ϕB(1)2
]

dτ1 dτ2

= 2−2S2, (8.9)

where
S=

Z

ϕA(1)ϕB(1) dτ1. (8.10)

82Overlap repulsion

The density for electron 1 is obtained by integrating over electron 2:

ρ1 =

R |ψ|2dτ2

〈ψ|ψ〉 ,

but the electrons are indistinguishable, so we just multiply by 2 to get the
total density:

ρ =
2

2−2S2

Z

|ψ|2 dτ2

=
1

1−S2

Z (
ϕA(1)2ϕB(2)2−2ϕA(1)ϕB(2)ϕA(2)ϕB(1)+ ϕA(2)2ϕB(1)2) dτ2

=
1

1−S2(ϕ2
A + ϕ2

B−2SϕAϕB). (8.11)

At long range, S→ 0, so the antisymmetrization makes no difference, but at
short range the antisymmetrization and the consequent renormalization
affects the charge distribution.



83Overlap repulsion

We can see what happens by considering
two regions:

ρ =
1

1−S2(ϕ2
A + ϕ2

B−2SϕAϕB)

A B

(a) Midway between the nuclei, ϕA = ϕB and the electron density is

ρ =
2ϕ2

A(1−S)

1−S2 =
2ϕ2

A

1+S
, (8.12)

which is less than the value of 2ϕ2
A obtained by adding together the

charge densities of the individual atoms.

a

(b) At a point on the internuclear axis at the far side of atom A from atom
B, where ϕB ≈ 0, the electron density is

ρ =
ϕ2

A

1−S2 , (8.13)

which is greater than the density for the unperturbed A atom.

b

84Overlap repulsion

A B

The electron density is no longer the sum of densities for two spherical
atoms, but is decreased between the nuclei and increased in the region
beyond the nuclei.

Now the Hellmann–Feynman theorem tells us that we can calculate the
forces on the nuclei by treating the charge density of the rest of the system
classically.

For two spherical neutral atoms the force on each nucleus would be zero, but
when electron density is moved from between the nuclei to the ends of the
molecule, each nucleus feels a force in the direction away from the other.

That is, there is a repulsive interaction.



858.3 Charge transfer
A charge-transfer interaction can
occur when we have

• an electron donor D (low
ionization energy ID)

• an electron acceptor A (high
electron affinity AA)

The system then has a low-lying
excited state |D+A−〉 at energy
ID−AA+Ues, where Ues describes the
electrostatic attraction between D+

and A−, and is negative.

E

R

|DA〉

|D+A−〉

As the molecules approach, we have the usual intermolecular potential
energy curve for |DA〉. For |D+A−〉, this is modified by the attractive Ues term.

Normally |D+A−〉 stays above |DA〉, because electron affinities are generally
much smaller than ionization energies. We are not concerned here with cases
like the alkali halides, where the ionic state becomes the ground state at short
range.

86Charge transfer transitions
The charge-transfer state |D+A−〉 can
mix with the ground state |DA〉 as a
result of the intermolecular
interaction:

|D̃A〉 = |DA〉+ λ|D+A−〉,

|D̃+A−〉 = |D+A−〉−λ|DA〉,

where λ is some mixing coefficient.

E

R

|DA〉

|D+A−〉

There is an allowed electronic
transition between these two states,
with transition amplitude

〈D̃A|µ̂|D̃+A−〉 = 〈DA|µ̂|D+A−〉+ λ〈D+A−|µ̂|D+A−〉
−λ〈DA|µ̂|DA〉−λ2〈D+A−|µ̂|DA〉. (8.14)

The important term here is the second one, which is λ times the dipole
moment of the charge-transfer state |D+A−〉, which is large. Consequently,
unless λ is very small, the electronic transition between the two states is very
intense.



87The charge transfer energy
These transitions are called charge transfer transitions. Their characteristic
features are

• They are very intense.

• They occur only in the complex, and not in either component on its
own.

This explanation for their occurrence was first given by Mulliken (1952).

Associated with the mixing between the states |DA〉 and |D+A−〉 is a change
in the energy of both states: they push each other apart, so that the ground
state is stabilized.

This stabilization was for a long time assumed to be the main source of the
binding between the components of a charge-transfer complex.

With the development of modern ab initio methods of calculating
intermolecular interactions it has become apparent that other contributions,
in particular the electrostatic and dispersion interactions, are responsible for
most of the binding, and the charge-transfer term is relatively unimportant.

However it cannot be neglected in donor–acceptor complexes.

