Literature

Read this in order:

  1. New representation for the dispersion by Hodges and Stone (Molecular Physics vol 98). Important paper. Read fully. Make extensive notes.

  2. Distributed Dispersion by Williams and Stone Read the Introduction and get an idea of the problem

  3. Distributed Dispersion by Misquitta and Stone The dispersion models you are using have been obtained using the methods in this paper. Read carefully and make extensive notes. In this paper, I state that the dispersion model should match the total dispersion energy defined as $E^{(2)}_{\rm DISP} = E^{(2)}_{\rm disp,pol} + E^{(2)}_{\rm disp,exch}$, but other groups suggest that we should use only the first term in that sum, the polarization term ('pol').

  4. Atom-Atom model paper by Stone and Misquitta.

Here are some papers by Dobson on problems with the dispersion expansion you are using:

  1. Dispersion: Is there a problem by Dobson (Aust. J. Chem. 54)

  2. Beyond the pair-wise approximation by Dobson (Int. J. Quant. Chem. 114)

Dispersion Models

Before reading this, make sure you fully understand the structure of an Orient input file as described in the tutorial on Orient Energy calculations.

Here we will explore some examples of dispersion energy calculations with Orient. This tutorial is currently a subset of the more general one on energy calculations, and is meant for research students.

Pyridine dimer

The goal here is to investigate various dispersion models for pyridine. The isotropic dispersion coefficients have been calculated using the WSM procedure with PBE0/AC and the ALDA+CHF kernel with a d-aug-cc-pVTZ basis set. The full dispersion model is on a separate page.

Here's the Orient command file for this calculation. Follow the instructions on that page to set up this file properly.

Double-H-bonded geometry (Hb1)

min-1-hb1.png

You will need a pyridine dimer geometry file to perform a calculation. As explained on the Orient: Energy Calculations page, the dimer geometry file contains information needed to construct the dimer complex from two monomers. Here's the pyridine dimer geometry file you will use now. Save this in file //pyr2.geom//.

pyridine dimer geometry: Double-H-Bonded

! Configs read from file : Min-1-Hb1.geom
!  Minimum    12, energy =       -16.148904 KJ/MOL
!  R-scalings 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.20 1.40
! UNITS  BOHR DEGREE KJ/MOL
    1      -4.62746800       7.42808480      -0.00000080     179.99990900      -0.00000100      -0.00000200      -1.00000000
    2      -4.91668475       7.89234010      -0.00000085     179.99990900      -0.00000100      -0.00000200      -1.00000000
    3      -5.20590150       8.35659540      -0.00000090     179.99990900      -0.00000100      -0.00000200      -1.00000000
    4      -5.49511825       8.82085070      -0.00000095     179.99990900      -0.00000100      -0.00000200      -1.00000000
    5      -5.78433500       9.28510600      -0.00000100     179.99990900      -0.00000100      -0.00000200      -1.00000000
    6      -6.07355175       9.74936130      -0.00000105     179.99990900      -0.00000100      -0.00000200      -1.00000000
    7      -6.36276850      10.21361660      -0.00000110     179.99990900      -0.00000100      -0.00000200      -1.00000000
    8      -6.94120200      11.14212720      -0.00000120     179.99990900      -0.00000100      -0.00000200      -1.00000000
    9      -8.09806900      12.99914840      -0.00000140     179.99990900      -0.00000100      -0.00000200      -1.00000000

Important

The format of this file is as follows:

  • Comments are indicated by the initial '! ' followed by a space.
  • Data lines are: Index Rx Ry Rz alpha Nx Ny Nz
  • Here ${\mathbf R} = (R_x,R_y,R_z)$ is the position vector of the centre of the molecule...

  • ...which is rotated by $\alpha$ about the axis defined by the unit vector ${\mathbf N} = (N_x,N_y,N_z)$.

  • The units used are set in the Orient command file. We will normally define lengths in Bohr and angles in Degrees.