889. Distributed Multipoles

9.1 Convergence of the multipole series

A

a

B

b

A

a

B

b

The multipole expansion converges
only if the charge distributions are
far enough apart. We construct
spheres centred at the local origin
of each charge distribution and just
enclosing the charges in it.

If the spheres overlap (top) the
multipole series diverges.

If they do not (bottom), it converges.



89Distributed multipoles

Since molecular charge distributions formally extend to infinity, we might
conclude that the multipole series never converges. Fortunately it turns out
that this result applies only to the point charges, i.e., the nuclei, and not to the
electronic charge distribution. Consequently the convergence spheres should
be drawn to enclose the nuclei only.

Even so, it is possible for quite small molecules to approach so closely that
their convergence spheres overlap. Even when they do not overlap,
convergence of the multipole series may be slow.

The solution is to divide the molecule up into regions, each enclosing a single
atom or a functional group, and to use a separate multipole expansion for
each region.

This leads to a distributed multipole description, and the method for
determining the multipoles from an ab initio wavefunction is called distributed
multipole analysis.

90The electronic charge density

If the molecular orbitals ψk are written as linear combinations of atomic basis
functions ϕi :

ψk = ∑
i

cikϕi , (9.1)

the electron density takes the form of a sum of products of the basis
functions:

ρ(r) = ∑Pi j ϕi(r)ϕ j(r), (9.2)

where Pi j is an element of the density matrix. This does not depend on any
approximations; in principle it is exact if the basis is complete.

Consequently we need to examine the products ϕi(r)ϕ j(r) of pairs of basis
functions.



91Boys’ formula

Boys (1950) showed that the product of two spherical gaussian functions,
centred at a and b, can be expressed as a single gaussian at an intermediate
point p, the overlap centre:

exp
[
−ζa(r−a)2]exp

[
−ζb(r−b)2]

= exp
[
− ζaζb

ζa + ζb
(a−b)2

]
exp

[
(ζa + ζb)(r−p)2], (9.3)

where p = (ζaa + ζbb)/(ζa + ζb).

If the factors ϕi(r) and ϕ j(r) in the product ϕi(r)ϕ j (r) are both spherical
gaussian functions, the product is a spherical gaussian and its multipole
expansion about p contains only a charge term.

A p function at a is a gaussian exp
[
−ζa(r−a)2

]
multiplied by a component of

r−a. A basis function with angular momentum l involves a polynomial of
degree l in the components of r−a, and the product of functions of angular
momenta l and l

′ can be expressed in terms of a polynomial of degree l + l
′ in

the components of r−p.

929.2 Distributed multipole analysis

If a basis of gaussian
functions is used, the
product of two s
functions is spherically
symmetric and can be
represented completely
just by a point charge at
the ‘overlap centre’ of the
two gaussian functions.

b

The product of an s
orbital and a p orbital
has only charge and
dipole components,
. . .

b

. . . and the product of two
p functions has charge,
dipole and quadrupole
components.

b



93Distributed multipoles

If the overlap centre is not at an atom, we can move the origin of the
multipole expansion to the nearest distributed multipole site, using the
formulae for change of origin. The multipole expansion will no longer
terminate, but the higher terms will be small.

We may take the sites wherever we like, but they will usually be at the atoms.
For small molecules we may wish to use additional sites at the centres of
bonds; for larger molecules we may wish to use a single site to describe a
group of atoms such as a methyl group.

This procedure is exact and very fast, but for modern large basis sets with
diffuse basis functions it has to be modified somewhat. When a product
ϕi(r)ϕ j(r) in eq. (9.2) has exponents ζa or ζb that are small, the product
function extends over several atoms, and it is better to calculate the
distributed multipoles by numerical quadrature over a grid of points. The
grid can be defined so that each point is associated with a particular site, and
the multipoles for each site are obtained by quadrature over the points
belonging to that site.

94Distributed multipoles

This description then includes, at each site,

• Charges, describing electronegativity effects in a familiar way;

• Dipoles, arising from overlap of s and p orbitals and describing lone
pairs and other atomic distortions;

• Quadrupoles, arising from the overlap of p orbitals, and associated
with π bonds, for example.

• Octopoles and hexadecapoles can be included if very high accuracy is
required.



95Examples

F H
0.07 0.54−0.61 Charges

0.31 −0.15
Dipoles

0.60
Quadrupoles

N N
0.5 0.5−1.0 Charges

0.8 −0.8 Dipoles

1.3
Quadrupoles

C O
0.3 0.1−0.4 Charges

0.66 −0.40 Dipoles

0.68−0.55 0.21
Quadrupoles

−1.1

9610. The hydrogen bond

The hydrogen bond is a case where all of the main terms in the
intermolecular interaction have some part to play, but the most important
contributions are electrostatic and repulsion.

• In the hydrogen bond –A–H···B–, A and B are both electronegative, so
the charge distribution is –A−–H+···B−–, and there is a strong
electrostatic attraction between H and B. There is also an electrostatic
repulsion between A and B which tends to keep the hydrogen bond
linear.

• Since A is electronegative, the electron density on the H atom is
relatively small, and the repulsion between B and H is not very strong.

Consequently the A···B distance can be quite short — in the strongest
hydrogen bonds it may be less than the sum of their Van der Waals
radii. This leads to Pauli repulsion between the atoms A and B, which
also tends to keep the bond linear.



97Features of the hydrogen bond

• The A–H bond lengthens for
strong hydrogen bonds. For
O–H···O bonds, the O–H bond
lengthens from 0.96Å in a free
O–H to as much as 1.07Å in
KH2PO4, where the O···O
distance is 2.5Å.

• The A–H vibration frequency
decreases and in liquids the
spectrum becomes very broad.
(H-bond red shift.) This is
because the B−···H+ interaction
shifts the minimum and reduces
the curvature at the bottom of
the well — i.e. the force constant.
In liquids the effect depends
strongly on the local geometry.

A BH

A–H

H+···B−

Total

98Features of the hydrogen bond

• The A–H vibration intensity
increases by an order of
magnitude or more. The H+

induces a dipole in B which
varies strongly with the H···B
distance, and the vibrational
intensity depends on the dipole
derivative.

A BH

A–H

H+···B−

Total



99Predicting hydrogen-bonded structures
Because the main contributions to the hydrogen-bond interaction are the
electrostatic and repulsion terms, and the electrostatic term accounts for most
of the orientation dependence, they can be used alone to predict structures of
hydrogen-bonded complexes.

The Buckingham–Fowler model (Buckingham and Fowler, 1985) provides a
quantitative treatment:

• The electrostatic interaction is described by an accurate distributed
multipole analysis,

• and the repulsion by a simple hard-sphere model, using standard Van
der Waals radii for the heavy atoms and ignoring any repulsion
involving the H atom.

This simple picture gives angular geometries correct to within a few degrees
in most hydrogen-bonded complexes.

100Limitations of the Buckingham–Fowler model

The simplicity of the repulsion model means that where there is more than
one possible geometry their relative energies are sometimes predicted
incorrectly.

For example, this model suggests incorrectly that the hydrogen-bonded
structure Cl–F···H–F has a lower energy than the ‘anti-hydrogen-bonded’
structure H–F···Cl–F.

However the structure of H–F···Cl–F is given correctly. The relative energies
are incorrect because the standard van der Waals radius for Cl is too large.

F

Cl

FH
F

H

Cl F



101The hydrogen bond: other contributions

Other terms make important contributions to the energy, but are less
important in determining structure because they are less sensitive to
orientation.

• Dispersion provides a significant attractive component.

• Induction is important in clusters and condensed phases because of its
cooperative characteristics.

• Charge transfer makes a significant contribution, though not a dominant
one.

102The hydrogen bond: water dimer

For the water dimer in its equilibrium geometry, the contributions given by
two alternative methods of calculation are, in kJ mol−1:

IMPT SAPT

Electrostatic −25.8 −31.6
Repulsion 21.3 35.4
Dispersion −9.2 −11.1
Induction −4.5
Charge Transfer −3.7

}
−11.4

Higher-order corrections −3.2
Total −21.9 −20.9

IMPT (InterMolecular Perturbation Theory) (Hayes and Stone, 1984) was the
first successful method for calculating intermolecular interactions ab initio.

SAPT (Symmetry Adapted Perturbation Theory) (Jeziorski et al., 1994) is a
later, more accurate, method that includes electron correlation effects.



10311. Ab initio methods

Intermolecular interactions at long range are relatively easy to calculate in
terms of properties of the individual molecules. At short range, however, this
approach fails.

Two main methods are available for the calculation of intermolecular
interactions ab initio at short range: the Supermolecule method and
Intermolecular perturbation theory.

11.1 The supermolecule method

The supermolecule method is very simple in concept:

UA···B = EA···B−EA−EB.

It is also easy to use with any basis set and at any level of theory.

However there are significant disadvantages.

104Disadvantages of the supermolecule method

• The result is a difference of energies, so there is no variational principle.

• The interaction energy is given as a single number — no physical
separation or interpretation.