Now run Orient. If all goes well and nothing is missing, you will get an output which will end with:

Part of Orient output

...
...
Energy calculation
        Rx        Ry        Rz     alpha        Nx        Ny        Nz     Index      disp 
    1.00000   -4.62747    7.42808   -0.00000  179.99991   -0.00000   -0.00000   -1.00000 -0.1086983E+03
    2.00000   -4.91668    7.89234   -0.00000  179.99991   -0.00000   -0.00000   -1.00000 -0.6508604E+02
    3.00000   -5.20590    8.35660   -0.00000  179.99991   -0.00000   -0.00000   -1.00000 -0.3905442E+02
    4.00000   -5.49512    8.82085   -0.00000  179.99991   -0.00000   -0.00000   -1.00000 -0.2366363E+02
    5.00000   -5.78433    9.28511   -0.00000  179.99991   -0.00000   -0.00000   -1.00000 -0.1456060E+02
    6.00000   -6.07355    9.74936   -0.00000  179.99991   -0.00000   -0.00000   -1.00000 -0.9136092E+01
    7.00000   -6.36277   10.21362   -0.00000  179.99991   -0.00000   -0.00000   -1.00000 -0.5862099E+01
    8.00000   -6.94120   11.14213   -0.00000  179.99991   -0.00000   -0.00000   -1.00000 -0.2595136E+01
    9.00000   -8.09807   12.99915   -0.00000  179.99991   -0.00000   -0.00000   -1.00000 -0.6722668E+00

Finished at 15:35:43 on 26 Nov 2015 

The dispersion energies are in the last column in the current energy units of kJ/mol.

Important

The Orient output is long but if all goes well (i.e., if there are no errors) then all you need is this last block that contains the energies. The format of the block is determined by the line after 'Energy Calculation'. Here we should have data presented in the order

  • Rx Ry Rz alpha Nx Ny Nz Index disp

but this is not quite right as the 'Index' column actually appears first, so the actual order is

  • Index Rx Ry Rz alpha Nx Ny Nz disp

The reference dispersion energies are obtained from a SAPT(DFT) calculation of the interaction energy using the PBE0/AC density functional, the ALDA+CHF response kernel, and the Sadlej-pVTZ MC+ basis set. In SAPT(DFT), the dispersion energy is split into two parts called $E^{(2)}_{\rm disp,pol}$ and $E^{(2)}_{\rm disp,exch}$. I have calculated these energies and they are present in the following file. The first term is under the column titled //disp// and the second under //exdisp//. So you get the total dispersion energy by summing up the energies in columns //disp// and //exdisp// in this file:

Reference interaction energies for double-H-bonded dimers

kJ/mol                     Rx           Ry           Rz       elst        exch         ind        exind       disp       exdisp        dHF        total
pyr2-Min-1-Hb1_1   -4.62746800   7.42808480  -0.00000080  -391.78298   906.47847  -466.78920   301.55526  -148.53278    29.19456    63.91539   294.03872
pyr2-Min-1-Hb1_2   -4.91668475   7.89234010  -0.00000085  -175.41151   394.79266  -158.07765   115.88891   -85.47441    18.05324   -15.29883    94.47239
pyr2-Min-1-Hb1_3   -5.20590150   8.35659540  -0.00000090   -79.80775   161.29153   -55.08349    40.44190   -49.60674     9.47369   -12.97352    13.73563
pyr2-Min-1-Hb1_4   -5.49511825   8.82085070  -0.00000095   -38.49000    63.64067   -20.28133    13.62851   -29.14987     4.52402    -5.82393   -11.95193
pyr2-Min-1-Hb1_5   -5.78433500   9.28510600  -0.00000100   -20.13901    24.66869    -8.04327     4.54295   -17.44163     2.03467    -2.24451   -16.62210
pyr2-Min-1-Hb1_6   -6.07355175   9.74936130  -0.00000105   -11.55184     9.49641    -3.49405     1.52050   -10.66386     0.87805    -0.81570   -14.63049
pyr2-Min-1-Hb1_7   -6.36276850  10.21361660  -0.00000110    -7.20094     3.64456    -1.68429     0.51856    -6.68995     0.36815    -0.28800   -11.33191
pyr2-Min-1-Hb1_8   -6.94120200  11.14212720  -0.00000120    -3.32496     0.52344    -0.52194     0.06584    -2.87627     0.06109    -0.03432    -6.10712
pyr2-Min-1-Hb1_9   -8.09806900  12.99914840  -0.00000140    -0.94653     0.00461    -0.10704     0.00159    -0.74583     0.00163    -0.00015    -1.79172

Here too the units are kJ/mol.