• Basis set superposition error:
In the dimer calculation, the basis functions of each molecule become
available to improve the description of the other. This leads to a
spurious lowering of the energy. The standard treatment for this
problem is the counterpoise method of Boys and Bernardi (1970): the
calculations on the monomers are carried out at each dimer
configuration using the dimer basis, i.e. with additional ‘ghost orbitals’
where the basis functions of the other monomer would be.

• Size consistency:
Some correlation methods (in particular SDCI) give different results for
A ···B at infinity and for EA+EB when each monomer energy is
calculated separately. MP2 and coupled-cluster methods avoid this
problem.



105Supermolecule method with DFT

• Much faster than conventional methods.

• Avoids size consistency problem.

• BSSE remains an issue.

• Still just a single number.

• No dispersion energy.

Parallel
Slipped
parallel

T

kJ mol−1 P sP T

CCSD(T) −5.06 −8.41 −9.79
B3LYP 13.26 11.00 2.55
PW91 5.90 3.31 −2.72

Tsuzuki and Lüthi, J. Chem. Phys. 114, 3949 (2001)

10611.2 Short-range perturbation theory

The problem with perturbation theory at short range is the following.
Suppose that we separate the Hamiltonian in the obvious way:

H = H
0 + λH

′ = H(A)+H(B)+ λH
′, (11.1)

where H(A) is the Hamiltonian for molecule A alone and H(B) similarly.
Then we have to assign some of the electrons (and nuclei) to A and the rest to
B, while H′ describes interactions between these two sets of particles. It
follows that H

0 is not invariant to permutations that exchange electrons
between the molecules, and neither is H′, but the complete Hamiltonian
must be invariant because it must treat all electrons equally. That is,

[P,H] = 0 but [P,H0] = −[P,λH
′] 6= 0, (11.2)

and we have an equality between a zeroth-order quantity and a first-order
quantity. This destroys the usual separation of the perturbation equations
into first-order, second-order and so on.



107InterMolecular Perturbation Theory (IMPT)

Many procedures were proposed to overcome the difficulties with
short-range perturbation theory, but the first practical method was the
InterMolecular Perturbation Theory of Hayes and Stone (1984). This used a
matrix solution of the problem in a basis of non-orthogonal Slater
determinants constructed from the molecular orbitals of the two molecules.

• Relatively simple and inexpensive.

• SCF unperturbed wavefunctions, so no zeroth-order correlation effects.

• Uncoupled P.T. for second-order terms.

108Symmetry-Adapted Perturbation Theory (SAPT)

Jeziorski et al. (1994)

This method uses a perturbation expansion in the correlation as well as the
intermolecular interaction. It is formally an iterative procedure in which
projection techniques are used to ensure that the energy is calculated from a
correctly-antisymmetrized wavefunction. The Hamiltonian is

H = FA +FB+ ξWA+ ηWB+ λV,

where

FA,FB are the Fock operators,
WA,WB are the Møller–Plesset operators,

V is the intermolecular perturbation.

Because this method includes correlation corrections it is potentially much
more accurate than IMPT, but it is very demanding in computational
resources.



109Symmetry-Adapted Perturbation Theory (SAPT-DFT)

Misquitta et al. (2005) Hesselmann et al. (2005)

The latest development in symmetry-adapted perturbation theory involves
the use of Density Functional Theory. The first-order components (Ues and
Uexch) are calculated using the Hamiltonian

H = KA +KB+ λV,

where

KA,KB are the Kohn–Sham operators,
V is the intermolecular perturbation.

The second-order components (Uind and Udisp etc.) are calculated using
Kohn–Sham linear response theory — recall that the second-order energies
are response energies.

This procedure is much simpler and faster than the original SAPT. However
it is necessary to use asymptotically-corrected functionals to get good results.

11012. Building a model potential

Calculating intermolecular interactions ab initio is very time-consuming, and
it is impractical for detailed studies even of small molecular clusters. For
reactions of small molecules in solution, Car–Parrinello simulations, in which
the electronic problem is solved using Density Functional Theory in parallel
with the evolution of the nuclear coordinates, are becoming feasible but are
still very demanding computationally. For studies of proteins in aqueous
solution, such methods are out of the question.

It is therefore usual in such applications to use models, in which the
interactions are represented more or less accurately by analytical
mathematical functions. They are usually constructed by assembling simple
functions that describe the different contributions to the interaction, often by
fitting to the results of ab initio calculations or to experimental data or both.

Repulsion and dispersion are universal. They are commonly described in
atom–atom form.



111The Lennard-Jones potential

The Lennard-Jones potential has been used for many years:

ULJ = ∑
ab

4εab

[(
σab

Rab

)12

−
(

σab

Rab

)6]
, (12.1)

where εab and σab are well-depth and size parameters describing the
interaction between atoms a (in molecule A) and b (in molecule B).

The R−12 repulsion is too steep, and to get the well-depth right the coefficient
of the R−6 term has to be much larger than the true dispersion coefficient, so
the long-range description is also wrong.

The L-J potential is computationally convenient, so it was widely used when
computers were limited in performance. Although this is no longer a
significant consideration it is still used.

112The exp-6 potential

A much better form is the ‘exp-6’ potential:

Uexp-6 = ∑
ab

{
K exp

[
αab(ρab−Rab)

]
− Cab

6

R6
ab

}
. (12.2)

Here there is an explicit dispersion term, while the repulsive part of the
interaction is in exponential or ‘Born–Mayer’ form. K is an arbitrary energy
unit (e.g. 1 milliHartree). The parameter ρab is the separation at which the
repulsion reaches a value of K, so it is a size parameter. α describes the
hardness of the repulsion, and is typically around 2 bohr−1.

A disadvantage of the exp-6 form is that the dispersion term tends to −∞ as
R→ 0, while the repulsion remains finite. Consequently this form of
atom–atom potential reaches a maximum on the repulsive wall at some value
of R and then dives to −∞. This normally happens for values of R well inside
the repulsive reggion, but it leads to difficulties in some simulations. It can be
overcome by damping the dispersion, but that makes the potential more
complicated.



113Models of the electrostatic interaction

The electrostatic interaction is very commonly described using atomic point
charges:

Ues = ∑
ab

qaqb

4πε0Rab
. (12.3)

The point charges are usually obtained nowadays by fitting them so as to
reproduce the electrostatic potential of the molecule as accurately as possible.

A distributed-multipole model, with atomic multipoles up to quadrupole,
gives a much better description but is computationally more demanding.

In either case, the necessary parameters can be obtained from calculations on
the isolated molecules. The repulsion, on the other hand, can only be
obtained from calculations on the complex at many different relative
configurations, so its determination is much more difficult.

114Anisotropy

In their simplest form, all of these expressions treat the atoms as spherical.
Inclusion of higher moments in a distributed-multipole model describes the
anisotropy of atoms in the molecular environment.

Better accuracy can be achieved by allowing the parameters in the repulsion
model (ρ and α in the exp-6 model) to depend on the relative orientation of
the atoms a and b, but this increases the computational cost. In the same way,
the dispersion can be described more accurately by allowing the Cab

6
coefficients to depend on orientation.

Because of the steepness of the repulsion, the intermolecular potential is very
sensitive to anisotropy in the repulsion.



115Atoms in molecules are not spherical
This effect has been illustrated
graphically by the work of
Nyburg and Faerman (1985), who
explored the distances of closest
approach of atoms in crystals. Their
plots show very clearly the
non-spherical shape of atoms in
molecules, especially for halogens.

Crystals with a pair of atoms in the
geometry shown were entered as points
on a scatter plot according to the (R,θ)
values. The points on the plot map out an
effective van der Waals surface for the
atom concerned.

Example: Most diatomics crystallize in a cubic structure. The halogen
diatomics Cl2, Br2 and I2 have a different structure. It arises because these
halogen atoms in molecules are not spherical but are flattened at the ends.
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116Models of induction

The induction term is frequently omitted altogether, because its inclusion
adds greatly to the computational cost. The induced moments of any one
molecule in a cluster or liquid depends on the field at that molecule, which in
turn depends on the moments of all the other molecules, including their
induced moments. The simultaneous equations describing this situation have
to be solved at each step of the simulation. This is not difficult — it can be
done iteratively in just a few steps — but it adds to the computation time.

Often the effect of induction is included in part by modifying the electrostatic
term. In models of liquid water, for instance, it is common to use values of
the point charges that yield an enhanced molecular dipole moment of around
2.3 D, rather than the value of 1.8 D that is appropriate for the isolated
molecule.

Clearly such an approach cannot reproduce any of the non-additive character
of induction.

117Molecular mechanics

For studies of proteins and other large flexible molecules, a complete ‘force
field’ includes ‘intermolecular’ terms between different molecules and
between atoms in the same molecule that are not directly bonded, and
intramolecular terms describing bond bends, stretches and torsions. In
protein studies it is essential to include the water solvent in some way, either
by including explicit water molecules in the simulation or by approximating
the effect of solvent, for example by treating it as a continuous dielectric
medium. The resulting potential model is very elaborate — there are many
dozens of parameters, even if the simplest form is used for each potential
term.

For more details, see Leach (2001), Ch. 3.
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