Important

To find our more about intermolecular interactions see the pages on Topics in Intermolecular Interactions. These topics are not complete, but include information about the dispersion energy.

Important

Compare these two sets of dispersion energies graphically. It will be best to plot the dispersion energy from the model (Orient output) and the reference SAPT(DFT) calculation (sum of 'disp' and 'exdisp') against $R$, the centre-of-mass separation of the two molecules.

Use Gnuplot or Excel for this. As usual with any plot, make sure you choose a good range for the x/y-axes, use axis labels, and make sure you have an intelligible legend.

You may also plot the % error against $R$.

Stacked geometry: S1

min-2-s1.png

Here the dispersion interaction is quite strong as the molecules are nearly planar and the $\pi$-electron clouds on the two pyridine molecules interact quite strongly.

The dimer geometry file for this dimer configuration is:

Pyridine dimer stacked S1 geometry

! Configs read from file : Min-2-S1.geom
!  Minimum     4, energy =       -15.865773 KJ/MOL
!  R-scalings 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.20 1.40
! UNITS  BOHR DEGREE KJ/MOL
    1      -1.79942320      -0.73612400       5.12911280     180.00021200       0.00000000       0.00000000       1.00000000
    2      -1.91188715      -0.78213175       5.44968235     180.00021200       0.00000000       0.00000000       1.00000000
    3      -2.02435110      -0.82813950       5.77025190     180.00021200       0.00000000       0.00000000       1.00000000
    4      -2.13681505      -0.87414725       6.09082145     180.00021200       0.00000000       0.00000000       1.00000000
    5      -2.24927900      -0.92015500       6.41139100     180.00021200       0.00000000       0.00000000       1.00000000
    6      -2.36174295      -0.96616275       6.73196055     180.00021200       0.00000000       0.00000000       1.00000000
    7      -2.47420690      -1.01217050       7.05253010     180.00021200       0.00000000       0.00000000       1.00000000
    8      -2.69913480      -1.10418600       7.69366920     180.00021200       0.00000000       0.00000000       1.00000000
    9      -3.14899060      -1.28821700       8.97594740     180.00021200       0.00000000       0.00000000       1.00000000

And the reference SAPT(DFT) interaction energies and components are:

Pyridine dimer stacked S1 : SAPT(DFT)

kJ/mol               elst        exch         ind        exind       disp       exdisp        dHF        total
pyr2-Min-2-S1_1  -93.68418   229.84666  -121.97931   117.41444  -104.53125    20.49225    -9.55649    38.00211
pyr2-Min-2-S1_2  -55.89101   137.13609   -67.86848    65.93106   -77.65630    13.50502    -8.40315     6.75323
pyr2-Min-2-S1_3  -33.41670    81.23861   -37.90498    36.83166   -57.86743     8.74817    -5.96320    -8.33387
pyr2-Min-2-S1_4  -20.05835    47.83876   -21.26223    20.50059   -43.28651     5.58199    -3.86950   -14.55525
pyr2-Min-2-S1_5  -12.14874    28.04879   -11.98552    11.36883   -32.53668     3.51790    -2.39791   -16.13334
pyr2-Min-2-S1_6   -7.48464    16.38945    -6.80518     6.28065   -24.59408     2.19461    -1.44595   -15.46515
pyr2-Min-2-S1_7   -4.74532     9.54668    -3.90642     3.45575   -18.70491     1.35737    -0.85578   -13.85263
pyr2-Min-2-S1_8   -2.20207     3.21641    -1.36632     1.04099   -11.05719     0.51030    -0.29046   -10.14833
pyr2-Min-2-S1_9   -0.98400     0.35555    -0.25850     0.09980    -4.24321     0.06907    -0.03340    -4.99470

As before, the dispersion energy is obtained by summing up the energies in columns //disp// and //exdisp//.

Important

Perform the same analysis of the dispersion energy for this and other dimer orientations.

Stacked S2 geometry

min-3-s2.png

Stacked S2 geometry file

! Configs read from file : Min-3-S2.geom
!  Minimum    21, energy =       -15.415471 KJ/MOL
!  R-scalings 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.20 1.40
! UNITS  BOHR DEGREE KJ/MOL
    1      -1.08088960      -1.19861520       5.19152480     179.99987000       0.82854802      -0.55821602       0.04362400
    2      -1.14844520      -1.27352865       5.51599510     179.99987000       0.82854802      -0.55821602       0.04362400
    3      -1.21600080      -1.34844210       5.84046540     179.99987000       0.82854802      -0.55821602       0.04362400
    4      -1.28355640      -1.42335555       6.16493570     179.99987000       0.82854802      -0.55821602       0.04362400
    5      -1.35111200      -1.49826900       6.48940600     179.99987000       0.82854802      -0.55821602       0.04362400
    6      -1.41866760      -1.57318245       6.81387630     179.99987000       0.82854802      -0.55821602       0.04362400
    7      -1.48622320      -1.64809590       7.13834660     179.99987000       0.82854802      -0.55821602       0.04362400
    8      -1.62133440      -1.79792280       7.78728720     179.99987000       0.82854802      -0.55821602       0.04362400
    9      -1.89155680      -2.09757660       9.08516840     179.99987000       0.82854802      -0.55821602       0.04362400

Stacked S2 SAPT(DFT) interaction energies

kJ/mol                elst        exch         ind        exind       disp       exdisp        dHF        total
pyr2-Min-3-S2_1   -94.36569   233.64001  -124.91985   120.20669  -104.48047    20.52825    -8.85141    41.75753
pyr2-Min-3-S2_2   -55.91630   139.27155   -69.16488    67.20437   -77.58576    13.53039    -8.26838     9.07098
pyr2-Min-3-S2_3   -33.13793    82.43018   -38.46427    37.39061   -57.80902     8.76312    -6.01039    -6.83769
pyr2-Min-3-S2_4   -19.65599    48.50345   -21.47742    20.71520   -43.25229     5.58866    -3.95289   -13.53129
pyr2-Min-3-S2_5   -11.70362    28.41093   -12.05830    11.43750   -32.52121     3.51777    -2.47057   -15.38751
pyr2-Min-3-S2_6    -7.03240    16.58333    -6.81682     6.28864   -24.59363     2.19060    -1.49815   -14.87843
pyr2-Min-3-S2_7    -4.30614     9.65228    -3.89611     3.44323   -18.72228     1.35250    -0.88994   -13.36646
pyr2-Min-3-S2_8    -1.80769     3.24548    -1.35061     1.02494   -11.08604     0.50547    -0.30197    -9.77042
pyr2-Min-3-S2_9    -0.67850     0.35748    -0.25399     0.09493    -4.27776     0.06758    -0.03315    -4.72341

T1 geometry

min-4-t1.png

T1 H-bonded dimer geometry

! Configs read from file : Min-4-T1.geom
!  Minimum     6, energy =       -14.741407 KJ/MOL
!  R-scalings 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.20 1.40
! UNITS  BOHR DEGREE KJ/MOL
    1      -0.00118960       2.23630400       6.94015440     184.79799900      -0.70659688       0.04176199       0.70638288
    2      -0.00126395       2.37607300       7.37391405     184.79799900      -0.70659688       0.04176199       0.70638288
    3      -0.00133830       2.51584200       7.80767370     184.79799900      -0.70659688       0.04176199       0.70638288
    4      -0.00141265       2.65561100       8.24143335     184.79799900      -0.70659688       0.04176199       0.70638288
    5      -0.00148700       2.79538000       8.67519300     184.79799900      -0.70659688       0.04176199       0.70638288
    6      -0.00156135       2.93514900       9.10895265     184.79799900      -0.70659688       0.04176199       0.70638288
    7      -0.00163570       3.07491800       9.54271230     184.79799900      -0.70659688       0.04176199       0.70638288
    8      -0.00178440       3.35445600      10.41023160     184.79799900      -0.70659688       0.04176199       0.70638288
    9      -0.00208180       3.91353200      12.14527020     184.79799900      -0.70659688       0.04176199       0.70638288

T1 H-bonded dimer SAPT(DFT) energies

kJ/mol                elst        exch         ind        exind       disp       exdisp        dHF        total
pyr2-Min-4-T1_1   -143.75060   365.78637  -163.67329   134.43732  -104.97735    20.27286    -1.54149   106.55382
pyr2-Min-4-T1_2   -73.22983   180.25459   -68.92160    59.48863   -68.93918    12.05092    -9.56961    31.13392
pyr2-Min-4-T1_3   -38.33338    86.66029   -29.49579    25.66332   -45.49253     6.75683    -6.56118    -0.80242
pyr2-Min-4-T1_4   -21.06549    40.98139   -12.90868    10.95067   -30.24904     3.63478    -3.51241   -12.16878
pyr2-Min-4-T1_5   -12.39565    19.17593    -5.82614     4.65623   -20.31555     1.89593    -1.72381   -14.53305
pyr2-Min-4-T1_6    -7.91592     8.92305    -2.74621     1.98005   -13.81631     0.96697    -0.81672   -13.42508
pyr2-Min-4-T1_7    -5.50328     4.14028    -1.37392     0.84514    -9.53385     0.48474    -0.38403   -11.32493
pyr2-Min-4-T1_8    -3.25632     0.88810    -0.43455     0.16035    -4.76954     0.11781    -0.08875    -7.38291
pyr2-Min-4-T1_9    -1.67809     0.03669    -0.09847     0.00715    -1.46121     0.00649    -0.00755    -3.19500

Random Geometry set

Use the set of random dimer geometries from here (This is a gzipped file. To open it, use gunzip (see below)) to compare dispersion energies from the dispersion models (using Orient) with dispersion energies from SAPT(DFT).

You will need to compare the model dispersion energies with those from SAPT(DFT) using a scatter plot. Keep the SAPT(DFT) reference energies on the $x$-axis.

Important

Gzip:

The Wiki will not allow me to include certain kinds of files, so I have used the gzip program to zip some files. These have the ending *.gz. To use them you first need to gunzip them as follows:

$ gunzip pyr2-saptdft-disp.dat.gz

This will result in the file

& pyr2-saptdft-disp.dat

You will be able to view this file as a standard text file.

The sISA dispersion model

So far you have been using a dispersion model with a single dispersion coefficient between all pairs of sites. All sites used damping parameter $\beta_{\rm disp} = 1.67$ a.u. This damping parameter was determined from the ionisation energies of the two interacting pyridine molecules (see the paper by Misquitta and Stone 2008 (Paper [3])). Now you will use a damping model in which every pair of sites has its own damping parameter. This model has been derived using the Iterated Stockholder Atoms algorithm (ISA) to partition the molecular density into atomic parts, and then the damping coefficients for every pair of the atomic parts has been determined using the density decay of the atomic parts.

Mathematical details to follow.

The damping model is contained in this file. You will need to modify the Orient command file to include this model. This can be done as follows:

The Orient command file with the simple dispersion model contains the lines:

Pairs
   ! We will use a damping model based on the Tang--Toennies incomplete Gamma function
   ! with damping parameter \beta = 1.67 a.u.
 
   Dispersion damping factor 1.67
 
   ! And we will include the dispersion model that should be in file pyr2-disp.pot
 
   #include ./pyr2-disp.pot
End

Modify this to be

Pairs
   ! We will use a damping model based on the Tang--Toennies incomplete Gamma function
   ! with damping parameter \beta = 1.67 a.u.
 
   #include ./pyr2-damp3-ab-sisa-0.80.disp
 
   ! And we will include the dispersion model that should be in file pyr2-disp.pot
 
   #include ./pyr2-disp.pot
End

Here pyr2-damp3-ab-sisa-0.80.disp is the name of the file containing the dispersion damping model. Remember you need to gunzip it! Now run Orient as before.

Important

Tasks:

  1. Use this dispersion model (call it damp3 to be consistent with my notation) to calculate the dispersion energies for the four pyridine dimer orientations you have already studied.

  2. However, in addition to using as your reference the sum of SAPT(DFT) energies $E^{(2)}_{\rm disp,pol} + E^{(2)}_{\rm disp,exch}$ (this is what you have done before), also use just the first term. This seems to be required by some theoretical studies. So here we will ask the question: which of these energies does the model fit?

  3. Finally use the set of random dimers to make two scatter plots with this dispersion damping model: one comparing the model to SAPT(DFT) energies $E^{(2)}_{\rm disp,pol} + E^{(2)}_{\rm disp,exch}$, and the other comparing to SAPT(DFT) energies $E^{(2)}_{\rm disp,pol}$.

AJMPublic/orient/dispersion-models (last edited 2021-04-14 12:57:35 by apw109)